atomic: use <linux/atomic.h>
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
29
30 #include <linux/device-mapper.h>
31
32 #define DM_MSG_PREFIX "crypt"
33 #define MESG_STR(x) x, sizeof(x)
34
35 /*
36 * context holding the current state of a multi-part conversion
37 */
38 struct convert_context {
39 struct completion restart;
40 struct bio *bio_in;
41 struct bio *bio_out;
42 unsigned int offset_in;
43 unsigned int offset_out;
44 unsigned int idx_in;
45 unsigned int idx_out;
46 sector_t sector;
47 atomic_t pending;
48 };
49
50 /*
51 * per bio private data
52 */
53 struct dm_crypt_io {
54 struct dm_target *target;
55 struct bio *base_bio;
56 struct work_struct work;
57
58 struct convert_context ctx;
59
60 atomic_t pending;
61 int error;
62 sector_t sector;
63 struct dm_crypt_io *base_io;
64 };
65
66 struct dm_crypt_request {
67 struct convert_context *ctx;
68 struct scatterlist sg_in;
69 struct scatterlist sg_out;
70 sector_t iv_sector;
71 };
72
73 struct crypt_config;
74
75 struct crypt_iv_operations {
76 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
77 const char *opts);
78 void (*dtr)(struct crypt_config *cc);
79 int (*init)(struct crypt_config *cc);
80 int (*wipe)(struct crypt_config *cc);
81 int (*generator)(struct crypt_config *cc, u8 *iv,
82 struct dm_crypt_request *dmreq);
83 int (*post)(struct crypt_config *cc, u8 *iv,
84 struct dm_crypt_request *dmreq);
85 };
86
87 struct iv_essiv_private {
88 struct crypto_hash *hash_tfm;
89 u8 *salt;
90 };
91
92 struct iv_benbi_private {
93 int shift;
94 };
95
96 #define LMK_SEED_SIZE 64 /* hash + 0 */
97 struct iv_lmk_private {
98 struct crypto_shash *hash_tfm;
99 u8 *seed;
100 };
101
102 /*
103 * Crypt: maps a linear range of a block device
104 * and encrypts / decrypts at the same time.
105 */
106 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
107
108 /*
109 * Duplicated per-CPU state for cipher.
110 */
111 struct crypt_cpu {
112 struct ablkcipher_request *req;
113 /* ESSIV: struct crypto_cipher *essiv_tfm */
114 void *iv_private;
115 struct crypto_ablkcipher *tfms[0];
116 };
117
118 /*
119 * The fields in here must be read only after initialization,
120 * changing state should be in crypt_cpu.
121 */
122 struct crypt_config {
123 struct dm_dev *dev;
124 sector_t start;
125
126 /*
127 * pool for per bio private data, crypto requests and
128 * encryption requeusts/buffer pages
129 */
130 mempool_t *io_pool;
131 mempool_t *req_pool;
132 mempool_t *page_pool;
133 struct bio_set *bs;
134
135 struct workqueue_struct *io_queue;
136 struct workqueue_struct *crypt_queue;
137
138 char *cipher;
139 char *cipher_string;
140
141 struct crypt_iv_operations *iv_gen_ops;
142 union {
143 struct iv_essiv_private essiv;
144 struct iv_benbi_private benbi;
145 struct iv_lmk_private lmk;
146 } iv_gen_private;
147 sector_t iv_offset;
148 unsigned int iv_size;
149
150 /*
151 * Duplicated per cpu state. Access through
152 * per_cpu_ptr() only.
153 */
154 struct crypt_cpu __percpu *cpu;
155 unsigned tfms_count;
156
157 /*
158 * Layout of each crypto request:
159 *
160 * struct ablkcipher_request
161 * context
162 * padding
163 * struct dm_crypt_request
164 * padding
165 * IV
166 *
167 * The padding is added so that dm_crypt_request and the IV are
168 * correctly aligned.
169 */
170 unsigned int dmreq_start;
171
172 unsigned long flags;
173 unsigned int key_size;
174 unsigned int key_parts;
175 u8 key[0];
176 };
177
178 #define MIN_IOS 16
179 #define MIN_POOL_PAGES 32
180 #define MIN_BIO_PAGES 8
181
182 static struct kmem_cache *_crypt_io_pool;
183
184 static void clone_init(struct dm_crypt_io *, struct bio *);
185 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
186 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
187
188 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
189 {
190 return this_cpu_ptr(cc->cpu);
191 }
192
193 /*
194 * Use this to access cipher attributes that are the same for each CPU.
195 */
196 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
197 {
198 return __this_cpu_ptr(cc->cpu)->tfms[0];
199 }
200
201 /*
202 * Different IV generation algorithms:
203 *
204 * plain: the initial vector is the 32-bit little-endian version of the sector
205 * number, padded with zeros if necessary.
206 *
207 * plain64: the initial vector is the 64-bit little-endian version of the sector
208 * number, padded with zeros if necessary.
209 *
210 * essiv: "encrypted sector|salt initial vector", the sector number is
211 * encrypted with the bulk cipher using a salt as key. The salt
212 * should be derived from the bulk cipher's key via hashing.
213 *
214 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
215 * (needed for LRW-32-AES and possible other narrow block modes)
216 *
217 * null: the initial vector is always zero. Provides compatibility with
218 * obsolete loop_fish2 devices. Do not use for new devices.
219 *
220 * lmk: Compatible implementation of the block chaining mode used
221 * by the Loop-AES block device encryption system
222 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
223 * It operates on full 512 byte sectors and uses CBC
224 * with an IV derived from the sector number, the data and
225 * optionally extra IV seed.
226 * This means that after decryption the first block
227 * of sector must be tweaked according to decrypted data.
228 * Loop-AES can use three encryption schemes:
229 * version 1: is plain aes-cbc mode
230 * version 2: uses 64 multikey scheme with lmk IV generator
231 * version 3: the same as version 2 with additional IV seed
232 * (it uses 65 keys, last key is used as IV seed)
233 *
234 * plumb: unimplemented, see:
235 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
236 */
237
238 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
239 struct dm_crypt_request *dmreq)
240 {
241 memset(iv, 0, cc->iv_size);
242 *(u32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
243
244 return 0;
245 }
246
247 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
248 struct dm_crypt_request *dmreq)
249 {
250 memset(iv, 0, cc->iv_size);
251 *(u64 *)iv = cpu_to_le64(dmreq->iv_sector);
252
253 return 0;
254 }
255
256 /* Initialise ESSIV - compute salt but no local memory allocations */
257 static int crypt_iv_essiv_init(struct crypt_config *cc)
258 {
259 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
260 struct hash_desc desc;
261 struct scatterlist sg;
262 struct crypto_cipher *essiv_tfm;
263 int err, cpu;
264
265 sg_init_one(&sg, cc->key, cc->key_size);
266 desc.tfm = essiv->hash_tfm;
267 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
268
269 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
270 if (err)
271 return err;
272
273 for_each_possible_cpu(cpu) {
274 essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
275
276 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
277 crypto_hash_digestsize(essiv->hash_tfm));
278 if (err)
279 return err;
280 }
281
282 return 0;
283 }
284
285 /* Wipe salt and reset key derived from volume key */
286 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
287 {
288 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
289 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
290 struct crypto_cipher *essiv_tfm;
291 int cpu, r, err = 0;
292
293 memset(essiv->salt, 0, salt_size);
294
295 for_each_possible_cpu(cpu) {
296 essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
297 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
298 if (r)
299 err = r;
300 }
301
302 return err;
303 }
304
305 /* Set up per cpu cipher state */
306 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
307 struct dm_target *ti,
308 u8 *salt, unsigned saltsize)
309 {
310 struct crypto_cipher *essiv_tfm;
311 int err;
312
313 /* Setup the essiv_tfm with the given salt */
314 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
315 if (IS_ERR(essiv_tfm)) {
316 ti->error = "Error allocating crypto tfm for ESSIV";
317 return essiv_tfm;
318 }
319
320 if (crypto_cipher_blocksize(essiv_tfm) !=
321 crypto_ablkcipher_ivsize(any_tfm(cc))) {
322 ti->error = "Block size of ESSIV cipher does "
323 "not match IV size of block cipher";
324 crypto_free_cipher(essiv_tfm);
325 return ERR_PTR(-EINVAL);
326 }
327
328 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
329 if (err) {
330 ti->error = "Failed to set key for ESSIV cipher";
331 crypto_free_cipher(essiv_tfm);
332 return ERR_PTR(err);
333 }
334
335 return essiv_tfm;
336 }
337
338 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
339 {
340 int cpu;
341 struct crypt_cpu *cpu_cc;
342 struct crypto_cipher *essiv_tfm;
343 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
344
345 crypto_free_hash(essiv->hash_tfm);
346 essiv->hash_tfm = NULL;
347
348 kzfree(essiv->salt);
349 essiv->salt = NULL;
350
351 for_each_possible_cpu(cpu) {
352 cpu_cc = per_cpu_ptr(cc->cpu, cpu);
353 essiv_tfm = cpu_cc->iv_private;
354
355 if (essiv_tfm)
356 crypto_free_cipher(essiv_tfm);
357
358 cpu_cc->iv_private = NULL;
359 }
360 }
361
362 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
363 const char *opts)
364 {
365 struct crypto_cipher *essiv_tfm = NULL;
366 struct crypto_hash *hash_tfm = NULL;
367 u8 *salt = NULL;
368 int err, cpu;
369
370 if (!opts) {
371 ti->error = "Digest algorithm missing for ESSIV mode";
372 return -EINVAL;
373 }
374
375 /* Allocate hash algorithm */
376 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
377 if (IS_ERR(hash_tfm)) {
378 ti->error = "Error initializing ESSIV hash";
379 err = PTR_ERR(hash_tfm);
380 goto bad;
381 }
382
383 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
384 if (!salt) {
385 ti->error = "Error kmallocing salt storage in ESSIV";
386 err = -ENOMEM;
387 goto bad;
388 }
389
390 cc->iv_gen_private.essiv.salt = salt;
391 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
392
393 for_each_possible_cpu(cpu) {
394 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
395 crypto_hash_digestsize(hash_tfm));
396 if (IS_ERR(essiv_tfm)) {
397 crypt_iv_essiv_dtr(cc);
398 return PTR_ERR(essiv_tfm);
399 }
400 per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
401 }
402
403 return 0;
404
405 bad:
406 if (hash_tfm && !IS_ERR(hash_tfm))
407 crypto_free_hash(hash_tfm);
408 kfree(salt);
409 return err;
410 }
411
412 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
413 struct dm_crypt_request *dmreq)
414 {
415 struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
416
417 memset(iv, 0, cc->iv_size);
418 *(u64 *)iv = cpu_to_le64(dmreq->iv_sector);
419 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
420
421 return 0;
422 }
423
424 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
425 const char *opts)
426 {
427 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
428 int log = ilog2(bs);
429
430 /* we need to calculate how far we must shift the sector count
431 * to get the cipher block count, we use this shift in _gen */
432
433 if (1 << log != bs) {
434 ti->error = "cypher blocksize is not a power of 2";
435 return -EINVAL;
436 }
437
438 if (log > 9) {
439 ti->error = "cypher blocksize is > 512";
440 return -EINVAL;
441 }
442
443 cc->iv_gen_private.benbi.shift = 9 - log;
444
445 return 0;
446 }
447
448 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
449 {
450 }
451
452 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
453 struct dm_crypt_request *dmreq)
454 {
455 __be64 val;
456
457 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
458
459 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
460 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
461
462 return 0;
463 }
464
465 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
466 struct dm_crypt_request *dmreq)
467 {
468 memset(iv, 0, cc->iv_size);
469
470 return 0;
471 }
472
473 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
474 {
475 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
476
477 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
478 crypto_free_shash(lmk->hash_tfm);
479 lmk->hash_tfm = NULL;
480
481 kzfree(lmk->seed);
482 lmk->seed = NULL;
483 }
484
485 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
486 const char *opts)
487 {
488 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
489
490 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
491 if (IS_ERR(lmk->hash_tfm)) {
492 ti->error = "Error initializing LMK hash";
493 return PTR_ERR(lmk->hash_tfm);
494 }
495
496 /* No seed in LMK version 2 */
497 if (cc->key_parts == cc->tfms_count) {
498 lmk->seed = NULL;
499 return 0;
500 }
501
502 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
503 if (!lmk->seed) {
504 crypt_iv_lmk_dtr(cc);
505 ti->error = "Error kmallocing seed storage in LMK";
506 return -ENOMEM;
507 }
508
509 return 0;
510 }
511
512 static int crypt_iv_lmk_init(struct crypt_config *cc)
513 {
514 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
515 int subkey_size = cc->key_size / cc->key_parts;
516
517 /* LMK seed is on the position of LMK_KEYS + 1 key */
518 if (lmk->seed)
519 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
520 crypto_shash_digestsize(lmk->hash_tfm));
521
522 return 0;
523 }
524
525 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
526 {
527 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
528
529 if (lmk->seed)
530 memset(lmk->seed, 0, LMK_SEED_SIZE);
531
532 return 0;
533 }
534
535 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
536 struct dm_crypt_request *dmreq,
537 u8 *data)
538 {
539 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
540 struct {
541 struct shash_desc desc;
542 char ctx[crypto_shash_descsize(lmk->hash_tfm)];
543 } sdesc;
544 struct md5_state md5state;
545 u32 buf[4];
546 int i, r;
547
548 sdesc.desc.tfm = lmk->hash_tfm;
549 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
550
551 r = crypto_shash_init(&sdesc.desc);
552 if (r)
553 return r;
554
555 if (lmk->seed) {
556 r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
557 if (r)
558 return r;
559 }
560
561 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
562 r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
563 if (r)
564 return r;
565
566 /* Sector is cropped to 56 bits here */
567 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
568 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
569 buf[2] = cpu_to_le32(4024);
570 buf[3] = 0;
571 r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
572 if (r)
573 return r;
574
575 /* No MD5 padding here */
576 r = crypto_shash_export(&sdesc.desc, &md5state);
577 if (r)
578 return r;
579
580 for (i = 0; i < MD5_HASH_WORDS; i++)
581 __cpu_to_le32s(&md5state.hash[i]);
582 memcpy(iv, &md5state.hash, cc->iv_size);
583
584 return 0;
585 }
586
587 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
588 struct dm_crypt_request *dmreq)
589 {
590 u8 *src;
591 int r = 0;
592
593 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
594 src = kmap_atomic(sg_page(&dmreq->sg_in), KM_USER0);
595 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
596 kunmap_atomic(src, KM_USER0);
597 } else
598 memset(iv, 0, cc->iv_size);
599
600 return r;
601 }
602
603 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
604 struct dm_crypt_request *dmreq)
605 {
606 u8 *dst;
607 int r;
608
609 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
610 return 0;
611
612 dst = kmap_atomic(sg_page(&dmreq->sg_out), KM_USER0);
613 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
614
615 /* Tweak the first block of plaintext sector */
616 if (!r)
617 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
618
619 kunmap_atomic(dst, KM_USER0);
620 return r;
621 }
622
623 static struct crypt_iv_operations crypt_iv_plain_ops = {
624 .generator = crypt_iv_plain_gen
625 };
626
627 static struct crypt_iv_operations crypt_iv_plain64_ops = {
628 .generator = crypt_iv_plain64_gen
629 };
630
631 static struct crypt_iv_operations crypt_iv_essiv_ops = {
632 .ctr = crypt_iv_essiv_ctr,
633 .dtr = crypt_iv_essiv_dtr,
634 .init = crypt_iv_essiv_init,
635 .wipe = crypt_iv_essiv_wipe,
636 .generator = crypt_iv_essiv_gen
637 };
638
639 static struct crypt_iv_operations crypt_iv_benbi_ops = {
640 .ctr = crypt_iv_benbi_ctr,
641 .dtr = crypt_iv_benbi_dtr,
642 .generator = crypt_iv_benbi_gen
643 };
644
645 static struct crypt_iv_operations crypt_iv_null_ops = {
646 .generator = crypt_iv_null_gen
647 };
648
649 static struct crypt_iv_operations crypt_iv_lmk_ops = {
650 .ctr = crypt_iv_lmk_ctr,
651 .dtr = crypt_iv_lmk_dtr,
652 .init = crypt_iv_lmk_init,
653 .wipe = crypt_iv_lmk_wipe,
654 .generator = crypt_iv_lmk_gen,
655 .post = crypt_iv_lmk_post
656 };
657
658 static void crypt_convert_init(struct crypt_config *cc,
659 struct convert_context *ctx,
660 struct bio *bio_out, struct bio *bio_in,
661 sector_t sector)
662 {
663 ctx->bio_in = bio_in;
664 ctx->bio_out = bio_out;
665 ctx->offset_in = 0;
666 ctx->offset_out = 0;
667 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
668 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
669 ctx->sector = sector + cc->iv_offset;
670 init_completion(&ctx->restart);
671 }
672
673 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
674 struct ablkcipher_request *req)
675 {
676 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
677 }
678
679 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
680 struct dm_crypt_request *dmreq)
681 {
682 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
683 }
684
685 static u8 *iv_of_dmreq(struct crypt_config *cc,
686 struct dm_crypt_request *dmreq)
687 {
688 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
689 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
690 }
691
692 static int crypt_convert_block(struct crypt_config *cc,
693 struct convert_context *ctx,
694 struct ablkcipher_request *req)
695 {
696 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
697 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
698 struct dm_crypt_request *dmreq;
699 u8 *iv;
700 int r = 0;
701
702 dmreq = dmreq_of_req(cc, req);
703 iv = iv_of_dmreq(cc, dmreq);
704
705 dmreq->iv_sector = ctx->sector;
706 dmreq->ctx = ctx;
707 sg_init_table(&dmreq->sg_in, 1);
708 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
709 bv_in->bv_offset + ctx->offset_in);
710
711 sg_init_table(&dmreq->sg_out, 1);
712 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
713 bv_out->bv_offset + ctx->offset_out);
714
715 ctx->offset_in += 1 << SECTOR_SHIFT;
716 if (ctx->offset_in >= bv_in->bv_len) {
717 ctx->offset_in = 0;
718 ctx->idx_in++;
719 }
720
721 ctx->offset_out += 1 << SECTOR_SHIFT;
722 if (ctx->offset_out >= bv_out->bv_len) {
723 ctx->offset_out = 0;
724 ctx->idx_out++;
725 }
726
727 if (cc->iv_gen_ops) {
728 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
729 if (r < 0)
730 return r;
731 }
732
733 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
734 1 << SECTOR_SHIFT, iv);
735
736 if (bio_data_dir(ctx->bio_in) == WRITE)
737 r = crypto_ablkcipher_encrypt(req);
738 else
739 r = crypto_ablkcipher_decrypt(req);
740
741 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
742 r = cc->iv_gen_ops->post(cc, iv, dmreq);
743
744 return r;
745 }
746
747 static void kcryptd_async_done(struct crypto_async_request *async_req,
748 int error);
749
750 static void crypt_alloc_req(struct crypt_config *cc,
751 struct convert_context *ctx)
752 {
753 struct crypt_cpu *this_cc = this_crypt_config(cc);
754 unsigned key_index = ctx->sector & (cc->tfms_count - 1);
755
756 if (!this_cc->req)
757 this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
758
759 ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
760 ablkcipher_request_set_callback(this_cc->req,
761 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
762 kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
763 }
764
765 /*
766 * Encrypt / decrypt data from one bio to another one (can be the same one)
767 */
768 static int crypt_convert(struct crypt_config *cc,
769 struct convert_context *ctx)
770 {
771 struct crypt_cpu *this_cc = this_crypt_config(cc);
772 int r;
773
774 atomic_set(&ctx->pending, 1);
775
776 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
777 ctx->idx_out < ctx->bio_out->bi_vcnt) {
778
779 crypt_alloc_req(cc, ctx);
780
781 atomic_inc(&ctx->pending);
782
783 r = crypt_convert_block(cc, ctx, this_cc->req);
784
785 switch (r) {
786 /* async */
787 case -EBUSY:
788 wait_for_completion(&ctx->restart);
789 INIT_COMPLETION(ctx->restart);
790 /* fall through*/
791 case -EINPROGRESS:
792 this_cc->req = NULL;
793 ctx->sector++;
794 continue;
795
796 /* sync */
797 case 0:
798 atomic_dec(&ctx->pending);
799 ctx->sector++;
800 cond_resched();
801 continue;
802
803 /* error */
804 default:
805 atomic_dec(&ctx->pending);
806 return r;
807 }
808 }
809
810 return 0;
811 }
812
813 static void dm_crypt_bio_destructor(struct bio *bio)
814 {
815 struct dm_crypt_io *io = bio->bi_private;
816 struct crypt_config *cc = io->target->private;
817
818 bio_free(bio, cc->bs);
819 }
820
821 /*
822 * Generate a new unfragmented bio with the given size
823 * This should never violate the device limitations
824 * May return a smaller bio when running out of pages, indicated by
825 * *out_of_pages set to 1.
826 */
827 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
828 unsigned *out_of_pages)
829 {
830 struct crypt_config *cc = io->target->private;
831 struct bio *clone;
832 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
833 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
834 unsigned i, len;
835 struct page *page;
836
837 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
838 if (!clone)
839 return NULL;
840
841 clone_init(io, clone);
842 *out_of_pages = 0;
843
844 for (i = 0; i < nr_iovecs; i++) {
845 page = mempool_alloc(cc->page_pool, gfp_mask);
846 if (!page) {
847 *out_of_pages = 1;
848 break;
849 }
850
851 /*
852 * if additional pages cannot be allocated without waiting,
853 * return a partially allocated bio, the caller will then try
854 * to allocate additional bios while submitting this partial bio
855 */
856 if (i == (MIN_BIO_PAGES - 1))
857 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
858
859 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
860
861 if (!bio_add_page(clone, page, len, 0)) {
862 mempool_free(page, cc->page_pool);
863 break;
864 }
865
866 size -= len;
867 }
868
869 if (!clone->bi_size) {
870 bio_put(clone);
871 return NULL;
872 }
873
874 return clone;
875 }
876
877 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
878 {
879 unsigned int i;
880 struct bio_vec *bv;
881
882 for (i = 0; i < clone->bi_vcnt; i++) {
883 bv = bio_iovec_idx(clone, i);
884 BUG_ON(!bv->bv_page);
885 mempool_free(bv->bv_page, cc->page_pool);
886 bv->bv_page = NULL;
887 }
888 }
889
890 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
891 struct bio *bio, sector_t sector)
892 {
893 struct crypt_config *cc = ti->private;
894 struct dm_crypt_io *io;
895
896 io = mempool_alloc(cc->io_pool, GFP_NOIO);
897 io->target = ti;
898 io->base_bio = bio;
899 io->sector = sector;
900 io->error = 0;
901 io->base_io = NULL;
902 atomic_set(&io->pending, 0);
903
904 return io;
905 }
906
907 static void crypt_inc_pending(struct dm_crypt_io *io)
908 {
909 atomic_inc(&io->pending);
910 }
911
912 /*
913 * One of the bios was finished. Check for completion of
914 * the whole request and correctly clean up the buffer.
915 * If base_io is set, wait for the last fragment to complete.
916 */
917 static void crypt_dec_pending(struct dm_crypt_io *io)
918 {
919 struct crypt_config *cc = io->target->private;
920 struct bio *base_bio = io->base_bio;
921 struct dm_crypt_io *base_io = io->base_io;
922 int error = io->error;
923
924 if (!atomic_dec_and_test(&io->pending))
925 return;
926
927 mempool_free(io, cc->io_pool);
928
929 if (likely(!base_io))
930 bio_endio(base_bio, error);
931 else {
932 if (error && !base_io->error)
933 base_io->error = error;
934 crypt_dec_pending(base_io);
935 }
936 }
937
938 /*
939 * kcryptd/kcryptd_io:
940 *
941 * Needed because it would be very unwise to do decryption in an
942 * interrupt context.
943 *
944 * kcryptd performs the actual encryption or decryption.
945 *
946 * kcryptd_io performs the IO submission.
947 *
948 * They must be separated as otherwise the final stages could be
949 * starved by new requests which can block in the first stages due
950 * to memory allocation.
951 *
952 * The work is done per CPU global for all dm-crypt instances.
953 * They should not depend on each other and do not block.
954 */
955 static void crypt_endio(struct bio *clone, int error)
956 {
957 struct dm_crypt_io *io = clone->bi_private;
958 struct crypt_config *cc = io->target->private;
959 unsigned rw = bio_data_dir(clone);
960
961 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
962 error = -EIO;
963
964 /*
965 * free the processed pages
966 */
967 if (rw == WRITE)
968 crypt_free_buffer_pages(cc, clone);
969
970 bio_put(clone);
971
972 if (rw == READ && !error) {
973 kcryptd_queue_crypt(io);
974 return;
975 }
976
977 if (unlikely(error))
978 io->error = error;
979
980 crypt_dec_pending(io);
981 }
982
983 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
984 {
985 struct crypt_config *cc = io->target->private;
986
987 clone->bi_private = io;
988 clone->bi_end_io = crypt_endio;
989 clone->bi_bdev = cc->dev->bdev;
990 clone->bi_rw = io->base_bio->bi_rw;
991 clone->bi_destructor = dm_crypt_bio_destructor;
992 }
993
994 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
995 {
996 struct crypt_config *cc = io->target->private;
997 struct bio *base_bio = io->base_bio;
998 struct bio *clone;
999
1000 /*
1001 * The block layer might modify the bvec array, so always
1002 * copy the required bvecs because we need the original
1003 * one in order to decrypt the whole bio data *afterwards*.
1004 */
1005 clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
1006 if (!clone)
1007 return 1;
1008
1009 crypt_inc_pending(io);
1010
1011 clone_init(io, clone);
1012 clone->bi_idx = 0;
1013 clone->bi_vcnt = bio_segments(base_bio);
1014 clone->bi_size = base_bio->bi_size;
1015 clone->bi_sector = cc->start + io->sector;
1016 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1017 sizeof(struct bio_vec) * clone->bi_vcnt);
1018
1019 generic_make_request(clone);
1020 return 0;
1021 }
1022
1023 static void kcryptd_io_write(struct dm_crypt_io *io)
1024 {
1025 struct bio *clone = io->ctx.bio_out;
1026 generic_make_request(clone);
1027 }
1028
1029 static void kcryptd_io(struct work_struct *work)
1030 {
1031 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1032
1033 if (bio_data_dir(io->base_bio) == READ) {
1034 crypt_inc_pending(io);
1035 if (kcryptd_io_read(io, GFP_NOIO))
1036 io->error = -ENOMEM;
1037 crypt_dec_pending(io);
1038 } else
1039 kcryptd_io_write(io);
1040 }
1041
1042 static void kcryptd_queue_io(struct dm_crypt_io *io)
1043 {
1044 struct crypt_config *cc = io->target->private;
1045
1046 INIT_WORK(&io->work, kcryptd_io);
1047 queue_work(cc->io_queue, &io->work);
1048 }
1049
1050 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io,
1051 int error, int async)
1052 {
1053 struct bio *clone = io->ctx.bio_out;
1054 struct crypt_config *cc = io->target->private;
1055
1056 if (unlikely(error < 0)) {
1057 crypt_free_buffer_pages(cc, clone);
1058 bio_put(clone);
1059 io->error = -EIO;
1060 crypt_dec_pending(io);
1061 return;
1062 }
1063
1064 /* crypt_convert should have filled the clone bio */
1065 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1066
1067 clone->bi_sector = cc->start + io->sector;
1068
1069 if (async)
1070 kcryptd_queue_io(io);
1071 else
1072 generic_make_request(clone);
1073 }
1074
1075 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1076 {
1077 struct crypt_config *cc = io->target->private;
1078 struct bio *clone;
1079 struct dm_crypt_io *new_io;
1080 int crypt_finished;
1081 unsigned out_of_pages = 0;
1082 unsigned remaining = io->base_bio->bi_size;
1083 sector_t sector = io->sector;
1084 int r;
1085
1086 /*
1087 * Prevent io from disappearing until this function completes.
1088 */
1089 crypt_inc_pending(io);
1090 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1091
1092 /*
1093 * The allocated buffers can be smaller than the whole bio,
1094 * so repeat the whole process until all the data can be handled.
1095 */
1096 while (remaining) {
1097 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1098 if (unlikely(!clone)) {
1099 io->error = -ENOMEM;
1100 break;
1101 }
1102
1103 io->ctx.bio_out = clone;
1104 io->ctx.idx_out = 0;
1105
1106 remaining -= clone->bi_size;
1107 sector += bio_sectors(clone);
1108
1109 crypt_inc_pending(io);
1110 r = crypt_convert(cc, &io->ctx);
1111 crypt_finished = atomic_dec_and_test(&io->ctx.pending);
1112
1113 /* Encryption was already finished, submit io now */
1114 if (crypt_finished) {
1115 kcryptd_crypt_write_io_submit(io, r, 0);
1116
1117 /*
1118 * If there was an error, do not try next fragments.
1119 * For async, error is processed in async handler.
1120 */
1121 if (unlikely(r < 0))
1122 break;
1123
1124 io->sector = sector;
1125 }
1126
1127 /*
1128 * Out of memory -> run queues
1129 * But don't wait if split was due to the io size restriction
1130 */
1131 if (unlikely(out_of_pages))
1132 congestion_wait(BLK_RW_ASYNC, HZ/100);
1133
1134 /*
1135 * With async crypto it is unsafe to share the crypto context
1136 * between fragments, so switch to a new dm_crypt_io structure.
1137 */
1138 if (unlikely(!crypt_finished && remaining)) {
1139 new_io = crypt_io_alloc(io->target, io->base_bio,
1140 sector);
1141 crypt_inc_pending(new_io);
1142 crypt_convert_init(cc, &new_io->ctx, NULL,
1143 io->base_bio, sector);
1144 new_io->ctx.idx_in = io->ctx.idx_in;
1145 new_io->ctx.offset_in = io->ctx.offset_in;
1146
1147 /*
1148 * Fragments after the first use the base_io
1149 * pending count.
1150 */
1151 if (!io->base_io)
1152 new_io->base_io = io;
1153 else {
1154 new_io->base_io = io->base_io;
1155 crypt_inc_pending(io->base_io);
1156 crypt_dec_pending(io);
1157 }
1158
1159 io = new_io;
1160 }
1161 }
1162
1163 crypt_dec_pending(io);
1164 }
1165
1166 static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error)
1167 {
1168 if (unlikely(error < 0))
1169 io->error = -EIO;
1170
1171 crypt_dec_pending(io);
1172 }
1173
1174 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1175 {
1176 struct crypt_config *cc = io->target->private;
1177 int r = 0;
1178
1179 crypt_inc_pending(io);
1180
1181 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1182 io->sector);
1183
1184 r = crypt_convert(cc, &io->ctx);
1185
1186 if (atomic_dec_and_test(&io->ctx.pending))
1187 kcryptd_crypt_read_done(io, r);
1188
1189 crypt_dec_pending(io);
1190 }
1191
1192 static void kcryptd_async_done(struct crypto_async_request *async_req,
1193 int error)
1194 {
1195 struct dm_crypt_request *dmreq = async_req->data;
1196 struct convert_context *ctx = dmreq->ctx;
1197 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1198 struct crypt_config *cc = io->target->private;
1199
1200 if (error == -EINPROGRESS) {
1201 complete(&ctx->restart);
1202 return;
1203 }
1204
1205 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1206 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1207
1208 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1209
1210 if (!atomic_dec_and_test(&ctx->pending))
1211 return;
1212
1213 if (bio_data_dir(io->base_bio) == READ)
1214 kcryptd_crypt_read_done(io, error);
1215 else
1216 kcryptd_crypt_write_io_submit(io, error, 1);
1217 }
1218
1219 static void kcryptd_crypt(struct work_struct *work)
1220 {
1221 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1222
1223 if (bio_data_dir(io->base_bio) == READ)
1224 kcryptd_crypt_read_convert(io);
1225 else
1226 kcryptd_crypt_write_convert(io);
1227 }
1228
1229 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1230 {
1231 struct crypt_config *cc = io->target->private;
1232
1233 INIT_WORK(&io->work, kcryptd_crypt);
1234 queue_work(cc->crypt_queue, &io->work);
1235 }
1236
1237 /*
1238 * Decode key from its hex representation
1239 */
1240 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1241 {
1242 char buffer[3];
1243 char *endp;
1244 unsigned int i;
1245
1246 buffer[2] = '\0';
1247
1248 for (i = 0; i < size; i++) {
1249 buffer[0] = *hex++;
1250 buffer[1] = *hex++;
1251
1252 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
1253
1254 if (endp != &buffer[2])
1255 return -EINVAL;
1256 }
1257
1258 if (*hex != '\0')
1259 return -EINVAL;
1260
1261 return 0;
1262 }
1263
1264 /*
1265 * Encode key into its hex representation
1266 */
1267 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
1268 {
1269 unsigned int i;
1270
1271 for (i = 0; i < size; i++) {
1272 sprintf(hex, "%02x", *key);
1273 hex += 2;
1274 key++;
1275 }
1276 }
1277
1278 static void crypt_free_tfms(struct crypt_config *cc, int cpu)
1279 {
1280 struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1281 unsigned i;
1282
1283 for (i = 0; i < cc->tfms_count; i++)
1284 if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
1285 crypto_free_ablkcipher(cpu_cc->tfms[i]);
1286 cpu_cc->tfms[i] = NULL;
1287 }
1288 }
1289
1290 static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
1291 {
1292 struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1293 unsigned i;
1294 int err;
1295
1296 for (i = 0; i < cc->tfms_count; i++) {
1297 cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1298 if (IS_ERR(cpu_cc->tfms[i])) {
1299 err = PTR_ERR(cpu_cc->tfms[i]);
1300 crypt_free_tfms(cc, cpu);
1301 return err;
1302 }
1303 }
1304
1305 return 0;
1306 }
1307
1308 static int crypt_setkey_allcpus(struct crypt_config *cc)
1309 {
1310 unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1311 int cpu, err = 0, i, r;
1312
1313 for_each_possible_cpu(cpu) {
1314 for (i = 0; i < cc->tfms_count; i++) {
1315 r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
1316 cc->key + (i * subkey_size), subkey_size);
1317 if (r)
1318 err = r;
1319 }
1320 }
1321
1322 return err;
1323 }
1324
1325 static int crypt_set_key(struct crypt_config *cc, char *key)
1326 {
1327 int r = -EINVAL;
1328 int key_string_len = strlen(key);
1329
1330 /* The key size may not be changed. */
1331 if (cc->key_size != (key_string_len >> 1))
1332 goto out;
1333
1334 /* Hyphen (which gives a key_size of zero) means there is no key. */
1335 if (!cc->key_size && strcmp(key, "-"))
1336 goto out;
1337
1338 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1339 goto out;
1340
1341 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1342
1343 r = crypt_setkey_allcpus(cc);
1344
1345 out:
1346 /* Hex key string not needed after here, so wipe it. */
1347 memset(key, '0', key_string_len);
1348
1349 return r;
1350 }
1351
1352 static int crypt_wipe_key(struct crypt_config *cc)
1353 {
1354 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1355 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1356
1357 return crypt_setkey_allcpus(cc);
1358 }
1359
1360 static void crypt_dtr(struct dm_target *ti)
1361 {
1362 struct crypt_config *cc = ti->private;
1363 struct crypt_cpu *cpu_cc;
1364 int cpu;
1365
1366 ti->private = NULL;
1367
1368 if (!cc)
1369 return;
1370
1371 if (cc->io_queue)
1372 destroy_workqueue(cc->io_queue);
1373 if (cc->crypt_queue)
1374 destroy_workqueue(cc->crypt_queue);
1375
1376 if (cc->cpu)
1377 for_each_possible_cpu(cpu) {
1378 cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1379 if (cpu_cc->req)
1380 mempool_free(cpu_cc->req, cc->req_pool);
1381 crypt_free_tfms(cc, cpu);
1382 }
1383
1384 if (cc->bs)
1385 bioset_free(cc->bs);
1386
1387 if (cc->page_pool)
1388 mempool_destroy(cc->page_pool);
1389 if (cc->req_pool)
1390 mempool_destroy(cc->req_pool);
1391 if (cc->io_pool)
1392 mempool_destroy(cc->io_pool);
1393
1394 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1395 cc->iv_gen_ops->dtr(cc);
1396
1397 if (cc->dev)
1398 dm_put_device(ti, cc->dev);
1399
1400 if (cc->cpu)
1401 free_percpu(cc->cpu);
1402
1403 kzfree(cc->cipher);
1404 kzfree(cc->cipher_string);
1405
1406 /* Must zero key material before freeing */
1407 kzfree(cc);
1408 }
1409
1410 static int crypt_ctr_cipher(struct dm_target *ti,
1411 char *cipher_in, char *key)
1412 {
1413 struct crypt_config *cc = ti->private;
1414 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1415 char *cipher_api = NULL;
1416 int cpu, ret = -EINVAL;
1417
1418 /* Convert to crypto api definition? */
1419 if (strchr(cipher_in, '(')) {
1420 ti->error = "Bad cipher specification";
1421 return -EINVAL;
1422 }
1423
1424 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1425 if (!cc->cipher_string)
1426 goto bad_mem;
1427
1428 /*
1429 * Legacy dm-crypt cipher specification
1430 * cipher[:keycount]-mode-iv:ivopts
1431 */
1432 tmp = cipher_in;
1433 keycount = strsep(&tmp, "-");
1434 cipher = strsep(&keycount, ":");
1435
1436 if (!keycount)
1437 cc->tfms_count = 1;
1438 else if (sscanf(keycount, "%u", &cc->tfms_count) != 1 ||
1439 !is_power_of_2(cc->tfms_count)) {
1440 ti->error = "Bad cipher key count specification";
1441 return -EINVAL;
1442 }
1443 cc->key_parts = cc->tfms_count;
1444
1445 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1446 if (!cc->cipher)
1447 goto bad_mem;
1448
1449 chainmode = strsep(&tmp, "-");
1450 ivopts = strsep(&tmp, "-");
1451 ivmode = strsep(&ivopts, ":");
1452
1453 if (tmp)
1454 DMWARN("Ignoring unexpected additional cipher options");
1455
1456 cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
1457 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
1458 __alignof__(struct crypt_cpu));
1459 if (!cc->cpu) {
1460 ti->error = "Cannot allocate per cpu state";
1461 goto bad_mem;
1462 }
1463
1464 /*
1465 * For compatibility with the original dm-crypt mapping format, if
1466 * only the cipher name is supplied, use cbc-plain.
1467 */
1468 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1469 chainmode = "cbc";
1470 ivmode = "plain";
1471 }
1472
1473 if (strcmp(chainmode, "ecb") && !ivmode) {
1474 ti->error = "IV mechanism required";
1475 return -EINVAL;
1476 }
1477
1478 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1479 if (!cipher_api)
1480 goto bad_mem;
1481
1482 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1483 "%s(%s)", chainmode, cipher);
1484 if (ret < 0) {
1485 kfree(cipher_api);
1486 goto bad_mem;
1487 }
1488
1489 /* Allocate cipher */
1490 for_each_possible_cpu(cpu) {
1491 ret = crypt_alloc_tfms(cc, cpu, cipher_api);
1492 if (ret < 0) {
1493 ti->error = "Error allocating crypto tfm";
1494 goto bad;
1495 }
1496 }
1497
1498 /* Initialize and set key */
1499 ret = crypt_set_key(cc, key);
1500 if (ret < 0) {
1501 ti->error = "Error decoding and setting key";
1502 goto bad;
1503 }
1504
1505 /* Initialize IV */
1506 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1507 if (cc->iv_size)
1508 /* at least a 64 bit sector number should fit in our buffer */
1509 cc->iv_size = max(cc->iv_size,
1510 (unsigned int)(sizeof(u64) / sizeof(u8)));
1511 else if (ivmode) {
1512 DMWARN("Selected cipher does not support IVs");
1513 ivmode = NULL;
1514 }
1515
1516 /* Choose ivmode, see comments at iv code. */
1517 if (ivmode == NULL)
1518 cc->iv_gen_ops = NULL;
1519 else if (strcmp(ivmode, "plain") == 0)
1520 cc->iv_gen_ops = &crypt_iv_plain_ops;
1521 else if (strcmp(ivmode, "plain64") == 0)
1522 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1523 else if (strcmp(ivmode, "essiv") == 0)
1524 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1525 else if (strcmp(ivmode, "benbi") == 0)
1526 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1527 else if (strcmp(ivmode, "null") == 0)
1528 cc->iv_gen_ops = &crypt_iv_null_ops;
1529 else if (strcmp(ivmode, "lmk") == 0) {
1530 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1531 /* Version 2 and 3 is recognised according
1532 * to length of provided multi-key string.
1533 * If present (version 3), last key is used as IV seed.
1534 */
1535 if (cc->key_size % cc->key_parts)
1536 cc->key_parts++;
1537 } else {
1538 ret = -EINVAL;
1539 ti->error = "Invalid IV mode";
1540 goto bad;
1541 }
1542
1543 /* Allocate IV */
1544 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1545 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1546 if (ret < 0) {
1547 ti->error = "Error creating IV";
1548 goto bad;
1549 }
1550 }
1551
1552 /* Initialize IV (set keys for ESSIV etc) */
1553 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1554 ret = cc->iv_gen_ops->init(cc);
1555 if (ret < 0) {
1556 ti->error = "Error initialising IV";
1557 goto bad;
1558 }
1559 }
1560
1561 ret = 0;
1562 bad:
1563 kfree(cipher_api);
1564 return ret;
1565
1566 bad_mem:
1567 ti->error = "Cannot allocate cipher strings";
1568 return -ENOMEM;
1569 }
1570
1571 /*
1572 * Construct an encryption mapping:
1573 * <cipher> <key> <iv_offset> <dev_path> <start>
1574 */
1575 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1576 {
1577 struct crypt_config *cc;
1578 unsigned int key_size;
1579 unsigned long long tmpll;
1580 int ret;
1581
1582 if (argc != 5) {
1583 ti->error = "Not enough arguments";
1584 return -EINVAL;
1585 }
1586
1587 key_size = strlen(argv[1]) >> 1;
1588
1589 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1590 if (!cc) {
1591 ti->error = "Cannot allocate encryption context";
1592 return -ENOMEM;
1593 }
1594 cc->key_size = key_size;
1595
1596 ti->private = cc;
1597 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1598 if (ret < 0)
1599 goto bad;
1600
1601 ret = -ENOMEM;
1602 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1603 if (!cc->io_pool) {
1604 ti->error = "Cannot allocate crypt io mempool";
1605 goto bad;
1606 }
1607
1608 cc->dmreq_start = sizeof(struct ablkcipher_request);
1609 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1610 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1611 cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1612 ~(crypto_tfm_ctx_alignment() - 1);
1613
1614 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1615 sizeof(struct dm_crypt_request) + cc->iv_size);
1616 if (!cc->req_pool) {
1617 ti->error = "Cannot allocate crypt request mempool";
1618 goto bad;
1619 }
1620
1621 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1622 if (!cc->page_pool) {
1623 ti->error = "Cannot allocate page mempool";
1624 goto bad;
1625 }
1626
1627 cc->bs = bioset_create(MIN_IOS, 0);
1628 if (!cc->bs) {
1629 ti->error = "Cannot allocate crypt bioset";
1630 goto bad;
1631 }
1632
1633 ret = -EINVAL;
1634 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1635 ti->error = "Invalid iv_offset sector";
1636 goto bad;
1637 }
1638 cc->iv_offset = tmpll;
1639
1640 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1641 ti->error = "Device lookup failed";
1642 goto bad;
1643 }
1644
1645 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1646 ti->error = "Invalid device sector";
1647 goto bad;
1648 }
1649 cc->start = tmpll;
1650
1651 ret = -ENOMEM;
1652 cc->io_queue = alloc_workqueue("kcryptd_io",
1653 WQ_NON_REENTRANT|
1654 WQ_MEM_RECLAIM,
1655 1);
1656 if (!cc->io_queue) {
1657 ti->error = "Couldn't create kcryptd io queue";
1658 goto bad;
1659 }
1660
1661 cc->crypt_queue = alloc_workqueue("kcryptd",
1662 WQ_NON_REENTRANT|
1663 WQ_CPU_INTENSIVE|
1664 WQ_MEM_RECLAIM,
1665 1);
1666 if (!cc->crypt_queue) {
1667 ti->error = "Couldn't create kcryptd queue";
1668 goto bad;
1669 }
1670
1671 ti->num_flush_requests = 1;
1672 return 0;
1673
1674 bad:
1675 crypt_dtr(ti);
1676 return ret;
1677 }
1678
1679 static int crypt_map(struct dm_target *ti, struct bio *bio,
1680 union map_info *map_context)
1681 {
1682 struct dm_crypt_io *io;
1683 struct crypt_config *cc;
1684
1685 if (bio->bi_rw & REQ_FLUSH) {
1686 cc = ti->private;
1687 bio->bi_bdev = cc->dev->bdev;
1688 return DM_MAPIO_REMAPPED;
1689 }
1690
1691 io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
1692
1693 if (bio_data_dir(io->base_bio) == READ) {
1694 if (kcryptd_io_read(io, GFP_NOWAIT))
1695 kcryptd_queue_io(io);
1696 } else
1697 kcryptd_queue_crypt(io);
1698
1699 return DM_MAPIO_SUBMITTED;
1700 }
1701
1702 static int crypt_status(struct dm_target *ti, status_type_t type,
1703 char *result, unsigned int maxlen)
1704 {
1705 struct crypt_config *cc = ti->private;
1706 unsigned int sz = 0;
1707
1708 switch (type) {
1709 case STATUSTYPE_INFO:
1710 result[0] = '\0';
1711 break;
1712
1713 case STATUSTYPE_TABLE:
1714 DMEMIT("%s ", cc->cipher_string);
1715
1716 if (cc->key_size > 0) {
1717 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1718 return -ENOMEM;
1719
1720 crypt_encode_key(result + sz, cc->key, cc->key_size);
1721 sz += cc->key_size << 1;
1722 } else {
1723 if (sz >= maxlen)
1724 return -ENOMEM;
1725 result[sz++] = '-';
1726 }
1727
1728 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1729 cc->dev->name, (unsigned long long)cc->start);
1730 break;
1731 }
1732 return 0;
1733 }
1734
1735 static void crypt_postsuspend(struct dm_target *ti)
1736 {
1737 struct crypt_config *cc = ti->private;
1738
1739 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1740 }
1741
1742 static int crypt_preresume(struct dm_target *ti)
1743 {
1744 struct crypt_config *cc = ti->private;
1745
1746 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1747 DMERR("aborting resume - crypt key is not set.");
1748 return -EAGAIN;
1749 }
1750
1751 return 0;
1752 }
1753
1754 static void crypt_resume(struct dm_target *ti)
1755 {
1756 struct crypt_config *cc = ti->private;
1757
1758 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1759 }
1760
1761 /* Message interface
1762 * key set <key>
1763 * key wipe
1764 */
1765 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1766 {
1767 struct crypt_config *cc = ti->private;
1768 int ret = -EINVAL;
1769
1770 if (argc < 2)
1771 goto error;
1772
1773 if (!strnicmp(argv[0], MESG_STR("key"))) {
1774 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1775 DMWARN("not suspended during key manipulation.");
1776 return -EINVAL;
1777 }
1778 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) {
1779 ret = crypt_set_key(cc, argv[2]);
1780 if (ret)
1781 return ret;
1782 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1783 ret = cc->iv_gen_ops->init(cc);
1784 return ret;
1785 }
1786 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) {
1787 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1788 ret = cc->iv_gen_ops->wipe(cc);
1789 if (ret)
1790 return ret;
1791 }
1792 return crypt_wipe_key(cc);
1793 }
1794 }
1795
1796 error:
1797 DMWARN("unrecognised message received.");
1798 return -EINVAL;
1799 }
1800
1801 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1802 struct bio_vec *biovec, int max_size)
1803 {
1804 struct crypt_config *cc = ti->private;
1805 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1806
1807 if (!q->merge_bvec_fn)
1808 return max_size;
1809
1810 bvm->bi_bdev = cc->dev->bdev;
1811 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1812
1813 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1814 }
1815
1816 static int crypt_iterate_devices(struct dm_target *ti,
1817 iterate_devices_callout_fn fn, void *data)
1818 {
1819 struct crypt_config *cc = ti->private;
1820
1821 return fn(ti, cc->dev, cc->start, ti->len, data);
1822 }
1823
1824 static struct target_type crypt_target = {
1825 .name = "crypt",
1826 .version = {1, 10, 0},
1827 .module = THIS_MODULE,
1828 .ctr = crypt_ctr,
1829 .dtr = crypt_dtr,
1830 .map = crypt_map,
1831 .status = crypt_status,
1832 .postsuspend = crypt_postsuspend,
1833 .preresume = crypt_preresume,
1834 .resume = crypt_resume,
1835 .message = crypt_message,
1836 .merge = crypt_merge,
1837 .iterate_devices = crypt_iterate_devices,
1838 };
1839
1840 static int __init dm_crypt_init(void)
1841 {
1842 int r;
1843
1844 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1845 if (!_crypt_io_pool)
1846 return -ENOMEM;
1847
1848 r = dm_register_target(&crypt_target);
1849 if (r < 0) {
1850 DMERR("register failed %d", r);
1851 kmem_cache_destroy(_crypt_io_pool);
1852 }
1853
1854 return r;
1855 }
1856
1857 static void __exit dm_crypt_exit(void)
1858 {
1859 dm_unregister_target(&crypt_target);
1860 kmem_cache_destroy(_crypt_io_pool);
1861 }
1862
1863 module_init(dm_crypt_init);
1864 module_exit(dm_crypt_exit);
1865
1866 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1867 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1868 MODULE_LICENSE("GPL");