block: Abstract out bvec iterator
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / md / dm-crypt.c
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/backing-dev.h>
22 #include <linux/percpu.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <asm/page.h>
26 #include <asm/unaligned.h>
27 #include <crypto/hash.h>
28 #include <crypto/md5.h>
29 #include <crypto/algapi.h>
30
31 #include <linux/device-mapper.h>
32
33 #define DM_MSG_PREFIX "crypt"
34
35 /*
36 * context holding the current state of a multi-part conversion
37 */
38 struct convert_context {
39 struct completion restart;
40 struct bio *bio_in;
41 struct bio *bio_out;
42 unsigned int offset_in;
43 unsigned int offset_out;
44 unsigned int idx_in;
45 unsigned int idx_out;
46 sector_t cc_sector;
47 atomic_t cc_pending;
48 };
49
50 /*
51 * per bio private data
52 */
53 struct dm_crypt_io {
54 struct crypt_config *cc;
55 struct bio *base_bio;
56 struct work_struct work;
57
58 struct convert_context ctx;
59
60 atomic_t io_pending;
61 int error;
62 sector_t sector;
63 struct dm_crypt_io *base_io;
64 };
65
66 struct dm_crypt_request {
67 struct convert_context *ctx;
68 struct scatterlist sg_in;
69 struct scatterlist sg_out;
70 sector_t iv_sector;
71 };
72
73 struct crypt_config;
74
75 struct crypt_iv_operations {
76 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
77 const char *opts);
78 void (*dtr)(struct crypt_config *cc);
79 int (*init)(struct crypt_config *cc);
80 int (*wipe)(struct crypt_config *cc);
81 int (*generator)(struct crypt_config *cc, u8 *iv,
82 struct dm_crypt_request *dmreq);
83 int (*post)(struct crypt_config *cc, u8 *iv,
84 struct dm_crypt_request *dmreq);
85 };
86
87 struct iv_essiv_private {
88 struct crypto_hash *hash_tfm;
89 u8 *salt;
90 };
91
92 struct iv_benbi_private {
93 int shift;
94 };
95
96 #define LMK_SEED_SIZE 64 /* hash + 0 */
97 struct iv_lmk_private {
98 struct crypto_shash *hash_tfm;
99 u8 *seed;
100 };
101
102 #define TCW_WHITENING_SIZE 16
103 struct iv_tcw_private {
104 struct crypto_shash *crc32_tfm;
105 u8 *iv_seed;
106 u8 *whitening;
107 };
108
109 /*
110 * Crypt: maps a linear range of a block device
111 * and encrypts / decrypts at the same time.
112 */
113 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
114
115 /*
116 * Duplicated per-CPU state for cipher.
117 */
118 struct crypt_cpu {
119 struct ablkcipher_request *req;
120 };
121
122 /*
123 * The fields in here must be read only after initialization,
124 * changing state should be in crypt_cpu.
125 */
126 struct crypt_config {
127 struct dm_dev *dev;
128 sector_t start;
129
130 /*
131 * pool for per bio private data, crypto requests and
132 * encryption requeusts/buffer pages
133 */
134 mempool_t *io_pool;
135 mempool_t *req_pool;
136 mempool_t *page_pool;
137 struct bio_set *bs;
138
139 struct workqueue_struct *io_queue;
140 struct workqueue_struct *crypt_queue;
141
142 char *cipher;
143 char *cipher_string;
144
145 struct crypt_iv_operations *iv_gen_ops;
146 union {
147 struct iv_essiv_private essiv;
148 struct iv_benbi_private benbi;
149 struct iv_lmk_private lmk;
150 struct iv_tcw_private tcw;
151 } iv_gen_private;
152 sector_t iv_offset;
153 unsigned int iv_size;
154
155 /*
156 * Duplicated per cpu state. Access through
157 * per_cpu_ptr() only.
158 */
159 struct crypt_cpu __percpu *cpu;
160
161 /* ESSIV: struct crypto_cipher *essiv_tfm */
162 void *iv_private;
163 struct crypto_ablkcipher **tfms;
164 unsigned tfms_count;
165
166 /*
167 * Layout of each crypto request:
168 *
169 * struct ablkcipher_request
170 * context
171 * padding
172 * struct dm_crypt_request
173 * padding
174 * IV
175 *
176 * The padding is added so that dm_crypt_request and the IV are
177 * correctly aligned.
178 */
179 unsigned int dmreq_start;
180
181 unsigned long flags;
182 unsigned int key_size;
183 unsigned int key_parts; /* independent parts in key buffer */
184 unsigned int key_extra_size; /* additional keys length */
185 u8 key[0];
186 };
187
188 #define MIN_IOS 16
189 #define MIN_POOL_PAGES 32
190
191 static struct kmem_cache *_crypt_io_pool;
192
193 static void clone_init(struct dm_crypt_io *, struct bio *);
194 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
195 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
196
197 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
198 {
199 return this_cpu_ptr(cc->cpu);
200 }
201
202 /*
203 * Use this to access cipher attributes that are the same for each CPU.
204 */
205 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
206 {
207 return cc->tfms[0];
208 }
209
210 /*
211 * Different IV generation algorithms:
212 *
213 * plain: the initial vector is the 32-bit little-endian version of the sector
214 * number, padded with zeros if necessary.
215 *
216 * plain64: the initial vector is the 64-bit little-endian version of the sector
217 * number, padded with zeros if necessary.
218 *
219 * essiv: "encrypted sector|salt initial vector", the sector number is
220 * encrypted with the bulk cipher using a salt as key. The salt
221 * should be derived from the bulk cipher's key via hashing.
222 *
223 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
224 * (needed for LRW-32-AES and possible other narrow block modes)
225 *
226 * null: the initial vector is always zero. Provides compatibility with
227 * obsolete loop_fish2 devices. Do not use for new devices.
228 *
229 * lmk: Compatible implementation of the block chaining mode used
230 * by the Loop-AES block device encryption system
231 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
232 * It operates on full 512 byte sectors and uses CBC
233 * with an IV derived from the sector number, the data and
234 * optionally extra IV seed.
235 * This means that after decryption the first block
236 * of sector must be tweaked according to decrypted data.
237 * Loop-AES can use three encryption schemes:
238 * version 1: is plain aes-cbc mode
239 * version 2: uses 64 multikey scheme with lmk IV generator
240 * version 3: the same as version 2 with additional IV seed
241 * (it uses 65 keys, last key is used as IV seed)
242 *
243 * tcw: Compatible implementation of the block chaining mode used
244 * by the TrueCrypt device encryption system (prior to version 4.1).
245 * For more info see: http://www.truecrypt.org
246 * It operates on full 512 byte sectors and uses CBC
247 * with an IV derived from initial key and the sector number.
248 * In addition, whitening value is applied on every sector, whitening
249 * is calculated from initial key, sector number and mixed using CRC32.
250 * Note that this encryption scheme is vulnerable to watermarking attacks
251 * and should be used for old compatible containers access only.
252 *
253 * plumb: unimplemented, see:
254 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
255 */
256
257 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
258 struct dm_crypt_request *dmreq)
259 {
260 memset(iv, 0, cc->iv_size);
261 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
262
263 return 0;
264 }
265
266 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
267 struct dm_crypt_request *dmreq)
268 {
269 memset(iv, 0, cc->iv_size);
270 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
271
272 return 0;
273 }
274
275 /* Initialise ESSIV - compute salt but no local memory allocations */
276 static int crypt_iv_essiv_init(struct crypt_config *cc)
277 {
278 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
279 struct hash_desc desc;
280 struct scatterlist sg;
281 struct crypto_cipher *essiv_tfm;
282 int err;
283
284 sg_init_one(&sg, cc->key, cc->key_size);
285 desc.tfm = essiv->hash_tfm;
286 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
287
288 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
289 if (err)
290 return err;
291
292 essiv_tfm = cc->iv_private;
293
294 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
295 crypto_hash_digestsize(essiv->hash_tfm));
296 if (err)
297 return err;
298
299 return 0;
300 }
301
302 /* Wipe salt and reset key derived from volume key */
303 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
304 {
305 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
306 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
307 struct crypto_cipher *essiv_tfm;
308 int r, err = 0;
309
310 memset(essiv->salt, 0, salt_size);
311
312 essiv_tfm = cc->iv_private;
313 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
314 if (r)
315 err = r;
316
317 return err;
318 }
319
320 /* Set up per cpu cipher state */
321 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
322 struct dm_target *ti,
323 u8 *salt, unsigned saltsize)
324 {
325 struct crypto_cipher *essiv_tfm;
326 int err;
327
328 /* Setup the essiv_tfm with the given salt */
329 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
330 if (IS_ERR(essiv_tfm)) {
331 ti->error = "Error allocating crypto tfm for ESSIV";
332 return essiv_tfm;
333 }
334
335 if (crypto_cipher_blocksize(essiv_tfm) !=
336 crypto_ablkcipher_ivsize(any_tfm(cc))) {
337 ti->error = "Block size of ESSIV cipher does "
338 "not match IV size of block cipher";
339 crypto_free_cipher(essiv_tfm);
340 return ERR_PTR(-EINVAL);
341 }
342
343 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
344 if (err) {
345 ti->error = "Failed to set key for ESSIV cipher";
346 crypto_free_cipher(essiv_tfm);
347 return ERR_PTR(err);
348 }
349
350 return essiv_tfm;
351 }
352
353 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
354 {
355 struct crypto_cipher *essiv_tfm;
356 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
357
358 crypto_free_hash(essiv->hash_tfm);
359 essiv->hash_tfm = NULL;
360
361 kzfree(essiv->salt);
362 essiv->salt = NULL;
363
364 essiv_tfm = cc->iv_private;
365
366 if (essiv_tfm)
367 crypto_free_cipher(essiv_tfm);
368
369 cc->iv_private = NULL;
370 }
371
372 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
373 const char *opts)
374 {
375 struct crypto_cipher *essiv_tfm = NULL;
376 struct crypto_hash *hash_tfm = NULL;
377 u8 *salt = NULL;
378 int err;
379
380 if (!opts) {
381 ti->error = "Digest algorithm missing for ESSIV mode";
382 return -EINVAL;
383 }
384
385 /* Allocate hash algorithm */
386 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
387 if (IS_ERR(hash_tfm)) {
388 ti->error = "Error initializing ESSIV hash";
389 err = PTR_ERR(hash_tfm);
390 goto bad;
391 }
392
393 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
394 if (!salt) {
395 ti->error = "Error kmallocing salt storage in ESSIV";
396 err = -ENOMEM;
397 goto bad;
398 }
399
400 cc->iv_gen_private.essiv.salt = salt;
401 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
402
403 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
404 crypto_hash_digestsize(hash_tfm));
405 if (IS_ERR(essiv_tfm)) {
406 crypt_iv_essiv_dtr(cc);
407 return PTR_ERR(essiv_tfm);
408 }
409 cc->iv_private = essiv_tfm;
410
411 return 0;
412
413 bad:
414 if (hash_tfm && !IS_ERR(hash_tfm))
415 crypto_free_hash(hash_tfm);
416 kfree(salt);
417 return err;
418 }
419
420 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
421 struct dm_crypt_request *dmreq)
422 {
423 struct crypto_cipher *essiv_tfm = cc->iv_private;
424
425 memset(iv, 0, cc->iv_size);
426 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
427 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
428
429 return 0;
430 }
431
432 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
433 const char *opts)
434 {
435 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
436 int log = ilog2(bs);
437
438 /* we need to calculate how far we must shift the sector count
439 * to get the cipher block count, we use this shift in _gen */
440
441 if (1 << log != bs) {
442 ti->error = "cypher blocksize is not a power of 2";
443 return -EINVAL;
444 }
445
446 if (log > 9) {
447 ti->error = "cypher blocksize is > 512";
448 return -EINVAL;
449 }
450
451 cc->iv_gen_private.benbi.shift = 9 - log;
452
453 return 0;
454 }
455
456 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
457 {
458 }
459
460 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
461 struct dm_crypt_request *dmreq)
462 {
463 __be64 val;
464
465 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
466
467 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
468 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
469
470 return 0;
471 }
472
473 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
474 struct dm_crypt_request *dmreq)
475 {
476 memset(iv, 0, cc->iv_size);
477
478 return 0;
479 }
480
481 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
482 {
483 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
484
485 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
486 crypto_free_shash(lmk->hash_tfm);
487 lmk->hash_tfm = NULL;
488
489 kzfree(lmk->seed);
490 lmk->seed = NULL;
491 }
492
493 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
494 const char *opts)
495 {
496 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
497
498 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
499 if (IS_ERR(lmk->hash_tfm)) {
500 ti->error = "Error initializing LMK hash";
501 return PTR_ERR(lmk->hash_tfm);
502 }
503
504 /* No seed in LMK version 2 */
505 if (cc->key_parts == cc->tfms_count) {
506 lmk->seed = NULL;
507 return 0;
508 }
509
510 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
511 if (!lmk->seed) {
512 crypt_iv_lmk_dtr(cc);
513 ti->error = "Error kmallocing seed storage in LMK";
514 return -ENOMEM;
515 }
516
517 return 0;
518 }
519
520 static int crypt_iv_lmk_init(struct crypt_config *cc)
521 {
522 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
523 int subkey_size = cc->key_size / cc->key_parts;
524
525 /* LMK seed is on the position of LMK_KEYS + 1 key */
526 if (lmk->seed)
527 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
528 crypto_shash_digestsize(lmk->hash_tfm));
529
530 return 0;
531 }
532
533 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
534 {
535 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
536
537 if (lmk->seed)
538 memset(lmk->seed, 0, LMK_SEED_SIZE);
539
540 return 0;
541 }
542
543 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
544 struct dm_crypt_request *dmreq,
545 u8 *data)
546 {
547 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
548 struct {
549 struct shash_desc desc;
550 char ctx[crypto_shash_descsize(lmk->hash_tfm)];
551 } sdesc;
552 struct md5_state md5state;
553 __le32 buf[4];
554 int i, r;
555
556 sdesc.desc.tfm = lmk->hash_tfm;
557 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
558
559 r = crypto_shash_init(&sdesc.desc);
560 if (r)
561 return r;
562
563 if (lmk->seed) {
564 r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
565 if (r)
566 return r;
567 }
568
569 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
570 r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
571 if (r)
572 return r;
573
574 /* Sector is cropped to 56 bits here */
575 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
576 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
577 buf[2] = cpu_to_le32(4024);
578 buf[3] = 0;
579 r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
580 if (r)
581 return r;
582
583 /* No MD5 padding here */
584 r = crypto_shash_export(&sdesc.desc, &md5state);
585 if (r)
586 return r;
587
588 for (i = 0; i < MD5_HASH_WORDS; i++)
589 __cpu_to_le32s(&md5state.hash[i]);
590 memcpy(iv, &md5state.hash, cc->iv_size);
591
592 return 0;
593 }
594
595 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
596 struct dm_crypt_request *dmreq)
597 {
598 u8 *src;
599 int r = 0;
600
601 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
602 src = kmap_atomic(sg_page(&dmreq->sg_in));
603 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
604 kunmap_atomic(src);
605 } else
606 memset(iv, 0, cc->iv_size);
607
608 return r;
609 }
610
611 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
612 struct dm_crypt_request *dmreq)
613 {
614 u8 *dst;
615 int r;
616
617 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
618 return 0;
619
620 dst = kmap_atomic(sg_page(&dmreq->sg_out));
621 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
622
623 /* Tweak the first block of plaintext sector */
624 if (!r)
625 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
626
627 kunmap_atomic(dst);
628 return r;
629 }
630
631 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
632 {
633 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
634
635 kzfree(tcw->iv_seed);
636 tcw->iv_seed = NULL;
637 kzfree(tcw->whitening);
638 tcw->whitening = NULL;
639
640 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
641 crypto_free_shash(tcw->crc32_tfm);
642 tcw->crc32_tfm = NULL;
643 }
644
645 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
646 const char *opts)
647 {
648 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
649
650 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
651 ti->error = "Wrong key size for TCW";
652 return -EINVAL;
653 }
654
655 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
656 if (IS_ERR(tcw->crc32_tfm)) {
657 ti->error = "Error initializing CRC32 in TCW";
658 return PTR_ERR(tcw->crc32_tfm);
659 }
660
661 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
662 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
663 if (!tcw->iv_seed || !tcw->whitening) {
664 crypt_iv_tcw_dtr(cc);
665 ti->error = "Error allocating seed storage in TCW";
666 return -ENOMEM;
667 }
668
669 return 0;
670 }
671
672 static int crypt_iv_tcw_init(struct crypt_config *cc)
673 {
674 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
675 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
676
677 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
678 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
679 TCW_WHITENING_SIZE);
680
681 return 0;
682 }
683
684 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
685 {
686 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
687
688 memset(tcw->iv_seed, 0, cc->iv_size);
689 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
690
691 return 0;
692 }
693
694 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
695 struct dm_crypt_request *dmreq,
696 u8 *data)
697 {
698 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
699 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
700 u8 buf[TCW_WHITENING_SIZE];
701 struct {
702 struct shash_desc desc;
703 char ctx[crypto_shash_descsize(tcw->crc32_tfm)];
704 } sdesc;
705 int i, r;
706
707 /* xor whitening with sector number */
708 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
709 crypto_xor(buf, (u8 *)&sector, 8);
710 crypto_xor(&buf[8], (u8 *)&sector, 8);
711
712 /* calculate crc32 for every 32bit part and xor it */
713 sdesc.desc.tfm = tcw->crc32_tfm;
714 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
715 for (i = 0; i < 4; i++) {
716 r = crypto_shash_init(&sdesc.desc);
717 if (r)
718 goto out;
719 r = crypto_shash_update(&sdesc.desc, &buf[i * 4], 4);
720 if (r)
721 goto out;
722 r = crypto_shash_final(&sdesc.desc, &buf[i * 4]);
723 if (r)
724 goto out;
725 }
726 crypto_xor(&buf[0], &buf[12], 4);
727 crypto_xor(&buf[4], &buf[8], 4);
728
729 /* apply whitening (8 bytes) to whole sector */
730 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
731 crypto_xor(data + i * 8, buf, 8);
732 out:
733 memset(buf, 0, sizeof(buf));
734 return r;
735 }
736
737 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
738 struct dm_crypt_request *dmreq)
739 {
740 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
741 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
742 u8 *src;
743 int r = 0;
744
745 /* Remove whitening from ciphertext */
746 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
747 src = kmap_atomic(sg_page(&dmreq->sg_in));
748 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
749 kunmap_atomic(src);
750 }
751
752 /* Calculate IV */
753 memcpy(iv, tcw->iv_seed, cc->iv_size);
754 crypto_xor(iv, (u8 *)&sector, 8);
755 if (cc->iv_size > 8)
756 crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
757
758 return r;
759 }
760
761 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
762 struct dm_crypt_request *dmreq)
763 {
764 u8 *dst;
765 int r;
766
767 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
768 return 0;
769
770 /* Apply whitening on ciphertext */
771 dst = kmap_atomic(sg_page(&dmreq->sg_out));
772 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
773 kunmap_atomic(dst);
774
775 return r;
776 }
777
778 static struct crypt_iv_operations crypt_iv_plain_ops = {
779 .generator = crypt_iv_plain_gen
780 };
781
782 static struct crypt_iv_operations crypt_iv_plain64_ops = {
783 .generator = crypt_iv_plain64_gen
784 };
785
786 static struct crypt_iv_operations crypt_iv_essiv_ops = {
787 .ctr = crypt_iv_essiv_ctr,
788 .dtr = crypt_iv_essiv_dtr,
789 .init = crypt_iv_essiv_init,
790 .wipe = crypt_iv_essiv_wipe,
791 .generator = crypt_iv_essiv_gen
792 };
793
794 static struct crypt_iv_operations crypt_iv_benbi_ops = {
795 .ctr = crypt_iv_benbi_ctr,
796 .dtr = crypt_iv_benbi_dtr,
797 .generator = crypt_iv_benbi_gen
798 };
799
800 static struct crypt_iv_operations crypt_iv_null_ops = {
801 .generator = crypt_iv_null_gen
802 };
803
804 static struct crypt_iv_operations crypt_iv_lmk_ops = {
805 .ctr = crypt_iv_lmk_ctr,
806 .dtr = crypt_iv_lmk_dtr,
807 .init = crypt_iv_lmk_init,
808 .wipe = crypt_iv_lmk_wipe,
809 .generator = crypt_iv_lmk_gen,
810 .post = crypt_iv_lmk_post
811 };
812
813 static struct crypt_iv_operations crypt_iv_tcw_ops = {
814 .ctr = crypt_iv_tcw_ctr,
815 .dtr = crypt_iv_tcw_dtr,
816 .init = crypt_iv_tcw_init,
817 .wipe = crypt_iv_tcw_wipe,
818 .generator = crypt_iv_tcw_gen,
819 .post = crypt_iv_tcw_post
820 };
821
822 static void crypt_convert_init(struct crypt_config *cc,
823 struct convert_context *ctx,
824 struct bio *bio_out, struct bio *bio_in,
825 sector_t sector)
826 {
827 ctx->bio_in = bio_in;
828 ctx->bio_out = bio_out;
829 ctx->offset_in = 0;
830 ctx->offset_out = 0;
831 ctx->idx_in = bio_in ? bio_in->bi_iter.bi_idx : 0;
832 ctx->idx_out = bio_out ? bio_out->bi_iter.bi_idx : 0;
833 ctx->cc_sector = sector + cc->iv_offset;
834 init_completion(&ctx->restart);
835 }
836
837 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
838 struct ablkcipher_request *req)
839 {
840 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
841 }
842
843 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
844 struct dm_crypt_request *dmreq)
845 {
846 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
847 }
848
849 static u8 *iv_of_dmreq(struct crypt_config *cc,
850 struct dm_crypt_request *dmreq)
851 {
852 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
853 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
854 }
855
856 static int crypt_convert_block(struct crypt_config *cc,
857 struct convert_context *ctx,
858 struct ablkcipher_request *req)
859 {
860 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
861 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
862 struct dm_crypt_request *dmreq;
863 u8 *iv;
864 int r;
865
866 dmreq = dmreq_of_req(cc, req);
867 iv = iv_of_dmreq(cc, dmreq);
868
869 dmreq->iv_sector = ctx->cc_sector;
870 dmreq->ctx = ctx;
871 sg_init_table(&dmreq->sg_in, 1);
872 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
873 bv_in->bv_offset + ctx->offset_in);
874
875 sg_init_table(&dmreq->sg_out, 1);
876 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
877 bv_out->bv_offset + ctx->offset_out);
878
879 ctx->offset_in += 1 << SECTOR_SHIFT;
880 if (ctx->offset_in >= bv_in->bv_len) {
881 ctx->offset_in = 0;
882 ctx->idx_in++;
883 }
884
885 ctx->offset_out += 1 << SECTOR_SHIFT;
886 if (ctx->offset_out >= bv_out->bv_len) {
887 ctx->offset_out = 0;
888 ctx->idx_out++;
889 }
890
891 if (cc->iv_gen_ops) {
892 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
893 if (r < 0)
894 return r;
895 }
896
897 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
898 1 << SECTOR_SHIFT, iv);
899
900 if (bio_data_dir(ctx->bio_in) == WRITE)
901 r = crypto_ablkcipher_encrypt(req);
902 else
903 r = crypto_ablkcipher_decrypt(req);
904
905 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
906 r = cc->iv_gen_ops->post(cc, iv, dmreq);
907
908 return r;
909 }
910
911 static void kcryptd_async_done(struct crypto_async_request *async_req,
912 int error);
913
914 static void crypt_alloc_req(struct crypt_config *cc,
915 struct convert_context *ctx)
916 {
917 struct crypt_cpu *this_cc = this_crypt_config(cc);
918 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
919
920 if (!this_cc->req)
921 this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
922
923 ablkcipher_request_set_tfm(this_cc->req, cc->tfms[key_index]);
924 ablkcipher_request_set_callback(this_cc->req,
925 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
926 kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
927 }
928
929 /*
930 * Encrypt / decrypt data from one bio to another one (can be the same one)
931 */
932 static int crypt_convert(struct crypt_config *cc,
933 struct convert_context *ctx)
934 {
935 struct crypt_cpu *this_cc = this_crypt_config(cc);
936 int r;
937
938 atomic_set(&ctx->cc_pending, 1);
939
940 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
941 ctx->idx_out < ctx->bio_out->bi_vcnt) {
942
943 crypt_alloc_req(cc, ctx);
944
945 atomic_inc(&ctx->cc_pending);
946
947 r = crypt_convert_block(cc, ctx, this_cc->req);
948
949 switch (r) {
950 /* async */
951 case -EBUSY:
952 wait_for_completion(&ctx->restart);
953 reinit_completion(&ctx->restart);
954 /* fall through*/
955 case -EINPROGRESS:
956 this_cc->req = NULL;
957 ctx->cc_sector++;
958 continue;
959
960 /* sync */
961 case 0:
962 atomic_dec(&ctx->cc_pending);
963 ctx->cc_sector++;
964 cond_resched();
965 continue;
966
967 /* error */
968 default:
969 atomic_dec(&ctx->cc_pending);
970 return r;
971 }
972 }
973
974 return 0;
975 }
976
977 /*
978 * Generate a new unfragmented bio with the given size
979 * This should never violate the device limitations
980 * May return a smaller bio when running out of pages, indicated by
981 * *out_of_pages set to 1.
982 */
983 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
984 unsigned *out_of_pages)
985 {
986 struct crypt_config *cc = io->cc;
987 struct bio *clone;
988 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
989 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
990 unsigned i, len;
991 struct page *page;
992
993 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
994 if (!clone)
995 return NULL;
996
997 clone_init(io, clone);
998 *out_of_pages = 0;
999
1000 for (i = 0; i < nr_iovecs; i++) {
1001 page = mempool_alloc(cc->page_pool, gfp_mask);
1002 if (!page) {
1003 *out_of_pages = 1;
1004 break;
1005 }
1006
1007 /*
1008 * If additional pages cannot be allocated without waiting,
1009 * return a partially-allocated bio. The caller will then try
1010 * to allocate more bios while submitting this partial bio.
1011 */
1012 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
1013
1014 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
1015
1016 if (!bio_add_page(clone, page, len, 0)) {
1017 mempool_free(page, cc->page_pool);
1018 break;
1019 }
1020
1021 size -= len;
1022 }
1023
1024 if (!clone->bi_iter.bi_size) {
1025 bio_put(clone);
1026 return NULL;
1027 }
1028
1029 return clone;
1030 }
1031
1032 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1033 {
1034 unsigned int i;
1035 struct bio_vec *bv;
1036
1037 bio_for_each_segment_all(bv, clone, i) {
1038 BUG_ON(!bv->bv_page);
1039 mempool_free(bv->bv_page, cc->page_pool);
1040 bv->bv_page = NULL;
1041 }
1042 }
1043
1044 static struct dm_crypt_io *crypt_io_alloc(struct crypt_config *cc,
1045 struct bio *bio, sector_t sector)
1046 {
1047 struct dm_crypt_io *io;
1048
1049 io = mempool_alloc(cc->io_pool, GFP_NOIO);
1050 io->cc = cc;
1051 io->base_bio = bio;
1052 io->sector = sector;
1053 io->error = 0;
1054 io->base_io = NULL;
1055 atomic_set(&io->io_pending, 0);
1056
1057 return io;
1058 }
1059
1060 static void crypt_inc_pending(struct dm_crypt_io *io)
1061 {
1062 atomic_inc(&io->io_pending);
1063 }
1064
1065 /*
1066 * One of the bios was finished. Check for completion of
1067 * the whole request and correctly clean up the buffer.
1068 * If base_io is set, wait for the last fragment to complete.
1069 */
1070 static void crypt_dec_pending(struct dm_crypt_io *io)
1071 {
1072 struct crypt_config *cc = io->cc;
1073 struct bio *base_bio = io->base_bio;
1074 struct dm_crypt_io *base_io = io->base_io;
1075 int error = io->error;
1076
1077 if (!atomic_dec_and_test(&io->io_pending))
1078 return;
1079
1080 mempool_free(io, cc->io_pool);
1081
1082 if (likely(!base_io))
1083 bio_endio(base_bio, error);
1084 else {
1085 if (error && !base_io->error)
1086 base_io->error = error;
1087 crypt_dec_pending(base_io);
1088 }
1089 }
1090
1091 /*
1092 * kcryptd/kcryptd_io:
1093 *
1094 * Needed because it would be very unwise to do decryption in an
1095 * interrupt context.
1096 *
1097 * kcryptd performs the actual encryption or decryption.
1098 *
1099 * kcryptd_io performs the IO submission.
1100 *
1101 * They must be separated as otherwise the final stages could be
1102 * starved by new requests which can block in the first stages due
1103 * to memory allocation.
1104 *
1105 * The work is done per CPU global for all dm-crypt instances.
1106 * They should not depend on each other and do not block.
1107 */
1108 static void crypt_endio(struct bio *clone, int error)
1109 {
1110 struct dm_crypt_io *io = clone->bi_private;
1111 struct crypt_config *cc = io->cc;
1112 unsigned rw = bio_data_dir(clone);
1113
1114 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1115 error = -EIO;
1116
1117 /*
1118 * free the processed pages
1119 */
1120 if (rw == WRITE)
1121 crypt_free_buffer_pages(cc, clone);
1122
1123 bio_put(clone);
1124
1125 if (rw == READ && !error) {
1126 kcryptd_queue_crypt(io);
1127 return;
1128 }
1129
1130 if (unlikely(error))
1131 io->error = error;
1132
1133 crypt_dec_pending(io);
1134 }
1135
1136 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1137 {
1138 struct crypt_config *cc = io->cc;
1139
1140 clone->bi_private = io;
1141 clone->bi_end_io = crypt_endio;
1142 clone->bi_bdev = cc->dev->bdev;
1143 clone->bi_rw = io->base_bio->bi_rw;
1144 }
1145
1146 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1147 {
1148 struct crypt_config *cc = io->cc;
1149 struct bio *base_bio = io->base_bio;
1150 struct bio *clone;
1151
1152 /*
1153 * The block layer might modify the bvec array, so always
1154 * copy the required bvecs because we need the original
1155 * one in order to decrypt the whole bio data *afterwards*.
1156 */
1157 clone = bio_clone_bioset(base_bio, gfp, cc->bs);
1158 if (!clone)
1159 return 1;
1160
1161 crypt_inc_pending(io);
1162
1163 clone_init(io, clone);
1164 clone->bi_iter.bi_sector = cc->start + io->sector;
1165
1166 generic_make_request(clone);
1167 return 0;
1168 }
1169
1170 static void kcryptd_io_write(struct dm_crypt_io *io)
1171 {
1172 struct bio *clone = io->ctx.bio_out;
1173 generic_make_request(clone);
1174 }
1175
1176 static void kcryptd_io(struct work_struct *work)
1177 {
1178 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1179
1180 if (bio_data_dir(io->base_bio) == READ) {
1181 crypt_inc_pending(io);
1182 if (kcryptd_io_read(io, GFP_NOIO))
1183 io->error = -ENOMEM;
1184 crypt_dec_pending(io);
1185 } else
1186 kcryptd_io_write(io);
1187 }
1188
1189 static void kcryptd_queue_io(struct dm_crypt_io *io)
1190 {
1191 struct crypt_config *cc = io->cc;
1192
1193 INIT_WORK(&io->work, kcryptd_io);
1194 queue_work(cc->io_queue, &io->work);
1195 }
1196
1197 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1198 {
1199 struct bio *clone = io->ctx.bio_out;
1200 struct crypt_config *cc = io->cc;
1201
1202 if (unlikely(io->error < 0)) {
1203 crypt_free_buffer_pages(cc, clone);
1204 bio_put(clone);
1205 crypt_dec_pending(io);
1206 return;
1207 }
1208
1209 /* crypt_convert should have filled the clone bio */
1210 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1211
1212 clone->bi_iter.bi_sector = cc->start + io->sector;
1213
1214 if (async)
1215 kcryptd_queue_io(io);
1216 else
1217 generic_make_request(clone);
1218 }
1219
1220 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1221 {
1222 struct crypt_config *cc = io->cc;
1223 struct bio *clone;
1224 struct dm_crypt_io *new_io;
1225 int crypt_finished;
1226 unsigned out_of_pages = 0;
1227 unsigned remaining = io->base_bio->bi_iter.bi_size;
1228 sector_t sector = io->sector;
1229 int r;
1230
1231 /*
1232 * Prevent io from disappearing until this function completes.
1233 */
1234 crypt_inc_pending(io);
1235 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1236
1237 /*
1238 * The allocated buffers can be smaller than the whole bio,
1239 * so repeat the whole process until all the data can be handled.
1240 */
1241 while (remaining) {
1242 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1243 if (unlikely(!clone)) {
1244 io->error = -ENOMEM;
1245 break;
1246 }
1247
1248 io->ctx.bio_out = clone;
1249 io->ctx.idx_out = 0;
1250
1251 remaining -= clone->bi_iter.bi_size;
1252 sector += bio_sectors(clone);
1253
1254 crypt_inc_pending(io);
1255
1256 r = crypt_convert(cc, &io->ctx);
1257 if (r < 0)
1258 io->error = -EIO;
1259
1260 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1261
1262 /* Encryption was already finished, submit io now */
1263 if (crypt_finished) {
1264 kcryptd_crypt_write_io_submit(io, 0);
1265
1266 /*
1267 * If there was an error, do not try next fragments.
1268 * For async, error is processed in async handler.
1269 */
1270 if (unlikely(r < 0))
1271 break;
1272
1273 io->sector = sector;
1274 }
1275
1276 /*
1277 * Out of memory -> run queues
1278 * But don't wait if split was due to the io size restriction
1279 */
1280 if (unlikely(out_of_pages))
1281 congestion_wait(BLK_RW_ASYNC, HZ/100);
1282
1283 /*
1284 * With async crypto it is unsafe to share the crypto context
1285 * between fragments, so switch to a new dm_crypt_io structure.
1286 */
1287 if (unlikely(!crypt_finished && remaining)) {
1288 new_io = crypt_io_alloc(io->cc, io->base_bio,
1289 sector);
1290 crypt_inc_pending(new_io);
1291 crypt_convert_init(cc, &new_io->ctx, NULL,
1292 io->base_bio, sector);
1293 new_io->ctx.idx_in = io->ctx.idx_in;
1294 new_io->ctx.offset_in = io->ctx.offset_in;
1295
1296 /*
1297 * Fragments after the first use the base_io
1298 * pending count.
1299 */
1300 if (!io->base_io)
1301 new_io->base_io = io;
1302 else {
1303 new_io->base_io = io->base_io;
1304 crypt_inc_pending(io->base_io);
1305 crypt_dec_pending(io);
1306 }
1307
1308 io = new_io;
1309 }
1310 }
1311
1312 crypt_dec_pending(io);
1313 }
1314
1315 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1316 {
1317 crypt_dec_pending(io);
1318 }
1319
1320 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1321 {
1322 struct crypt_config *cc = io->cc;
1323 int r = 0;
1324
1325 crypt_inc_pending(io);
1326
1327 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1328 io->sector);
1329
1330 r = crypt_convert(cc, &io->ctx);
1331 if (r < 0)
1332 io->error = -EIO;
1333
1334 if (atomic_dec_and_test(&io->ctx.cc_pending))
1335 kcryptd_crypt_read_done(io);
1336
1337 crypt_dec_pending(io);
1338 }
1339
1340 static void kcryptd_async_done(struct crypto_async_request *async_req,
1341 int error)
1342 {
1343 struct dm_crypt_request *dmreq = async_req->data;
1344 struct convert_context *ctx = dmreq->ctx;
1345 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1346 struct crypt_config *cc = io->cc;
1347
1348 if (error == -EINPROGRESS) {
1349 complete(&ctx->restart);
1350 return;
1351 }
1352
1353 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1354 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1355
1356 if (error < 0)
1357 io->error = -EIO;
1358
1359 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1360
1361 if (!atomic_dec_and_test(&ctx->cc_pending))
1362 return;
1363
1364 if (bio_data_dir(io->base_bio) == READ)
1365 kcryptd_crypt_read_done(io);
1366 else
1367 kcryptd_crypt_write_io_submit(io, 1);
1368 }
1369
1370 static void kcryptd_crypt(struct work_struct *work)
1371 {
1372 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1373
1374 if (bio_data_dir(io->base_bio) == READ)
1375 kcryptd_crypt_read_convert(io);
1376 else
1377 kcryptd_crypt_write_convert(io);
1378 }
1379
1380 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1381 {
1382 struct crypt_config *cc = io->cc;
1383
1384 INIT_WORK(&io->work, kcryptd_crypt);
1385 queue_work(cc->crypt_queue, &io->work);
1386 }
1387
1388 /*
1389 * Decode key from its hex representation
1390 */
1391 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1392 {
1393 char buffer[3];
1394 unsigned int i;
1395
1396 buffer[2] = '\0';
1397
1398 for (i = 0; i < size; i++) {
1399 buffer[0] = *hex++;
1400 buffer[1] = *hex++;
1401
1402 if (kstrtou8(buffer, 16, &key[i]))
1403 return -EINVAL;
1404 }
1405
1406 if (*hex != '\0')
1407 return -EINVAL;
1408
1409 return 0;
1410 }
1411
1412 static void crypt_free_tfms(struct crypt_config *cc)
1413 {
1414 unsigned i;
1415
1416 if (!cc->tfms)
1417 return;
1418
1419 for (i = 0; i < cc->tfms_count; i++)
1420 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1421 crypto_free_ablkcipher(cc->tfms[i]);
1422 cc->tfms[i] = NULL;
1423 }
1424
1425 kfree(cc->tfms);
1426 cc->tfms = NULL;
1427 }
1428
1429 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1430 {
1431 unsigned i;
1432 int err;
1433
1434 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1435 GFP_KERNEL);
1436 if (!cc->tfms)
1437 return -ENOMEM;
1438
1439 for (i = 0; i < cc->tfms_count; i++) {
1440 cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1441 if (IS_ERR(cc->tfms[i])) {
1442 err = PTR_ERR(cc->tfms[i]);
1443 crypt_free_tfms(cc);
1444 return err;
1445 }
1446 }
1447
1448 return 0;
1449 }
1450
1451 static int crypt_setkey_allcpus(struct crypt_config *cc)
1452 {
1453 unsigned subkey_size;
1454 int err = 0, i, r;
1455
1456 /* Ignore extra keys (which are used for IV etc) */
1457 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1458
1459 for (i = 0; i < cc->tfms_count; i++) {
1460 r = crypto_ablkcipher_setkey(cc->tfms[i],
1461 cc->key + (i * subkey_size),
1462 subkey_size);
1463 if (r)
1464 err = r;
1465 }
1466
1467 return err;
1468 }
1469
1470 static int crypt_set_key(struct crypt_config *cc, char *key)
1471 {
1472 int r = -EINVAL;
1473 int key_string_len = strlen(key);
1474
1475 /* The key size may not be changed. */
1476 if (cc->key_size != (key_string_len >> 1))
1477 goto out;
1478
1479 /* Hyphen (which gives a key_size of zero) means there is no key. */
1480 if (!cc->key_size && strcmp(key, "-"))
1481 goto out;
1482
1483 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1484 goto out;
1485
1486 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1487
1488 r = crypt_setkey_allcpus(cc);
1489
1490 out:
1491 /* Hex key string not needed after here, so wipe it. */
1492 memset(key, '0', key_string_len);
1493
1494 return r;
1495 }
1496
1497 static int crypt_wipe_key(struct crypt_config *cc)
1498 {
1499 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1500 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1501
1502 return crypt_setkey_allcpus(cc);
1503 }
1504
1505 static void crypt_dtr(struct dm_target *ti)
1506 {
1507 struct crypt_config *cc = ti->private;
1508 struct crypt_cpu *cpu_cc;
1509 int cpu;
1510
1511 ti->private = NULL;
1512
1513 if (!cc)
1514 return;
1515
1516 if (cc->io_queue)
1517 destroy_workqueue(cc->io_queue);
1518 if (cc->crypt_queue)
1519 destroy_workqueue(cc->crypt_queue);
1520
1521 if (cc->cpu)
1522 for_each_possible_cpu(cpu) {
1523 cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1524 if (cpu_cc->req)
1525 mempool_free(cpu_cc->req, cc->req_pool);
1526 }
1527
1528 crypt_free_tfms(cc);
1529
1530 if (cc->bs)
1531 bioset_free(cc->bs);
1532
1533 if (cc->page_pool)
1534 mempool_destroy(cc->page_pool);
1535 if (cc->req_pool)
1536 mempool_destroy(cc->req_pool);
1537 if (cc->io_pool)
1538 mempool_destroy(cc->io_pool);
1539
1540 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1541 cc->iv_gen_ops->dtr(cc);
1542
1543 if (cc->dev)
1544 dm_put_device(ti, cc->dev);
1545
1546 if (cc->cpu)
1547 free_percpu(cc->cpu);
1548
1549 kzfree(cc->cipher);
1550 kzfree(cc->cipher_string);
1551
1552 /* Must zero key material before freeing */
1553 kzfree(cc);
1554 }
1555
1556 static int crypt_ctr_cipher(struct dm_target *ti,
1557 char *cipher_in, char *key)
1558 {
1559 struct crypt_config *cc = ti->private;
1560 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1561 char *cipher_api = NULL;
1562 int ret = -EINVAL;
1563 char dummy;
1564
1565 /* Convert to crypto api definition? */
1566 if (strchr(cipher_in, '(')) {
1567 ti->error = "Bad cipher specification";
1568 return -EINVAL;
1569 }
1570
1571 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1572 if (!cc->cipher_string)
1573 goto bad_mem;
1574
1575 /*
1576 * Legacy dm-crypt cipher specification
1577 * cipher[:keycount]-mode-iv:ivopts
1578 */
1579 tmp = cipher_in;
1580 keycount = strsep(&tmp, "-");
1581 cipher = strsep(&keycount, ":");
1582
1583 if (!keycount)
1584 cc->tfms_count = 1;
1585 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1586 !is_power_of_2(cc->tfms_count)) {
1587 ti->error = "Bad cipher key count specification";
1588 return -EINVAL;
1589 }
1590 cc->key_parts = cc->tfms_count;
1591 cc->key_extra_size = 0;
1592
1593 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1594 if (!cc->cipher)
1595 goto bad_mem;
1596
1597 chainmode = strsep(&tmp, "-");
1598 ivopts = strsep(&tmp, "-");
1599 ivmode = strsep(&ivopts, ":");
1600
1601 if (tmp)
1602 DMWARN("Ignoring unexpected additional cipher options");
1603
1604 cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)),
1605 __alignof__(struct crypt_cpu));
1606 if (!cc->cpu) {
1607 ti->error = "Cannot allocate per cpu state";
1608 goto bad_mem;
1609 }
1610
1611 /*
1612 * For compatibility with the original dm-crypt mapping format, if
1613 * only the cipher name is supplied, use cbc-plain.
1614 */
1615 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1616 chainmode = "cbc";
1617 ivmode = "plain";
1618 }
1619
1620 if (strcmp(chainmode, "ecb") && !ivmode) {
1621 ti->error = "IV mechanism required";
1622 return -EINVAL;
1623 }
1624
1625 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1626 if (!cipher_api)
1627 goto bad_mem;
1628
1629 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1630 "%s(%s)", chainmode, cipher);
1631 if (ret < 0) {
1632 kfree(cipher_api);
1633 goto bad_mem;
1634 }
1635
1636 /* Allocate cipher */
1637 ret = crypt_alloc_tfms(cc, cipher_api);
1638 if (ret < 0) {
1639 ti->error = "Error allocating crypto tfm";
1640 goto bad;
1641 }
1642
1643 /* Initialize IV */
1644 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1645 if (cc->iv_size)
1646 /* at least a 64 bit sector number should fit in our buffer */
1647 cc->iv_size = max(cc->iv_size,
1648 (unsigned int)(sizeof(u64) / sizeof(u8)));
1649 else if (ivmode) {
1650 DMWARN("Selected cipher does not support IVs");
1651 ivmode = NULL;
1652 }
1653
1654 /* Choose ivmode, see comments at iv code. */
1655 if (ivmode == NULL)
1656 cc->iv_gen_ops = NULL;
1657 else if (strcmp(ivmode, "plain") == 0)
1658 cc->iv_gen_ops = &crypt_iv_plain_ops;
1659 else if (strcmp(ivmode, "plain64") == 0)
1660 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1661 else if (strcmp(ivmode, "essiv") == 0)
1662 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1663 else if (strcmp(ivmode, "benbi") == 0)
1664 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1665 else if (strcmp(ivmode, "null") == 0)
1666 cc->iv_gen_ops = &crypt_iv_null_ops;
1667 else if (strcmp(ivmode, "lmk") == 0) {
1668 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1669 /*
1670 * Version 2 and 3 is recognised according
1671 * to length of provided multi-key string.
1672 * If present (version 3), last key is used as IV seed.
1673 * All keys (including IV seed) are always the same size.
1674 */
1675 if (cc->key_size % cc->key_parts) {
1676 cc->key_parts++;
1677 cc->key_extra_size = cc->key_size / cc->key_parts;
1678 }
1679 } else if (strcmp(ivmode, "tcw") == 0) {
1680 cc->iv_gen_ops = &crypt_iv_tcw_ops;
1681 cc->key_parts += 2; /* IV + whitening */
1682 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1683 } else {
1684 ret = -EINVAL;
1685 ti->error = "Invalid IV mode";
1686 goto bad;
1687 }
1688
1689 /* Initialize and set key */
1690 ret = crypt_set_key(cc, key);
1691 if (ret < 0) {
1692 ti->error = "Error decoding and setting key";
1693 goto bad;
1694 }
1695
1696 /* Allocate IV */
1697 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1698 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1699 if (ret < 0) {
1700 ti->error = "Error creating IV";
1701 goto bad;
1702 }
1703 }
1704
1705 /* Initialize IV (set keys for ESSIV etc) */
1706 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1707 ret = cc->iv_gen_ops->init(cc);
1708 if (ret < 0) {
1709 ti->error = "Error initialising IV";
1710 goto bad;
1711 }
1712 }
1713
1714 ret = 0;
1715 bad:
1716 kfree(cipher_api);
1717 return ret;
1718
1719 bad_mem:
1720 ti->error = "Cannot allocate cipher strings";
1721 return -ENOMEM;
1722 }
1723
1724 /*
1725 * Construct an encryption mapping:
1726 * <cipher> <key> <iv_offset> <dev_path> <start>
1727 */
1728 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1729 {
1730 struct crypt_config *cc;
1731 unsigned int key_size, opt_params;
1732 unsigned long long tmpll;
1733 int ret;
1734 struct dm_arg_set as;
1735 const char *opt_string;
1736 char dummy;
1737
1738 static struct dm_arg _args[] = {
1739 {0, 1, "Invalid number of feature args"},
1740 };
1741
1742 if (argc < 5) {
1743 ti->error = "Not enough arguments";
1744 return -EINVAL;
1745 }
1746
1747 key_size = strlen(argv[1]) >> 1;
1748
1749 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1750 if (!cc) {
1751 ti->error = "Cannot allocate encryption context";
1752 return -ENOMEM;
1753 }
1754 cc->key_size = key_size;
1755
1756 ti->private = cc;
1757 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1758 if (ret < 0)
1759 goto bad;
1760
1761 ret = -ENOMEM;
1762 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1763 if (!cc->io_pool) {
1764 ti->error = "Cannot allocate crypt io mempool";
1765 goto bad;
1766 }
1767
1768 cc->dmreq_start = sizeof(struct ablkcipher_request);
1769 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1770 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1771 cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1772 ~(crypto_tfm_ctx_alignment() - 1);
1773
1774 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1775 sizeof(struct dm_crypt_request) + cc->iv_size);
1776 if (!cc->req_pool) {
1777 ti->error = "Cannot allocate crypt request mempool";
1778 goto bad;
1779 }
1780
1781 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1782 if (!cc->page_pool) {
1783 ti->error = "Cannot allocate page mempool";
1784 goto bad;
1785 }
1786
1787 cc->bs = bioset_create(MIN_IOS, 0);
1788 if (!cc->bs) {
1789 ti->error = "Cannot allocate crypt bioset";
1790 goto bad;
1791 }
1792
1793 ret = -EINVAL;
1794 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1795 ti->error = "Invalid iv_offset sector";
1796 goto bad;
1797 }
1798 cc->iv_offset = tmpll;
1799
1800 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1801 ti->error = "Device lookup failed";
1802 goto bad;
1803 }
1804
1805 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1806 ti->error = "Invalid device sector";
1807 goto bad;
1808 }
1809 cc->start = tmpll;
1810
1811 argv += 5;
1812 argc -= 5;
1813
1814 /* Optional parameters */
1815 if (argc) {
1816 as.argc = argc;
1817 as.argv = argv;
1818
1819 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1820 if (ret)
1821 goto bad;
1822
1823 opt_string = dm_shift_arg(&as);
1824
1825 if (opt_params == 1 && opt_string &&
1826 !strcasecmp(opt_string, "allow_discards"))
1827 ti->num_discard_bios = 1;
1828 else if (opt_params) {
1829 ret = -EINVAL;
1830 ti->error = "Invalid feature arguments";
1831 goto bad;
1832 }
1833 }
1834
1835 ret = -ENOMEM;
1836 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1837 if (!cc->io_queue) {
1838 ti->error = "Couldn't create kcryptd io queue";
1839 goto bad;
1840 }
1841
1842 cc->crypt_queue = alloc_workqueue("kcryptd",
1843 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1844 if (!cc->crypt_queue) {
1845 ti->error = "Couldn't create kcryptd queue";
1846 goto bad;
1847 }
1848
1849 ti->num_flush_bios = 1;
1850 ti->discard_zeroes_data_unsupported = true;
1851
1852 return 0;
1853
1854 bad:
1855 crypt_dtr(ti);
1856 return ret;
1857 }
1858
1859 static int crypt_map(struct dm_target *ti, struct bio *bio)
1860 {
1861 struct dm_crypt_io *io;
1862 struct crypt_config *cc = ti->private;
1863
1864 /*
1865 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1866 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1867 * - for REQ_DISCARD caller must use flush if IO ordering matters
1868 */
1869 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1870 bio->bi_bdev = cc->dev->bdev;
1871 if (bio_sectors(bio))
1872 bio->bi_iter.bi_sector = cc->start +
1873 dm_target_offset(ti, bio->bi_iter.bi_sector);
1874 return DM_MAPIO_REMAPPED;
1875 }
1876
1877 io = crypt_io_alloc(cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1878
1879 if (bio_data_dir(io->base_bio) == READ) {
1880 if (kcryptd_io_read(io, GFP_NOWAIT))
1881 kcryptd_queue_io(io);
1882 } else
1883 kcryptd_queue_crypt(io);
1884
1885 return DM_MAPIO_SUBMITTED;
1886 }
1887
1888 static void crypt_status(struct dm_target *ti, status_type_t type,
1889 unsigned status_flags, char *result, unsigned maxlen)
1890 {
1891 struct crypt_config *cc = ti->private;
1892 unsigned i, sz = 0;
1893
1894 switch (type) {
1895 case STATUSTYPE_INFO:
1896 result[0] = '\0';
1897 break;
1898
1899 case STATUSTYPE_TABLE:
1900 DMEMIT("%s ", cc->cipher_string);
1901
1902 if (cc->key_size > 0)
1903 for (i = 0; i < cc->key_size; i++)
1904 DMEMIT("%02x", cc->key[i]);
1905 else
1906 DMEMIT("-");
1907
1908 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1909 cc->dev->name, (unsigned long long)cc->start);
1910
1911 if (ti->num_discard_bios)
1912 DMEMIT(" 1 allow_discards");
1913
1914 break;
1915 }
1916 }
1917
1918 static void crypt_postsuspend(struct dm_target *ti)
1919 {
1920 struct crypt_config *cc = ti->private;
1921
1922 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1923 }
1924
1925 static int crypt_preresume(struct dm_target *ti)
1926 {
1927 struct crypt_config *cc = ti->private;
1928
1929 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1930 DMERR("aborting resume - crypt key is not set.");
1931 return -EAGAIN;
1932 }
1933
1934 return 0;
1935 }
1936
1937 static void crypt_resume(struct dm_target *ti)
1938 {
1939 struct crypt_config *cc = ti->private;
1940
1941 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1942 }
1943
1944 /* Message interface
1945 * key set <key>
1946 * key wipe
1947 */
1948 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1949 {
1950 struct crypt_config *cc = ti->private;
1951 int ret = -EINVAL;
1952
1953 if (argc < 2)
1954 goto error;
1955
1956 if (!strcasecmp(argv[0], "key")) {
1957 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1958 DMWARN("not suspended during key manipulation.");
1959 return -EINVAL;
1960 }
1961 if (argc == 3 && !strcasecmp(argv[1], "set")) {
1962 ret = crypt_set_key(cc, argv[2]);
1963 if (ret)
1964 return ret;
1965 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1966 ret = cc->iv_gen_ops->init(cc);
1967 return ret;
1968 }
1969 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1970 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1971 ret = cc->iv_gen_ops->wipe(cc);
1972 if (ret)
1973 return ret;
1974 }
1975 return crypt_wipe_key(cc);
1976 }
1977 }
1978
1979 error:
1980 DMWARN("unrecognised message received.");
1981 return -EINVAL;
1982 }
1983
1984 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1985 struct bio_vec *biovec, int max_size)
1986 {
1987 struct crypt_config *cc = ti->private;
1988 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1989
1990 if (!q->merge_bvec_fn)
1991 return max_size;
1992
1993 bvm->bi_bdev = cc->dev->bdev;
1994 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1995
1996 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1997 }
1998
1999 static int crypt_iterate_devices(struct dm_target *ti,
2000 iterate_devices_callout_fn fn, void *data)
2001 {
2002 struct crypt_config *cc = ti->private;
2003
2004 return fn(ti, cc->dev, cc->start, ti->len, data);
2005 }
2006
2007 static struct target_type crypt_target = {
2008 .name = "crypt",
2009 .version = {1, 13, 0},
2010 .module = THIS_MODULE,
2011 .ctr = crypt_ctr,
2012 .dtr = crypt_dtr,
2013 .map = crypt_map,
2014 .status = crypt_status,
2015 .postsuspend = crypt_postsuspend,
2016 .preresume = crypt_preresume,
2017 .resume = crypt_resume,
2018 .message = crypt_message,
2019 .merge = crypt_merge,
2020 .iterate_devices = crypt_iterate_devices,
2021 };
2022
2023 static int __init dm_crypt_init(void)
2024 {
2025 int r;
2026
2027 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
2028 if (!_crypt_io_pool)
2029 return -ENOMEM;
2030
2031 r = dm_register_target(&crypt_target);
2032 if (r < 0) {
2033 DMERR("register failed %d", r);
2034 kmem_cache_destroy(_crypt_io_pool);
2035 }
2036
2037 return r;
2038 }
2039
2040 static void __exit dm_crypt_exit(void)
2041 {
2042 dm_unregister_target(&crypt_target);
2043 kmem_cache_destroy(_crypt_io_pool);
2044 }
2045
2046 module_init(dm_crypt_init);
2047 module_exit(dm_crypt_exit);
2048
2049 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
2050 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2051 MODULE_LICENSE("GPL");