rtc: rtc-lp8788: use devm_rtc_device_register()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / dm-cache-target.c
1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/init.h>
15 #include <linux/mempool.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19
20 #define DM_MSG_PREFIX "cache"
21
22 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23 "A percentage of time allocated for copying to and/or from cache");
24
25 /*----------------------------------------------------------------*/
26
27 /*
28 * Glossary:
29 *
30 * oblock: index of an origin block
31 * cblock: index of a cache block
32 * promotion: movement of a block from origin to cache
33 * demotion: movement of a block from cache to origin
34 * migration: movement of a block between the origin and cache device,
35 * either direction
36 */
37
38 /*----------------------------------------------------------------*/
39
40 static size_t bitset_size_in_bytes(unsigned nr_entries)
41 {
42 return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43 }
44
45 static unsigned long *alloc_bitset(unsigned nr_entries)
46 {
47 size_t s = bitset_size_in_bytes(nr_entries);
48 return vzalloc(s);
49 }
50
51 static void clear_bitset(void *bitset, unsigned nr_entries)
52 {
53 size_t s = bitset_size_in_bytes(nr_entries);
54 memset(bitset, 0, s);
55 }
56
57 static void free_bitset(unsigned long *bits)
58 {
59 vfree(bits);
60 }
61
62 /*----------------------------------------------------------------*/
63
64 #define PRISON_CELLS 1024
65 #define MIGRATION_POOL_SIZE 128
66 #define COMMIT_PERIOD HZ
67 #define MIGRATION_COUNT_WINDOW 10
68
69 /*
70 * The block size of the device holding cache data must be >= 32KB
71 */
72 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
73
74 /*
75 * FIXME: the cache is read/write for the time being.
76 */
77 enum cache_mode {
78 CM_WRITE, /* metadata may be changed */
79 CM_READ_ONLY, /* metadata may not be changed */
80 };
81
82 struct cache_features {
83 enum cache_mode mode;
84 bool write_through:1;
85 };
86
87 struct cache_stats {
88 atomic_t read_hit;
89 atomic_t read_miss;
90 atomic_t write_hit;
91 atomic_t write_miss;
92 atomic_t demotion;
93 atomic_t promotion;
94 atomic_t copies_avoided;
95 atomic_t cache_cell_clash;
96 atomic_t commit_count;
97 atomic_t discard_count;
98 };
99
100 struct cache {
101 struct dm_target *ti;
102 struct dm_target_callbacks callbacks;
103
104 /*
105 * Metadata is written to this device.
106 */
107 struct dm_dev *metadata_dev;
108
109 /*
110 * The slower of the two data devices. Typically a spindle.
111 */
112 struct dm_dev *origin_dev;
113
114 /*
115 * The faster of the two data devices. Typically an SSD.
116 */
117 struct dm_dev *cache_dev;
118
119 /*
120 * Cache features such as write-through.
121 */
122 struct cache_features features;
123
124 /*
125 * Size of the origin device in _complete_ blocks and native sectors.
126 */
127 dm_oblock_t origin_blocks;
128 sector_t origin_sectors;
129
130 /*
131 * Size of the cache device in blocks.
132 */
133 dm_cblock_t cache_size;
134
135 /*
136 * Fields for converting from sectors to blocks.
137 */
138 uint32_t sectors_per_block;
139 int sectors_per_block_shift;
140
141 struct dm_cache_metadata *cmd;
142
143 spinlock_t lock;
144 struct bio_list deferred_bios;
145 struct bio_list deferred_flush_bios;
146 struct bio_list deferred_writethrough_bios;
147 struct list_head quiesced_migrations;
148 struct list_head completed_migrations;
149 struct list_head need_commit_migrations;
150 sector_t migration_threshold;
151 atomic_t nr_migrations;
152 wait_queue_head_t migration_wait;
153
154 /*
155 * cache_size entries, dirty if set
156 */
157 dm_cblock_t nr_dirty;
158 unsigned long *dirty_bitset;
159
160 /*
161 * origin_blocks entries, discarded if set.
162 */
163 uint32_t discard_block_size; /* a power of 2 times sectors per block */
164 dm_dblock_t discard_nr_blocks;
165 unsigned long *discard_bitset;
166
167 struct dm_kcopyd_client *copier;
168 struct workqueue_struct *wq;
169 struct work_struct worker;
170
171 struct delayed_work waker;
172 unsigned long last_commit_jiffies;
173
174 struct dm_bio_prison *prison;
175 struct dm_deferred_set *all_io_ds;
176
177 mempool_t *migration_pool;
178 struct dm_cache_migration *next_migration;
179
180 struct dm_cache_policy *policy;
181 unsigned policy_nr_args;
182
183 bool need_tick_bio:1;
184 bool sized:1;
185 bool quiescing:1;
186 bool commit_requested:1;
187 bool loaded_mappings:1;
188 bool loaded_discards:1;
189
190 struct cache_stats stats;
191
192 /*
193 * Rather than reconstructing the table line for the status we just
194 * save it and regurgitate.
195 */
196 unsigned nr_ctr_args;
197 const char **ctr_args;
198 };
199
200 struct per_bio_data {
201 bool tick:1;
202 unsigned req_nr:2;
203 struct dm_deferred_entry *all_io_entry;
204
205 /*
206 * writethrough fields. These MUST remain at the end of this
207 * structure and the 'cache' member must be the first as it
208 * is used to determine the offsetof the writethrough fields.
209 */
210 struct cache *cache;
211 dm_cblock_t cblock;
212 bio_end_io_t *saved_bi_end_io;
213 struct dm_bio_details bio_details;
214 };
215
216 struct dm_cache_migration {
217 struct list_head list;
218 struct cache *cache;
219
220 unsigned long start_jiffies;
221 dm_oblock_t old_oblock;
222 dm_oblock_t new_oblock;
223 dm_cblock_t cblock;
224
225 bool err:1;
226 bool writeback:1;
227 bool demote:1;
228 bool promote:1;
229
230 struct dm_bio_prison_cell *old_ocell;
231 struct dm_bio_prison_cell *new_ocell;
232 };
233
234 /*
235 * Processing a bio in the worker thread may require these memory
236 * allocations. We prealloc to avoid deadlocks (the same worker thread
237 * frees them back to the mempool).
238 */
239 struct prealloc {
240 struct dm_cache_migration *mg;
241 struct dm_bio_prison_cell *cell1;
242 struct dm_bio_prison_cell *cell2;
243 };
244
245 static void wake_worker(struct cache *cache)
246 {
247 queue_work(cache->wq, &cache->worker);
248 }
249
250 /*----------------------------------------------------------------*/
251
252 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
253 {
254 /* FIXME: change to use a local slab. */
255 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
256 }
257
258 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
259 {
260 dm_bio_prison_free_cell(cache->prison, cell);
261 }
262
263 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
264 {
265 if (!p->mg) {
266 p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
267 if (!p->mg)
268 return -ENOMEM;
269 }
270
271 if (!p->cell1) {
272 p->cell1 = alloc_prison_cell(cache);
273 if (!p->cell1)
274 return -ENOMEM;
275 }
276
277 if (!p->cell2) {
278 p->cell2 = alloc_prison_cell(cache);
279 if (!p->cell2)
280 return -ENOMEM;
281 }
282
283 return 0;
284 }
285
286 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
287 {
288 if (p->cell2)
289 free_prison_cell(cache, p->cell2);
290
291 if (p->cell1)
292 free_prison_cell(cache, p->cell1);
293
294 if (p->mg)
295 mempool_free(p->mg, cache->migration_pool);
296 }
297
298 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
299 {
300 struct dm_cache_migration *mg = p->mg;
301
302 BUG_ON(!mg);
303 p->mg = NULL;
304
305 return mg;
306 }
307
308 /*
309 * You must have a cell within the prealloc struct to return. If not this
310 * function will BUG() rather than returning NULL.
311 */
312 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
313 {
314 struct dm_bio_prison_cell *r = NULL;
315
316 if (p->cell1) {
317 r = p->cell1;
318 p->cell1 = NULL;
319
320 } else if (p->cell2) {
321 r = p->cell2;
322 p->cell2 = NULL;
323 } else
324 BUG();
325
326 return r;
327 }
328
329 /*
330 * You can't have more than two cells in a prealloc struct. BUG() will be
331 * called if you try and overfill.
332 */
333 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
334 {
335 if (!p->cell2)
336 p->cell2 = cell;
337
338 else if (!p->cell1)
339 p->cell1 = cell;
340
341 else
342 BUG();
343 }
344
345 /*----------------------------------------------------------------*/
346
347 static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
348 {
349 key->virtual = 0;
350 key->dev = 0;
351 key->block = from_oblock(oblock);
352 }
353
354 /*
355 * The caller hands in a preallocated cell, and a free function for it.
356 * The cell will be freed if there's an error, or if it wasn't used because
357 * a cell with that key already exists.
358 */
359 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
360
361 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
362 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
363 cell_free_fn free_fn, void *free_context,
364 struct dm_bio_prison_cell **cell_result)
365 {
366 int r;
367 struct dm_cell_key key;
368
369 build_key(oblock, &key);
370 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
371 if (r)
372 free_fn(free_context, cell_prealloc);
373
374 return r;
375 }
376
377 static int get_cell(struct cache *cache,
378 dm_oblock_t oblock,
379 struct prealloc *structs,
380 struct dm_bio_prison_cell **cell_result)
381 {
382 int r;
383 struct dm_cell_key key;
384 struct dm_bio_prison_cell *cell_prealloc;
385
386 cell_prealloc = prealloc_get_cell(structs);
387
388 build_key(oblock, &key);
389 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
390 if (r)
391 prealloc_put_cell(structs, cell_prealloc);
392
393 return r;
394 }
395
396 /*----------------------------------------------------------------*/
397
398 static bool is_dirty(struct cache *cache, dm_cblock_t b)
399 {
400 return test_bit(from_cblock(b), cache->dirty_bitset);
401 }
402
403 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
404 {
405 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
406 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
407 policy_set_dirty(cache->policy, oblock);
408 }
409 }
410
411 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
412 {
413 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
414 policy_clear_dirty(cache->policy, oblock);
415 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
416 if (!from_cblock(cache->nr_dirty))
417 dm_table_event(cache->ti->table);
418 }
419 }
420
421 /*----------------------------------------------------------------*/
422 static bool block_size_is_power_of_two(struct cache *cache)
423 {
424 return cache->sectors_per_block_shift >= 0;
425 }
426
427 static dm_block_t block_div(dm_block_t b, uint32_t n)
428 {
429 do_div(b, n);
430
431 return b;
432 }
433
434 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
435 {
436 uint32_t discard_blocks = cache->discard_block_size;
437 dm_block_t b = from_oblock(oblock);
438
439 if (!block_size_is_power_of_two(cache))
440 discard_blocks = discard_blocks / cache->sectors_per_block;
441 else
442 discard_blocks >>= cache->sectors_per_block_shift;
443
444 b = block_div(b, discard_blocks);
445
446 return to_dblock(b);
447 }
448
449 static void set_discard(struct cache *cache, dm_dblock_t b)
450 {
451 unsigned long flags;
452
453 atomic_inc(&cache->stats.discard_count);
454
455 spin_lock_irqsave(&cache->lock, flags);
456 set_bit(from_dblock(b), cache->discard_bitset);
457 spin_unlock_irqrestore(&cache->lock, flags);
458 }
459
460 static void clear_discard(struct cache *cache, dm_dblock_t b)
461 {
462 unsigned long flags;
463
464 spin_lock_irqsave(&cache->lock, flags);
465 clear_bit(from_dblock(b), cache->discard_bitset);
466 spin_unlock_irqrestore(&cache->lock, flags);
467 }
468
469 static bool is_discarded(struct cache *cache, dm_dblock_t b)
470 {
471 int r;
472 unsigned long flags;
473
474 spin_lock_irqsave(&cache->lock, flags);
475 r = test_bit(from_dblock(b), cache->discard_bitset);
476 spin_unlock_irqrestore(&cache->lock, flags);
477
478 return r;
479 }
480
481 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
482 {
483 int r;
484 unsigned long flags;
485
486 spin_lock_irqsave(&cache->lock, flags);
487 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
488 cache->discard_bitset);
489 spin_unlock_irqrestore(&cache->lock, flags);
490
491 return r;
492 }
493
494 /*----------------------------------------------------------------*/
495
496 static void load_stats(struct cache *cache)
497 {
498 struct dm_cache_statistics stats;
499
500 dm_cache_metadata_get_stats(cache->cmd, &stats);
501 atomic_set(&cache->stats.read_hit, stats.read_hits);
502 atomic_set(&cache->stats.read_miss, stats.read_misses);
503 atomic_set(&cache->stats.write_hit, stats.write_hits);
504 atomic_set(&cache->stats.write_miss, stats.write_misses);
505 }
506
507 static void save_stats(struct cache *cache)
508 {
509 struct dm_cache_statistics stats;
510
511 stats.read_hits = atomic_read(&cache->stats.read_hit);
512 stats.read_misses = atomic_read(&cache->stats.read_miss);
513 stats.write_hits = atomic_read(&cache->stats.write_hit);
514 stats.write_misses = atomic_read(&cache->stats.write_miss);
515
516 dm_cache_metadata_set_stats(cache->cmd, &stats);
517 }
518
519 /*----------------------------------------------------------------
520 * Per bio data
521 *--------------------------------------------------------------*/
522
523 /*
524 * If using writeback, leave out struct per_bio_data's writethrough fields.
525 */
526 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
527 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
528
529 static size_t get_per_bio_data_size(struct cache *cache)
530 {
531 return cache->features.write_through ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
532 }
533
534 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
535 {
536 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
537 BUG_ON(!pb);
538 return pb;
539 }
540
541 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
542 {
543 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
544
545 pb->tick = false;
546 pb->req_nr = dm_bio_get_target_bio_nr(bio);
547 pb->all_io_entry = NULL;
548
549 return pb;
550 }
551
552 /*----------------------------------------------------------------
553 * Remapping
554 *--------------------------------------------------------------*/
555 static void remap_to_origin(struct cache *cache, struct bio *bio)
556 {
557 bio->bi_bdev = cache->origin_dev->bdev;
558 }
559
560 static void remap_to_cache(struct cache *cache, struct bio *bio,
561 dm_cblock_t cblock)
562 {
563 sector_t bi_sector = bio->bi_sector;
564
565 bio->bi_bdev = cache->cache_dev->bdev;
566 if (!block_size_is_power_of_two(cache))
567 bio->bi_sector = (from_cblock(cblock) * cache->sectors_per_block) +
568 sector_div(bi_sector, cache->sectors_per_block);
569 else
570 bio->bi_sector = (from_cblock(cblock) << cache->sectors_per_block_shift) |
571 (bi_sector & (cache->sectors_per_block - 1));
572 }
573
574 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
575 {
576 unsigned long flags;
577 size_t pb_data_size = get_per_bio_data_size(cache);
578 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
579
580 spin_lock_irqsave(&cache->lock, flags);
581 if (cache->need_tick_bio &&
582 !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
583 pb->tick = true;
584 cache->need_tick_bio = false;
585 }
586 spin_unlock_irqrestore(&cache->lock, flags);
587 }
588
589 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
590 dm_oblock_t oblock)
591 {
592 check_if_tick_bio_needed(cache, bio);
593 remap_to_origin(cache, bio);
594 if (bio_data_dir(bio) == WRITE)
595 clear_discard(cache, oblock_to_dblock(cache, oblock));
596 }
597
598 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
599 dm_oblock_t oblock, dm_cblock_t cblock)
600 {
601 remap_to_cache(cache, bio, cblock);
602 if (bio_data_dir(bio) == WRITE) {
603 set_dirty(cache, oblock, cblock);
604 clear_discard(cache, oblock_to_dblock(cache, oblock));
605 }
606 }
607
608 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
609 {
610 sector_t block_nr = bio->bi_sector;
611
612 if (!block_size_is_power_of_two(cache))
613 (void) sector_div(block_nr, cache->sectors_per_block);
614 else
615 block_nr >>= cache->sectors_per_block_shift;
616
617 return to_oblock(block_nr);
618 }
619
620 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
621 {
622 return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
623 }
624
625 static void issue(struct cache *cache, struct bio *bio)
626 {
627 unsigned long flags;
628
629 if (!bio_triggers_commit(cache, bio)) {
630 generic_make_request(bio);
631 return;
632 }
633
634 /*
635 * Batch together any bios that trigger commits and then issue a
636 * single commit for them in do_worker().
637 */
638 spin_lock_irqsave(&cache->lock, flags);
639 cache->commit_requested = true;
640 bio_list_add(&cache->deferred_flush_bios, bio);
641 spin_unlock_irqrestore(&cache->lock, flags);
642 }
643
644 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
645 {
646 unsigned long flags;
647
648 spin_lock_irqsave(&cache->lock, flags);
649 bio_list_add(&cache->deferred_writethrough_bios, bio);
650 spin_unlock_irqrestore(&cache->lock, flags);
651
652 wake_worker(cache);
653 }
654
655 static void writethrough_endio(struct bio *bio, int err)
656 {
657 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
658 bio->bi_end_io = pb->saved_bi_end_io;
659
660 if (err) {
661 bio_endio(bio, err);
662 return;
663 }
664
665 dm_bio_restore(&pb->bio_details, bio);
666 remap_to_cache(pb->cache, bio, pb->cblock);
667
668 /*
669 * We can't issue this bio directly, since we're in interrupt
670 * context. So it get's put on a bio list for processing by the
671 * worker thread.
672 */
673 defer_writethrough_bio(pb->cache, bio);
674 }
675
676 /*
677 * When running in writethrough mode we need to send writes to clean blocks
678 * to both the cache and origin devices. In future we'd like to clone the
679 * bio and send them in parallel, but for now we're doing them in
680 * series as this is easier.
681 */
682 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
683 dm_oblock_t oblock, dm_cblock_t cblock)
684 {
685 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
686
687 pb->cache = cache;
688 pb->cblock = cblock;
689 pb->saved_bi_end_io = bio->bi_end_io;
690 dm_bio_record(&pb->bio_details, bio);
691 bio->bi_end_io = writethrough_endio;
692
693 remap_to_origin_clear_discard(pb->cache, bio, oblock);
694 }
695
696 /*----------------------------------------------------------------
697 * Migration processing
698 *
699 * Migration covers moving data from the origin device to the cache, or
700 * vice versa.
701 *--------------------------------------------------------------*/
702 static void free_migration(struct dm_cache_migration *mg)
703 {
704 mempool_free(mg, mg->cache->migration_pool);
705 }
706
707 static void inc_nr_migrations(struct cache *cache)
708 {
709 atomic_inc(&cache->nr_migrations);
710 }
711
712 static void dec_nr_migrations(struct cache *cache)
713 {
714 atomic_dec(&cache->nr_migrations);
715
716 /*
717 * Wake the worker in case we're suspending the target.
718 */
719 wake_up(&cache->migration_wait);
720 }
721
722 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
723 bool holder)
724 {
725 (holder ? dm_cell_release : dm_cell_release_no_holder)
726 (cache->prison, cell, &cache->deferred_bios);
727 free_prison_cell(cache, cell);
728 }
729
730 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
731 bool holder)
732 {
733 unsigned long flags;
734
735 spin_lock_irqsave(&cache->lock, flags);
736 __cell_defer(cache, cell, holder);
737 spin_unlock_irqrestore(&cache->lock, flags);
738
739 wake_worker(cache);
740 }
741
742 static void cleanup_migration(struct dm_cache_migration *mg)
743 {
744 dec_nr_migrations(mg->cache);
745 free_migration(mg);
746 }
747
748 static void migration_failure(struct dm_cache_migration *mg)
749 {
750 struct cache *cache = mg->cache;
751
752 if (mg->writeback) {
753 DMWARN_LIMIT("writeback failed; couldn't copy block");
754 set_dirty(cache, mg->old_oblock, mg->cblock);
755 cell_defer(cache, mg->old_ocell, false);
756
757 } else if (mg->demote) {
758 DMWARN_LIMIT("demotion failed; couldn't copy block");
759 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
760
761 cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
762 if (mg->promote)
763 cell_defer(cache, mg->new_ocell, 1);
764 } else {
765 DMWARN_LIMIT("promotion failed; couldn't copy block");
766 policy_remove_mapping(cache->policy, mg->new_oblock);
767 cell_defer(cache, mg->new_ocell, 1);
768 }
769
770 cleanup_migration(mg);
771 }
772
773 static void migration_success_pre_commit(struct dm_cache_migration *mg)
774 {
775 unsigned long flags;
776 struct cache *cache = mg->cache;
777
778 if (mg->writeback) {
779 cell_defer(cache, mg->old_ocell, false);
780 clear_dirty(cache, mg->old_oblock, mg->cblock);
781 cleanup_migration(mg);
782 return;
783
784 } else if (mg->demote) {
785 if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
786 DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
787 policy_force_mapping(cache->policy, mg->new_oblock,
788 mg->old_oblock);
789 if (mg->promote)
790 cell_defer(cache, mg->new_ocell, true);
791 cleanup_migration(mg);
792 return;
793 }
794 } else {
795 if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
796 DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
797 policy_remove_mapping(cache->policy, mg->new_oblock);
798 cleanup_migration(mg);
799 return;
800 }
801 }
802
803 spin_lock_irqsave(&cache->lock, flags);
804 list_add_tail(&mg->list, &cache->need_commit_migrations);
805 cache->commit_requested = true;
806 spin_unlock_irqrestore(&cache->lock, flags);
807 }
808
809 static void migration_success_post_commit(struct dm_cache_migration *mg)
810 {
811 unsigned long flags;
812 struct cache *cache = mg->cache;
813
814 if (mg->writeback) {
815 DMWARN("writeback unexpectedly triggered commit");
816 return;
817
818 } else if (mg->demote) {
819 cell_defer(cache, mg->old_ocell, mg->promote ? 0 : 1);
820
821 if (mg->promote) {
822 mg->demote = false;
823
824 spin_lock_irqsave(&cache->lock, flags);
825 list_add_tail(&mg->list, &cache->quiesced_migrations);
826 spin_unlock_irqrestore(&cache->lock, flags);
827
828 } else
829 cleanup_migration(mg);
830
831 } else {
832 cell_defer(cache, mg->new_ocell, true);
833 clear_dirty(cache, mg->new_oblock, mg->cblock);
834 cleanup_migration(mg);
835 }
836 }
837
838 static void copy_complete(int read_err, unsigned long write_err, void *context)
839 {
840 unsigned long flags;
841 struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
842 struct cache *cache = mg->cache;
843
844 if (read_err || write_err)
845 mg->err = true;
846
847 spin_lock_irqsave(&cache->lock, flags);
848 list_add_tail(&mg->list, &cache->completed_migrations);
849 spin_unlock_irqrestore(&cache->lock, flags);
850
851 wake_worker(cache);
852 }
853
854 static void issue_copy_real(struct dm_cache_migration *mg)
855 {
856 int r;
857 struct dm_io_region o_region, c_region;
858 struct cache *cache = mg->cache;
859
860 o_region.bdev = cache->origin_dev->bdev;
861 o_region.count = cache->sectors_per_block;
862
863 c_region.bdev = cache->cache_dev->bdev;
864 c_region.sector = from_cblock(mg->cblock) * cache->sectors_per_block;
865 c_region.count = cache->sectors_per_block;
866
867 if (mg->writeback || mg->demote) {
868 /* demote */
869 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
870 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
871 } else {
872 /* promote */
873 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
874 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
875 }
876
877 if (r < 0)
878 migration_failure(mg);
879 }
880
881 static void avoid_copy(struct dm_cache_migration *mg)
882 {
883 atomic_inc(&mg->cache->stats.copies_avoided);
884 migration_success_pre_commit(mg);
885 }
886
887 static void issue_copy(struct dm_cache_migration *mg)
888 {
889 bool avoid;
890 struct cache *cache = mg->cache;
891
892 if (mg->writeback || mg->demote)
893 avoid = !is_dirty(cache, mg->cblock) ||
894 is_discarded_oblock(cache, mg->old_oblock);
895 else
896 avoid = is_discarded_oblock(cache, mg->new_oblock);
897
898 avoid ? avoid_copy(mg) : issue_copy_real(mg);
899 }
900
901 static void complete_migration(struct dm_cache_migration *mg)
902 {
903 if (mg->err)
904 migration_failure(mg);
905 else
906 migration_success_pre_commit(mg);
907 }
908
909 static void process_migrations(struct cache *cache, struct list_head *head,
910 void (*fn)(struct dm_cache_migration *))
911 {
912 unsigned long flags;
913 struct list_head list;
914 struct dm_cache_migration *mg, *tmp;
915
916 INIT_LIST_HEAD(&list);
917 spin_lock_irqsave(&cache->lock, flags);
918 list_splice_init(head, &list);
919 spin_unlock_irqrestore(&cache->lock, flags);
920
921 list_for_each_entry_safe(mg, tmp, &list, list)
922 fn(mg);
923 }
924
925 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
926 {
927 list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
928 }
929
930 static void queue_quiesced_migration(struct dm_cache_migration *mg)
931 {
932 unsigned long flags;
933 struct cache *cache = mg->cache;
934
935 spin_lock_irqsave(&cache->lock, flags);
936 __queue_quiesced_migration(mg);
937 spin_unlock_irqrestore(&cache->lock, flags);
938
939 wake_worker(cache);
940 }
941
942 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
943 {
944 unsigned long flags;
945 struct dm_cache_migration *mg, *tmp;
946
947 spin_lock_irqsave(&cache->lock, flags);
948 list_for_each_entry_safe(mg, tmp, work, list)
949 __queue_quiesced_migration(mg);
950 spin_unlock_irqrestore(&cache->lock, flags);
951
952 wake_worker(cache);
953 }
954
955 static void check_for_quiesced_migrations(struct cache *cache,
956 struct per_bio_data *pb)
957 {
958 struct list_head work;
959
960 if (!pb->all_io_entry)
961 return;
962
963 INIT_LIST_HEAD(&work);
964 if (pb->all_io_entry)
965 dm_deferred_entry_dec(pb->all_io_entry, &work);
966
967 if (!list_empty(&work))
968 queue_quiesced_migrations(cache, &work);
969 }
970
971 static void quiesce_migration(struct dm_cache_migration *mg)
972 {
973 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
974 queue_quiesced_migration(mg);
975 }
976
977 static void promote(struct cache *cache, struct prealloc *structs,
978 dm_oblock_t oblock, dm_cblock_t cblock,
979 struct dm_bio_prison_cell *cell)
980 {
981 struct dm_cache_migration *mg = prealloc_get_migration(structs);
982
983 mg->err = false;
984 mg->writeback = false;
985 mg->demote = false;
986 mg->promote = true;
987 mg->cache = cache;
988 mg->new_oblock = oblock;
989 mg->cblock = cblock;
990 mg->old_ocell = NULL;
991 mg->new_ocell = cell;
992 mg->start_jiffies = jiffies;
993
994 inc_nr_migrations(cache);
995 quiesce_migration(mg);
996 }
997
998 static void writeback(struct cache *cache, struct prealloc *structs,
999 dm_oblock_t oblock, dm_cblock_t cblock,
1000 struct dm_bio_prison_cell *cell)
1001 {
1002 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1003
1004 mg->err = false;
1005 mg->writeback = true;
1006 mg->demote = false;
1007 mg->promote = false;
1008 mg->cache = cache;
1009 mg->old_oblock = oblock;
1010 mg->cblock = cblock;
1011 mg->old_ocell = cell;
1012 mg->new_ocell = NULL;
1013 mg->start_jiffies = jiffies;
1014
1015 inc_nr_migrations(cache);
1016 quiesce_migration(mg);
1017 }
1018
1019 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1020 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1021 dm_cblock_t cblock,
1022 struct dm_bio_prison_cell *old_ocell,
1023 struct dm_bio_prison_cell *new_ocell)
1024 {
1025 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1026
1027 mg->err = false;
1028 mg->writeback = false;
1029 mg->demote = true;
1030 mg->promote = true;
1031 mg->cache = cache;
1032 mg->old_oblock = old_oblock;
1033 mg->new_oblock = new_oblock;
1034 mg->cblock = cblock;
1035 mg->old_ocell = old_ocell;
1036 mg->new_ocell = new_ocell;
1037 mg->start_jiffies = jiffies;
1038
1039 inc_nr_migrations(cache);
1040 quiesce_migration(mg);
1041 }
1042
1043 /*----------------------------------------------------------------
1044 * bio processing
1045 *--------------------------------------------------------------*/
1046 static void defer_bio(struct cache *cache, struct bio *bio)
1047 {
1048 unsigned long flags;
1049
1050 spin_lock_irqsave(&cache->lock, flags);
1051 bio_list_add(&cache->deferred_bios, bio);
1052 spin_unlock_irqrestore(&cache->lock, flags);
1053
1054 wake_worker(cache);
1055 }
1056
1057 static void process_flush_bio(struct cache *cache, struct bio *bio)
1058 {
1059 size_t pb_data_size = get_per_bio_data_size(cache);
1060 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1061
1062 BUG_ON(bio->bi_size);
1063 if (!pb->req_nr)
1064 remap_to_origin(cache, bio);
1065 else
1066 remap_to_cache(cache, bio, 0);
1067
1068 issue(cache, bio);
1069 }
1070
1071 /*
1072 * People generally discard large parts of a device, eg, the whole device
1073 * when formatting. Splitting these large discards up into cache block
1074 * sized ios and then quiescing (always neccessary for discard) takes too
1075 * long.
1076 *
1077 * We keep it simple, and allow any size of discard to come in, and just
1078 * mark off blocks on the discard bitset. No passdown occurs!
1079 *
1080 * To implement passdown we need to change the bio_prison such that a cell
1081 * can have a key that spans many blocks.
1082 */
1083 static void process_discard_bio(struct cache *cache, struct bio *bio)
1084 {
1085 dm_block_t start_block = dm_sector_div_up(bio->bi_sector,
1086 cache->discard_block_size);
1087 dm_block_t end_block = bio->bi_sector + bio_sectors(bio);
1088 dm_block_t b;
1089
1090 end_block = block_div(end_block, cache->discard_block_size);
1091
1092 for (b = start_block; b < end_block; b++)
1093 set_discard(cache, to_dblock(b));
1094
1095 bio_endio(bio, 0);
1096 }
1097
1098 static bool spare_migration_bandwidth(struct cache *cache)
1099 {
1100 sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1101 cache->sectors_per_block;
1102 return current_volume < cache->migration_threshold;
1103 }
1104
1105 static bool is_writethrough_io(struct cache *cache, struct bio *bio,
1106 dm_cblock_t cblock)
1107 {
1108 return bio_data_dir(bio) == WRITE &&
1109 cache->features.write_through && !is_dirty(cache, cblock);
1110 }
1111
1112 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1113 {
1114 atomic_inc(bio_data_dir(bio) == READ ?
1115 &cache->stats.read_hit : &cache->stats.write_hit);
1116 }
1117
1118 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1119 {
1120 atomic_inc(bio_data_dir(bio) == READ ?
1121 &cache->stats.read_miss : &cache->stats.write_miss);
1122 }
1123
1124 static void process_bio(struct cache *cache, struct prealloc *structs,
1125 struct bio *bio)
1126 {
1127 int r;
1128 bool release_cell = true;
1129 dm_oblock_t block = get_bio_block(cache, bio);
1130 struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1131 struct policy_result lookup_result;
1132 size_t pb_data_size = get_per_bio_data_size(cache);
1133 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1134 bool discarded_block = is_discarded_oblock(cache, block);
1135 bool can_migrate = discarded_block || spare_migration_bandwidth(cache);
1136
1137 /*
1138 * Check to see if that block is currently migrating.
1139 */
1140 cell_prealloc = prealloc_get_cell(structs);
1141 r = bio_detain(cache, block, bio, cell_prealloc,
1142 (cell_free_fn) prealloc_put_cell,
1143 structs, &new_ocell);
1144 if (r > 0)
1145 return;
1146
1147 r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1148 bio, &lookup_result);
1149
1150 if (r == -EWOULDBLOCK)
1151 /* migration has been denied */
1152 lookup_result.op = POLICY_MISS;
1153
1154 switch (lookup_result.op) {
1155 case POLICY_HIT:
1156 inc_hit_counter(cache, bio);
1157 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1158
1159 if (is_writethrough_io(cache, bio, lookup_result.cblock))
1160 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1161 else
1162 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1163
1164 issue(cache, bio);
1165 break;
1166
1167 case POLICY_MISS:
1168 inc_miss_counter(cache, bio);
1169 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1170 remap_to_origin_clear_discard(cache, bio, block);
1171 issue(cache, bio);
1172 break;
1173
1174 case POLICY_NEW:
1175 atomic_inc(&cache->stats.promotion);
1176 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1177 release_cell = false;
1178 break;
1179
1180 case POLICY_REPLACE:
1181 cell_prealloc = prealloc_get_cell(structs);
1182 r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1183 (cell_free_fn) prealloc_put_cell,
1184 structs, &old_ocell);
1185 if (r > 0) {
1186 /*
1187 * We have to be careful to avoid lock inversion of
1188 * the cells. So we back off, and wait for the
1189 * old_ocell to become free.
1190 */
1191 policy_force_mapping(cache->policy, block,
1192 lookup_result.old_oblock);
1193 atomic_inc(&cache->stats.cache_cell_clash);
1194 break;
1195 }
1196 atomic_inc(&cache->stats.demotion);
1197 atomic_inc(&cache->stats.promotion);
1198
1199 demote_then_promote(cache, structs, lookup_result.old_oblock,
1200 block, lookup_result.cblock,
1201 old_ocell, new_ocell);
1202 release_cell = false;
1203 break;
1204
1205 default:
1206 DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1207 (unsigned) lookup_result.op);
1208 bio_io_error(bio);
1209 }
1210
1211 if (release_cell)
1212 cell_defer(cache, new_ocell, false);
1213 }
1214
1215 static int need_commit_due_to_time(struct cache *cache)
1216 {
1217 return jiffies < cache->last_commit_jiffies ||
1218 jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1219 }
1220
1221 static int commit_if_needed(struct cache *cache)
1222 {
1223 if (dm_cache_changed_this_transaction(cache->cmd) &&
1224 (cache->commit_requested || need_commit_due_to_time(cache))) {
1225 atomic_inc(&cache->stats.commit_count);
1226 cache->last_commit_jiffies = jiffies;
1227 cache->commit_requested = false;
1228 return dm_cache_commit(cache->cmd, false);
1229 }
1230
1231 return 0;
1232 }
1233
1234 static void process_deferred_bios(struct cache *cache)
1235 {
1236 unsigned long flags;
1237 struct bio_list bios;
1238 struct bio *bio;
1239 struct prealloc structs;
1240
1241 memset(&structs, 0, sizeof(structs));
1242 bio_list_init(&bios);
1243
1244 spin_lock_irqsave(&cache->lock, flags);
1245 bio_list_merge(&bios, &cache->deferred_bios);
1246 bio_list_init(&cache->deferred_bios);
1247 spin_unlock_irqrestore(&cache->lock, flags);
1248
1249 while (!bio_list_empty(&bios)) {
1250 /*
1251 * If we've got no free migration structs, and processing
1252 * this bio might require one, we pause until there are some
1253 * prepared mappings to process.
1254 */
1255 if (prealloc_data_structs(cache, &structs)) {
1256 spin_lock_irqsave(&cache->lock, flags);
1257 bio_list_merge(&cache->deferred_bios, &bios);
1258 spin_unlock_irqrestore(&cache->lock, flags);
1259 break;
1260 }
1261
1262 bio = bio_list_pop(&bios);
1263
1264 if (bio->bi_rw & REQ_FLUSH)
1265 process_flush_bio(cache, bio);
1266 else if (bio->bi_rw & REQ_DISCARD)
1267 process_discard_bio(cache, bio);
1268 else
1269 process_bio(cache, &structs, bio);
1270 }
1271
1272 prealloc_free_structs(cache, &structs);
1273 }
1274
1275 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1276 {
1277 unsigned long flags;
1278 struct bio_list bios;
1279 struct bio *bio;
1280
1281 bio_list_init(&bios);
1282
1283 spin_lock_irqsave(&cache->lock, flags);
1284 bio_list_merge(&bios, &cache->deferred_flush_bios);
1285 bio_list_init(&cache->deferred_flush_bios);
1286 spin_unlock_irqrestore(&cache->lock, flags);
1287
1288 while ((bio = bio_list_pop(&bios)))
1289 submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1290 }
1291
1292 static void process_deferred_writethrough_bios(struct cache *cache)
1293 {
1294 unsigned long flags;
1295 struct bio_list bios;
1296 struct bio *bio;
1297
1298 bio_list_init(&bios);
1299
1300 spin_lock_irqsave(&cache->lock, flags);
1301 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1302 bio_list_init(&cache->deferred_writethrough_bios);
1303 spin_unlock_irqrestore(&cache->lock, flags);
1304
1305 while ((bio = bio_list_pop(&bios)))
1306 generic_make_request(bio);
1307 }
1308
1309 static void writeback_some_dirty_blocks(struct cache *cache)
1310 {
1311 int r = 0;
1312 dm_oblock_t oblock;
1313 dm_cblock_t cblock;
1314 struct prealloc structs;
1315 struct dm_bio_prison_cell *old_ocell;
1316
1317 memset(&structs, 0, sizeof(structs));
1318
1319 while (spare_migration_bandwidth(cache)) {
1320 if (prealloc_data_structs(cache, &structs))
1321 break;
1322
1323 r = policy_writeback_work(cache->policy, &oblock, &cblock);
1324 if (r)
1325 break;
1326
1327 r = get_cell(cache, oblock, &structs, &old_ocell);
1328 if (r) {
1329 policy_set_dirty(cache->policy, oblock);
1330 break;
1331 }
1332
1333 writeback(cache, &structs, oblock, cblock, old_ocell);
1334 }
1335
1336 prealloc_free_structs(cache, &structs);
1337 }
1338
1339 /*----------------------------------------------------------------
1340 * Main worker loop
1341 *--------------------------------------------------------------*/
1342 static void start_quiescing(struct cache *cache)
1343 {
1344 unsigned long flags;
1345
1346 spin_lock_irqsave(&cache->lock, flags);
1347 cache->quiescing = 1;
1348 spin_unlock_irqrestore(&cache->lock, flags);
1349 }
1350
1351 static void stop_quiescing(struct cache *cache)
1352 {
1353 unsigned long flags;
1354
1355 spin_lock_irqsave(&cache->lock, flags);
1356 cache->quiescing = 0;
1357 spin_unlock_irqrestore(&cache->lock, flags);
1358 }
1359
1360 static bool is_quiescing(struct cache *cache)
1361 {
1362 int r;
1363 unsigned long flags;
1364
1365 spin_lock_irqsave(&cache->lock, flags);
1366 r = cache->quiescing;
1367 spin_unlock_irqrestore(&cache->lock, flags);
1368
1369 return r;
1370 }
1371
1372 static void wait_for_migrations(struct cache *cache)
1373 {
1374 wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1375 }
1376
1377 static void stop_worker(struct cache *cache)
1378 {
1379 cancel_delayed_work(&cache->waker);
1380 flush_workqueue(cache->wq);
1381 }
1382
1383 static void requeue_deferred_io(struct cache *cache)
1384 {
1385 struct bio *bio;
1386 struct bio_list bios;
1387
1388 bio_list_init(&bios);
1389 bio_list_merge(&bios, &cache->deferred_bios);
1390 bio_list_init(&cache->deferred_bios);
1391
1392 while ((bio = bio_list_pop(&bios)))
1393 bio_endio(bio, DM_ENDIO_REQUEUE);
1394 }
1395
1396 static int more_work(struct cache *cache)
1397 {
1398 if (is_quiescing(cache))
1399 return !list_empty(&cache->quiesced_migrations) ||
1400 !list_empty(&cache->completed_migrations) ||
1401 !list_empty(&cache->need_commit_migrations);
1402 else
1403 return !bio_list_empty(&cache->deferred_bios) ||
1404 !bio_list_empty(&cache->deferred_flush_bios) ||
1405 !bio_list_empty(&cache->deferred_writethrough_bios) ||
1406 !list_empty(&cache->quiesced_migrations) ||
1407 !list_empty(&cache->completed_migrations) ||
1408 !list_empty(&cache->need_commit_migrations);
1409 }
1410
1411 static void do_worker(struct work_struct *ws)
1412 {
1413 struct cache *cache = container_of(ws, struct cache, worker);
1414
1415 do {
1416 if (!is_quiescing(cache))
1417 process_deferred_bios(cache);
1418
1419 process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1420 process_migrations(cache, &cache->completed_migrations, complete_migration);
1421
1422 writeback_some_dirty_blocks(cache);
1423
1424 process_deferred_writethrough_bios(cache);
1425
1426 if (commit_if_needed(cache)) {
1427 process_deferred_flush_bios(cache, false);
1428
1429 /*
1430 * FIXME: rollback metadata or just go into a
1431 * failure mode and error everything
1432 */
1433 } else {
1434 process_deferred_flush_bios(cache, true);
1435 process_migrations(cache, &cache->need_commit_migrations,
1436 migration_success_post_commit);
1437 }
1438 } while (more_work(cache));
1439 }
1440
1441 /*
1442 * We want to commit periodically so that not too much
1443 * unwritten metadata builds up.
1444 */
1445 static void do_waker(struct work_struct *ws)
1446 {
1447 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1448 wake_worker(cache);
1449 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1450 }
1451
1452 /*----------------------------------------------------------------*/
1453
1454 static int is_congested(struct dm_dev *dev, int bdi_bits)
1455 {
1456 struct request_queue *q = bdev_get_queue(dev->bdev);
1457 return bdi_congested(&q->backing_dev_info, bdi_bits);
1458 }
1459
1460 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1461 {
1462 struct cache *cache = container_of(cb, struct cache, callbacks);
1463
1464 return is_congested(cache->origin_dev, bdi_bits) ||
1465 is_congested(cache->cache_dev, bdi_bits);
1466 }
1467
1468 /*----------------------------------------------------------------
1469 * Target methods
1470 *--------------------------------------------------------------*/
1471
1472 /*
1473 * This function gets called on the error paths of the constructor, so we
1474 * have to cope with a partially initialised struct.
1475 */
1476 static void destroy(struct cache *cache)
1477 {
1478 unsigned i;
1479
1480 if (cache->next_migration)
1481 mempool_free(cache->next_migration, cache->migration_pool);
1482
1483 if (cache->migration_pool)
1484 mempool_destroy(cache->migration_pool);
1485
1486 if (cache->all_io_ds)
1487 dm_deferred_set_destroy(cache->all_io_ds);
1488
1489 if (cache->prison)
1490 dm_bio_prison_destroy(cache->prison);
1491
1492 if (cache->wq)
1493 destroy_workqueue(cache->wq);
1494
1495 if (cache->dirty_bitset)
1496 free_bitset(cache->dirty_bitset);
1497
1498 if (cache->discard_bitset)
1499 free_bitset(cache->discard_bitset);
1500
1501 if (cache->copier)
1502 dm_kcopyd_client_destroy(cache->copier);
1503
1504 if (cache->cmd)
1505 dm_cache_metadata_close(cache->cmd);
1506
1507 if (cache->metadata_dev)
1508 dm_put_device(cache->ti, cache->metadata_dev);
1509
1510 if (cache->origin_dev)
1511 dm_put_device(cache->ti, cache->origin_dev);
1512
1513 if (cache->cache_dev)
1514 dm_put_device(cache->ti, cache->cache_dev);
1515
1516 if (cache->policy)
1517 dm_cache_policy_destroy(cache->policy);
1518
1519 for (i = 0; i < cache->nr_ctr_args ; i++)
1520 kfree(cache->ctr_args[i]);
1521 kfree(cache->ctr_args);
1522
1523 kfree(cache);
1524 }
1525
1526 static void cache_dtr(struct dm_target *ti)
1527 {
1528 struct cache *cache = ti->private;
1529
1530 destroy(cache);
1531 }
1532
1533 static sector_t get_dev_size(struct dm_dev *dev)
1534 {
1535 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1536 }
1537
1538 /*----------------------------------------------------------------*/
1539
1540 /*
1541 * Construct a cache device mapping.
1542 *
1543 * cache <metadata dev> <cache dev> <origin dev> <block size>
1544 * <#feature args> [<feature arg>]*
1545 * <policy> <#policy args> [<policy arg>]*
1546 *
1547 * metadata dev : fast device holding the persistent metadata
1548 * cache dev : fast device holding cached data blocks
1549 * origin dev : slow device holding original data blocks
1550 * block size : cache unit size in sectors
1551 *
1552 * #feature args : number of feature arguments passed
1553 * feature args : writethrough. (The default is writeback.)
1554 *
1555 * policy : the replacement policy to use
1556 * #policy args : an even number of policy arguments corresponding
1557 * to key/value pairs passed to the policy
1558 * policy args : key/value pairs passed to the policy
1559 * E.g. 'sequential_threshold 1024'
1560 * See cache-policies.txt for details.
1561 *
1562 * Optional feature arguments are:
1563 * writethrough : write through caching that prohibits cache block
1564 * content from being different from origin block content.
1565 * Without this argument, the default behaviour is to write
1566 * back cache block contents later for performance reasons,
1567 * so they may differ from the corresponding origin blocks.
1568 */
1569 struct cache_args {
1570 struct dm_target *ti;
1571
1572 struct dm_dev *metadata_dev;
1573
1574 struct dm_dev *cache_dev;
1575 sector_t cache_sectors;
1576
1577 struct dm_dev *origin_dev;
1578 sector_t origin_sectors;
1579
1580 uint32_t block_size;
1581
1582 const char *policy_name;
1583 int policy_argc;
1584 const char **policy_argv;
1585
1586 struct cache_features features;
1587 };
1588
1589 static void destroy_cache_args(struct cache_args *ca)
1590 {
1591 if (ca->metadata_dev)
1592 dm_put_device(ca->ti, ca->metadata_dev);
1593
1594 if (ca->cache_dev)
1595 dm_put_device(ca->ti, ca->cache_dev);
1596
1597 if (ca->origin_dev)
1598 dm_put_device(ca->ti, ca->origin_dev);
1599
1600 kfree(ca);
1601 }
1602
1603 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1604 {
1605 if (!as->argc) {
1606 *error = "Insufficient args";
1607 return false;
1608 }
1609
1610 return true;
1611 }
1612
1613 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1614 char **error)
1615 {
1616 int r;
1617 sector_t metadata_dev_size;
1618 char b[BDEVNAME_SIZE];
1619
1620 if (!at_least_one_arg(as, error))
1621 return -EINVAL;
1622
1623 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1624 &ca->metadata_dev);
1625 if (r) {
1626 *error = "Error opening metadata device";
1627 return r;
1628 }
1629
1630 metadata_dev_size = get_dev_size(ca->metadata_dev);
1631 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1632 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1633 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1634
1635 return 0;
1636 }
1637
1638 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1639 char **error)
1640 {
1641 int r;
1642
1643 if (!at_least_one_arg(as, error))
1644 return -EINVAL;
1645
1646 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1647 &ca->cache_dev);
1648 if (r) {
1649 *error = "Error opening cache device";
1650 return r;
1651 }
1652 ca->cache_sectors = get_dev_size(ca->cache_dev);
1653
1654 return 0;
1655 }
1656
1657 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1658 char **error)
1659 {
1660 int r;
1661
1662 if (!at_least_one_arg(as, error))
1663 return -EINVAL;
1664
1665 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1666 &ca->origin_dev);
1667 if (r) {
1668 *error = "Error opening origin device";
1669 return r;
1670 }
1671
1672 ca->origin_sectors = get_dev_size(ca->origin_dev);
1673 if (ca->ti->len > ca->origin_sectors) {
1674 *error = "Device size larger than cached device";
1675 return -EINVAL;
1676 }
1677
1678 return 0;
1679 }
1680
1681 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1682 char **error)
1683 {
1684 unsigned long tmp;
1685
1686 if (!at_least_one_arg(as, error))
1687 return -EINVAL;
1688
1689 if (kstrtoul(dm_shift_arg(as), 10, &tmp) || !tmp ||
1690 tmp < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1691 tmp & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1692 *error = "Invalid data block size";
1693 return -EINVAL;
1694 }
1695
1696 if (tmp > ca->cache_sectors) {
1697 *error = "Data block size is larger than the cache device";
1698 return -EINVAL;
1699 }
1700
1701 ca->block_size = tmp;
1702
1703 return 0;
1704 }
1705
1706 static void init_features(struct cache_features *cf)
1707 {
1708 cf->mode = CM_WRITE;
1709 cf->write_through = false;
1710 }
1711
1712 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1713 char **error)
1714 {
1715 static struct dm_arg _args[] = {
1716 {0, 1, "Invalid number of cache feature arguments"},
1717 };
1718
1719 int r;
1720 unsigned argc;
1721 const char *arg;
1722 struct cache_features *cf = &ca->features;
1723
1724 init_features(cf);
1725
1726 r = dm_read_arg_group(_args, as, &argc, error);
1727 if (r)
1728 return -EINVAL;
1729
1730 while (argc--) {
1731 arg = dm_shift_arg(as);
1732
1733 if (!strcasecmp(arg, "writeback"))
1734 cf->write_through = false;
1735
1736 else if (!strcasecmp(arg, "writethrough"))
1737 cf->write_through = true;
1738
1739 else {
1740 *error = "Unrecognised cache feature requested";
1741 return -EINVAL;
1742 }
1743 }
1744
1745 return 0;
1746 }
1747
1748 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
1749 char **error)
1750 {
1751 static struct dm_arg _args[] = {
1752 {0, 1024, "Invalid number of policy arguments"},
1753 };
1754
1755 int r;
1756
1757 if (!at_least_one_arg(as, error))
1758 return -EINVAL;
1759
1760 ca->policy_name = dm_shift_arg(as);
1761
1762 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
1763 if (r)
1764 return -EINVAL;
1765
1766 ca->policy_argv = (const char **)as->argv;
1767 dm_consume_args(as, ca->policy_argc);
1768
1769 return 0;
1770 }
1771
1772 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
1773 char **error)
1774 {
1775 int r;
1776 struct dm_arg_set as;
1777
1778 as.argc = argc;
1779 as.argv = argv;
1780
1781 r = parse_metadata_dev(ca, &as, error);
1782 if (r)
1783 return r;
1784
1785 r = parse_cache_dev(ca, &as, error);
1786 if (r)
1787 return r;
1788
1789 r = parse_origin_dev(ca, &as, error);
1790 if (r)
1791 return r;
1792
1793 r = parse_block_size(ca, &as, error);
1794 if (r)
1795 return r;
1796
1797 r = parse_features(ca, &as, error);
1798 if (r)
1799 return r;
1800
1801 r = parse_policy(ca, &as, error);
1802 if (r)
1803 return r;
1804
1805 return 0;
1806 }
1807
1808 /*----------------------------------------------------------------*/
1809
1810 static struct kmem_cache *migration_cache;
1811
1812 static int set_config_values(struct dm_cache_policy *p, int argc, const char **argv)
1813 {
1814 int r = 0;
1815
1816 if (argc & 1) {
1817 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
1818 return -EINVAL;
1819 }
1820
1821 while (argc) {
1822 r = policy_set_config_value(p, argv[0], argv[1]);
1823 if (r) {
1824 DMWARN("policy_set_config_value failed: key = '%s', value = '%s'",
1825 argv[0], argv[1]);
1826 return r;
1827 }
1828
1829 argc -= 2;
1830 argv += 2;
1831 }
1832
1833 return r;
1834 }
1835
1836 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
1837 char **error)
1838 {
1839 int r;
1840
1841 cache->policy = dm_cache_policy_create(ca->policy_name,
1842 cache->cache_size,
1843 cache->origin_sectors,
1844 cache->sectors_per_block);
1845 if (!cache->policy) {
1846 *error = "Error creating cache's policy";
1847 return -ENOMEM;
1848 }
1849
1850 r = set_config_values(cache->policy, ca->policy_argc, ca->policy_argv);
1851 if (r) {
1852 *error = "Error setting cache policy's config values";
1853 dm_cache_policy_destroy(cache->policy);
1854 cache->policy = NULL;
1855 }
1856
1857 return r;
1858 }
1859
1860 /*
1861 * We want the discard block size to be a power of two, at least the size
1862 * of the cache block size, and have no more than 2^14 discard blocks
1863 * across the origin.
1864 */
1865 #define MAX_DISCARD_BLOCKS (1 << 14)
1866
1867 static bool too_many_discard_blocks(sector_t discard_block_size,
1868 sector_t origin_size)
1869 {
1870 (void) sector_div(origin_size, discard_block_size);
1871
1872 return origin_size > MAX_DISCARD_BLOCKS;
1873 }
1874
1875 static sector_t calculate_discard_block_size(sector_t cache_block_size,
1876 sector_t origin_size)
1877 {
1878 sector_t discard_block_size;
1879
1880 discard_block_size = roundup_pow_of_two(cache_block_size);
1881
1882 if (origin_size)
1883 while (too_many_discard_blocks(discard_block_size, origin_size))
1884 discard_block_size *= 2;
1885
1886 return discard_block_size;
1887 }
1888
1889 #define DEFAULT_MIGRATION_THRESHOLD (2048 * 100)
1890
1891 static int cache_create(struct cache_args *ca, struct cache **result)
1892 {
1893 int r = 0;
1894 char **error = &ca->ti->error;
1895 struct cache *cache;
1896 struct dm_target *ti = ca->ti;
1897 dm_block_t origin_blocks;
1898 struct dm_cache_metadata *cmd;
1899 bool may_format = ca->features.mode == CM_WRITE;
1900
1901 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
1902 if (!cache)
1903 return -ENOMEM;
1904
1905 cache->ti = ca->ti;
1906 ti->private = cache;
1907 ti->num_flush_bios = 2;
1908 ti->flush_supported = true;
1909
1910 ti->num_discard_bios = 1;
1911 ti->discards_supported = true;
1912 ti->discard_zeroes_data_unsupported = true;
1913
1914 memcpy(&cache->features, &ca->features, sizeof(cache->features));
1915 ti->per_bio_data_size = get_per_bio_data_size(cache);
1916
1917 cache->callbacks.congested_fn = cache_is_congested;
1918 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
1919
1920 cache->metadata_dev = ca->metadata_dev;
1921 cache->origin_dev = ca->origin_dev;
1922 cache->cache_dev = ca->cache_dev;
1923
1924 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
1925
1926 /* FIXME: factor out this whole section */
1927 origin_blocks = cache->origin_sectors = ca->origin_sectors;
1928 origin_blocks = block_div(origin_blocks, ca->block_size);
1929 cache->origin_blocks = to_oblock(origin_blocks);
1930
1931 cache->sectors_per_block = ca->block_size;
1932 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
1933 r = -EINVAL;
1934 goto bad;
1935 }
1936
1937 if (ca->block_size & (ca->block_size - 1)) {
1938 dm_block_t cache_size = ca->cache_sectors;
1939
1940 cache->sectors_per_block_shift = -1;
1941 cache_size = block_div(cache_size, ca->block_size);
1942 cache->cache_size = to_cblock(cache_size);
1943 } else {
1944 cache->sectors_per_block_shift = __ffs(ca->block_size);
1945 cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
1946 }
1947
1948 r = create_cache_policy(cache, ca, error);
1949 if (r)
1950 goto bad;
1951 cache->policy_nr_args = ca->policy_argc;
1952
1953 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
1954 ca->block_size, may_format,
1955 dm_cache_policy_get_hint_size(cache->policy));
1956 if (IS_ERR(cmd)) {
1957 *error = "Error creating metadata object";
1958 r = PTR_ERR(cmd);
1959 goto bad;
1960 }
1961 cache->cmd = cmd;
1962
1963 spin_lock_init(&cache->lock);
1964 bio_list_init(&cache->deferred_bios);
1965 bio_list_init(&cache->deferred_flush_bios);
1966 bio_list_init(&cache->deferred_writethrough_bios);
1967 INIT_LIST_HEAD(&cache->quiesced_migrations);
1968 INIT_LIST_HEAD(&cache->completed_migrations);
1969 INIT_LIST_HEAD(&cache->need_commit_migrations);
1970 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
1971 atomic_set(&cache->nr_migrations, 0);
1972 init_waitqueue_head(&cache->migration_wait);
1973
1974 cache->nr_dirty = 0;
1975 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
1976 if (!cache->dirty_bitset) {
1977 *error = "could not allocate dirty bitset";
1978 goto bad;
1979 }
1980 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
1981
1982 cache->discard_block_size =
1983 calculate_discard_block_size(cache->sectors_per_block,
1984 cache->origin_sectors);
1985 cache->discard_nr_blocks = oblock_to_dblock(cache, cache->origin_blocks);
1986 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
1987 if (!cache->discard_bitset) {
1988 *error = "could not allocate discard bitset";
1989 goto bad;
1990 }
1991 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
1992
1993 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
1994 if (IS_ERR(cache->copier)) {
1995 *error = "could not create kcopyd client";
1996 r = PTR_ERR(cache->copier);
1997 goto bad;
1998 }
1999
2000 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2001 if (!cache->wq) {
2002 *error = "could not create workqueue for metadata object";
2003 goto bad;
2004 }
2005 INIT_WORK(&cache->worker, do_worker);
2006 INIT_DELAYED_WORK(&cache->waker, do_waker);
2007 cache->last_commit_jiffies = jiffies;
2008
2009 cache->prison = dm_bio_prison_create(PRISON_CELLS);
2010 if (!cache->prison) {
2011 *error = "could not create bio prison";
2012 goto bad;
2013 }
2014
2015 cache->all_io_ds = dm_deferred_set_create();
2016 if (!cache->all_io_ds) {
2017 *error = "could not create all_io deferred set";
2018 goto bad;
2019 }
2020
2021 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2022 migration_cache);
2023 if (!cache->migration_pool) {
2024 *error = "Error creating cache's migration mempool";
2025 goto bad;
2026 }
2027
2028 cache->next_migration = NULL;
2029
2030 cache->need_tick_bio = true;
2031 cache->sized = false;
2032 cache->quiescing = false;
2033 cache->commit_requested = false;
2034 cache->loaded_mappings = false;
2035 cache->loaded_discards = false;
2036
2037 load_stats(cache);
2038
2039 atomic_set(&cache->stats.demotion, 0);
2040 atomic_set(&cache->stats.promotion, 0);
2041 atomic_set(&cache->stats.copies_avoided, 0);
2042 atomic_set(&cache->stats.cache_cell_clash, 0);
2043 atomic_set(&cache->stats.commit_count, 0);
2044 atomic_set(&cache->stats.discard_count, 0);
2045
2046 *result = cache;
2047 return 0;
2048
2049 bad:
2050 destroy(cache);
2051 return r;
2052 }
2053
2054 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2055 {
2056 unsigned i;
2057 const char **copy;
2058
2059 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2060 if (!copy)
2061 return -ENOMEM;
2062 for (i = 0; i < argc; i++) {
2063 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2064 if (!copy[i]) {
2065 while (i--)
2066 kfree(copy[i]);
2067 kfree(copy);
2068 return -ENOMEM;
2069 }
2070 }
2071
2072 cache->nr_ctr_args = argc;
2073 cache->ctr_args = copy;
2074
2075 return 0;
2076 }
2077
2078 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2079 {
2080 int r = -EINVAL;
2081 struct cache_args *ca;
2082 struct cache *cache = NULL;
2083
2084 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2085 if (!ca) {
2086 ti->error = "Error allocating memory for cache";
2087 return -ENOMEM;
2088 }
2089 ca->ti = ti;
2090
2091 r = parse_cache_args(ca, argc, argv, &ti->error);
2092 if (r)
2093 goto out;
2094
2095 r = cache_create(ca, &cache);
2096 if (r)
2097 goto out;
2098
2099 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2100 if (r) {
2101 destroy(cache);
2102 goto out;
2103 }
2104
2105 ti->private = cache;
2106
2107 out:
2108 destroy_cache_args(ca);
2109 return r;
2110 }
2111
2112 static int cache_map(struct dm_target *ti, struct bio *bio)
2113 {
2114 struct cache *cache = ti->private;
2115
2116 int r;
2117 dm_oblock_t block = get_bio_block(cache, bio);
2118 size_t pb_data_size = get_per_bio_data_size(cache);
2119 bool can_migrate = false;
2120 bool discarded_block;
2121 struct dm_bio_prison_cell *cell;
2122 struct policy_result lookup_result;
2123 struct per_bio_data *pb;
2124
2125 if (from_oblock(block) > from_oblock(cache->origin_blocks)) {
2126 /*
2127 * This can only occur if the io goes to a partial block at
2128 * the end of the origin device. We don't cache these.
2129 * Just remap to the origin and carry on.
2130 */
2131 remap_to_origin_clear_discard(cache, bio, block);
2132 return DM_MAPIO_REMAPPED;
2133 }
2134
2135 pb = init_per_bio_data(bio, pb_data_size);
2136
2137 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2138 defer_bio(cache, bio);
2139 return DM_MAPIO_SUBMITTED;
2140 }
2141
2142 /*
2143 * Check to see if that block is currently migrating.
2144 */
2145 cell = alloc_prison_cell(cache);
2146 if (!cell) {
2147 defer_bio(cache, bio);
2148 return DM_MAPIO_SUBMITTED;
2149 }
2150
2151 r = bio_detain(cache, block, bio, cell,
2152 (cell_free_fn) free_prison_cell,
2153 cache, &cell);
2154 if (r) {
2155 if (r < 0)
2156 defer_bio(cache, bio);
2157
2158 return DM_MAPIO_SUBMITTED;
2159 }
2160
2161 discarded_block = is_discarded_oblock(cache, block);
2162
2163 r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2164 bio, &lookup_result);
2165 if (r == -EWOULDBLOCK) {
2166 cell_defer(cache, cell, true);
2167 return DM_MAPIO_SUBMITTED;
2168
2169 } else if (r) {
2170 DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2171 bio_io_error(bio);
2172 return DM_MAPIO_SUBMITTED;
2173 }
2174
2175 switch (lookup_result.op) {
2176 case POLICY_HIT:
2177 inc_hit_counter(cache, bio);
2178 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2179
2180 if (is_writethrough_io(cache, bio, lookup_result.cblock))
2181 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2182 else
2183 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2184
2185 cell_defer(cache, cell, false);
2186 break;
2187
2188 case POLICY_MISS:
2189 inc_miss_counter(cache, bio);
2190 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2191
2192 if (pb->req_nr != 0) {
2193 /*
2194 * This is a duplicate writethrough io that is no
2195 * longer needed because the block has been demoted.
2196 */
2197 bio_endio(bio, 0);
2198 cell_defer(cache, cell, false);
2199 return DM_MAPIO_SUBMITTED;
2200 } else {
2201 remap_to_origin_clear_discard(cache, bio, block);
2202 cell_defer(cache, cell, false);
2203 }
2204 break;
2205
2206 default:
2207 DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2208 (unsigned) lookup_result.op);
2209 bio_io_error(bio);
2210 return DM_MAPIO_SUBMITTED;
2211 }
2212
2213 return DM_MAPIO_REMAPPED;
2214 }
2215
2216 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2217 {
2218 struct cache *cache = ti->private;
2219 unsigned long flags;
2220 size_t pb_data_size = get_per_bio_data_size(cache);
2221 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2222
2223 if (pb->tick) {
2224 policy_tick(cache->policy);
2225
2226 spin_lock_irqsave(&cache->lock, flags);
2227 cache->need_tick_bio = true;
2228 spin_unlock_irqrestore(&cache->lock, flags);
2229 }
2230
2231 check_for_quiesced_migrations(cache, pb);
2232
2233 return 0;
2234 }
2235
2236 static int write_dirty_bitset(struct cache *cache)
2237 {
2238 unsigned i, r;
2239
2240 for (i = 0; i < from_cblock(cache->cache_size); i++) {
2241 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2242 is_dirty(cache, to_cblock(i)));
2243 if (r)
2244 return r;
2245 }
2246
2247 return 0;
2248 }
2249
2250 static int write_discard_bitset(struct cache *cache)
2251 {
2252 unsigned i, r;
2253
2254 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2255 cache->discard_nr_blocks);
2256 if (r) {
2257 DMERR("could not resize on-disk discard bitset");
2258 return r;
2259 }
2260
2261 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2262 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2263 is_discarded(cache, to_dblock(i)));
2264 if (r)
2265 return r;
2266 }
2267
2268 return 0;
2269 }
2270
2271 static int save_hint(void *context, dm_cblock_t cblock, dm_oblock_t oblock,
2272 uint32_t hint)
2273 {
2274 struct cache *cache = context;
2275 return dm_cache_save_hint(cache->cmd, cblock, hint);
2276 }
2277
2278 static int write_hints(struct cache *cache)
2279 {
2280 int r;
2281
2282 r = dm_cache_begin_hints(cache->cmd, cache->policy);
2283 if (r) {
2284 DMERR("dm_cache_begin_hints failed");
2285 return r;
2286 }
2287
2288 r = policy_walk_mappings(cache->policy, save_hint, cache);
2289 if (r)
2290 DMERR("policy_walk_mappings failed");
2291
2292 return r;
2293 }
2294
2295 /*
2296 * returns true on success
2297 */
2298 static bool sync_metadata(struct cache *cache)
2299 {
2300 int r1, r2, r3, r4;
2301
2302 r1 = write_dirty_bitset(cache);
2303 if (r1)
2304 DMERR("could not write dirty bitset");
2305
2306 r2 = write_discard_bitset(cache);
2307 if (r2)
2308 DMERR("could not write discard bitset");
2309
2310 save_stats(cache);
2311
2312 r3 = write_hints(cache);
2313 if (r3)
2314 DMERR("could not write hints");
2315
2316 /*
2317 * If writing the above metadata failed, we still commit, but don't
2318 * set the clean shutdown flag. This will effectively force every
2319 * dirty bit to be set on reload.
2320 */
2321 r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2322 if (r4)
2323 DMERR("could not write cache metadata. Data loss may occur.");
2324
2325 return !r1 && !r2 && !r3 && !r4;
2326 }
2327
2328 static void cache_postsuspend(struct dm_target *ti)
2329 {
2330 struct cache *cache = ti->private;
2331
2332 start_quiescing(cache);
2333 wait_for_migrations(cache);
2334 stop_worker(cache);
2335 requeue_deferred_io(cache);
2336 stop_quiescing(cache);
2337
2338 (void) sync_metadata(cache);
2339 }
2340
2341 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2342 bool dirty, uint32_t hint, bool hint_valid)
2343 {
2344 int r;
2345 struct cache *cache = context;
2346
2347 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2348 if (r)
2349 return r;
2350
2351 if (dirty)
2352 set_dirty(cache, oblock, cblock);
2353 else
2354 clear_dirty(cache, oblock, cblock);
2355
2356 return 0;
2357 }
2358
2359 static int load_discard(void *context, sector_t discard_block_size,
2360 dm_dblock_t dblock, bool discard)
2361 {
2362 struct cache *cache = context;
2363
2364 /* FIXME: handle mis-matched block size */
2365
2366 if (discard)
2367 set_discard(cache, dblock);
2368 else
2369 clear_discard(cache, dblock);
2370
2371 return 0;
2372 }
2373
2374 static int cache_preresume(struct dm_target *ti)
2375 {
2376 int r = 0;
2377 struct cache *cache = ti->private;
2378 sector_t actual_cache_size = get_dev_size(cache->cache_dev);
2379 (void) sector_div(actual_cache_size, cache->sectors_per_block);
2380
2381 /*
2382 * Check to see if the cache has resized.
2383 */
2384 if (from_cblock(cache->cache_size) != actual_cache_size || !cache->sized) {
2385 cache->cache_size = to_cblock(actual_cache_size);
2386
2387 r = dm_cache_resize(cache->cmd, cache->cache_size);
2388 if (r) {
2389 DMERR("could not resize cache metadata");
2390 return r;
2391 }
2392
2393 cache->sized = true;
2394 }
2395
2396 if (!cache->loaded_mappings) {
2397 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2398 load_mapping, cache);
2399 if (r) {
2400 DMERR("could not load cache mappings");
2401 return r;
2402 }
2403
2404 cache->loaded_mappings = true;
2405 }
2406
2407 if (!cache->loaded_discards) {
2408 r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2409 if (r) {
2410 DMERR("could not load origin discards");
2411 return r;
2412 }
2413
2414 cache->loaded_discards = true;
2415 }
2416
2417 return r;
2418 }
2419
2420 static void cache_resume(struct dm_target *ti)
2421 {
2422 struct cache *cache = ti->private;
2423
2424 cache->need_tick_bio = true;
2425 do_waker(&cache->waker.work);
2426 }
2427
2428 /*
2429 * Status format:
2430 *
2431 * <#used metadata blocks>/<#total metadata blocks>
2432 * <#read hits> <#read misses> <#write hits> <#write misses>
2433 * <#demotions> <#promotions> <#blocks in cache> <#dirty>
2434 * <#features> <features>*
2435 * <#core args> <core args>
2436 * <#policy args> <policy args>*
2437 */
2438 static void cache_status(struct dm_target *ti, status_type_t type,
2439 unsigned status_flags, char *result, unsigned maxlen)
2440 {
2441 int r = 0;
2442 unsigned i;
2443 ssize_t sz = 0;
2444 dm_block_t nr_free_blocks_metadata = 0;
2445 dm_block_t nr_blocks_metadata = 0;
2446 char buf[BDEVNAME_SIZE];
2447 struct cache *cache = ti->private;
2448 dm_cblock_t residency;
2449
2450 switch (type) {
2451 case STATUSTYPE_INFO:
2452 /* Commit to ensure statistics aren't out-of-date */
2453 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2454 r = dm_cache_commit(cache->cmd, false);
2455 if (r)
2456 DMERR("could not commit metadata for accurate status");
2457 }
2458
2459 r = dm_cache_get_free_metadata_block_count(cache->cmd,
2460 &nr_free_blocks_metadata);
2461 if (r) {
2462 DMERR("could not get metadata free block count");
2463 goto err;
2464 }
2465
2466 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2467 if (r) {
2468 DMERR("could not get metadata device size");
2469 goto err;
2470 }
2471
2472 residency = policy_residency(cache->policy);
2473
2474 DMEMIT("%llu/%llu %u %u %u %u %u %u %llu %u ",
2475 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2476 (unsigned long long)nr_blocks_metadata,
2477 (unsigned) atomic_read(&cache->stats.read_hit),
2478 (unsigned) atomic_read(&cache->stats.read_miss),
2479 (unsigned) atomic_read(&cache->stats.write_hit),
2480 (unsigned) atomic_read(&cache->stats.write_miss),
2481 (unsigned) atomic_read(&cache->stats.demotion),
2482 (unsigned) atomic_read(&cache->stats.promotion),
2483 (unsigned long long) from_cblock(residency),
2484 cache->nr_dirty);
2485
2486 if (cache->features.write_through)
2487 DMEMIT("1 writethrough ");
2488 else
2489 DMEMIT("0 ");
2490
2491 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2492 if (sz < maxlen) {
2493 r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2494 if (r)
2495 DMERR("policy_emit_config_values returned %d", r);
2496 }
2497
2498 break;
2499
2500 case STATUSTYPE_TABLE:
2501 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2502 DMEMIT("%s ", buf);
2503 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2504 DMEMIT("%s ", buf);
2505 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2506 DMEMIT("%s", buf);
2507
2508 for (i = 0; i < cache->nr_ctr_args - 1; i++)
2509 DMEMIT(" %s", cache->ctr_args[i]);
2510 if (cache->nr_ctr_args)
2511 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2512 }
2513
2514 return;
2515
2516 err:
2517 DMEMIT("Error");
2518 }
2519
2520 #define NOT_CORE_OPTION 1
2521
2522 static int process_config_option(struct cache *cache, char **argv)
2523 {
2524 unsigned long tmp;
2525
2526 if (!strcasecmp(argv[0], "migration_threshold")) {
2527 if (kstrtoul(argv[1], 10, &tmp))
2528 return -EINVAL;
2529
2530 cache->migration_threshold = tmp;
2531 return 0;
2532 }
2533
2534 return NOT_CORE_OPTION;
2535 }
2536
2537 /*
2538 * Supports <key> <value>.
2539 *
2540 * The key migration_threshold is supported by the cache target core.
2541 */
2542 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
2543 {
2544 int r;
2545 struct cache *cache = ti->private;
2546
2547 if (argc != 2)
2548 return -EINVAL;
2549
2550 r = process_config_option(cache, argv);
2551 if (r == NOT_CORE_OPTION)
2552 return policy_set_config_value(cache->policy, argv[0], argv[1]);
2553
2554 return r;
2555 }
2556
2557 static int cache_iterate_devices(struct dm_target *ti,
2558 iterate_devices_callout_fn fn, void *data)
2559 {
2560 int r = 0;
2561 struct cache *cache = ti->private;
2562
2563 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
2564 if (!r)
2565 r = fn(ti, cache->origin_dev, 0, ti->len, data);
2566
2567 return r;
2568 }
2569
2570 /*
2571 * We assume I/O is going to the origin (which is the volume
2572 * more likely to have restrictions e.g. by being striped).
2573 * (Looking up the exact location of the data would be expensive
2574 * and could always be out of date by the time the bio is submitted.)
2575 */
2576 static int cache_bvec_merge(struct dm_target *ti,
2577 struct bvec_merge_data *bvm,
2578 struct bio_vec *biovec, int max_size)
2579 {
2580 struct cache *cache = ti->private;
2581 struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
2582
2583 if (!q->merge_bvec_fn)
2584 return max_size;
2585
2586 bvm->bi_bdev = cache->origin_dev->bdev;
2587 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2588 }
2589
2590 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
2591 {
2592 /*
2593 * FIXME: these limits may be incompatible with the cache device
2594 */
2595 limits->max_discard_sectors = cache->discard_block_size * 1024;
2596 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
2597 }
2598
2599 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
2600 {
2601 struct cache *cache = ti->private;
2602
2603 blk_limits_io_min(limits, 0);
2604 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
2605 set_discard_limits(cache, limits);
2606 }
2607
2608 /*----------------------------------------------------------------*/
2609
2610 static struct target_type cache_target = {
2611 .name = "cache",
2612 .version = {1, 1, 0},
2613 .module = THIS_MODULE,
2614 .ctr = cache_ctr,
2615 .dtr = cache_dtr,
2616 .map = cache_map,
2617 .end_io = cache_end_io,
2618 .postsuspend = cache_postsuspend,
2619 .preresume = cache_preresume,
2620 .resume = cache_resume,
2621 .status = cache_status,
2622 .message = cache_message,
2623 .iterate_devices = cache_iterate_devices,
2624 .merge = cache_bvec_merge,
2625 .io_hints = cache_io_hints,
2626 };
2627
2628 static int __init dm_cache_init(void)
2629 {
2630 int r;
2631
2632 r = dm_register_target(&cache_target);
2633 if (r) {
2634 DMERR("cache target registration failed: %d", r);
2635 return r;
2636 }
2637
2638 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
2639 if (!migration_cache) {
2640 dm_unregister_target(&cache_target);
2641 return -ENOMEM;
2642 }
2643
2644 return 0;
2645 }
2646
2647 static void __exit dm_cache_exit(void)
2648 {
2649 dm_unregister_target(&cache_target);
2650 kmem_cache_destroy(migration_cache);
2651 }
2652
2653 module_init(dm_cache_init);
2654 module_exit(dm_cache_exit);
2655
2656 MODULE_DESCRIPTION(DM_NAME " cache target");
2657 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
2658 MODULE_LICENSE("GPL");