Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / md / dm-cache-policy-smq.c
1 /*
2 * Copyright (C) 2015 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm-cache-background-tracker.h"
8 #include "dm-cache-policy-internal.h"
9 #include "dm-cache-policy.h"
10 #include "dm.h"
11
12 #include <linux/hash.h>
13 #include <linux/jiffies.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/vmalloc.h>
17 #include <linux/math64.h>
18
19 #define DM_MSG_PREFIX "cache-policy-smq"
20
21 /*----------------------------------------------------------------*/
22
23 /*
24 * Safe division functions that return zero on divide by zero.
25 */
26 static unsigned safe_div(unsigned n, unsigned d)
27 {
28 return d ? n / d : 0u;
29 }
30
31 static unsigned safe_mod(unsigned n, unsigned d)
32 {
33 return d ? n % d : 0u;
34 }
35
36 /*----------------------------------------------------------------*/
37
38 struct entry {
39 unsigned hash_next:28;
40 unsigned prev:28;
41 unsigned next:28;
42 unsigned level:6;
43 bool dirty:1;
44 bool allocated:1;
45 bool sentinel:1;
46 bool pending_work:1;
47
48 dm_oblock_t oblock;
49 };
50
51 /*----------------------------------------------------------------*/
52
53 #define INDEXER_NULL ((1u << 28u) - 1u)
54
55 /*
56 * An entry_space manages a set of entries that we use for the queues.
57 * The clean and dirty queues share entries, so this object is separate
58 * from the queue itself.
59 */
60 struct entry_space {
61 struct entry *begin;
62 struct entry *end;
63 };
64
65 static int space_init(struct entry_space *es, unsigned nr_entries)
66 {
67 if (!nr_entries) {
68 es->begin = es->end = NULL;
69 return 0;
70 }
71
72 es->begin = vzalloc(sizeof(struct entry) * nr_entries);
73 if (!es->begin)
74 return -ENOMEM;
75
76 es->end = es->begin + nr_entries;
77 return 0;
78 }
79
80 static void space_exit(struct entry_space *es)
81 {
82 vfree(es->begin);
83 }
84
85 static struct entry *__get_entry(struct entry_space *es, unsigned block)
86 {
87 struct entry *e;
88
89 e = es->begin + block;
90 BUG_ON(e >= es->end);
91
92 return e;
93 }
94
95 static unsigned to_index(struct entry_space *es, struct entry *e)
96 {
97 BUG_ON(e < es->begin || e >= es->end);
98 return e - es->begin;
99 }
100
101 static struct entry *to_entry(struct entry_space *es, unsigned block)
102 {
103 if (block == INDEXER_NULL)
104 return NULL;
105
106 return __get_entry(es, block);
107 }
108
109 /*----------------------------------------------------------------*/
110
111 struct ilist {
112 unsigned nr_elts; /* excluding sentinel entries */
113 unsigned head, tail;
114 };
115
116 static void l_init(struct ilist *l)
117 {
118 l->nr_elts = 0;
119 l->head = l->tail = INDEXER_NULL;
120 }
121
122 static struct entry *l_head(struct entry_space *es, struct ilist *l)
123 {
124 return to_entry(es, l->head);
125 }
126
127 static struct entry *l_tail(struct entry_space *es, struct ilist *l)
128 {
129 return to_entry(es, l->tail);
130 }
131
132 static struct entry *l_next(struct entry_space *es, struct entry *e)
133 {
134 return to_entry(es, e->next);
135 }
136
137 static struct entry *l_prev(struct entry_space *es, struct entry *e)
138 {
139 return to_entry(es, e->prev);
140 }
141
142 static bool l_empty(struct ilist *l)
143 {
144 return l->head == INDEXER_NULL;
145 }
146
147 static void l_add_head(struct entry_space *es, struct ilist *l, struct entry *e)
148 {
149 struct entry *head = l_head(es, l);
150
151 e->next = l->head;
152 e->prev = INDEXER_NULL;
153
154 if (head)
155 head->prev = l->head = to_index(es, e);
156 else
157 l->head = l->tail = to_index(es, e);
158
159 if (!e->sentinel)
160 l->nr_elts++;
161 }
162
163 static void l_add_tail(struct entry_space *es, struct ilist *l, struct entry *e)
164 {
165 struct entry *tail = l_tail(es, l);
166
167 e->next = INDEXER_NULL;
168 e->prev = l->tail;
169
170 if (tail)
171 tail->next = l->tail = to_index(es, e);
172 else
173 l->head = l->tail = to_index(es, e);
174
175 if (!e->sentinel)
176 l->nr_elts++;
177 }
178
179 static void l_add_before(struct entry_space *es, struct ilist *l,
180 struct entry *old, struct entry *e)
181 {
182 struct entry *prev = l_prev(es, old);
183
184 if (!prev)
185 l_add_head(es, l, e);
186
187 else {
188 e->prev = old->prev;
189 e->next = to_index(es, old);
190 prev->next = old->prev = to_index(es, e);
191
192 if (!e->sentinel)
193 l->nr_elts++;
194 }
195 }
196
197 static void l_del(struct entry_space *es, struct ilist *l, struct entry *e)
198 {
199 struct entry *prev = l_prev(es, e);
200 struct entry *next = l_next(es, e);
201
202 if (prev)
203 prev->next = e->next;
204 else
205 l->head = e->next;
206
207 if (next)
208 next->prev = e->prev;
209 else
210 l->tail = e->prev;
211
212 if (!e->sentinel)
213 l->nr_elts--;
214 }
215
216 static struct entry *l_pop_tail(struct entry_space *es, struct ilist *l)
217 {
218 struct entry *e;
219
220 for (e = l_tail(es, l); e; e = l_prev(es, e))
221 if (!e->sentinel) {
222 l_del(es, l, e);
223 return e;
224 }
225
226 return NULL;
227 }
228
229 /*----------------------------------------------------------------*/
230
231 /*
232 * The stochastic-multi-queue is a set of lru lists stacked into levels.
233 * Entries are moved up levels when they are used, which loosely orders the
234 * most accessed entries in the top levels and least in the bottom. This
235 * structure is *much* better than a single lru list.
236 */
237 #define MAX_LEVELS 64u
238
239 struct queue {
240 struct entry_space *es;
241
242 unsigned nr_elts;
243 unsigned nr_levels;
244 struct ilist qs[MAX_LEVELS];
245
246 /*
247 * We maintain a count of the number of entries we would like in each
248 * level.
249 */
250 unsigned last_target_nr_elts;
251 unsigned nr_top_levels;
252 unsigned nr_in_top_levels;
253 unsigned target_count[MAX_LEVELS];
254 };
255
256 static void q_init(struct queue *q, struct entry_space *es, unsigned nr_levels)
257 {
258 unsigned i;
259
260 q->es = es;
261 q->nr_elts = 0;
262 q->nr_levels = nr_levels;
263
264 for (i = 0; i < q->nr_levels; i++) {
265 l_init(q->qs + i);
266 q->target_count[i] = 0u;
267 }
268
269 q->last_target_nr_elts = 0u;
270 q->nr_top_levels = 0u;
271 q->nr_in_top_levels = 0u;
272 }
273
274 static unsigned q_size(struct queue *q)
275 {
276 return q->nr_elts;
277 }
278
279 /*
280 * Insert an entry to the back of the given level.
281 */
282 static void q_push(struct queue *q, struct entry *e)
283 {
284 BUG_ON(e->pending_work);
285
286 if (!e->sentinel)
287 q->nr_elts++;
288
289 l_add_tail(q->es, q->qs + e->level, e);
290 }
291
292 static void q_push_front(struct queue *q, struct entry *e)
293 {
294 BUG_ON(e->pending_work);
295
296 if (!e->sentinel)
297 q->nr_elts++;
298
299 l_add_head(q->es, q->qs + e->level, e);
300 }
301
302 static void q_push_before(struct queue *q, struct entry *old, struct entry *e)
303 {
304 BUG_ON(e->pending_work);
305
306 if (!e->sentinel)
307 q->nr_elts++;
308
309 l_add_before(q->es, q->qs + e->level, old, e);
310 }
311
312 static void q_del(struct queue *q, struct entry *e)
313 {
314 l_del(q->es, q->qs + e->level, e);
315 if (!e->sentinel)
316 q->nr_elts--;
317 }
318
319 /*
320 * Return the oldest entry of the lowest populated level.
321 */
322 static struct entry *q_peek(struct queue *q, unsigned max_level, bool can_cross_sentinel)
323 {
324 unsigned level;
325 struct entry *e;
326
327 max_level = min(max_level, q->nr_levels);
328
329 for (level = 0; level < max_level; level++)
330 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e)) {
331 if (e->sentinel) {
332 if (can_cross_sentinel)
333 continue;
334 else
335 break;
336 }
337
338 return e;
339 }
340
341 return NULL;
342 }
343
344 static struct entry *q_pop(struct queue *q)
345 {
346 struct entry *e = q_peek(q, q->nr_levels, true);
347
348 if (e)
349 q_del(q, e);
350
351 return e;
352 }
353
354 /*
355 * This function assumes there is a non-sentinel entry to pop. It's only
356 * used by redistribute, so we know this is true. It also doesn't adjust
357 * the q->nr_elts count.
358 */
359 static struct entry *__redist_pop_from(struct queue *q, unsigned level)
360 {
361 struct entry *e;
362
363 for (; level < q->nr_levels; level++)
364 for (e = l_head(q->es, q->qs + level); e; e = l_next(q->es, e))
365 if (!e->sentinel) {
366 l_del(q->es, q->qs + e->level, e);
367 return e;
368 }
369
370 return NULL;
371 }
372
373 static void q_set_targets_subrange_(struct queue *q, unsigned nr_elts, unsigned lbegin, unsigned lend)
374 {
375 unsigned level, nr_levels, entries_per_level, remainder;
376
377 BUG_ON(lbegin > lend);
378 BUG_ON(lend > q->nr_levels);
379 nr_levels = lend - lbegin;
380 entries_per_level = safe_div(nr_elts, nr_levels);
381 remainder = safe_mod(nr_elts, nr_levels);
382
383 for (level = lbegin; level < lend; level++)
384 q->target_count[level] =
385 (level < (lbegin + remainder)) ? entries_per_level + 1u : entries_per_level;
386 }
387
388 /*
389 * Typically we have fewer elements in the top few levels which allows us
390 * to adjust the promote threshold nicely.
391 */
392 static void q_set_targets(struct queue *q)
393 {
394 if (q->last_target_nr_elts == q->nr_elts)
395 return;
396
397 q->last_target_nr_elts = q->nr_elts;
398
399 if (q->nr_top_levels > q->nr_levels)
400 q_set_targets_subrange_(q, q->nr_elts, 0, q->nr_levels);
401
402 else {
403 q_set_targets_subrange_(q, q->nr_in_top_levels,
404 q->nr_levels - q->nr_top_levels, q->nr_levels);
405
406 if (q->nr_in_top_levels < q->nr_elts)
407 q_set_targets_subrange_(q, q->nr_elts - q->nr_in_top_levels,
408 0, q->nr_levels - q->nr_top_levels);
409 else
410 q_set_targets_subrange_(q, 0, 0, q->nr_levels - q->nr_top_levels);
411 }
412 }
413
414 static void q_redistribute(struct queue *q)
415 {
416 unsigned target, level;
417 struct ilist *l, *l_above;
418 struct entry *e;
419
420 q_set_targets(q);
421
422 for (level = 0u; level < q->nr_levels - 1u; level++) {
423 l = q->qs + level;
424 target = q->target_count[level];
425
426 /*
427 * Pull down some entries from the level above.
428 */
429 while (l->nr_elts < target) {
430 e = __redist_pop_from(q, level + 1u);
431 if (!e) {
432 /* bug in nr_elts */
433 break;
434 }
435
436 e->level = level;
437 l_add_tail(q->es, l, e);
438 }
439
440 /*
441 * Push some entries up.
442 */
443 l_above = q->qs + level + 1u;
444 while (l->nr_elts > target) {
445 e = l_pop_tail(q->es, l);
446
447 if (!e)
448 /* bug in nr_elts */
449 break;
450
451 e->level = level + 1u;
452 l_add_tail(q->es, l_above, e);
453 }
454 }
455 }
456
457 static void q_requeue(struct queue *q, struct entry *e, unsigned extra_levels,
458 struct entry *s1, struct entry *s2)
459 {
460 struct entry *de;
461 unsigned sentinels_passed = 0;
462 unsigned new_level = min(q->nr_levels - 1u, e->level + extra_levels);
463
464 /* try and find an entry to swap with */
465 if (extra_levels && (e->level < q->nr_levels - 1u)) {
466 for (de = l_head(q->es, q->qs + new_level); de && de->sentinel; de = l_next(q->es, de))
467 sentinels_passed++;
468
469 if (de) {
470 q_del(q, de);
471 de->level = e->level;
472 if (s1) {
473 switch (sentinels_passed) {
474 case 0:
475 q_push_before(q, s1, de);
476 break;
477
478 case 1:
479 q_push_before(q, s2, de);
480 break;
481
482 default:
483 q_push(q, de);
484 }
485 } else
486 q_push(q, de);
487 }
488 }
489
490 q_del(q, e);
491 e->level = new_level;
492 q_push(q, e);
493 }
494
495 /*----------------------------------------------------------------*/
496
497 #define FP_SHIFT 8
498 #define SIXTEENTH (1u << (FP_SHIFT - 4u))
499 #define EIGHTH (1u << (FP_SHIFT - 3u))
500
501 struct stats {
502 unsigned hit_threshold;
503 unsigned hits;
504 unsigned misses;
505 };
506
507 enum performance {
508 Q_POOR,
509 Q_FAIR,
510 Q_WELL
511 };
512
513 static void stats_init(struct stats *s, unsigned nr_levels)
514 {
515 s->hit_threshold = (nr_levels * 3u) / 4u;
516 s->hits = 0u;
517 s->misses = 0u;
518 }
519
520 static void stats_reset(struct stats *s)
521 {
522 s->hits = s->misses = 0u;
523 }
524
525 static void stats_level_accessed(struct stats *s, unsigned level)
526 {
527 if (level >= s->hit_threshold)
528 s->hits++;
529 else
530 s->misses++;
531 }
532
533 static void stats_miss(struct stats *s)
534 {
535 s->misses++;
536 }
537
538 /*
539 * There are times when we don't have any confidence in the hotspot queue.
540 * Such as when a fresh cache is created and the blocks have been spread
541 * out across the levels, or if an io load changes. We detect this by
542 * seeing how often a lookup is in the top levels of the hotspot queue.
543 */
544 static enum performance stats_assess(struct stats *s)
545 {
546 unsigned confidence = safe_div(s->hits << FP_SHIFT, s->hits + s->misses);
547
548 if (confidence < SIXTEENTH)
549 return Q_POOR;
550
551 else if (confidence < EIGHTH)
552 return Q_FAIR;
553
554 else
555 return Q_WELL;
556 }
557
558 /*----------------------------------------------------------------*/
559
560 struct smq_hash_table {
561 struct entry_space *es;
562 unsigned long long hash_bits;
563 unsigned *buckets;
564 };
565
566 /*
567 * All cache entries are stored in a chained hash table. To save space we
568 * use indexing again, and only store indexes to the next entry.
569 */
570 static int h_init(struct smq_hash_table *ht, struct entry_space *es, unsigned nr_entries)
571 {
572 unsigned i, nr_buckets;
573
574 ht->es = es;
575 nr_buckets = roundup_pow_of_two(max(nr_entries / 4u, 16u));
576 ht->hash_bits = __ffs(nr_buckets);
577
578 ht->buckets = vmalloc(sizeof(*ht->buckets) * nr_buckets);
579 if (!ht->buckets)
580 return -ENOMEM;
581
582 for (i = 0; i < nr_buckets; i++)
583 ht->buckets[i] = INDEXER_NULL;
584
585 return 0;
586 }
587
588 static void h_exit(struct smq_hash_table *ht)
589 {
590 vfree(ht->buckets);
591 }
592
593 static struct entry *h_head(struct smq_hash_table *ht, unsigned bucket)
594 {
595 return to_entry(ht->es, ht->buckets[bucket]);
596 }
597
598 static struct entry *h_next(struct smq_hash_table *ht, struct entry *e)
599 {
600 return to_entry(ht->es, e->hash_next);
601 }
602
603 static void __h_insert(struct smq_hash_table *ht, unsigned bucket, struct entry *e)
604 {
605 e->hash_next = ht->buckets[bucket];
606 ht->buckets[bucket] = to_index(ht->es, e);
607 }
608
609 static void h_insert(struct smq_hash_table *ht, struct entry *e)
610 {
611 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
612 __h_insert(ht, h, e);
613 }
614
615 static struct entry *__h_lookup(struct smq_hash_table *ht, unsigned h, dm_oblock_t oblock,
616 struct entry **prev)
617 {
618 struct entry *e;
619
620 *prev = NULL;
621 for (e = h_head(ht, h); e; e = h_next(ht, e)) {
622 if (e->oblock == oblock)
623 return e;
624
625 *prev = e;
626 }
627
628 return NULL;
629 }
630
631 static void __h_unlink(struct smq_hash_table *ht, unsigned h,
632 struct entry *e, struct entry *prev)
633 {
634 if (prev)
635 prev->hash_next = e->hash_next;
636 else
637 ht->buckets[h] = e->hash_next;
638 }
639
640 /*
641 * Also moves each entry to the front of the bucket.
642 */
643 static struct entry *h_lookup(struct smq_hash_table *ht, dm_oblock_t oblock)
644 {
645 struct entry *e, *prev;
646 unsigned h = hash_64(from_oblock(oblock), ht->hash_bits);
647
648 e = __h_lookup(ht, h, oblock, &prev);
649 if (e && prev) {
650 /*
651 * Move to the front because this entry is likely
652 * to be hit again.
653 */
654 __h_unlink(ht, h, e, prev);
655 __h_insert(ht, h, e);
656 }
657
658 return e;
659 }
660
661 static void h_remove(struct smq_hash_table *ht, struct entry *e)
662 {
663 unsigned h = hash_64(from_oblock(e->oblock), ht->hash_bits);
664 struct entry *prev;
665
666 /*
667 * The down side of using a singly linked list is we have to
668 * iterate the bucket to remove an item.
669 */
670 e = __h_lookup(ht, h, e->oblock, &prev);
671 if (e)
672 __h_unlink(ht, h, e, prev);
673 }
674
675 /*----------------------------------------------------------------*/
676
677 struct entry_alloc {
678 struct entry_space *es;
679 unsigned begin;
680
681 unsigned nr_allocated;
682 struct ilist free;
683 };
684
685 static void init_allocator(struct entry_alloc *ea, struct entry_space *es,
686 unsigned begin, unsigned end)
687 {
688 unsigned i;
689
690 ea->es = es;
691 ea->nr_allocated = 0u;
692 ea->begin = begin;
693
694 l_init(&ea->free);
695 for (i = begin; i != end; i++)
696 l_add_tail(ea->es, &ea->free, __get_entry(ea->es, i));
697 }
698
699 static void init_entry(struct entry *e)
700 {
701 /*
702 * We can't memset because that would clear the hotspot and
703 * sentinel bits which remain constant.
704 */
705 e->hash_next = INDEXER_NULL;
706 e->next = INDEXER_NULL;
707 e->prev = INDEXER_NULL;
708 e->level = 0u;
709 e->dirty = true; /* FIXME: audit */
710 e->allocated = true;
711 e->sentinel = false;
712 e->pending_work = false;
713 }
714
715 static struct entry *alloc_entry(struct entry_alloc *ea)
716 {
717 struct entry *e;
718
719 if (l_empty(&ea->free))
720 return NULL;
721
722 e = l_pop_tail(ea->es, &ea->free);
723 init_entry(e);
724 ea->nr_allocated++;
725
726 return e;
727 }
728
729 /*
730 * This assumes the cblock hasn't already been allocated.
731 */
732 static struct entry *alloc_particular_entry(struct entry_alloc *ea, unsigned i)
733 {
734 struct entry *e = __get_entry(ea->es, ea->begin + i);
735
736 BUG_ON(e->allocated);
737
738 l_del(ea->es, &ea->free, e);
739 init_entry(e);
740 ea->nr_allocated++;
741
742 return e;
743 }
744
745 static void free_entry(struct entry_alloc *ea, struct entry *e)
746 {
747 BUG_ON(!ea->nr_allocated);
748 BUG_ON(!e->allocated);
749
750 ea->nr_allocated--;
751 e->allocated = false;
752 l_add_tail(ea->es, &ea->free, e);
753 }
754
755 static bool allocator_empty(struct entry_alloc *ea)
756 {
757 return l_empty(&ea->free);
758 }
759
760 static unsigned get_index(struct entry_alloc *ea, struct entry *e)
761 {
762 return to_index(ea->es, e) - ea->begin;
763 }
764
765 static struct entry *get_entry(struct entry_alloc *ea, unsigned index)
766 {
767 return __get_entry(ea->es, ea->begin + index);
768 }
769
770 /*----------------------------------------------------------------*/
771
772 #define NR_HOTSPOT_LEVELS 64u
773 #define NR_CACHE_LEVELS 64u
774
775 #define WRITEBACK_PERIOD (10ul * HZ)
776 #define DEMOTE_PERIOD (60ul * HZ)
777
778 #define HOTSPOT_UPDATE_PERIOD (HZ)
779 #define CACHE_UPDATE_PERIOD (60ul * HZ)
780
781 struct smq_policy {
782 struct dm_cache_policy policy;
783
784 /* protects everything */
785 spinlock_t lock;
786 dm_cblock_t cache_size;
787 sector_t cache_block_size;
788
789 sector_t hotspot_block_size;
790 unsigned nr_hotspot_blocks;
791 unsigned cache_blocks_per_hotspot_block;
792 unsigned hotspot_level_jump;
793
794 struct entry_space es;
795 struct entry_alloc writeback_sentinel_alloc;
796 struct entry_alloc demote_sentinel_alloc;
797 struct entry_alloc hotspot_alloc;
798 struct entry_alloc cache_alloc;
799
800 unsigned long *hotspot_hit_bits;
801 unsigned long *cache_hit_bits;
802
803 /*
804 * We maintain three queues of entries. The cache proper,
805 * consisting of a clean and dirty queue, containing the currently
806 * active mappings. The hotspot queue uses a larger block size to
807 * track blocks that are being hit frequently and potential
808 * candidates for promotion to the cache.
809 */
810 struct queue hotspot;
811 struct queue clean;
812 struct queue dirty;
813
814 struct stats hotspot_stats;
815 struct stats cache_stats;
816
817 /*
818 * Keeps track of time, incremented by the core. We use this to
819 * avoid attributing multiple hits within the same tick.
820 */
821 unsigned tick;
822
823 /*
824 * The hash tables allows us to quickly find an entry by origin
825 * block.
826 */
827 struct smq_hash_table table;
828 struct smq_hash_table hotspot_table;
829
830 bool current_writeback_sentinels;
831 unsigned long next_writeback_period;
832
833 bool current_demote_sentinels;
834 unsigned long next_demote_period;
835
836 unsigned write_promote_level;
837 unsigned read_promote_level;
838
839 unsigned long next_hotspot_period;
840 unsigned long next_cache_period;
841
842 struct background_tracker *bg_work;
843
844 bool migrations_allowed;
845 };
846
847 /*----------------------------------------------------------------*/
848
849 static struct entry *get_sentinel(struct entry_alloc *ea, unsigned level, bool which)
850 {
851 return get_entry(ea, which ? level : NR_CACHE_LEVELS + level);
852 }
853
854 static struct entry *writeback_sentinel(struct smq_policy *mq, unsigned level)
855 {
856 return get_sentinel(&mq->writeback_sentinel_alloc, level, mq->current_writeback_sentinels);
857 }
858
859 static struct entry *demote_sentinel(struct smq_policy *mq, unsigned level)
860 {
861 return get_sentinel(&mq->demote_sentinel_alloc, level, mq->current_demote_sentinels);
862 }
863
864 static void __update_writeback_sentinels(struct smq_policy *mq)
865 {
866 unsigned level;
867 struct queue *q = &mq->dirty;
868 struct entry *sentinel;
869
870 for (level = 0; level < q->nr_levels; level++) {
871 sentinel = writeback_sentinel(mq, level);
872 q_del(q, sentinel);
873 q_push(q, sentinel);
874 }
875 }
876
877 static void __update_demote_sentinels(struct smq_policy *mq)
878 {
879 unsigned level;
880 struct queue *q = &mq->clean;
881 struct entry *sentinel;
882
883 for (level = 0; level < q->nr_levels; level++) {
884 sentinel = demote_sentinel(mq, level);
885 q_del(q, sentinel);
886 q_push(q, sentinel);
887 }
888 }
889
890 static void update_sentinels(struct smq_policy *mq)
891 {
892 if (time_after(jiffies, mq->next_writeback_period)) {
893 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
894 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
895 __update_writeback_sentinels(mq);
896 }
897
898 if (time_after(jiffies, mq->next_demote_period)) {
899 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
900 mq->current_demote_sentinels = !mq->current_demote_sentinels;
901 __update_demote_sentinels(mq);
902 }
903 }
904
905 static void __sentinels_init(struct smq_policy *mq)
906 {
907 unsigned level;
908 struct entry *sentinel;
909
910 for (level = 0; level < NR_CACHE_LEVELS; level++) {
911 sentinel = writeback_sentinel(mq, level);
912 sentinel->level = level;
913 q_push(&mq->dirty, sentinel);
914
915 sentinel = demote_sentinel(mq, level);
916 sentinel->level = level;
917 q_push(&mq->clean, sentinel);
918 }
919 }
920
921 static void sentinels_init(struct smq_policy *mq)
922 {
923 mq->next_writeback_period = jiffies + WRITEBACK_PERIOD;
924 mq->next_demote_period = jiffies + DEMOTE_PERIOD;
925
926 mq->current_writeback_sentinels = false;
927 mq->current_demote_sentinels = false;
928 __sentinels_init(mq);
929
930 mq->current_writeback_sentinels = !mq->current_writeback_sentinels;
931 mq->current_demote_sentinels = !mq->current_demote_sentinels;
932 __sentinels_init(mq);
933 }
934
935 /*----------------------------------------------------------------*/
936
937 static void del_queue(struct smq_policy *mq, struct entry *e)
938 {
939 q_del(e->dirty ? &mq->dirty : &mq->clean, e);
940 }
941
942 static void push_queue(struct smq_policy *mq, struct entry *e)
943 {
944 if (e->dirty)
945 q_push(&mq->dirty, e);
946 else
947 q_push(&mq->clean, e);
948 }
949
950 // !h, !q, a -> h, q, a
951 static void push(struct smq_policy *mq, struct entry *e)
952 {
953 h_insert(&mq->table, e);
954 if (!e->pending_work)
955 push_queue(mq, e);
956 }
957
958 static void push_queue_front(struct smq_policy *mq, struct entry *e)
959 {
960 if (e->dirty)
961 q_push_front(&mq->dirty, e);
962 else
963 q_push_front(&mq->clean, e);
964 }
965
966 static void push_front(struct smq_policy *mq, struct entry *e)
967 {
968 h_insert(&mq->table, e);
969 if (!e->pending_work)
970 push_queue_front(mq, e);
971 }
972
973 static dm_cblock_t infer_cblock(struct smq_policy *mq, struct entry *e)
974 {
975 return to_cblock(get_index(&mq->cache_alloc, e));
976 }
977
978 static void requeue(struct smq_policy *mq, struct entry *e)
979 {
980 /*
981 * Pending work has temporarily been taken out of the queues.
982 */
983 if (e->pending_work)
984 return;
985
986 if (!test_and_set_bit(from_cblock(infer_cblock(mq, e)), mq->cache_hit_bits)) {
987 if (!e->dirty) {
988 q_requeue(&mq->clean, e, 1u, NULL, NULL);
989 return;
990 }
991
992 q_requeue(&mq->dirty, e, 1u,
993 get_sentinel(&mq->writeback_sentinel_alloc, e->level, !mq->current_writeback_sentinels),
994 get_sentinel(&mq->writeback_sentinel_alloc, e->level, mq->current_writeback_sentinels));
995 }
996 }
997
998 static unsigned default_promote_level(struct smq_policy *mq)
999 {
1000 /*
1001 * The promote level depends on the current performance of the
1002 * cache.
1003 *
1004 * If the cache is performing badly, then we can't afford
1005 * to promote much without causing performance to drop below that
1006 * of the origin device.
1007 *
1008 * If the cache is performing well, then we don't need to promote
1009 * much. If it isn't broken, don't fix it.
1010 *
1011 * If the cache is middling then we promote more.
1012 *
1013 * This scheme reminds me of a graph of entropy vs probability of a
1014 * binary variable.
1015 */
1016 static unsigned table[] = {1, 1, 1, 2, 4, 6, 7, 8, 7, 6, 4, 4, 3, 3, 2, 2, 1};
1017
1018 unsigned hits = mq->cache_stats.hits;
1019 unsigned misses = mq->cache_stats.misses;
1020 unsigned index = safe_div(hits << 4u, hits + misses);
1021 return table[index];
1022 }
1023
1024 static void update_promote_levels(struct smq_policy *mq)
1025 {
1026 /*
1027 * If there are unused cache entries then we want to be really
1028 * eager to promote.
1029 */
1030 unsigned threshold_level = allocator_empty(&mq->cache_alloc) ?
1031 default_promote_level(mq) : (NR_HOTSPOT_LEVELS / 2u);
1032
1033 threshold_level = max(threshold_level, NR_HOTSPOT_LEVELS);
1034
1035 /*
1036 * If the hotspot queue is performing badly then we have little
1037 * confidence that we know which blocks to promote. So we cut down
1038 * the amount of promotions.
1039 */
1040 switch (stats_assess(&mq->hotspot_stats)) {
1041 case Q_POOR:
1042 threshold_level /= 4u;
1043 break;
1044
1045 case Q_FAIR:
1046 threshold_level /= 2u;
1047 break;
1048
1049 case Q_WELL:
1050 break;
1051 }
1052
1053 mq->read_promote_level = NR_HOTSPOT_LEVELS - threshold_level;
1054 mq->write_promote_level = (NR_HOTSPOT_LEVELS - threshold_level);
1055 }
1056
1057 /*
1058 * If the hotspot queue is performing badly, then we try and move entries
1059 * around more quickly.
1060 */
1061 static void update_level_jump(struct smq_policy *mq)
1062 {
1063 switch (stats_assess(&mq->hotspot_stats)) {
1064 case Q_POOR:
1065 mq->hotspot_level_jump = 4u;
1066 break;
1067
1068 case Q_FAIR:
1069 mq->hotspot_level_jump = 2u;
1070 break;
1071
1072 case Q_WELL:
1073 mq->hotspot_level_jump = 1u;
1074 break;
1075 }
1076 }
1077
1078 static void end_hotspot_period(struct smq_policy *mq)
1079 {
1080 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1081 update_promote_levels(mq);
1082
1083 if (time_after(jiffies, mq->next_hotspot_period)) {
1084 update_level_jump(mq);
1085 q_redistribute(&mq->hotspot);
1086 stats_reset(&mq->hotspot_stats);
1087 mq->next_hotspot_period = jiffies + HOTSPOT_UPDATE_PERIOD;
1088 }
1089 }
1090
1091 static void end_cache_period(struct smq_policy *mq)
1092 {
1093 if (time_after(jiffies, mq->next_cache_period)) {
1094 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1095
1096 q_redistribute(&mq->dirty);
1097 q_redistribute(&mq->clean);
1098 stats_reset(&mq->cache_stats);
1099
1100 mq->next_cache_period = jiffies + CACHE_UPDATE_PERIOD;
1101 }
1102 }
1103
1104 /*----------------------------------------------------------------*/
1105
1106 /*
1107 * Targets are given as a percentage.
1108 */
1109 #define CLEAN_TARGET 25u
1110 #define FREE_TARGET 25u
1111
1112 static unsigned percent_to_target(struct smq_policy *mq, unsigned p)
1113 {
1114 return from_cblock(mq->cache_size) * p / 100u;
1115 }
1116
1117 static bool clean_target_met(struct smq_policy *mq, bool idle)
1118 {
1119 /*
1120 * Cache entries may not be populated. So we cannot rely on the
1121 * size of the clean queue.
1122 */
1123 if (idle) {
1124 /*
1125 * We'd like to clean everything.
1126 */
1127 return q_size(&mq->dirty) == 0u;
1128 }
1129
1130 /*
1131 * If we're busy we don't worry about cleaning at all.
1132 */
1133 return true;
1134 }
1135
1136 static bool free_target_met(struct smq_policy *mq)
1137 {
1138 unsigned nr_free;
1139
1140 nr_free = from_cblock(mq->cache_size) - mq->cache_alloc.nr_allocated;
1141 return (nr_free + btracker_nr_demotions_queued(mq->bg_work)) >=
1142 percent_to_target(mq, FREE_TARGET);
1143 }
1144
1145 /*----------------------------------------------------------------*/
1146
1147 static void mark_pending(struct smq_policy *mq, struct entry *e)
1148 {
1149 BUG_ON(e->sentinel);
1150 BUG_ON(!e->allocated);
1151 BUG_ON(e->pending_work);
1152 e->pending_work = true;
1153 }
1154
1155 static void clear_pending(struct smq_policy *mq, struct entry *e)
1156 {
1157 BUG_ON(!e->pending_work);
1158 e->pending_work = false;
1159 }
1160
1161 static void queue_writeback(struct smq_policy *mq)
1162 {
1163 int r;
1164 struct policy_work work;
1165 struct entry *e;
1166
1167 e = q_peek(&mq->dirty, mq->dirty.nr_levels, !mq->migrations_allowed);
1168 if (e) {
1169 mark_pending(mq, e);
1170 q_del(&mq->dirty, e);
1171
1172 work.op = POLICY_WRITEBACK;
1173 work.oblock = e->oblock;
1174 work.cblock = infer_cblock(mq, e);
1175
1176 r = btracker_queue(mq->bg_work, &work, NULL);
1177 WARN_ON_ONCE(r); // FIXME: finish, I think we have to get rid of this race.
1178 }
1179 }
1180
1181 static void queue_demotion(struct smq_policy *mq)
1182 {
1183 struct policy_work work;
1184 struct entry *e;
1185
1186 if (unlikely(WARN_ON_ONCE(!mq->migrations_allowed)))
1187 return;
1188
1189 e = q_peek(&mq->clean, mq->clean.nr_levels / 2, true);
1190 if (!e) {
1191 if (!clean_target_met(mq, true))
1192 queue_writeback(mq);
1193 return;
1194 }
1195
1196 mark_pending(mq, e);
1197 q_del(&mq->clean, e);
1198
1199 work.op = POLICY_DEMOTE;
1200 work.oblock = e->oblock;
1201 work.cblock = infer_cblock(mq, e);
1202 btracker_queue(mq->bg_work, &work, NULL);
1203 }
1204
1205 static void queue_promotion(struct smq_policy *mq, dm_oblock_t oblock,
1206 struct policy_work **workp)
1207 {
1208 struct entry *e;
1209 struct policy_work work;
1210
1211 if (!mq->migrations_allowed)
1212 return;
1213
1214 if (allocator_empty(&mq->cache_alloc)) {
1215 /*
1216 * We always claim to be 'idle' to ensure some demotions happen
1217 * with continuous loads.
1218 */
1219 if (!free_target_met(mq))
1220 queue_demotion(mq);
1221 return;
1222 }
1223
1224 if (btracker_promotion_already_present(mq->bg_work, oblock))
1225 return;
1226
1227 /*
1228 * We allocate the entry now to reserve the cblock. If the
1229 * background work is aborted we must remember to free it.
1230 */
1231 e = alloc_entry(&mq->cache_alloc);
1232 BUG_ON(!e);
1233 e->pending_work = true;
1234 work.op = POLICY_PROMOTE;
1235 work.oblock = oblock;
1236 work.cblock = infer_cblock(mq, e);
1237 btracker_queue(mq->bg_work, &work, workp);
1238 }
1239
1240 /*----------------------------------------------------------------*/
1241
1242 enum promote_result {
1243 PROMOTE_NOT,
1244 PROMOTE_TEMPORARY,
1245 PROMOTE_PERMANENT
1246 };
1247
1248 /*
1249 * Converts a boolean into a promote result.
1250 */
1251 static enum promote_result maybe_promote(bool promote)
1252 {
1253 return promote ? PROMOTE_PERMANENT : PROMOTE_NOT;
1254 }
1255
1256 static enum promote_result should_promote(struct smq_policy *mq, struct entry *hs_e,
1257 int data_dir, bool fast_promote)
1258 {
1259 if (data_dir == WRITE) {
1260 if (!allocator_empty(&mq->cache_alloc) && fast_promote)
1261 return PROMOTE_TEMPORARY;
1262
1263 return maybe_promote(hs_e->level >= mq->write_promote_level);
1264 } else
1265 return maybe_promote(hs_e->level >= mq->read_promote_level);
1266 }
1267
1268 static dm_oblock_t to_hblock(struct smq_policy *mq, dm_oblock_t b)
1269 {
1270 sector_t r = from_oblock(b);
1271 (void) sector_div(r, mq->cache_blocks_per_hotspot_block);
1272 return to_oblock(r);
1273 }
1274
1275 static struct entry *update_hotspot_queue(struct smq_policy *mq, dm_oblock_t b)
1276 {
1277 unsigned hi;
1278 dm_oblock_t hb = to_hblock(mq, b);
1279 struct entry *e = h_lookup(&mq->hotspot_table, hb);
1280
1281 if (e) {
1282 stats_level_accessed(&mq->hotspot_stats, e->level);
1283
1284 hi = get_index(&mq->hotspot_alloc, e);
1285 q_requeue(&mq->hotspot, e,
1286 test_and_set_bit(hi, mq->hotspot_hit_bits) ?
1287 0u : mq->hotspot_level_jump,
1288 NULL, NULL);
1289
1290 } else {
1291 stats_miss(&mq->hotspot_stats);
1292
1293 e = alloc_entry(&mq->hotspot_alloc);
1294 if (!e) {
1295 e = q_pop(&mq->hotspot);
1296 if (e) {
1297 h_remove(&mq->hotspot_table, e);
1298 hi = get_index(&mq->hotspot_alloc, e);
1299 clear_bit(hi, mq->hotspot_hit_bits);
1300 }
1301
1302 }
1303
1304 if (e) {
1305 e->oblock = hb;
1306 q_push(&mq->hotspot, e);
1307 h_insert(&mq->hotspot_table, e);
1308 }
1309 }
1310
1311 return e;
1312 }
1313
1314 /*----------------------------------------------------------------*/
1315
1316 /*
1317 * Public interface, via the policy struct. See dm-cache-policy.h for a
1318 * description of these.
1319 */
1320
1321 static struct smq_policy *to_smq_policy(struct dm_cache_policy *p)
1322 {
1323 return container_of(p, struct smq_policy, policy);
1324 }
1325
1326 static void smq_destroy(struct dm_cache_policy *p)
1327 {
1328 struct smq_policy *mq = to_smq_policy(p);
1329
1330 btracker_destroy(mq->bg_work);
1331 h_exit(&mq->hotspot_table);
1332 h_exit(&mq->table);
1333 free_bitset(mq->hotspot_hit_bits);
1334 free_bitset(mq->cache_hit_bits);
1335 space_exit(&mq->es);
1336 kfree(mq);
1337 }
1338
1339 /*----------------------------------------------------------------*/
1340
1341 static int __lookup(struct smq_policy *mq, dm_oblock_t oblock, dm_cblock_t *cblock,
1342 int data_dir, bool fast_copy,
1343 struct policy_work **work, bool *background_work)
1344 {
1345 struct entry *e, *hs_e;
1346 enum promote_result pr;
1347
1348 *background_work = false;
1349
1350 e = h_lookup(&mq->table, oblock);
1351 if (e) {
1352 stats_level_accessed(&mq->cache_stats, e->level);
1353
1354 requeue(mq, e);
1355 *cblock = infer_cblock(mq, e);
1356 return 0;
1357
1358 } else {
1359 stats_miss(&mq->cache_stats);
1360
1361 /*
1362 * The hotspot queue only gets updated with misses.
1363 */
1364 hs_e = update_hotspot_queue(mq, oblock);
1365
1366 pr = should_promote(mq, hs_e, data_dir, fast_copy);
1367 if (pr != PROMOTE_NOT) {
1368 queue_promotion(mq, oblock, work);
1369 *background_work = true;
1370 }
1371
1372 return -ENOENT;
1373 }
1374 }
1375
1376 static int smq_lookup(struct dm_cache_policy *p, dm_oblock_t oblock, dm_cblock_t *cblock,
1377 int data_dir, bool fast_copy,
1378 bool *background_work)
1379 {
1380 int r;
1381 unsigned long flags;
1382 struct smq_policy *mq = to_smq_policy(p);
1383
1384 spin_lock_irqsave(&mq->lock, flags);
1385 r = __lookup(mq, oblock, cblock,
1386 data_dir, fast_copy,
1387 NULL, background_work);
1388 spin_unlock_irqrestore(&mq->lock, flags);
1389
1390 return r;
1391 }
1392
1393 static int smq_lookup_with_work(struct dm_cache_policy *p,
1394 dm_oblock_t oblock, dm_cblock_t *cblock,
1395 int data_dir, bool fast_copy,
1396 struct policy_work **work)
1397 {
1398 int r;
1399 bool background_queued;
1400 unsigned long flags;
1401 struct smq_policy *mq = to_smq_policy(p);
1402
1403 spin_lock_irqsave(&mq->lock, flags);
1404 r = __lookup(mq, oblock, cblock, data_dir, fast_copy, work, &background_queued);
1405 spin_unlock_irqrestore(&mq->lock, flags);
1406
1407 return r;
1408 }
1409
1410 static int smq_get_background_work(struct dm_cache_policy *p, bool idle,
1411 struct policy_work **result)
1412 {
1413 int r;
1414 unsigned long flags;
1415 struct smq_policy *mq = to_smq_policy(p);
1416
1417 spin_lock_irqsave(&mq->lock, flags);
1418 r = btracker_issue(mq->bg_work, result);
1419 if (r == -ENODATA) {
1420 if (!clean_target_met(mq, idle)) {
1421 queue_writeback(mq);
1422 r = btracker_issue(mq->bg_work, result);
1423 }
1424 }
1425 spin_unlock_irqrestore(&mq->lock, flags);
1426
1427 return r;
1428 }
1429
1430 /*
1431 * We need to clear any pending work flags that have been set, and in the
1432 * case of promotion free the entry for the destination cblock.
1433 */
1434 static void __complete_background_work(struct smq_policy *mq,
1435 struct policy_work *work,
1436 bool success)
1437 {
1438 struct entry *e = get_entry(&mq->cache_alloc,
1439 from_cblock(work->cblock));
1440
1441 switch (work->op) {
1442 case POLICY_PROMOTE:
1443 // !h, !q, a
1444 clear_pending(mq, e);
1445 if (success) {
1446 e->oblock = work->oblock;
1447 e->level = NR_CACHE_LEVELS - 1;
1448 push(mq, e);
1449 // h, q, a
1450 } else {
1451 free_entry(&mq->cache_alloc, e);
1452 // !h, !q, !a
1453 }
1454 break;
1455
1456 case POLICY_DEMOTE:
1457 // h, !q, a
1458 if (success) {
1459 h_remove(&mq->table, e);
1460 free_entry(&mq->cache_alloc, e);
1461 // !h, !q, !a
1462 } else {
1463 clear_pending(mq, e);
1464 push_queue(mq, e);
1465 // h, q, a
1466 }
1467 break;
1468
1469 case POLICY_WRITEBACK:
1470 // h, !q, a
1471 clear_pending(mq, e);
1472 push_queue(mq, e);
1473 // h, q, a
1474 break;
1475 }
1476
1477 btracker_complete(mq->bg_work, work);
1478 }
1479
1480 static void smq_complete_background_work(struct dm_cache_policy *p,
1481 struct policy_work *work,
1482 bool success)
1483 {
1484 unsigned long flags;
1485 struct smq_policy *mq = to_smq_policy(p);
1486
1487 spin_lock_irqsave(&mq->lock, flags);
1488 __complete_background_work(mq, work, success);
1489 spin_unlock_irqrestore(&mq->lock, flags);
1490 }
1491
1492 // in_hash(oblock) -> in_hash(oblock)
1493 static void __smq_set_clear_dirty(struct smq_policy *mq, dm_cblock_t cblock, bool set)
1494 {
1495 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1496
1497 if (e->pending_work)
1498 e->dirty = set;
1499 else {
1500 del_queue(mq, e);
1501 e->dirty = set;
1502 push_queue(mq, e);
1503 }
1504 }
1505
1506 static void smq_set_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1507 {
1508 unsigned long flags;
1509 struct smq_policy *mq = to_smq_policy(p);
1510
1511 spin_lock_irqsave(&mq->lock, flags);
1512 __smq_set_clear_dirty(mq, cblock, true);
1513 spin_unlock_irqrestore(&mq->lock, flags);
1514 }
1515
1516 static void smq_clear_dirty(struct dm_cache_policy *p, dm_cblock_t cblock)
1517 {
1518 struct smq_policy *mq = to_smq_policy(p);
1519 unsigned long flags;
1520
1521 spin_lock_irqsave(&mq->lock, flags);
1522 __smq_set_clear_dirty(mq, cblock, false);
1523 spin_unlock_irqrestore(&mq->lock, flags);
1524 }
1525
1526 static unsigned random_level(dm_cblock_t cblock)
1527 {
1528 return hash_32(from_cblock(cblock), 9) & (NR_CACHE_LEVELS - 1);
1529 }
1530
1531 static int smq_load_mapping(struct dm_cache_policy *p,
1532 dm_oblock_t oblock, dm_cblock_t cblock,
1533 bool dirty, uint32_t hint, bool hint_valid)
1534 {
1535 struct smq_policy *mq = to_smq_policy(p);
1536 struct entry *e;
1537
1538 e = alloc_particular_entry(&mq->cache_alloc, from_cblock(cblock));
1539 e->oblock = oblock;
1540 e->dirty = dirty;
1541 e->level = hint_valid ? min(hint, NR_CACHE_LEVELS - 1) : random_level(cblock);
1542 e->pending_work = false;
1543
1544 /*
1545 * When we load mappings we push ahead of both sentinels in order to
1546 * allow demotions and cleaning to occur immediately.
1547 */
1548 push_front(mq, e);
1549
1550 return 0;
1551 }
1552
1553 static int smq_invalidate_mapping(struct dm_cache_policy *p, dm_cblock_t cblock)
1554 {
1555 struct smq_policy *mq = to_smq_policy(p);
1556 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1557
1558 if (!e->allocated)
1559 return -ENODATA;
1560
1561 // FIXME: what if this block has pending background work?
1562 del_queue(mq, e);
1563 h_remove(&mq->table, e);
1564 free_entry(&mq->cache_alloc, e);
1565 return 0;
1566 }
1567
1568 static uint32_t smq_get_hint(struct dm_cache_policy *p, dm_cblock_t cblock)
1569 {
1570 struct smq_policy *mq = to_smq_policy(p);
1571 struct entry *e = get_entry(&mq->cache_alloc, from_cblock(cblock));
1572
1573 if (!e->allocated)
1574 return 0;
1575
1576 return e->level;
1577 }
1578
1579 static dm_cblock_t smq_residency(struct dm_cache_policy *p)
1580 {
1581 dm_cblock_t r;
1582 unsigned long flags;
1583 struct smq_policy *mq = to_smq_policy(p);
1584
1585 spin_lock_irqsave(&mq->lock, flags);
1586 r = to_cblock(mq->cache_alloc.nr_allocated);
1587 spin_unlock_irqrestore(&mq->lock, flags);
1588
1589 return r;
1590 }
1591
1592 static void smq_tick(struct dm_cache_policy *p, bool can_block)
1593 {
1594 struct smq_policy *mq = to_smq_policy(p);
1595 unsigned long flags;
1596
1597 spin_lock_irqsave(&mq->lock, flags);
1598 mq->tick++;
1599 update_sentinels(mq);
1600 end_hotspot_period(mq);
1601 end_cache_period(mq);
1602 spin_unlock_irqrestore(&mq->lock, flags);
1603 }
1604
1605 static void smq_allow_migrations(struct dm_cache_policy *p, bool allow)
1606 {
1607 struct smq_policy *mq = to_smq_policy(p);
1608 mq->migrations_allowed = allow;
1609 }
1610
1611 /*
1612 * smq has no config values, but the old mq policy did. To avoid breaking
1613 * software we continue to accept these configurables for the mq policy,
1614 * but they have no effect.
1615 */
1616 static int mq_set_config_value(struct dm_cache_policy *p,
1617 const char *key, const char *value)
1618 {
1619 unsigned long tmp;
1620
1621 if (kstrtoul(value, 10, &tmp))
1622 return -EINVAL;
1623
1624 if (!strcasecmp(key, "random_threshold") ||
1625 !strcasecmp(key, "sequential_threshold") ||
1626 !strcasecmp(key, "discard_promote_adjustment") ||
1627 !strcasecmp(key, "read_promote_adjustment") ||
1628 !strcasecmp(key, "write_promote_adjustment")) {
1629 DMWARN("tunable '%s' no longer has any effect, mq policy is now an alias for smq", key);
1630 return 0;
1631 }
1632
1633 return -EINVAL;
1634 }
1635
1636 static int mq_emit_config_values(struct dm_cache_policy *p, char *result,
1637 unsigned maxlen, ssize_t *sz_ptr)
1638 {
1639 ssize_t sz = *sz_ptr;
1640
1641 DMEMIT("10 random_threshold 0 "
1642 "sequential_threshold 0 "
1643 "discard_promote_adjustment 0 "
1644 "read_promote_adjustment 0 "
1645 "write_promote_adjustment 0 ");
1646
1647 *sz_ptr = sz;
1648 return 0;
1649 }
1650
1651 /* Init the policy plugin interface function pointers. */
1652 static void init_policy_functions(struct smq_policy *mq, bool mimic_mq)
1653 {
1654 mq->policy.destroy = smq_destroy;
1655 mq->policy.lookup = smq_lookup;
1656 mq->policy.lookup_with_work = smq_lookup_with_work;
1657 mq->policy.get_background_work = smq_get_background_work;
1658 mq->policy.complete_background_work = smq_complete_background_work;
1659 mq->policy.set_dirty = smq_set_dirty;
1660 mq->policy.clear_dirty = smq_clear_dirty;
1661 mq->policy.load_mapping = smq_load_mapping;
1662 mq->policy.invalidate_mapping = smq_invalidate_mapping;
1663 mq->policy.get_hint = smq_get_hint;
1664 mq->policy.residency = smq_residency;
1665 mq->policy.tick = smq_tick;
1666 mq->policy.allow_migrations = smq_allow_migrations;
1667
1668 if (mimic_mq) {
1669 mq->policy.set_config_value = mq_set_config_value;
1670 mq->policy.emit_config_values = mq_emit_config_values;
1671 }
1672 }
1673
1674 static bool too_many_hotspot_blocks(sector_t origin_size,
1675 sector_t hotspot_block_size,
1676 unsigned nr_hotspot_blocks)
1677 {
1678 return (hotspot_block_size * nr_hotspot_blocks) > origin_size;
1679 }
1680
1681 static void calc_hotspot_params(sector_t origin_size,
1682 sector_t cache_block_size,
1683 unsigned nr_cache_blocks,
1684 sector_t *hotspot_block_size,
1685 unsigned *nr_hotspot_blocks)
1686 {
1687 *hotspot_block_size = cache_block_size * 16u;
1688 *nr_hotspot_blocks = max(nr_cache_blocks / 4u, 1024u);
1689
1690 while ((*hotspot_block_size > cache_block_size) &&
1691 too_many_hotspot_blocks(origin_size, *hotspot_block_size, *nr_hotspot_blocks))
1692 *hotspot_block_size /= 2u;
1693 }
1694
1695 static struct dm_cache_policy *__smq_create(dm_cblock_t cache_size,
1696 sector_t origin_size,
1697 sector_t cache_block_size,
1698 bool mimic_mq,
1699 bool migrations_allowed)
1700 {
1701 unsigned i;
1702 unsigned nr_sentinels_per_queue = 2u * NR_CACHE_LEVELS;
1703 unsigned total_sentinels = 2u * nr_sentinels_per_queue;
1704 struct smq_policy *mq = kzalloc(sizeof(*mq), GFP_KERNEL);
1705
1706 if (!mq)
1707 return NULL;
1708
1709 init_policy_functions(mq, mimic_mq);
1710 mq->cache_size = cache_size;
1711 mq->cache_block_size = cache_block_size;
1712
1713 calc_hotspot_params(origin_size, cache_block_size, from_cblock(cache_size),
1714 &mq->hotspot_block_size, &mq->nr_hotspot_blocks);
1715
1716 mq->cache_blocks_per_hotspot_block = div64_u64(mq->hotspot_block_size, mq->cache_block_size);
1717 mq->hotspot_level_jump = 1u;
1718 if (space_init(&mq->es, total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size))) {
1719 DMERR("couldn't initialize entry space");
1720 goto bad_pool_init;
1721 }
1722
1723 init_allocator(&mq->writeback_sentinel_alloc, &mq->es, 0, nr_sentinels_per_queue);
1724 for (i = 0; i < nr_sentinels_per_queue; i++)
1725 get_entry(&mq->writeback_sentinel_alloc, i)->sentinel = true;
1726
1727 init_allocator(&mq->demote_sentinel_alloc, &mq->es, nr_sentinels_per_queue, total_sentinels);
1728 for (i = 0; i < nr_sentinels_per_queue; i++)
1729 get_entry(&mq->demote_sentinel_alloc, i)->sentinel = true;
1730
1731 init_allocator(&mq->hotspot_alloc, &mq->es, total_sentinels,
1732 total_sentinels + mq->nr_hotspot_blocks);
1733
1734 init_allocator(&mq->cache_alloc, &mq->es,
1735 total_sentinels + mq->nr_hotspot_blocks,
1736 total_sentinels + mq->nr_hotspot_blocks + from_cblock(cache_size));
1737
1738 mq->hotspot_hit_bits = alloc_bitset(mq->nr_hotspot_blocks);
1739 if (!mq->hotspot_hit_bits) {
1740 DMERR("couldn't allocate hotspot hit bitset");
1741 goto bad_hotspot_hit_bits;
1742 }
1743 clear_bitset(mq->hotspot_hit_bits, mq->nr_hotspot_blocks);
1744
1745 if (from_cblock(cache_size)) {
1746 mq->cache_hit_bits = alloc_bitset(from_cblock(cache_size));
1747 if (!mq->cache_hit_bits) {
1748 DMERR("couldn't allocate cache hit bitset");
1749 goto bad_cache_hit_bits;
1750 }
1751 clear_bitset(mq->cache_hit_bits, from_cblock(mq->cache_size));
1752 } else
1753 mq->cache_hit_bits = NULL;
1754
1755 mq->tick = 0;
1756 spin_lock_init(&mq->lock);
1757
1758 q_init(&mq->hotspot, &mq->es, NR_HOTSPOT_LEVELS);
1759 mq->hotspot.nr_top_levels = 8;
1760 mq->hotspot.nr_in_top_levels = min(mq->nr_hotspot_blocks / NR_HOTSPOT_LEVELS,
1761 from_cblock(mq->cache_size) / mq->cache_blocks_per_hotspot_block);
1762
1763 q_init(&mq->clean, &mq->es, NR_CACHE_LEVELS);
1764 q_init(&mq->dirty, &mq->es, NR_CACHE_LEVELS);
1765
1766 stats_init(&mq->hotspot_stats, NR_HOTSPOT_LEVELS);
1767 stats_init(&mq->cache_stats, NR_CACHE_LEVELS);
1768
1769 if (h_init(&mq->table, &mq->es, from_cblock(cache_size)))
1770 goto bad_alloc_table;
1771
1772 if (h_init(&mq->hotspot_table, &mq->es, mq->nr_hotspot_blocks))
1773 goto bad_alloc_hotspot_table;
1774
1775 sentinels_init(mq);
1776 mq->write_promote_level = mq->read_promote_level = NR_HOTSPOT_LEVELS;
1777
1778 mq->next_hotspot_period = jiffies;
1779 mq->next_cache_period = jiffies;
1780
1781 mq->bg_work = btracker_create(10240); /* FIXME: hard coded value */
1782 if (!mq->bg_work)
1783 goto bad_btracker;
1784
1785 mq->migrations_allowed = migrations_allowed;
1786
1787 return &mq->policy;
1788
1789 bad_btracker:
1790 h_exit(&mq->hotspot_table);
1791 bad_alloc_hotspot_table:
1792 h_exit(&mq->table);
1793 bad_alloc_table:
1794 free_bitset(mq->cache_hit_bits);
1795 bad_cache_hit_bits:
1796 free_bitset(mq->hotspot_hit_bits);
1797 bad_hotspot_hit_bits:
1798 space_exit(&mq->es);
1799 bad_pool_init:
1800 kfree(mq);
1801
1802 return NULL;
1803 }
1804
1805 static struct dm_cache_policy *smq_create(dm_cblock_t cache_size,
1806 sector_t origin_size,
1807 sector_t cache_block_size)
1808 {
1809 return __smq_create(cache_size, origin_size, cache_block_size, false, true);
1810 }
1811
1812 static struct dm_cache_policy *mq_create(dm_cblock_t cache_size,
1813 sector_t origin_size,
1814 sector_t cache_block_size)
1815 {
1816 return __smq_create(cache_size, origin_size, cache_block_size, true, true);
1817 }
1818
1819 static struct dm_cache_policy *cleaner_create(dm_cblock_t cache_size,
1820 sector_t origin_size,
1821 sector_t cache_block_size)
1822 {
1823 return __smq_create(cache_size, origin_size, cache_block_size, false, false);
1824 }
1825
1826 /*----------------------------------------------------------------*/
1827
1828 static struct dm_cache_policy_type smq_policy_type = {
1829 .name = "smq",
1830 .version = {2, 0, 0},
1831 .hint_size = 4,
1832 .owner = THIS_MODULE,
1833 .create = smq_create
1834 };
1835
1836 static struct dm_cache_policy_type mq_policy_type = {
1837 .name = "mq",
1838 .version = {2, 0, 0},
1839 .hint_size = 4,
1840 .owner = THIS_MODULE,
1841 .create = mq_create,
1842 };
1843
1844 static struct dm_cache_policy_type cleaner_policy_type = {
1845 .name = "cleaner",
1846 .version = {2, 0, 0},
1847 .hint_size = 4,
1848 .owner = THIS_MODULE,
1849 .create = cleaner_create,
1850 };
1851
1852 static struct dm_cache_policy_type default_policy_type = {
1853 .name = "default",
1854 .version = {2, 0, 0},
1855 .hint_size = 4,
1856 .owner = THIS_MODULE,
1857 .create = smq_create,
1858 .real = &smq_policy_type
1859 };
1860
1861 static int __init smq_init(void)
1862 {
1863 int r;
1864
1865 r = dm_cache_policy_register(&smq_policy_type);
1866 if (r) {
1867 DMERR("register failed %d", r);
1868 return -ENOMEM;
1869 }
1870
1871 r = dm_cache_policy_register(&mq_policy_type);
1872 if (r) {
1873 DMERR("register failed (as mq) %d", r);
1874 goto out_mq;
1875 }
1876
1877 r = dm_cache_policy_register(&cleaner_policy_type);
1878 if (r) {
1879 DMERR("register failed (as cleaner) %d", r);
1880 goto out_cleaner;
1881 }
1882
1883 r = dm_cache_policy_register(&default_policy_type);
1884 if (r) {
1885 DMERR("register failed (as default) %d", r);
1886 goto out_default;
1887 }
1888
1889 return 0;
1890
1891 out_default:
1892 dm_cache_policy_unregister(&cleaner_policy_type);
1893 out_cleaner:
1894 dm_cache_policy_unregister(&mq_policy_type);
1895 out_mq:
1896 dm_cache_policy_unregister(&smq_policy_type);
1897
1898 return -ENOMEM;
1899 }
1900
1901 static void __exit smq_exit(void)
1902 {
1903 dm_cache_policy_unregister(&cleaner_policy_type);
1904 dm_cache_policy_unregister(&smq_policy_type);
1905 dm_cache_policy_unregister(&mq_policy_type);
1906 dm_cache_policy_unregister(&default_policy_type);
1907 }
1908
1909 module_init(smq_init);
1910 module_exit(smq_exit);
1911
1912 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1913 MODULE_LICENSE("GPL");
1914 MODULE_DESCRIPTION("smq cache policy");
1915
1916 MODULE_ALIAS("dm-cache-default");
1917 MODULE_ALIAS("dm-cache-mq");
1918 MODULE_ALIAS("dm-cache-cleaner");