Merge branch 'topic/hda' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / bitmap.c
1 /*
2 * bitmap.c two-level bitmap (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
3 *
4 * bitmap_create - sets up the bitmap structure
5 * bitmap_destroy - destroys the bitmap structure
6 *
7 * additions, Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.:
8 * - added disk storage for bitmap
9 * - changes to allow various bitmap chunk sizes
10 */
11
12 /*
13 * Still to do:
14 *
15 * flush after percent set rather than just time based. (maybe both).
16 * wait if count gets too high, wake when it drops to half.
17 */
18
19 #include <linux/module.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/timer.h>
24 #include <linux/sched.h>
25 #include <linux/list.h>
26 #include <linux/file.h>
27 #include <linux/mount.h>
28 #include <linux/buffer_head.h>
29 #include <linux/raid/md.h>
30 #include <linux/raid/bitmap.h>
31
32 /* debug macros */
33
34 #define DEBUG 0
35
36 #if DEBUG
37 /* these are for debugging purposes only! */
38
39 /* define one and only one of these */
40 #define INJECT_FAULTS_1 0 /* cause bitmap_alloc_page to fail always */
41 #define INJECT_FAULTS_2 0 /* cause bitmap file to be kicked when first bit set*/
42 #define INJECT_FAULTS_3 0 /* treat bitmap file as kicked at init time */
43 #define INJECT_FAULTS_4 0 /* undef */
44 #define INJECT_FAULTS_5 0 /* undef */
45 #define INJECT_FAULTS_6 0
46
47 /* if these are defined, the driver will fail! debug only */
48 #define INJECT_FATAL_FAULT_1 0 /* fail kmalloc, causing bitmap_create to fail */
49 #define INJECT_FATAL_FAULT_2 0 /* undef */
50 #define INJECT_FATAL_FAULT_3 0 /* undef */
51 #endif
52
53 //#define DPRINTK PRINTK /* set this NULL to avoid verbose debug output */
54 #define DPRINTK(x...) do { } while(0)
55
56 #ifndef PRINTK
57 # if DEBUG > 0
58 # define PRINTK(x...) printk(KERN_DEBUG x)
59 # else
60 # define PRINTK(x...)
61 # endif
62 #endif
63
64 static inline char * bmname(struct bitmap *bitmap)
65 {
66 return bitmap->mddev ? mdname(bitmap->mddev) : "mdX";
67 }
68
69
70 /*
71 * just a placeholder - calls kmalloc for bitmap pages
72 */
73 static unsigned char *bitmap_alloc_page(struct bitmap *bitmap)
74 {
75 unsigned char *page;
76
77 #ifdef INJECT_FAULTS_1
78 page = NULL;
79 #else
80 page = kmalloc(PAGE_SIZE, GFP_NOIO);
81 #endif
82 if (!page)
83 printk("%s: bitmap_alloc_page FAILED\n", bmname(bitmap));
84 else
85 PRINTK("%s: bitmap_alloc_page: allocated page at %p\n",
86 bmname(bitmap), page);
87 return page;
88 }
89
90 /*
91 * for now just a placeholder -- just calls kfree for bitmap pages
92 */
93 static void bitmap_free_page(struct bitmap *bitmap, unsigned char *page)
94 {
95 PRINTK("%s: bitmap_free_page: free page %p\n", bmname(bitmap), page);
96 kfree(page);
97 }
98
99 /*
100 * check a page and, if necessary, allocate it (or hijack it if the alloc fails)
101 *
102 * 1) check to see if this page is allocated, if it's not then try to alloc
103 * 2) if the alloc fails, set the page's hijacked flag so we'll use the
104 * page pointer directly as a counter
105 *
106 * if we find our page, we increment the page's refcount so that it stays
107 * allocated while we're using it
108 */
109 static int bitmap_checkpage(struct bitmap *bitmap, unsigned long page, int create)
110 {
111 unsigned char *mappage;
112
113 if (page >= bitmap->pages) {
114 printk(KERN_ALERT
115 "%s: invalid bitmap page request: %lu (> %lu)\n",
116 bmname(bitmap), page, bitmap->pages-1);
117 return -EINVAL;
118 }
119
120
121 if (bitmap->bp[page].hijacked) /* it's hijacked, don't try to alloc */
122 return 0;
123
124 if (bitmap->bp[page].map) /* page is already allocated, just return */
125 return 0;
126
127 if (!create)
128 return -ENOENT;
129
130 spin_unlock_irq(&bitmap->lock);
131
132 /* this page has not been allocated yet */
133
134 if ((mappage = bitmap_alloc_page(bitmap)) == NULL) {
135 PRINTK("%s: bitmap map page allocation failed, hijacking\n",
136 bmname(bitmap));
137 /* failed - set the hijacked flag so that we can use the
138 * pointer as a counter */
139 spin_lock_irq(&bitmap->lock);
140 if (!bitmap->bp[page].map)
141 bitmap->bp[page].hijacked = 1;
142 goto out;
143 }
144
145 /* got a page */
146
147 spin_lock_irq(&bitmap->lock);
148
149 /* recheck the page */
150
151 if (bitmap->bp[page].map || bitmap->bp[page].hijacked) {
152 /* somebody beat us to getting the page */
153 bitmap_free_page(bitmap, mappage);
154 return 0;
155 }
156
157 /* no page was in place and we have one, so install it */
158
159 memset(mappage, 0, PAGE_SIZE);
160 bitmap->bp[page].map = mappage;
161 bitmap->missing_pages--;
162 out:
163 return 0;
164 }
165
166
167 /* if page is completely empty, put it back on the free list, or dealloc it */
168 /* if page was hijacked, unmark the flag so it might get alloced next time */
169 /* Note: lock should be held when calling this */
170 static void bitmap_checkfree(struct bitmap *bitmap, unsigned long page)
171 {
172 char *ptr;
173
174 if (bitmap->bp[page].count) /* page is still busy */
175 return;
176
177 /* page is no longer in use, it can be released */
178
179 if (bitmap->bp[page].hijacked) { /* page was hijacked, undo this now */
180 bitmap->bp[page].hijacked = 0;
181 bitmap->bp[page].map = NULL;
182 return;
183 }
184
185 /* normal case, free the page */
186
187 #if 0
188 /* actually ... let's not. We will probably need the page again exactly when
189 * memory is tight and we are flusing to disk
190 */
191 return;
192 #else
193 ptr = bitmap->bp[page].map;
194 bitmap->bp[page].map = NULL;
195 bitmap->missing_pages++;
196 bitmap_free_page(bitmap, ptr);
197 return;
198 #endif
199 }
200
201
202 /*
203 * bitmap file handling - read and write the bitmap file and its superblock
204 */
205
206 /*
207 * basic page I/O operations
208 */
209
210 /* IO operations when bitmap is stored near all superblocks */
211 static struct page *read_sb_page(mddev_t *mddev, long offset,
212 struct page *page,
213 unsigned long index, int size)
214 {
215 /* choose a good rdev and read the page from there */
216
217 mdk_rdev_t *rdev;
218 sector_t target;
219
220 if (!page)
221 page = alloc_page(GFP_KERNEL);
222 if (!page)
223 return ERR_PTR(-ENOMEM);
224
225 list_for_each_entry(rdev, &mddev->disks, same_set) {
226 if (! test_bit(In_sync, &rdev->flags)
227 || test_bit(Faulty, &rdev->flags))
228 continue;
229
230 target = rdev->sb_start + offset + index * (PAGE_SIZE/512);
231
232 if (sync_page_io(rdev->bdev, target,
233 roundup(size, bdev_hardsect_size(rdev->bdev)),
234 page, READ)) {
235 page->index = index;
236 attach_page_buffers(page, NULL); /* so that free_buffer will
237 * quietly no-op */
238 return page;
239 }
240 }
241 return ERR_PTR(-EIO);
242
243 }
244
245 static mdk_rdev_t *next_active_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
246 {
247 /* Iterate the disks of an mddev, using rcu to protect access to the
248 * linked list, and raising the refcount of devices we return to ensure
249 * they don't disappear while in use.
250 * As devices are only added or removed when raid_disk is < 0 and
251 * nr_pending is 0 and In_sync is clear, the entries we return will
252 * still be in the same position on the list when we re-enter
253 * list_for_each_continue_rcu.
254 */
255 struct list_head *pos;
256 rcu_read_lock();
257 if (rdev == NULL)
258 /* start at the beginning */
259 pos = &mddev->disks;
260 else {
261 /* release the previous rdev and start from there. */
262 rdev_dec_pending(rdev, mddev);
263 pos = &rdev->same_set;
264 }
265 list_for_each_continue_rcu(pos, &mddev->disks) {
266 rdev = list_entry(pos, mdk_rdev_t, same_set);
267 if (rdev->raid_disk >= 0 &&
268 test_bit(In_sync, &rdev->flags) &&
269 !test_bit(Faulty, &rdev->flags)) {
270 /* this is a usable devices */
271 atomic_inc(&rdev->nr_pending);
272 rcu_read_unlock();
273 return rdev;
274 }
275 }
276 rcu_read_unlock();
277 return NULL;
278 }
279
280 static int write_sb_page(struct bitmap *bitmap, struct page *page, int wait)
281 {
282 mdk_rdev_t *rdev = NULL;
283 mddev_t *mddev = bitmap->mddev;
284
285 while ((rdev = next_active_rdev(rdev, mddev)) != NULL) {
286 int size = PAGE_SIZE;
287 if (page->index == bitmap->file_pages-1)
288 size = roundup(bitmap->last_page_size,
289 bdev_hardsect_size(rdev->bdev));
290 /* Just make sure we aren't corrupting data or
291 * metadata
292 */
293 if (bitmap->offset < 0) {
294 /* DATA BITMAP METADATA */
295 if (bitmap->offset
296 + (long)(page->index * (PAGE_SIZE/512))
297 + size/512 > 0)
298 /* bitmap runs in to metadata */
299 goto bad_alignment;
300 if (rdev->data_offset + mddev->size*2
301 > rdev->sb_start + bitmap->offset)
302 /* data runs in to bitmap */
303 goto bad_alignment;
304 } else if (rdev->sb_start < rdev->data_offset) {
305 /* METADATA BITMAP DATA */
306 if (rdev->sb_start
307 + bitmap->offset
308 + page->index*(PAGE_SIZE/512) + size/512
309 > rdev->data_offset)
310 /* bitmap runs in to data */
311 goto bad_alignment;
312 } else {
313 /* DATA METADATA BITMAP - no problems */
314 }
315 md_super_write(mddev, rdev,
316 rdev->sb_start + bitmap->offset
317 + page->index * (PAGE_SIZE/512),
318 size,
319 page);
320 }
321
322 if (wait)
323 md_super_wait(mddev);
324 return 0;
325
326 bad_alignment:
327 rcu_read_unlock();
328 return -EINVAL;
329 }
330
331 static void bitmap_file_kick(struct bitmap *bitmap);
332 /*
333 * write out a page to a file
334 */
335 static void write_page(struct bitmap *bitmap, struct page *page, int wait)
336 {
337 struct buffer_head *bh;
338
339 if (bitmap->file == NULL) {
340 switch (write_sb_page(bitmap, page, wait)) {
341 case -EINVAL:
342 bitmap->flags |= BITMAP_WRITE_ERROR;
343 }
344 } else {
345
346 bh = page_buffers(page);
347
348 while (bh && bh->b_blocknr) {
349 atomic_inc(&bitmap->pending_writes);
350 set_buffer_locked(bh);
351 set_buffer_mapped(bh);
352 submit_bh(WRITE, bh);
353 bh = bh->b_this_page;
354 }
355
356 if (wait) {
357 wait_event(bitmap->write_wait,
358 atomic_read(&bitmap->pending_writes)==0);
359 }
360 }
361 if (bitmap->flags & BITMAP_WRITE_ERROR)
362 bitmap_file_kick(bitmap);
363 }
364
365 static void end_bitmap_write(struct buffer_head *bh, int uptodate)
366 {
367 struct bitmap *bitmap = bh->b_private;
368 unsigned long flags;
369
370 if (!uptodate) {
371 spin_lock_irqsave(&bitmap->lock, flags);
372 bitmap->flags |= BITMAP_WRITE_ERROR;
373 spin_unlock_irqrestore(&bitmap->lock, flags);
374 }
375 if (atomic_dec_and_test(&bitmap->pending_writes))
376 wake_up(&bitmap->write_wait);
377 }
378
379 /* copied from buffer.c */
380 static void
381 __clear_page_buffers(struct page *page)
382 {
383 ClearPagePrivate(page);
384 set_page_private(page, 0);
385 page_cache_release(page);
386 }
387 static void free_buffers(struct page *page)
388 {
389 struct buffer_head *bh = page_buffers(page);
390
391 while (bh) {
392 struct buffer_head *next = bh->b_this_page;
393 free_buffer_head(bh);
394 bh = next;
395 }
396 __clear_page_buffers(page);
397 put_page(page);
398 }
399
400 /* read a page from a file.
401 * We both read the page, and attach buffers to the page to record the
402 * address of each block (using bmap). These addresses will be used
403 * to write the block later, completely bypassing the filesystem.
404 * This usage is similar to how swap files are handled, and allows us
405 * to write to a file with no concerns of memory allocation failing.
406 */
407 static struct page *read_page(struct file *file, unsigned long index,
408 struct bitmap *bitmap,
409 unsigned long count)
410 {
411 struct page *page = NULL;
412 struct inode *inode = file->f_path.dentry->d_inode;
413 struct buffer_head *bh;
414 sector_t block;
415
416 PRINTK("read bitmap file (%dB @ %Lu)\n", (int)PAGE_SIZE,
417 (unsigned long long)index << PAGE_SHIFT);
418
419 page = alloc_page(GFP_KERNEL);
420 if (!page)
421 page = ERR_PTR(-ENOMEM);
422 if (IS_ERR(page))
423 goto out;
424
425 bh = alloc_page_buffers(page, 1<<inode->i_blkbits, 0);
426 if (!bh) {
427 put_page(page);
428 page = ERR_PTR(-ENOMEM);
429 goto out;
430 }
431 attach_page_buffers(page, bh);
432 block = index << (PAGE_SHIFT - inode->i_blkbits);
433 while (bh) {
434 if (count == 0)
435 bh->b_blocknr = 0;
436 else {
437 bh->b_blocknr = bmap(inode, block);
438 if (bh->b_blocknr == 0) {
439 /* Cannot use this file! */
440 free_buffers(page);
441 page = ERR_PTR(-EINVAL);
442 goto out;
443 }
444 bh->b_bdev = inode->i_sb->s_bdev;
445 if (count < (1<<inode->i_blkbits))
446 count = 0;
447 else
448 count -= (1<<inode->i_blkbits);
449
450 bh->b_end_io = end_bitmap_write;
451 bh->b_private = bitmap;
452 atomic_inc(&bitmap->pending_writes);
453 set_buffer_locked(bh);
454 set_buffer_mapped(bh);
455 submit_bh(READ, bh);
456 }
457 block++;
458 bh = bh->b_this_page;
459 }
460 page->index = index;
461
462 wait_event(bitmap->write_wait,
463 atomic_read(&bitmap->pending_writes)==0);
464 if (bitmap->flags & BITMAP_WRITE_ERROR) {
465 free_buffers(page);
466 page = ERR_PTR(-EIO);
467 }
468 out:
469 if (IS_ERR(page))
470 printk(KERN_ALERT "md: bitmap read error: (%dB @ %Lu): %ld\n",
471 (int)PAGE_SIZE,
472 (unsigned long long)index << PAGE_SHIFT,
473 PTR_ERR(page));
474 return page;
475 }
476
477 /*
478 * bitmap file superblock operations
479 */
480
481 /* update the event counter and sync the superblock to disk */
482 void bitmap_update_sb(struct bitmap *bitmap)
483 {
484 bitmap_super_t *sb;
485 unsigned long flags;
486
487 if (!bitmap || !bitmap->mddev) /* no bitmap for this array */
488 return;
489 spin_lock_irqsave(&bitmap->lock, flags);
490 if (!bitmap->sb_page) { /* no superblock */
491 spin_unlock_irqrestore(&bitmap->lock, flags);
492 return;
493 }
494 spin_unlock_irqrestore(&bitmap->lock, flags);
495 sb = (bitmap_super_t *)kmap_atomic(bitmap->sb_page, KM_USER0);
496 sb->events = cpu_to_le64(bitmap->mddev->events);
497 if (bitmap->mddev->events < bitmap->events_cleared) {
498 /* rocking back to read-only */
499 bitmap->events_cleared = bitmap->mddev->events;
500 sb->events_cleared = cpu_to_le64(bitmap->events_cleared);
501 }
502 kunmap_atomic(sb, KM_USER0);
503 write_page(bitmap, bitmap->sb_page, 1);
504 }
505
506 /* print out the bitmap file superblock */
507 void bitmap_print_sb(struct bitmap *bitmap)
508 {
509 bitmap_super_t *sb;
510
511 if (!bitmap || !bitmap->sb_page)
512 return;
513 sb = (bitmap_super_t *)kmap_atomic(bitmap->sb_page, KM_USER0);
514 printk(KERN_DEBUG "%s: bitmap file superblock:\n", bmname(bitmap));
515 printk(KERN_DEBUG " magic: %08x\n", le32_to_cpu(sb->magic));
516 printk(KERN_DEBUG " version: %d\n", le32_to_cpu(sb->version));
517 printk(KERN_DEBUG " uuid: %08x.%08x.%08x.%08x\n",
518 *(__u32 *)(sb->uuid+0),
519 *(__u32 *)(sb->uuid+4),
520 *(__u32 *)(sb->uuid+8),
521 *(__u32 *)(sb->uuid+12));
522 printk(KERN_DEBUG " events: %llu\n",
523 (unsigned long long) le64_to_cpu(sb->events));
524 printk(KERN_DEBUG "events cleared: %llu\n",
525 (unsigned long long) le64_to_cpu(sb->events_cleared));
526 printk(KERN_DEBUG " state: %08x\n", le32_to_cpu(sb->state));
527 printk(KERN_DEBUG " chunksize: %d B\n", le32_to_cpu(sb->chunksize));
528 printk(KERN_DEBUG " daemon sleep: %ds\n", le32_to_cpu(sb->daemon_sleep));
529 printk(KERN_DEBUG " sync size: %llu KB\n",
530 (unsigned long long)le64_to_cpu(sb->sync_size)/2);
531 printk(KERN_DEBUG "max write behind: %d\n", le32_to_cpu(sb->write_behind));
532 kunmap_atomic(sb, KM_USER0);
533 }
534
535 /* read the superblock from the bitmap file and initialize some bitmap fields */
536 static int bitmap_read_sb(struct bitmap *bitmap)
537 {
538 char *reason = NULL;
539 bitmap_super_t *sb;
540 unsigned long chunksize, daemon_sleep, write_behind;
541 unsigned long long events;
542 int err = -EINVAL;
543
544 /* page 0 is the superblock, read it... */
545 if (bitmap->file) {
546 loff_t isize = i_size_read(bitmap->file->f_mapping->host);
547 int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize;
548
549 bitmap->sb_page = read_page(bitmap->file, 0, bitmap, bytes);
550 } else {
551 bitmap->sb_page = read_sb_page(bitmap->mddev, bitmap->offset,
552 NULL,
553 0, sizeof(bitmap_super_t));
554 }
555 if (IS_ERR(bitmap->sb_page)) {
556 err = PTR_ERR(bitmap->sb_page);
557 bitmap->sb_page = NULL;
558 return err;
559 }
560
561 sb = (bitmap_super_t *)kmap_atomic(bitmap->sb_page, KM_USER0);
562
563 chunksize = le32_to_cpu(sb->chunksize);
564 daemon_sleep = le32_to_cpu(sb->daemon_sleep);
565 write_behind = le32_to_cpu(sb->write_behind);
566
567 /* verify that the bitmap-specific fields are valid */
568 if (sb->magic != cpu_to_le32(BITMAP_MAGIC))
569 reason = "bad magic";
570 else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO ||
571 le32_to_cpu(sb->version) > BITMAP_MAJOR_HI)
572 reason = "unrecognized superblock version";
573 else if (chunksize < PAGE_SIZE)
574 reason = "bitmap chunksize too small";
575 else if ((1 << ffz(~chunksize)) != chunksize)
576 reason = "bitmap chunksize not a power of 2";
577 else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT / HZ)
578 reason = "daemon sleep period out of range";
579 else if (write_behind > COUNTER_MAX)
580 reason = "write-behind limit out of range (0 - 16383)";
581 if (reason) {
582 printk(KERN_INFO "%s: invalid bitmap file superblock: %s\n",
583 bmname(bitmap), reason);
584 goto out;
585 }
586
587 /* keep the array size field of the bitmap superblock up to date */
588 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
589
590 if (!bitmap->mddev->persistent)
591 goto success;
592
593 /*
594 * if we have a persistent array superblock, compare the
595 * bitmap's UUID and event counter to the mddev's
596 */
597 if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) {
598 printk(KERN_INFO "%s: bitmap superblock UUID mismatch\n",
599 bmname(bitmap));
600 goto out;
601 }
602 events = le64_to_cpu(sb->events);
603 if (events < bitmap->mddev->events) {
604 printk(KERN_INFO "%s: bitmap file is out of date (%llu < %llu) "
605 "-- forcing full recovery\n", bmname(bitmap), events,
606 (unsigned long long) bitmap->mddev->events);
607 sb->state |= cpu_to_le32(BITMAP_STALE);
608 }
609 success:
610 /* assign fields using values from superblock */
611 bitmap->chunksize = chunksize;
612 bitmap->daemon_sleep = daemon_sleep;
613 bitmap->daemon_lastrun = jiffies;
614 bitmap->max_write_behind = write_behind;
615 bitmap->flags |= le32_to_cpu(sb->state);
616 if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN)
617 bitmap->flags |= BITMAP_HOSTENDIAN;
618 bitmap->events_cleared = le64_to_cpu(sb->events_cleared);
619 if (sb->state & cpu_to_le32(BITMAP_STALE))
620 bitmap->events_cleared = bitmap->mddev->events;
621 err = 0;
622 out:
623 kunmap_atomic(sb, KM_USER0);
624 if (err)
625 bitmap_print_sb(bitmap);
626 return err;
627 }
628
629 enum bitmap_mask_op {
630 MASK_SET,
631 MASK_UNSET
632 };
633
634 /* record the state of the bitmap in the superblock. Return the old value */
635 static int bitmap_mask_state(struct bitmap *bitmap, enum bitmap_state bits,
636 enum bitmap_mask_op op)
637 {
638 bitmap_super_t *sb;
639 unsigned long flags;
640 int old;
641
642 spin_lock_irqsave(&bitmap->lock, flags);
643 if (!bitmap->sb_page) { /* can't set the state */
644 spin_unlock_irqrestore(&bitmap->lock, flags);
645 return 0;
646 }
647 spin_unlock_irqrestore(&bitmap->lock, flags);
648 sb = (bitmap_super_t *)kmap_atomic(bitmap->sb_page, KM_USER0);
649 old = le32_to_cpu(sb->state) & bits;
650 switch (op) {
651 case MASK_SET: sb->state |= cpu_to_le32(bits);
652 break;
653 case MASK_UNSET: sb->state &= cpu_to_le32(~bits);
654 break;
655 default: BUG();
656 }
657 kunmap_atomic(sb, KM_USER0);
658 return old;
659 }
660
661 /*
662 * general bitmap file operations
663 */
664
665 /* calculate the index of the page that contains this bit */
666 static inline unsigned long file_page_index(unsigned long chunk)
667 {
668 return CHUNK_BIT_OFFSET(chunk) >> PAGE_BIT_SHIFT;
669 }
670
671 /* calculate the (bit) offset of this bit within a page */
672 static inline unsigned long file_page_offset(unsigned long chunk)
673 {
674 return CHUNK_BIT_OFFSET(chunk) & (PAGE_BITS - 1);
675 }
676
677 /*
678 * return a pointer to the page in the filemap that contains the given bit
679 *
680 * this lookup is complicated by the fact that the bitmap sb might be exactly
681 * 1 page (e.g., x86) or less than 1 page -- so the bitmap might start on page
682 * 0 or page 1
683 */
684 static inline struct page *filemap_get_page(struct bitmap *bitmap,
685 unsigned long chunk)
686 {
687 if (file_page_index(chunk) >= bitmap->file_pages) return NULL;
688 return bitmap->filemap[file_page_index(chunk) - file_page_index(0)];
689 }
690
691
692 static void bitmap_file_unmap(struct bitmap *bitmap)
693 {
694 struct page **map, *sb_page;
695 unsigned long *attr;
696 int pages;
697 unsigned long flags;
698
699 spin_lock_irqsave(&bitmap->lock, flags);
700 map = bitmap->filemap;
701 bitmap->filemap = NULL;
702 attr = bitmap->filemap_attr;
703 bitmap->filemap_attr = NULL;
704 pages = bitmap->file_pages;
705 bitmap->file_pages = 0;
706 sb_page = bitmap->sb_page;
707 bitmap->sb_page = NULL;
708 spin_unlock_irqrestore(&bitmap->lock, flags);
709
710 while (pages--)
711 if (map[pages]->index != 0) /* 0 is sb_page, release it below */
712 free_buffers(map[pages]);
713 kfree(map);
714 kfree(attr);
715
716 if (sb_page)
717 free_buffers(sb_page);
718 }
719
720 static void bitmap_file_put(struct bitmap *bitmap)
721 {
722 struct file *file;
723 unsigned long flags;
724
725 spin_lock_irqsave(&bitmap->lock, flags);
726 file = bitmap->file;
727 bitmap->file = NULL;
728 spin_unlock_irqrestore(&bitmap->lock, flags);
729
730 if (file)
731 wait_event(bitmap->write_wait,
732 atomic_read(&bitmap->pending_writes)==0);
733 bitmap_file_unmap(bitmap);
734
735 if (file) {
736 struct inode *inode = file->f_path.dentry->d_inode;
737 invalidate_mapping_pages(inode->i_mapping, 0, -1);
738 fput(file);
739 }
740 }
741
742
743 /*
744 * bitmap_file_kick - if an error occurs while manipulating the bitmap file
745 * then it is no longer reliable, so we stop using it and we mark the file
746 * as failed in the superblock
747 */
748 static void bitmap_file_kick(struct bitmap *bitmap)
749 {
750 char *path, *ptr = NULL;
751
752 if (bitmap_mask_state(bitmap, BITMAP_STALE, MASK_SET) == 0) {
753 bitmap_update_sb(bitmap);
754
755 if (bitmap->file) {
756 path = kmalloc(PAGE_SIZE, GFP_KERNEL);
757 if (path)
758 ptr = d_path(&bitmap->file->f_path, path,
759 PAGE_SIZE);
760
761
762 printk(KERN_ALERT
763 "%s: kicking failed bitmap file %s from array!\n",
764 bmname(bitmap), IS_ERR(ptr) ? "" : ptr);
765
766 kfree(path);
767 } else
768 printk(KERN_ALERT
769 "%s: disabling internal bitmap due to errors\n",
770 bmname(bitmap));
771 }
772
773 bitmap_file_put(bitmap);
774
775 return;
776 }
777
778 enum bitmap_page_attr {
779 BITMAP_PAGE_DIRTY = 0, // there are set bits that need to be synced
780 BITMAP_PAGE_CLEAN = 1, // there are bits that might need to be cleared
781 BITMAP_PAGE_NEEDWRITE=2, // there are cleared bits that need to be synced
782 };
783
784 static inline void set_page_attr(struct bitmap *bitmap, struct page *page,
785 enum bitmap_page_attr attr)
786 {
787 __set_bit((page->index<<2) + attr, bitmap->filemap_attr);
788 }
789
790 static inline void clear_page_attr(struct bitmap *bitmap, struct page *page,
791 enum bitmap_page_attr attr)
792 {
793 __clear_bit((page->index<<2) + attr, bitmap->filemap_attr);
794 }
795
796 static inline unsigned long test_page_attr(struct bitmap *bitmap, struct page *page,
797 enum bitmap_page_attr attr)
798 {
799 return test_bit((page->index<<2) + attr, bitmap->filemap_attr);
800 }
801
802 /*
803 * bitmap_file_set_bit -- called before performing a write to the md device
804 * to set (and eventually sync) a particular bit in the bitmap file
805 *
806 * we set the bit immediately, then we record the page number so that
807 * when an unplug occurs, we can flush the dirty pages out to disk
808 */
809 static void bitmap_file_set_bit(struct bitmap *bitmap, sector_t block)
810 {
811 unsigned long bit;
812 struct page *page;
813 void *kaddr;
814 unsigned long chunk = block >> CHUNK_BLOCK_SHIFT(bitmap);
815
816 if (!bitmap->filemap) {
817 return;
818 }
819
820 page = filemap_get_page(bitmap, chunk);
821 if (!page) return;
822 bit = file_page_offset(chunk);
823
824 /* set the bit */
825 kaddr = kmap_atomic(page, KM_USER0);
826 if (bitmap->flags & BITMAP_HOSTENDIAN)
827 set_bit(bit, kaddr);
828 else
829 ext2_set_bit(bit, kaddr);
830 kunmap_atomic(kaddr, KM_USER0);
831 PRINTK("set file bit %lu page %lu\n", bit, page->index);
832
833 /* record page number so it gets flushed to disk when unplug occurs */
834 set_page_attr(bitmap, page, BITMAP_PAGE_DIRTY);
835
836 }
837
838 /* this gets called when the md device is ready to unplug its underlying
839 * (slave) device queues -- before we let any writes go down, we need to
840 * sync the dirty pages of the bitmap file to disk */
841 void bitmap_unplug(struct bitmap *bitmap)
842 {
843 unsigned long i, flags;
844 int dirty, need_write;
845 struct page *page;
846 int wait = 0;
847
848 if (!bitmap)
849 return;
850
851 /* look at each page to see if there are any set bits that need to be
852 * flushed out to disk */
853 for (i = 0; i < bitmap->file_pages; i++) {
854 spin_lock_irqsave(&bitmap->lock, flags);
855 if (!bitmap->filemap) {
856 spin_unlock_irqrestore(&bitmap->lock, flags);
857 return;
858 }
859 page = bitmap->filemap[i];
860 dirty = test_page_attr(bitmap, page, BITMAP_PAGE_DIRTY);
861 need_write = test_page_attr(bitmap, page, BITMAP_PAGE_NEEDWRITE);
862 clear_page_attr(bitmap, page, BITMAP_PAGE_DIRTY);
863 clear_page_attr(bitmap, page, BITMAP_PAGE_NEEDWRITE);
864 if (dirty)
865 wait = 1;
866 spin_unlock_irqrestore(&bitmap->lock, flags);
867
868 if (dirty | need_write)
869 write_page(bitmap, page, 0);
870 }
871 if (wait) { /* if any writes were performed, we need to wait on them */
872 if (bitmap->file)
873 wait_event(bitmap->write_wait,
874 atomic_read(&bitmap->pending_writes)==0);
875 else
876 md_super_wait(bitmap->mddev);
877 }
878 if (bitmap->flags & BITMAP_WRITE_ERROR)
879 bitmap_file_kick(bitmap);
880 }
881
882 static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed);
883 /* * bitmap_init_from_disk -- called at bitmap_create time to initialize
884 * the in-memory bitmap from the on-disk bitmap -- also, sets up the
885 * memory mapping of the bitmap file
886 * Special cases:
887 * if there's no bitmap file, or if the bitmap file had been
888 * previously kicked from the array, we mark all the bits as
889 * 1's in order to cause a full resync.
890 *
891 * We ignore all bits for sectors that end earlier than 'start'.
892 * This is used when reading an out-of-date bitmap...
893 */
894 static int bitmap_init_from_disk(struct bitmap *bitmap, sector_t start)
895 {
896 unsigned long i, chunks, index, oldindex, bit;
897 struct page *page = NULL, *oldpage = NULL;
898 unsigned long num_pages, bit_cnt = 0;
899 struct file *file;
900 unsigned long bytes, offset;
901 int outofdate;
902 int ret = -ENOSPC;
903 void *paddr;
904
905 chunks = bitmap->chunks;
906 file = bitmap->file;
907
908 BUG_ON(!file && !bitmap->offset);
909
910 #ifdef INJECT_FAULTS_3
911 outofdate = 1;
912 #else
913 outofdate = bitmap->flags & BITMAP_STALE;
914 #endif
915 if (outofdate)
916 printk(KERN_INFO "%s: bitmap file is out of date, doing full "
917 "recovery\n", bmname(bitmap));
918
919 bytes = (chunks + 7) / 8;
920
921 num_pages = (bytes + sizeof(bitmap_super_t) + PAGE_SIZE - 1) / PAGE_SIZE;
922
923 if (file && i_size_read(file->f_mapping->host) < bytes + sizeof(bitmap_super_t)) {
924 printk(KERN_INFO "%s: bitmap file too short %lu < %lu\n",
925 bmname(bitmap),
926 (unsigned long) i_size_read(file->f_mapping->host),
927 bytes + sizeof(bitmap_super_t));
928 goto err;
929 }
930
931 ret = -ENOMEM;
932
933 bitmap->filemap = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
934 if (!bitmap->filemap)
935 goto err;
936
937 /* We need 4 bits per page, rounded up to a multiple of sizeof(unsigned long) */
938 bitmap->filemap_attr = kzalloc(
939 roundup( DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)),
940 GFP_KERNEL);
941 if (!bitmap->filemap_attr)
942 goto err;
943
944 oldindex = ~0L;
945
946 for (i = 0; i < chunks; i++) {
947 int b;
948 index = file_page_index(i);
949 bit = file_page_offset(i);
950 if (index != oldindex) { /* this is a new page, read it in */
951 int count;
952 /* unmap the old page, we're done with it */
953 if (index == num_pages-1)
954 count = bytes + sizeof(bitmap_super_t)
955 - index * PAGE_SIZE;
956 else
957 count = PAGE_SIZE;
958 if (index == 0) {
959 /*
960 * if we're here then the superblock page
961 * contains some bits (PAGE_SIZE != sizeof sb)
962 * we've already read it in, so just use it
963 */
964 page = bitmap->sb_page;
965 offset = sizeof(bitmap_super_t);
966 if (!file)
967 read_sb_page(bitmap->mddev,
968 bitmap->offset,
969 page,
970 index, count);
971 } else if (file) {
972 page = read_page(file, index, bitmap, count);
973 offset = 0;
974 } else {
975 page = read_sb_page(bitmap->mddev, bitmap->offset,
976 NULL,
977 index, count);
978 offset = 0;
979 }
980 if (IS_ERR(page)) { /* read error */
981 ret = PTR_ERR(page);
982 goto err;
983 }
984
985 oldindex = index;
986 oldpage = page;
987
988 if (outofdate) {
989 /*
990 * if bitmap is out of date, dirty the
991 * whole page and write it out
992 */
993 paddr = kmap_atomic(page, KM_USER0);
994 memset(paddr + offset, 0xff,
995 PAGE_SIZE - offset);
996 kunmap_atomic(paddr, KM_USER0);
997 write_page(bitmap, page, 1);
998
999 ret = -EIO;
1000 if (bitmap->flags & BITMAP_WRITE_ERROR) {
1001 /* release, page not in filemap yet */
1002 put_page(page);
1003 goto err;
1004 }
1005 }
1006
1007 bitmap->filemap[bitmap->file_pages++] = page;
1008 bitmap->last_page_size = count;
1009 }
1010 paddr = kmap_atomic(page, KM_USER0);
1011 if (bitmap->flags & BITMAP_HOSTENDIAN)
1012 b = test_bit(bit, paddr);
1013 else
1014 b = ext2_test_bit(bit, paddr);
1015 kunmap_atomic(paddr, KM_USER0);
1016 if (b) {
1017 /* if the disk bit is set, set the memory bit */
1018 bitmap_set_memory_bits(bitmap, i << CHUNK_BLOCK_SHIFT(bitmap),
1019 ((i+1) << (CHUNK_BLOCK_SHIFT(bitmap)) >= start)
1020 );
1021 bit_cnt++;
1022 set_page_attr(bitmap, page, BITMAP_PAGE_CLEAN);
1023 }
1024 }
1025
1026 /* everything went OK */
1027 ret = 0;
1028 bitmap_mask_state(bitmap, BITMAP_STALE, MASK_UNSET);
1029
1030 if (bit_cnt) { /* Kick recovery if any bits were set */
1031 set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery);
1032 md_wakeup_thread(bitmap->mddev->thread);
1033 }
1034
1035 printk(KERN_INFO "%s: bitmap initialized from disk: "
1036 "read %lu/%lu pages, set %lu bits\n",
1037 bmname(bitmap), bitmap->file_pages, num_pages, bit_cnt);
1038
1039 return 0;
1040
1041 err:
1042 printk(KERN_INFO "%s: bitmap initialisation failed: %d\n",
1043 bmname(bitmap), ret);
1044 return ret;
1045 }
1046
1047 void bitmap_write_all(struct bitmap *bitmap)
1048 {
1049 /* We don't actually write all bitmap blocks here,
1050 * just flag them as needing to be written
1051 */
1052 int i;
1053
1054 for (i=0; i < bitmap->file_pages; i++)
1055 set_page_attr(bitmap, bitmap->filemap[i],
1056 BITMAP_PAGE_NEEDWRITE);
1057 }
1058
1059
1060 static void bitmap_count_page(struct bitmap *bitmap, sector_t offset, int inc)
1061 {
1062 sector_t chunk = offset >> CHUNK_BLOCK_SHIFT(bitmap);
1063 unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
1064 bitmap->bp[page].count += inc;
1065 /*
1066 if (page == 0) printk("count page 0, offset %llu: %d gives %d\n",
1067 (unsigned long long)offset, inc, bitmap->bp[page].count);
1068 */
1069 bitmap_checkfree(bitmap, page);
1070 }
1071 static bitmap_counter_t *bitmap_get_counter(struct bitmap *bitmap,
1072 sector_t offset, int *blocks,
1073 int create);
1074
1075 /*
1076 * bitmap daemon -- periodically wakes up to clean bits and flush pages
1077 * out to disk
1078 */
1079
1080 void bitmap_daemon_work(struct bitmap *bitmap)
1081 {
1082 unsigned long j;
1083 unsigned long flags;
1084 struct page *page = NULL, *lastpage = NULL;
1085 int blocks;
1086 void *paddr;
1087
1088 if (bitmap == NULL)
1089 return;
1090 if (time_before(jiffies, bitmap->daemon_lastrun + bitmap->daemon_sleep*HZ))
1091 goto done;
1092
1093 bitmap->daemon_lastrun = jiffies;
1094 if (bitmap->allclean) {
1095 bitmap->mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
1096 return;
1097 }
1098 bitmap->allclean = 1;
1099
1100 for (j = 0; j < bitmap->chunks; j++) {
1101 bitmap_counter_t *bmc;
1102 spin_lock_irqsave(&bitmap->lock, flags);
1103 if (!bitmap->filemap) {
1104 /* error or shutdown */
1105 spin_unlock_irqrestore(&bitmap->lock, flags);
1106 break;
1107 }
1108
1109 page = filemap_get_page(bitmap, j);
1110
1111 if (page != lastpage) {
1112 /* skip this page unless it's marked as needing cleaning */
1113 if (!test_page_attr(bitmap, page, BITMAP_PAGE_CLEAN)) {
1114 int need_write = test_page_attr(bitmap, page,
1115 BITMAP_PAGE_NEEDWRITE);
1116 if (need_write)
1117 clear_page_attr(bitmap, page, BITMAP_PAGE_NEEDWRITE);
1118
1119 spin_unlock_irqrestore(&bitmap->lock, flags);
1120 if (need_write) {
1121 write_page(bitmap, page, 0);
1122 bitmap->allclean = 0;
1123 }
1124 continue;
1125 }
1126
1127 /* grab the new page, sync and release the old */
1128 if (lastpage != NULL) {
1129 if (test_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE)) {
1130 clear_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE);
1131 spin_unlock_irqrestore(&bitmap->lock, flags);
1132 write_page(bitmap, lastpage, 0);
1133 } else {
1134 set_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE);
1135 spin_unlock_irqrestore(&bitmap->lock, flags);
1136 }
1137 } else
1138 spin_unlock_irqrestore(&bitmap->lock, flags);
1139 lastpage = page;
1140
1141 /* We are possibly going to clear some bits, so make
1142 * sure that events_cleared is up-to-date.
1143 */
1144 if (bitmap->need_sync) {
1145 bitmap_super_t *sb;
1146 bitmap->need_sync = 0;
1147 sb = kmap_atomic(bitmap->sb_page, KM_USER0);
1148 sb->events_cleared =
1149 cpu_to_le64(bitmap->events_cleared);
1150 kunmap_atomic(sb, KM_USER0);
1151 write_page(bitmap, bitmap->sb_page, 1);
1152 }
1153 spin_lock_irqsave(&bitmap->lock, flags);
1154 clear_page_attr(bitmap, page, BITMAP_PAGE_CLEAN);
1155 }
1156 bmc = bitmap_get_counter(bitmap, j << CHUNK_BLOCK_SHIFT(bitmap),
1157 &blocks, 0);
1158 if (bmc) {
1159 /*
1160 if (j < 100) printk("bitmap: j=%lu, *bmc = 0x%x\n", j, *bmc);
1161 */
1162 if (*bmc)
1163 bitmap->allclean = 0;
1164
1165 if (*bmc == 2) {
1166 *bmc=1; /* maybe clear the bit next time */
1167 set_page_attr(bitmap, page, BITMAP_PAGE_CLEAN);
1168 } else if (*bmc == 1) {
1169 /* we can clear the bit */
1170 *bmc = 0;
1171 bitmap_count_page(bitmap, j << CHUNK_BLOCK_SHIFT(bitmap),
1172 -1);
1173
1174 /* clear the bit */
1175 paddr = kmap_atomic(page, KM_USER0);
1176 if (bitmap->flags & BITMAP_HOSTENDIAN)
1177 clear_bit(file_page_offset(j), paddr);
1178 else
1179 ext2_clear_bit(file_page_offset(j), paddr);
1180 kunmap_atomic(paddr, KM_USER0);
1181 }
1182 }
1183 spin_unlock_irqrestore(&bitmap->lock, flags);
1184 }
1185
1186 /* now sync the final page */
1187 if (lastpage != NULL) {
1188 spin_lock_irqsave(&bitmap->lock, flags);
1189 if (test_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE)) {
1190 clear_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE);
1191 spin_unlock_irqrestore(&bitmap->lock, flags);
1192 write_page(bitmap, lastpage, 0);
1193 } else {
1194 set_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE);
1195 spin_unlock_irqrestore(&bitmap->lock, flags);
1196 }
1197 }
1198
1199 done:
1200 if (bitmap->allclean == 0)
1201 bitmap->mddev->thread->timeout = bitmap->daemon_sleep * HZ;
1202 }
1203
1204 static bitmap_counter_t *bitmap_get_counter(struct bitmap *bitmap,
1205 sector_t offset, int *blocks,
1206 int create)
1207 {
1208 /* If 'create', we might release the lock and reclaim it.
1209 * The lock must have been taken with interrupts enabled.
1210 * If !create, we don't release the lock.
1211 */
1212 sector_t chunk = offset >> CHUNK_BLOCK_SHIFT(bitmap);
1213 unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
1214 unsigned long pageoff = (chunk & PAGE_COUNTER_MASK) << COUNTER_BYTE_SHIFT;
1215 sector_t csize;
1216
1217 if (bitmap_checkpage(bitmap, page, create) < 0) {
1218 csize = ((sector_t)1) << (CHUNK_BLOCK_SHIFT(bitmap));
1219 *blocks = csize - (offset & (csize- 1));
1220 return NULL;
1221 }
1222 /* now locked ... */
1223
1224 if (bitmap->bp[page].hijacked) { /* hijacked pointer */
1225 /* should we use the first or second counter field
1226 * of the hijacked pointer? */
1227 int hi = (pageoff > PAGE_COUNTER_MASK);
1228 csize = ((sector_t)1) << (CHUNK_BLOCK_SHIFT(bitmap) +
1229 PAGE_COUNTER_SHIFT - 1);
1230 *blocks = csize - (offset & (csize- 1));
1231 return &((bitmap_counter_t *)
1232 &bitmap->bp[page].map)[hi];
1233 } else { /* page is allocated */
1234 csize = ((sector_t)1) << (CHUNK_BLOCK_SHIFT(bitmap));
1235 *blocks = csize - (offset & (csize- 1));
1236 return (bitmap_counter_t *)
1237 &(bitmap->bp[page].map[pageoff]);
1238 }
1239 }
1240
1241 int bitmap_startwrite(struct bitmap *bitmap, sector_t offset, unsigned long sectors, int behind)
1242 {
1243 if (!bitmap) return 0;
1244
1245 if (behind) {
1246 atomic_inc(&bitmap->behind_writes);
1247 PRINTK(KERN_DEBUG "inc write-behind count %d/%d\n",
1248 atomic_read(&bitmap->behind_writes), bitmap->max_write_behind);
1249 }
1250
1251 while (sectors) {
1252 int blocks;
1253 bitmap_counter_t *bmc;
1254
1255 spin_lock_irq(&bitmap->lock);
1256 bmc = bitmap_get_counter(bitmap, offset, &blocks, 1);
1257 if (!bmc) {
1258 spin_unlock_irq(&bitmap->lock);
1259 return 0;
1260 }
1261
1262 if (unlikely((*bmc & COUNTER_MAX) == COUNTER_MAX)) {
1263 DEFINE_WAIT(__wait);
1264 /* note that it is safe to do the prepare_to_wait
1265 * after the test as long as we do it before dropping
1266 * the spinlock.
1267 */
1268 prepare_to_wait(&bitmap->overflow_wait, &__wait,
1269 TASK_UNINTERRUPTIBLE);
1270 spin_unlock_irq(&bitmap->lock);
1271 blk_unplug(bitmap->mddev->queue);
1272 schedule();
1273 finish_wait(&bitmap->overflow_wait, &__wait);
1274 continue;
1275 }
1276
1277 switch(*bmc) {
1278 case 0:
1279 bitmap_file_set_bit(bitmap, offset);
1280 bitmap_count_page(bitmap,offset, 1);
1281 blk_plug_device_unlocked(bitmap->mddev->queue);
1282 /* fall through */
1283 case 1:
1284 *bmc = 2;
1285 }
1286
1287 (*bmc)++;
1288
1289 spin_unlock_irq(&bitmap->lock);
1290
1291 offset += blocks;
1292 if (sectors > blocks)
1293 sectors -= blocks;
1294 else sectors = 0;
1295 }
1296 bitmap->allclean = 0;
1297 return 0;
1298 }
1299
1300 void bitmap_endwrite(struct bitmap *bitmap, sector_t offset, unsigned long sectors,
1301 int success, int behind)
1302 {
1303 if (!bitmap) return;
1304 if (behind) {
1305 atomic_dec(&bitmap->behind_writes);
1306 PRINTK(KERN_DEBUG "dec write-behind count %d/%d\n",
1307 atomic_read(&bitmap->behind_writes), bitmap->max_write_behind);
1308 }
1309
1310 while (sectors) {
1311 int blocks;
1312 unsigned long flags;
1313 bitmap_counter_t *bmc;
1314
1315 spin_lock_irqsave(&bitmap->lock, flags);
1316 bmc = bitmap_get_counter(bitmap, offset, &blocks, 0);
1317 if (!bmc) {
1318 spin_unlock_irqrestore(&bitmap->lock, flags);
1319 return;
1320 }
1321
1322 if (success &&
1323 bitmap->events_cleared < bitmap->mddev->events) {
1324 bitmap->events_cleared = bitmap->mddev->events;
1325 bitmap->need_sync = 1;
1326 }
1327
1328 if (!success && ! (*bmc & NEEDED_MASK))
1329 *bmc |= NEEDED_MASK;
1330
1331 if ((*bmc & COUNTER_MAX) == COUNTER_MAX)
1332 wake_up(&bitmap->overflow_wait);
1333
1334 (*bmc)--;
1335 if (*bmc <= 2) {
1336 set_page_attr(bitmap,
1337 filemap_get_page(bitmap, offset >> CHUNK_BLOCK_SHIFT(bitmap)),
1338 BITMAP_PAGE_CLEAN);
1339 }
1340 spin_unlock_irqrestore(&bitmap->lock, flags);
1341 offset += blocks;
1342 if (sectors > blocks)
1343 sectors -= blocks;
1344 else sectors = 0;
1345 }
1346 }
1347
1348 int bitmap_start_sync(struct bitmap *bitmap, sector_t offset, int *blocks,
1349 int degraded)
1350 {
1351 bitmap_counter_t *bmc;
1352 int rv;
1353 if (bitmap == NULL) {/* FIXME or bitmap set as 'failed' */
1354 *blocks = 1024;
1355 return 1; /* always resync if no bitmap */
1356 }
1357 spin_lock_irq(&bitmap->lock);
1358 bmc = bitmap_get_counter(bitmap, offset, blocks, 0);
1359 rv = 0;
1360 if (bmc) {
1361 /* locked */
1362 if (RESYNC(*bmc))
1363 rv = 1;
1364 else if (NEEDED(*bmc)) {
1365 rv = 1;
1366 if (!degraded) { /* don't set/clear bits if degraded */
1367 *bmc |= RESYNC_MASK;
1368 *bmc &= ~NEEDED_MASK;
1369 }
1370 }
1371 }
1372 spin_unlock_irq(&bitmap->lock);
1373 bitmap->allclean = 0;
1374 return rv;
1375 }
1376
1377 void bitmap_end_sync(struct bitmap *bitmap, sector_t offset, int *blocks, int aborted)
1378 {
1379 bitmap_counter_t *bmc;
1380 unsigned long flags;
1381 /*
1382 if (offset == 0) printk("bitmap_end_sync 0 (%d)\n", aborted);
1383 */ if (bitmap == NULL) {
1384 *blocks = 1024;
1385 return;
1386 }
1387 spin_lock_irqsave(&bitmap->lock, flags);
1388 bmc = bitmap_get_counter(bitmap, offset, blocks, 0);
1389 if (bmc == NULL)
1390 goto unlock;
1391 /* locked */
1392 /*
1393 if (offset == 0) printk("bitmap_end sync found 0x%x, blocks %d\n", *bmc, *blocks);
1394 */
1395 if (RESYNC(*bmc)) {
1396 *bmc &= ~RESYNC_MASK;
1397
1398 if (!NEEDED(*bmc) && aborted)
1399 *bmc |= NEEDED_MASK;
1400 else {
1401 if (*bmc <= 2) {
1402 set_page_attr(bitmap,
1403 filemap_get_page(bitmap, offset >> CHUNK_BLOCK_SHIFT(bitmap)),
1404 BITMAP_PAGE_CLEAN);
1405 }
1406 }
1407 }
1408 unlock:
1409 spin_unlock_irqrestore(&bitmap->lock, flags);
1410 bitmap->allclean = 0;
1411 }
1412
1413 void bitmap_close_sync(struct bitmap *bitmap)
1414 {
1415 /* Sync has finished, and any bitmap chunks that weren't synced
1416 * properly have been aborted. It remains to us to clear the
1417 * RESYNC bit wherever it is still on
1418 */
1419 sector_t sector = 0;
1420 int blocks;
1421 if (!bitmap)
1422 return;
1423 while (sector < bitmap->mddev->resync_max_sectors) {
1424 bitmap_end_sync(bitmap, sector, &blocks, 0);
1425 sector += blocks;
1426 }
1427 }
1428
1429 void bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector)
1430 {
1431 sector_t s = 0;
1432 int blocks;
1433
1434 if (!bitmap)
1435 return;
1436 if (sector == 0) {
1437 bitmap->last_end_sync = jiffies;
1438 return;
1439 }
1440 if (time_before(jiffies, (bitmap->last_end_sync
1441 + bitmap->daemon_sleep * HZ)))
1442 return;
1443 wait_event(bitmap->mddev->recovery_wait,
1444 atomic_read(&bitmap->mddev->recovery_active) == 0);
1445
1446 sector &= ~((1ULL << CHUNK_BLOCK_SHIFT(bitmap)) - 1);
1447 s = 0;
1448 while (s < sector && s < bitmap->mddev->resync_max_sectors) {
1449 bitmap_end_sync(bitmap, s, &blocks, 0);
1450 s += blocks;
1451 }
1452 bitmap->last_end_sync = jiffies;
1453 }
1454
1455 static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed)
1456 {
1457 /* For each chunk covered by any of these sectors, set the
1458 * counter to 1 and set resync_needed. They should all
1459 * be 0 at this point
1460 */
1461
1462 int secs;
1463 bitmap_counter_t *bmc;
1464 spin_lock_irq(&bitmap->lock);
1465 bmc = bitmap_get_counter(bitmap, offset, &secs, 1);
1466 if (!bmc) {
1467 spin_unlock_irq(&bitmap->lock);
1468 return;
1469 }
1470 if (! *bmc) {
1471 struct page *page;
1472 *bmc = 1 | (needed?NEEDED_MASK:0);
1473 bitmap_count_page(bitmap, offset, 1);
1474 page = filemap_get_page(bitmap, offset >> CHUNK_BLOCK_SHIFT(bitmap));
1475 set_page_attr(bitmap, page, BITMAP_PAGE_CLEAN);
1476 }
1477 spin_unlock_irq(&bitmap->lock);
1478 bitmap->allclean = 0;
1479 }
1480
1481 /* dirty the memory and file bits for bitmap chunks "s" to "e" */
1482 void bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e)
1483 {
1484 unsigned long chunk;
1485
1486 for (chunk = s; chunk <= e; chunk++) {
1487 sector_t sec = chunk << CHUNK_BLOCK_SHIFT(bitmap);
1488 bitmap_set_memory_bits(bitmap, sec, 1);
1489 bitmap_file_set_bit(bitmap, sec);
1490 }
1491 }
1492
1493 /*
1494 * flush out any pending updates
1495 */
1496 void bitmap_flush(mddev_t *mddev)
1497 {
1498 struct bitmap *bitmap = mddev->bitmap;
1499 int sleep;
1500
1501 if (!bitmap) /* there was no bitmap */
1502 return;
1503
1504 /* run the daemon_work three time to ensure everything is flushed
1505 * that can be
1506 */
1507 sleep = bitmap->daemon_sleep;
1508 bitmap->daemon_sleep = 0;
1509 bitmap_daemon_work(bitmap);
1510 bitmap_daemon_work(bitmap);
1511 bitmap_daemon_work(bitmap);
1512 bitmap->daemon_sleep = sleep;
1513 bitmap_update_sb(bitmap);
1514 }
1515
1516 /*
1517 * free memory that was allocated
1518 */
1519 static void bitmap_free(struct bitmap *bitmap)
1520 {
1521 unsigned long k, pages;
1522 struct bitmap_page *bp;
1523
1524 if (!bitmap) /* there was no bitmap */
1525 return;
1526
1527 /* release the bitmap file and kill the daemon */
1528 bitmap_file_put(bitmap);
1529
1530 bp = bitmap->bp;
1531 pages = bitmap->pages;
1532
1533 /* free all allocated memory */
1534
1535 if (bp) /* deallocate the page memory */
1536 for (k = 0; k < pages; k++)
1537 if (bp[k].map && !bp[k].hijacked)
1538 kfree(bp[k].map);
1539 kfree(bp);
1540 kfree(bitmap);
1541 }
1542 void bitmap_destroy(mddev_t *mddev)
1543 {
1544 struct bitmap *bitmap = mddev->bitmap;
1545
1546 if (!bitmap) /* there was no bitmap */
1547 return;
1548
1549 mddev->bitmap = NULL; /* disconnect from the md device */
1550 if (mddev->thread)
1551 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
1552
1553 bitmap_free(bitmap);
1554 }
1555
1556 /*
1557 * initialize the bitmap structure
1558 * if this returns an error, bitmap_destroy must be called to do clean up
1559 */
1560 int bitmap_create(mddev_t *mddev)
1561 {
1562 struct bitmap *bitmap;
1563 unsigned long blocks = mddev->resync_max_sectors;
1564 unsigned long chunks;
1565 unsigned long pages;
1566 struct file *file = mddev->bitmap_file;
1567 int err;
1568 sector_t start;
1569
1570 BUILD_BUG_ON(sizeof(bitmap_super_t) != 256);
1571
1572 if (!file && !mddev->bitmap_offset) /* bitmap disabled, nothing to do */
1573 return 0;
1574
1575 BUG_ON(file && mddev->bitmap_offset);
1576
1577 bitmap = kzalloc(sizeof(*bitmap), GFP_KERNEL);
1578 if (!bitmap)
1579 return -ENOMEM;
1580
1581 spin_lock_init(&bitmap->lock);
1582 atomic_set(&bitmap->pending_writes, 0);
1583 init_waitqueue_head(&bitmap->write_wait);
1584 init_waitqueue_head(&bitmap->overflow_wait);
1585
1586 bitmap->mddev = mddev;
1587
1588 bitmap->file = file;
1589 bitmap->offset = mddev->bitmap_offset;
1590 if (file) {
1591 get_file(file);
1592 do_sync_mapping_range(file->f_mapping, 0, LLONG_MAX,
1593 SYNC_FILE_RANGE_WAIT_BEFORE |
1594 SYNC_FILE_RANGE_WRITE |
1595 SYNC_FILE_RANGE_WAIT_AFTER);
1596 }
1597 /* read superblock from bitmap file (this sets bitmap->chunksize) */
1598 err = bitmap_read_sb(bitmap);
1599 if (err)
1600 goto error;
1601
1602 bitmap->chunkshift = ffz(~bitmap->chunksize);
1603
1604 /* now that chunksize and chunkshift are set, we can use these macros */
1605 chunks = (blocks + CHUNK_BLOCK_RATIO(bitmap) - 1) /
1606 CHUNK_BLOCK_RATIO(bitmap);
1607 pages = (chunks + PAGE_COUNTER_RATIO - 1) / PAGE_COUNTER_RATIO;
1608
1609 BUG_ON(!pages);
1610
1611 bitmap->chunks = chunks;
1612 bitmap->pages = pages;
1613 bitmap->missing_pages = pages;
1614 bitmap->counter_bits = COUNTER_BITS;
1615
1616 bitmap->syncchunk = ~0UL;
1617
1618 #ifdef INJECT_FATAL_FAULT_1
1619 bitmap->bp = NULL;
1620 #else
1621 bitmap->bp = kzalloc(pages * sizeof(*bitmap->bp), GFP_KERNEL);
1622 #endif
1623 err = -ENOMEM;
1624 if (!bitmap->bp)
1625 goto error;
1626
1627 /* now that we have some pages available, initialize the in-memory
1628 * bitmap from the on-disk bitmap */
1629 start = 0;
1630 if (mddev->degraded == 0
1631 || bitmap->events_cleared == mddev->events)
1632 /* no need to keep dirty bits to optimise a re-add of a missing device */
1633 start = mddev->recovery_cp;
1634 err = bitmap_init_from_disk(bitmap, start);
1635
1636 if (err)
1637 goto error;
1638
1639 printk(KERN_INFO "created bitmap (%lu pages) for device %s\n",
1640 pages, bmname(bitmap));
1641
1642 mddev->bitmap = bitmap;
1643
1644 mddev->thread->timeout = bitmap->daemon_sleep * HZ;
1645
1646 bitmap_update_sb(bitmap);
1647
1648 return (bitmap->flags & BITMAP_WRITE_ERROR) ? -EIO : 0;
1649
1650 error:
1651 bitmap_free(bitmap);
1652 return err;
1653 }
1654
1655 /* the bitmap API -- for raid personalities */
1656 EXPORT_SYMBOL(bitmap_startwrite);
1657 EXPORT_SYMBOL(bitmap_endwrite);
1658 EXPORT_SYMBOL(bitmap_start_sync);
1659 EXPORT_SYMBOL(bitmap_end_sync);
1660 EXPORT_SYMBOL(bitmap_unplug);
1661 EXPORT_SYMBOL(bitmap_close_sync);
1662 EXPORT_SYMBOL(bitmap_cond_end_sync);