Merge branch 'for-3.14/core' of git://git.kernel.dk/linux-block
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / md / bcache / request.c
1 /*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/cgroup.h>
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include "blk-cgroup.h"
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *);
29
30 /* Cgroup interface */
31
32 #ifdef CONFIG_CGROUP_BCACHE
33 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36 {
37 struct cgroup_subsys_state *css;
38 return cgroup &&
39 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40 ? container_of(css, struct bch_cgroup, css)
41 : &bcache_default_cgroup;
42 }
43
44 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45 {
46 struct cgroup_subsys_state *css = bio->bi_css
47 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48 : task_subsys_state(current, bcache_subsys_id);
49
50 return css
51 ? container_of(css, struct bch_cgroup, css)
52 : &bcache_default_cgroup;
53 }
54
55 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56 struct file *file,
57 char __user *buf, size_t nbytes, loff_t *ppos)
58 {
59 char tmp[1024];
60 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61 cgroup_to_bcache(cgrp)->cache_mode + 1);
62
63 if (len < 0)
64 return len;
65
66 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67 }
68
69 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70 const char *buf)
71 {
72 int v = bch_read_string_list(buf, bch_cache_modes);
73 if (v < 0)
74 return v;
75
76 cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77 return 0;
78 }
79
80 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81 {
82 return cgroup_to_bcache(cgrp)->verify;
83 }
84
85 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86 {
87 cgroup_to_bcache(cgrp)->verify = val;
88 return 0;
89 }
90
91 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92 {
93 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94 return atomic_read(&bcachecg->stats.cache_hits);
95 }
96
97 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98 {
99 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100 return atomic_read(&bcachecg->stats.cache_misses);
101 }
102
103 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104 struct cftype *cft)
105 {
106 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107 return atomic_read(&bcachecg->stats.cache_bypass_hits);
108 }
109
110 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111 struct cftype *cft)
112 {
113 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114 return atomic_read(&bcachecg->stats.cache_bypass_misses);
115 }
116
117 static struct cftype bch_files[] = {
118 {
119 .name = "cache_mode",
120 .read = cache_mode_read,
121 .write_string = cache_mode_write,
122 },
123 {
124 .name = "verify",
125 .read_u64 = bch_verify_read,
126 .write_u64 = bch_verify_write,
127 },
128 {
129 .name = "cache_hits",
130 .read_u64 = bch_cache_hits_read,
131 },
132 {
133 .name = "cache_misses",
134 .read_u64 = bch_cache_misses_read,
135 },
136 {
137 .name = "cache_bypass_hits",
138 .read_u64 = bch_cache_bypass_hits_read,
139 },
140 {
141 .name = "cache_bypass_misses",
142 .read_u64 = bch_cache_bypass_misses_read,
143 },
144 { } /* terminate */
145 };
146
147 static void init_bch_cgroup(struct bch_cgroup *cg)
148 {
149 cg->cache_mode = -1;
150 }
151
152 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153 {
154 struct bch_cgroup *cg;
155
156 cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157 if (!cg)
158 return ERR_PTR(-ENOMEM);
159 init_bch_cgroup(cg);
160 return &cg->css;
161 }
162
163 static void bcachecg_destroy(struct cgroup *cgroup)
164 {
165 struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166 kfree(cg);
167 }
168
169 struct cgroup_subsys bcache_subsys = {
170 .create = bcachecg_create,
171 .destroy = bcachecg_destroy,
172 .subsys_id = bcache_subsys_id,
173 .name = "bcache",
174 .module = THIS_MODULE,
175 };
176 EXPORT_SYMBOL_GPL(bcache_subsys);
177 #endif
178
179 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
180 {
181 #ifdef CONFIG_CGROUP_BCACHE
182 int r = bch_bio_to_cgroup(bio)->cache_mode;
183 if (r >= 0)
184 return r;
185 #endif
186 return BDEV_CACHE_MODE(&dc->sb);
187 }
188
189 static bool verify(struct cached_dev *dc, struct bio *bio)
190 {
191 #ifdef CONFIG_CGROUP_BCACHE
192 if (bch_bio_to_cgroup(bio)->verify)
193 return true;
194 #endif
195 return dc->verify;
196 }
197
198 static void bio_csum(struct bio *bio, struct bkey *k)
199 {
200 struct bio_vec bv;
201 struct bvec_iter iter;
202 uint64_t csum = 0;
203
204 bio_for_each_segment(bv, bio, iter) {
205 void *d = kmap(bv.bv_page) + bv.bv_offset;
206 csum = bch_crc64_update(csum, d, bv.bv_len);
207 kunmap(bv.bv_page);
208 }
209
210 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
211 }
212
213 /* Insert data into cache */
214
215 static void bch_data_insert_keys(struct closure *cl)
216 {
217 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
218 atomic_t *journal_ref = NULL;
219 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
220 int ret;
221
222 /*
223 * If we're looping, might already be waiting on
224 * another journal write - can't wait on more than one journal write at
225 * a time
226 *
227 * XXX: this looks wrong
228 */
229 #if 0
230 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
231 closure_sync(&s->cl);
232 #endif
233
234 if (!op->replace)
235 journal_ref = bch_journal(op->c, &op->insert_keys,
236 op->flush_journal ? cl : NULL);
237
238 ret = bch_btree_insert(op->c, &op->insert_keys,
239 journal_ref, replace_key);
240 if (ret == -ESRCH) {
241 op->replace_collision = true;
242 } else if (ret) {
243 op->error = -ENOMEM;
244 op->insert_data_done = true;
245 }
246
247 if (journal_ref)
248 atomic_dec_bug(journal_ref);
249
250 if (!op->insert_data_done)
251 continue_at(cl, bch_data_insert_start, bcache_wq);
252
253 bch_keylist_free(&op->insert_keys);
254 closure_return(cl);
255 }
256
257 static void bch_data_invalidate(struct closure *cl)
258 {
259 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
260 struct bio *bio = op->bio;
261
262 pr_debug("invalidating %i sectors from %llu",
263 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
264
265 while (bio_sectors(bio)) {
266 unsigned sectors = min(bio_sectors(bio),
267 1U << (KEY_SIZE_BITS - 1));
268
269 if (bch_keylist_realloc(&op->insert_keys, 0, op->c))
270 goto out;
271
272 bio->bi_iter.bi_sector += sectors;
273 bio->bi_iter.bi_size -= sectors << 9;
274
275 bch_keylist_add(&op->insert_keys,
276 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
277 }
278
279 op->insert_data_done = true;
280 bio_put(bio);
281 out:
282 continue_at(cl, bch_data_insert_keys, bcache_wq);
283 }
284
285 static void bch_data_insert_error(struct closure *cl)
286 {
287 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
288
289 /*
290 * Our data write just errored, which means we've got a bunch of keys to
291 * insert that point to data that wasn't succesfully written.
292 *
293 * We don't have to insert those keys but we still have to invalidate
294 * that region of the cache - so, if we just strip off all the pointers
295 * from the keys we'll accomplish just that.
296 */
297
298 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
299
300 while (src != op->insert_keys.top) {
301 struct bkey *n = bkey_next(src);
302
303 SET_KEY_PTRS(src, 0);
304 memmove(dst, src, bkey_bytes(src));
305
306 dst = bkey_next(dst);
307 src = n;
308 }
309
310 op->insert_keys.top = dst;
311
312 bch_data_insert_keys(cl);
313 }
314
315 static void bch_data_insert_endio(struct bio *bio, int error)
316 {
317 struct closure *cl = bio->bi_private;
318 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
319
320 if (error) {
321 /* TODO: We could try to recover from this. */
322 if (op->writeback)
323 op->error = error;
324 else if (!op->replace)
325 set_closure_fn(cl, bch_data_insert_error, bcache_wq);
326 else
327 set_closure_fn(cl, NULL, NULL);
328 }
329
330 bch_bbio_endio(op->c, bio, error, "writing data to cache");
331 }
332
333 static void bch_data_insert_start(struct closure *cl)
334 {
335 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
336 struct bio *bio = op->bio, *n;
337
338 if (op->bypass)
339 return bch_data_invalidate(cl);
340
341 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
342 set_gc_sectors(op->c);
343 wake_up_gc(op->c);
344 }
345
346 /*
347 * Journal writes are marked REQ_FLUSH; if the original write was a
348 * flush, it'll wait on the journal write.
349 */
350 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
351
352 do {
353 unsigned i;
354 struct bkey *k;
355 struct bio_set *split = op->c->bio_split;
356
357 /* 1 for the device pointer and 1 for the chksum */
358 if (bch_keylist_realloc(&op->insert_keys,
359 1 + (op->csum ? 1 : 0),
360 op->c))
361 continue_at(cl, bch_data_insert_keys, bcache_wq);
362
363 k = op->insert_keys.top;
364 bkey_init(k);
365 SET_KEY_INODE(k, op->inode);
366 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
367
368 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
369 op->write_point, op->write_prio,
370 op->writeback))
371 goto err;
372
373 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
374
375 n->bi_end_io = bch_data_insert_endio;
376 n->bi_private = cl;
377
378 if (op->writeback) {
379 SET_KEY_DIRTY(k, true);
380
381 for (i = 0; i < KEY_PTRS(k); i++)
382 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
383 GC_MARK_DIRTY);
384 }
385
386 SET_KEY_CSUM(k, op->csum);
387 if (KEY_CSUM(k))
388 bio_csum(n, k);
389
390 trace_bcache_cache_insert(k);
391 bch_keylist_push(&op->insert_keys);
392
393 n->bi_rw |= REQ_WRITE;
394 bch_submit_bbio(n, op->c, k, 0);
395 } while (n != bio);
396
397 op->insert_data_done = true;
398 continue_at(cl, bch_data_insert_keys, bcache_wq);
399 err:
400 /* bch_alloc_sectors() blocks if s->writeback = true */
401 BUG_ON(op->writeback);
402
403 /*
404 * But if it's not a writeback write we'd rather just bail out if
405 * there aren't any buckets ready to write to - it might take awhile and
406 * we might be starving btree writes for gc or something.
407 */
408
409 if (!op->replace) {
410 /*
411 * Writethrough write: We can't complete the write until we've
412 * updated the index. But we don't want to delay the write while
413 * we wait for buckets to be freed up, so just invalidate the
414 * rest of the write.
415 */
416 op->bypass = true;
417 return bch_data_invalidate(cl);
418 } else {
419 /*
420 * From a cache miss, we can just insert the keys for the data
421 * we have written or bail out if we didn't do anything.
422 */
423 op->insert_data_done = true;
424 bio_put(bio);
425
426 if (!bch_keylist_empty(&op->insert_keys))
427 continue_at(cl, bch_data_insert_keys, bcache_wq);
428 else
429 closure_return(cl);
430 }
431 }
432
433 /**
434 * bch_data_insert - stick some data in the cache
435 *
436 * This is the starting point for any data to end up in a cache device; it could
437 * be from a normal write, or a writeback write, or a write to a flash only
438 * volume - it's also used by the moving garbage collector to compact data in
439 * mostly empty buckets.
440 *
441 * It first writes the data to the cache, creating a list of keys to be inserted
442 * (if the data had to be fragmented there will be multiple keys); after the
443 * data is written it calls bch_journal, and after the keys have been added to
444 * the next journal write they're inserted into the btree.
445 *
446 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
447 * and op->inode is used for the key inode.
448 *
449 * If s->bypass is true, instead of inserting the data it invalidates the
450 * region of the cache represented by s->cache_bio and op->inode.
451 */
452 void bch_data_insert(struct closure *cl)
453 {
454 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
455
456 trace_bcache_write(op->bio, op->writeback, op->bypass);
457
458 bch_keylist_init(&op->insert_keys);
459 bio_get(op->bio);
460 bch_data_insert_start(cl);
461 }
462
463 /* Congested? */
464
465 unsigned bch_get_congested(struct cache_set *c)
466 {
467 int i;
468 long rand;
469
470 if (!c->congested_read_threshold_us &&
471 !c->congested_write_threshold_us)
472 return 0;
473
474 i = (local_clock_us() - c->congested_last_us) / 1024;
475 if (i < 0)
476 return 0;
477
478 i += atomic_read(&c->congested);
479 if (i >= 0)
480 return 0;
481
482 i += CONGESTED_MAX;
483
484 if (i > 0)
485 i = fract_exp_two(i, 6);
486
487 rand = get_random_int();
488 i -= bitmap_weight(&rand, BITS_PER_LONG);
489
490 return i > 0 ? i : 1;
491 }
492
493 static void add_sequential(struct task_struct *t)
494 {
495 ewma_add(t->sequential_io_avg,
496 t->sequential_io, 8, 0);
497
498 t->sequential_io = 0;
499 }
500
501 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
502 {
503 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
504 }
505
506 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
507 {
508 struct cache_set *c = dc->disk.c;
509 unsigned mode = cache_mode(dc, bio);
510 unsigned sectors, congested = bch_get_congested(c);
511 struct task_struct *task = current;
512 struct io *i;
513
514 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
515 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
516 (bio->bi_rw & REQ_DISCARD))
517 goto skip;
518
519 if (mode == CACHE_MODE_NONE ||
520 (mode == CACHE_MODE_WRITEAROUND &&
521 (bio->bi_rw & REQ_WRITE)))
522 goto skip;
523
524 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
525 bio_sectors(bio) & (c->sb.block_size - 1)) {
526 pr_debug("skipping unaligned io");
527 goto skip;
528 }
529
530 if (bypass_torture_test(dc)) {
531 if ((get_random_int() & 3) == 3)
532 goto skip;
533 else
534 goto rescale;
535 }
536
537 if (!congested && !dc->sequential_cutoff)
538 goto rescale;
539
540 if (!congested &&
541 mode == CACHE_MODE_WRITEBACK &&
542 (bio->bi_rw & REQ_WRITE) &&
543 (bio->bi_rw & REQ_SYNC))
544 goto rescale;
545
546 spin_lock(&dc->io_lock);
547
548 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
549 if (i->last == bio->bi_iter.bi_sector &&
550 time_before(jiffies, i->jiffies))
551 goto found;
552
553 i = list_first_entry(&dc->io_lru, struct io, lru);
554
555 add_sequential(task);
556 i->sequential = 0;
557 found:
558 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
559 i->sequential += bio->bi_iter.bi_size;
560
561 i->last = bio_end_sector(bio);
562 i->jiffies = jiffies + msecs_to_jiffies(5000);
563 task->sequential_io = i->sequential;
564
565 hlist_del(&i->hash);
566 hlist_add_head(&i->hash, iohash(dc, i->last));
567 list_move_tail(&i->lru, &dc->io_lru);
568
569 spin_unlock(&dc->io_lock);
570
571 sectors = max(task->sequential_io,
572 task->sequential_io_avg) >> 9;
573
574 if (dc->sequential_cutoff &&
575 sectors >= dc->sequential_cutoff >> 9) {
576 trace_bcache_bypass_sequential(bio);
577 goto skip;
578 }
579
580 if (congested && sectors >= congested) {
581 trace_bcache_bypass_congested(bio);
582 goto skip;
583 }
584
585 rescale:
586 bch_rescale_priorities(c, bio_sectors(bio));
587 return false;
588 skip:
589 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
590 return true;
591 }
592
593 /* Cache lookup */
594
595 struct search {
596 /* Stack frame for bio_complete */
597 struct closure cl;
598
599 struct bcache_device *d;
600
601 struct bbio bio;
602 struct bio *orig_bio;
603 struct bio *cache_miss;
604
605 unsigned insert_bio_sectors;
606
607 unsigned recoverable:1;
608 unsigned write:1;
609 unsigned read_dirty_data:1;
610
611 unsigned long start_time;
612
613 struct btree_op op;
614 struct data_insert_op iop;
615 };
616
617 static void bch_cache_read_endio(struct bio *bio, int error)
618 {
619 struct bbio *b = container_of(bio, struct bbio, bio);
620 struct closure *cl = bio->bi_private;
621 struct search *s = container_of(cl, struct search, cl);
622
623 /*
624 * If the bucket was reused while our bio was in flight, we might have
625 * read the wrong data. Set s->error but not error so it doesn't get
626 * counted against the cache device, but we'll still reread the data
627 * from the backing device.
628 */
629
630 if (error)
631 s->iop.error = error;
632 else if (ptr_stale(s->iop.c, &b->key, 0)) {
633 atomic_long_inc(&s->iop.c->cache_read_races);
634 s->iop.error = -EINTR;
635 }
636
637 bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
638 }
639
640 /*
641 * Read from a single key, handling the initial cache miss if the key starts in
642 * the middle of the bio
643 */
644 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
645 {
646 struct search *s = container_of(op, struct search, op);
647 struct bio *n, *bio = &s->bio.bio;
648 struct bkey *bio_key;
649 unsigned ptr;
650
651 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
652 return MAP_CONTINUE;
653
654 if (KEY_INODE(k) != s->iop.inode ||
655 KEY_START(k) > bio->bi_iter.bi_sector) {
656 unsigned bio_sectors = bio_sectors(bio);
657 unsigned sectors = KEY_INODE(k) == s->iop.inode
658 ? min_t(uint64_t, INT_MAX,
659 KEY_START(k) - bio->bi_iter.bi_sector)
660 : INT_MAX;
661
662 int ret = s->d->cache_miss(b, s, bio, sectors);
663 if (ret != MAP_CONTINUE)
664 return ret;
665
666 /* if this was a complete miss we shouldn't get here */
667 BUG_ON(bio_sectors <= sectors);
668 }
669
670 if (!KEY_SIZE(k))
671 return MAP_CONTINUE;
672
673 /* XXX: figure out best pointer - for multiple cache devices */
674 ptr = 0;
675
676 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
677
678 if (KEY_DIRTY(k))
679 s->read_dirty_data = true;
680
681 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
682 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
683 GFP_NOIO, s->d->bio_split);
684
685 bio_key = &container_of(n, struct bbio, bio)->key;
686 bch_bkey_copy_single_ptr(bio_key, k, ptr);
687
688 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
689 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
690
691 n->bi_end_io = bch_cache_read_endio;
692 n->bi_private = &s->cl;
693
694 /*
695 * The bucket we're reading from might be reused while our bio
696 * is in flight, and we could then end up reading the wrong
697 * data.
698 *
699 * We guard against this by checking (in cache_read_endio()) if
700 * the pointer is stale again; if so, we treat it as an error
701 * and reread from the backing device (but we don't pass that
702 * error up anywhere).
703 */
704
705 __bch_submit_bbio(n, b->c);
706 return n == bio ? MAP_DONE : MAP_CONTINUE;
707 }
708
709 static void cache_lookup(struct closure *cl)
710 {
711 struct search *s = container_of(cl, struct search, iop.cl);
712 struct bio *bio = &s->bio.bio;
713
714 int ret = bch_btree_map_keys(&s->op, s->iop.c,
715 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
716 cache_lookup_fn, MAP_END_KEY);
717 if (ret == -EAGAIN)
718 continue_at(cl, cache_lookup, bcache_wq);
719
720 closure_return(cl);
721 }
722
723 /* Common code for the make_request functions */
724
725 static void request_endio(struct bio *bio, int error)
726 {
727 struct closure *cl = bio->bi_private;
728
729 if (error) {
730 struct search *s = container_of(cl, struct search, cl);
731 s->iop.error = error;
732 /* Only cache read errors are recoverable */
733 s->recoverable = false;
734 }
735
736 bio_put(bio);
737 closure_put(cl);
738 }
739
740 static void bio_complete(struct search *s)
741 {
742 if (s->orig_bio) {
743 int cpu, rw = bio_data_dir(s->orig_bio);
744 unsigned long duration = jiffies - s->start_time;
745
746 cpu = part_stat_lock();
747 part_round_stats(cpu, &s->d->disk->part0);
748 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
749 part_stat_unlock();
750
751 trace_bcache_request_end(s->d, s->orig_bio);
752 bio_endio(s->orig_bio, s->iop.error);
753 s->orig_bio = NULL;
754 }
755 }
756
757 static void do_bio_hook(struct search *s)
758 {
759 struct bio *bio = &s->bio.bio;
760
761 bio_init(bio);
762 __bio_clone_fast(bio, s->orig_bio);
763 bio->bi_end_io = request_endio;
764 bio->bi_private = &s->cl;
765
766 atomic_set(&bio->bi_cnt, 3);
767 }
768
769 static void search_free(struct closure *cl)
770 {
771 struct search *s = container_of(cl, struct search, cl);
772 bio_complete(s);
773
774 if (s->iop.bio)
775 bio_put(s->iop.bio);
776
777 closure_debug_destroy(cl);
778 mempool_free(s, s->d->c->search);
779 }
780
781 static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
782 {
783 struct search *s;
784
785 s = mempool_alloc(d->c->search, GFP_NOIO);
786 memset(s, 0, offsetof(struct search, iop.insert_keys));
787
788 __closure_init(&s->cl, NULL);
789
790 s->iop.inode = d->id;
791 s->iop.c = d->c;
792 s->d = d;
793 s->op.lock = -1;
794 s->iop.write_point = hash_long((unsigned long) current, 16);
795 s->orig_bio = bio;
796 s->write = (bio->bi_rw & REQ_WRITE) != 0;
797 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
798 s->recoverable = 1;
799 s->start_time = jiffies;
800 do_bio_hook(s);
801
802 return s;
803 }
804
805 /* Cached devices */
806
807 static void cached_dev_bio_complete(struct closure *cl)
808 {
809 struct search *s = container_of(cl, struct search, cl);
810 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
811
812 search_free(cl);
813 cached_dev_put(dc);
814 }
815
816 /* Process reads */
817
818 static void cached_dev_cache_miss_done(struct closure *cl)
819 {
820 struct search *s = container_of(cl, struct search, cl);
821
822 if (s->iop.replace_collision)
823 bch_mark_cache_miss_collision(s->iop.c, s->d);
824
825 if (s->iop.bio) {
826 int i;
827 struct bio_vec *bv;
828
829 bio_for_each_segment_all(bv, s->iop.bio, i)
830 __free_page(bv->bv_page);
831 }
832
833 cached_dev_bio_complete(cl);
834 }
835
836 static void cached_dev_read_error(struct closure *cl)
837 {
838 struct search *s = container_of(cl, struct search, cl);
839 struct bio *bio = &s->bio.bio;
840
841 if (s->recoverable) {
842 /* Retry from the backing device: */
843 trace_bcache_read_retry(s->orig_bio);
844
845 s->iop.error = 0;
846 do_bio_hook(s);
847
848 /* XXX: invalidate cache */
849
850 closure_bio_submit(bio, cl, s->d);
851 }
852
853 continue_at(cl, cached_dev_cache_miss_done, NULL);
854 }
855
856 static void cached_dev_read_done(struct closure *cl)
857 {
858 struct search *s = container_of(cl, struct search, cl);
859 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
860
861 /*
862 * We had a cache miss; cache_bio now contains data ready to be inserted
863 * into the cache.
864 *
865 * First, we copy the data we just read from cache_bio's bounce buffers
866 * to the buffers the original bio pointed to:
867 */
868
869 if (s->iop.bio) {
870 bio_reset(s->iop.bio);
871 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
872 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
873 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
874 bch_bio_map(s->iop.bio, NULL);
875
876 bio_copy_data(s->cache_miss, s->iop.bio);
877
878 bio_put(s->cache_miss);
879 s->cache_miss = NULL;
880 }
881
882 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
883 bch_data_verify(dc, s->orig_bio);
884
885 bio_complete(s);
886
887 if (s->iop.bio &&
888 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
889 BUG_ON(!s->iop.replace);
890 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
891 }
892
893 continue_at(cl, cached_dev_cache_miss_done, NULL);
894 }
895
896 static void cached_dev_read_done_bh(struct closure *cl)
897 {
898 struct search *s = container_of(cl, struct search, cl);
899 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
900
901 bch_mark_cache_accounting(s->iop.c, s->d,
902 !s->cache_miss, s->iop.bypass);
903 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
904
905 if (s->iop.error)
906 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
907 else if (s->iop.bio || verify(dc, &s->bio.bio))
908 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
909 else
910 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
911 }
912
913 static int cached_dev_cache_miss(struct btree *b, struct search *s,
914 struct bio *bio, unsigned sectors)
915 {
916 int ret = MAP_CONTINUE;
917 unsigned reada = 0;
918 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
919 struct bio *miss, *cache_bio;
920
921 if (s->cache_miss || s->iop.bypass) {
922 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
923 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
924 goto out_submit;
925 }
926
927 if (!(bio->bi_rw & REQ_RAHEAD) &&
928 !(bio->bi_rw & REQ_META) &&
929 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
930 reada = min_t(sector_t, dc->readahead >> 9,
931 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
932
933 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
934
935 s->iop.replace_key = KEY(s->iop.inode,
936 bio->bi_iter.bi_sector + s->insert_bio_sectors,
937 s->insert_bio_sectors);
938
939 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
940 if (ret)
941 return ret;
942
943 s->iop.replace = true;
944
945 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
946
947 /* btree_search_recurse()'s btree iterator is no good anymore */
948 ret = miss == bio ? MAP_DONE : -EINTR;
949
950 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
951 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
952 dc->disk.bio_split);
953 if (!cache_bio)
954 goto out_submit;
955
956 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
957 cache_bio->bi_bdev = miss->bi_bdev;
958 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
959
960 cache_bio->bi_end_io = request_endio;
961 cache_bio->bi_private = &s->cl;
962
963 bch_bio_map(cache_bio, NULL);
964 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
965 goto out_put;
966
967 if (reada)
968 bch_mark_cache_readahead(s->iop.c, s->d);
969
970 s->cache_miss = miss;
971 s->iop.bio = cache_bio;
972 bio_get(cache_bio);
973 closure_bio_submit(cache_bio, &s->cl, s->d);
974
975 return ret;
976 out_put:
977 bio_put(cache_bio);
978 out_submit:
979 miss->bi_end_io = request_endio;
980 miss->bi_private = &s->cl;
981 closure_bio_submit(miss, &s->cl, s->d);
982 return ret;
983 }
984
985 static void cached_dev_read(struct cached_dev *dc, struct search *s)
986 {
987 struct closure *cl = &s->cl;
988
989 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
990 continue_at(cl, cached_dev_read_done_bh, NULL);
991 }
992
993 /* Process writes */
994
995 static void cached_dev_write_complete(struct closure *cl)
996 {
997 struct search *s = container_of(cl, struct search, cl);
998 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
999
1000 up_read_non_owner(&dc->writeback_lock);
1001 cached_dev_bio_complete(cl);
1002 }
1003
1004 static void cached_dev_write(struct cached_dev *dc, struct search *s)
1005 {
1006 struct closure *cl = &s->cl;
1007 struct bio *bio = &s->bio.bio;
1008 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
1009 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
1010
1011 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
1012
1013 down_read_non_owner(&dc->writeback_lock);
1014 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1015 /*
1016 * We overlap with some dirty data undergoing background
1017 * writeback, force this write to writeback
1018 */
1019 s->iop.bypass = false;
1020 s->iop.writeback = true;
1021 }
1022
1023 /*
1024 * Discards aren't _required_ to do anything, so skipping if
1025 * check_overlapping returned true is ok
1026 *
1027 * But check_overlapping drops dirty keys for which io hasn't started,
1028 * so we still want to call it.
1029 */
1030 if (bio->bi_rw & REQ_DISCARD)
1031 s->iop.bypass = true;
1032
1033 if (should_writeback(dc, s->orig_bio,
1034 cache_mode(dc, bio),
1035 s->iop.bypass)) {
1036 s->iop.bypass = false;
1037 s->iop.writeback = true;
1038 }
1039
1040 if (s->iop.bypass) {
1041 s->iop.bio = s->orig_bio;
1042 bio_get(s->iop.bio);
1043
1044 if (!(bio->bi_rw & REQ_DISCARD) ||
1045 blk_queue_discard(bdev_get_queue(dc->bdev)))
1046 closure_bio_submit(bio, cl, s->d);
1047 } else if (s->iop.writeback) {
1048 bch_writeback_add(dc);
1049 s->iop.bio = bio;
1050
1051 if (bio->bi_rw & REQ_FLUSH) {
1052 /* Also need to send a flush to the backing device */
1053 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1054 dc->disk.bio_split);
1055
1056 flush->bi_rw = WRITE_FLUSH;
1057 flush->bi_bdev = bio->bi_bdev;
1058 flush->bi_end_io = request_endio;
1059 flush->bi_private = cl;
1060
1061 closure_bio_submit(flush, cl, s->d);
1062 }
1063 } else {
1064 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
1065
1066 closure_bio_submit(bio, cl, s->d);
1067 }
1068
1069 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1070 continue_at(cl, cached_dev_write_complete, NULL);
1071 }
1072
1073 static void cached_dev_nodata(struct closure *cl)
1074 {
1075 struct search *s = container_of(cl, struct search, cl);
1076 struct bio *bio = &s->bio.bio;
1077
1078 if (s->iop.flush_journal)
1079 bch_journal_meta(s->iop.c, cl);
1080
1081 /* If it's a flush, we send the flush to the backing device too */
1082 closure_bio_submit(bio, cl, s->d);
1083
1084 continue_at(cl, cached_dev_bio_complete, NULL);
1085 }
1086
1087 /* Cached devices - read & write stuff */
1088
1089 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1090 {
1091 struct search *s;
1092 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1093 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1094 int cpu, rw = bio_data_dir(bio);
1095
1096 cpu = part_stat_lock();
1097 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1098 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1099 part_stat_unlock();
1100
1101 bio->bi_bdev = dc->bdev;
1102 bio->bi_iter.bi_sector += dc->sb.data_offset;
1103
1104 if (cached_dev_get(dc)) {
1105 s = search_alloc(bio, d);
1106 trace_bcache_request_start(s->d, bio);
1107
1108 if (!bio->bi_iter.bi_size) {
1109 /*
1110 * can't call bch_journal_meta from under
1111 * generic_make_request
1112 */
1113 continue_at_nobarrier(&s->cl,
1114 cached_dev_nodata,
1115 bcache_wq);
1116 } else {
1117 s->iop.bypass = check_should_bypass(dc, bio);
1118
1119 if (rw)
1120 cached_dev_write(dc, s);
1121 else
1122 cached_dev_read(dc, s);
1123 }
1124 } else {
1125 if ((bio->bi_rw & REQ_DISCARD) &&
1126 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1127 bio_endio(bio, 0);
1128 else
1129 bch_generic_make_request(bio, &d->bio_split_hook);
1130 }
1131 }
1132
1133 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1134 unsigned int cmd, unsigned long arg)
1135 {
1136 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1137 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1138 }
1139
1140 static int cached_dev_congested(void *data, int bits)
1141 {
1142 struct bcache_device *d = data;
1143 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1144 struct request_queue *q = bdev_get_queue(dc->bdev);
1145 int ret = 0;
1146
1147 if (bdi_congested(&q->backing_dev_info, bits))
1148 return 1;
1149
1150 if (cached_dev_get(dc)) {
1151 unsigned i;
1152 struct cache *ca;
1153
1154 for_each_cache(ca, d->c, i) {
1155 q = bdev_get_queue(ca->bdev);
1156 ret |= bdi_congested(&q->backing_dev_info, bits);
1157 }
1158
1159 cached_dev_put(dc);
1160 }
1161
1162 return ret;
1163 }
1164
1165 void bch_cached_dev_request_init(struct cached_dev *dc)
1166 {
1167 struct gendisk *g = dc->disk.disk;
1168
1169 g->queue->make_request_fn = cached_dev_make_request;
1170 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1171 dc->disk.cache_miss = cached_dev_cache_miss;
1172 dc->disk.ioctl = cached_dev_ioctl;
1173 }
1174
1175 /* Flash backed devices */
1176
1177 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1178 struct bio *bio, unsigned sectors)
1179 {
1180 struct bio_vec bv;
1181 struct bvec_iter iter;
1182
1183 /* Zero fill bio */
1184
1185 bio_for_each_segment(bv, bio, iter) {
1186 unsigned j = min(bv.bv_len >> 9, sectors);
1187
1188 void *p = kmap(bv.bv_page);
1189 memset(p + bv.bv_offset, 0, j << 9);
1190 kunmap(bv.bv_page);
1191
1192 sectors -= j;
1193 }
1194
1195 bio_advance(bio, min(sectors << 9, bio->bi_iter.bi_size));
1196
1197 if (!bio->bi_iter.bi_size)
1198 return MAP_DONE;
1199
1200 return MAP_CONTINUE;
1201 }
1202
1203 static void flash_dev_nodata(struct closure *cl)
1204 {
1205 struct search *s = container_of(cl, struct search, cl);
1206
1207 if (s->iop.flush_journal)
1208 bch_journal_meta(s->iop.c, cl);
1209
1210 continue_at(cl, search_free, NULL);
1211 }
1212
1213 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1214 {
1215 struct search *s;
1216 struct closure *cl;
1217 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1218 int cpu, rw = bio_data_dir(bio);
1219
1220 cpu = part_stat_lock();
1221 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1222 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1223 part_stat_unlock();
1224
1225 s = search_alloc(bio, d);
1226 cl = &s->cl;
1227 bio = &s->bio.bio;
1228
1229 trace_bcache_request_start(s->d, bio);
1230
1231 if (!bio->bi_iter.bi_size) {
1232 /*
1233 * can't call bch_journal_meta from under
1234 * generic_make_request
1235 */
1236 continue_at_nobarrier(&s->cl,
1237 flash_dev_nodata,
1238 bcache_wq);
1239 } else if (rw) {
1240 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1241 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1242 &KEY(d->id, bio_end_sector(bio), 0));
1243
1244 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
1245 s->iop.writeback = true;
1246 s->iop.bio = bio;
1247
1248 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1249 } else {
1250 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1251 }
1252
1253 continue_at(cl, search_free, NULL);
1254 }
1255
1256 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1257 unsigned int cmd, unsigned long arg)
1258 {
1259 return -ENOTTY;
1260 }
1261
1262 static int flash_dev_congested(void *data, int bits)
1263 {
1264 struct bcache_device *d = data;
1265 struct request_queue *q;
1266 struct cache *ca;
1267 unsigned i;
1268 int ret = 0;
1269
1270 for_each_cache(ca, d->c, i) {
1271 q = bdev_get_queue(ca->bdev);
1272 ret |= bdi_congested(&q->backing_dev_info, bits);
1273 }
1274
1275 return ret;
1276 }
1277
1278 void bch_flash_dev_request_init(struct bcache_device *d)
1279 {
1280 struct gendisk *g = d->disk;
1281
1282 g->queue->make_request_fn = flash_dev_make_request;
1283 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1284 d->cache_miss = flash_dev_cache_miss;
1285 d->ioctl = flash_dev_ioctl;
1286 }
1287
1288 void bch_request_exit(void)
1289 {
1290 #ifdef CONFIG_CGROUP_BCACHE
1291 cgroup_unload_subsys(&bcache_subsys);
1292 #endif
1293 if (bch_search_cache)
1294 kmem_cache_destroy(bch_search_cache);
1295 }
1296
1297 int __init bch_request_init(void)
1298 {
1299 bch_search_cache = KMEM_CACHE(search, 0);
1300 if (!bch_search_cache)
1301 return -ENOMEM;
1302
1303 #ifdef CONFIG_CGROUP_BCACHE
1304 cgroup_load_subsys(&bcache_subsys);
1305 init_bch_cgroup(&bcache_default_cgroup);
1306
1307 cgroup_add_cftypes(&bcache_subsys, bch_files);
1308 #endif
1309 return 0;
1310 }