Merge tag 'iommu-updates-v3.14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / md / bcache / request.c
1 /*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "request.h"
13 #include "writeback.h"
14
15 #include <linux/cgroup.h>
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include "blk-cgroup.h"
20
21 #include <trace/events/bcache.h>
22
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
25
26 struct kmem_cache *bch_search_cache;
27
28 static void bch_data_insert_start(struct closure *);
29
30 /* Cgroup interface */
31
32 #ifdef CONFIG_CGROUP_BCACHE
33 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36 {
37 struct cgroup_subsys_state *css;
38 return cgroup &&
39 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40 ? container_of(css, struct bch_cgroup, css)
41 : &bcache_default_cgroup;
42 }
43
44 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45 {
46 struct cgroup_subsys_state *css = bio->bi_css
47 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48 : task_subsys_state(current, bcache_subsys_id);
49
50 return css
51 ? container_of(css, struct bch_cgroup, css)
52 : &bcache_default_cgroup;
53 }
54
55 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56 struct file *file,
57 char __user *buf, size_t nbytes, loff_t *ppos)
58 {
59 char tmp[1024];
60 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61 cgroup_to_bcache(cgrp)->cache_mode + 1);
62
63 if (len < 0)
64 return len;
65
66 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67 }
68
69 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70 const char *buf)
71 {
72 int v = bch_read_string_list(buf, bch_cache_modes);
73 if (v < 0)
74 return v;
75
76 cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77 return 0;
78 }
79
80 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81 {
82 return cgroup_to_bcache(cgrp)->verify;
83 }
84
85 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86 {
87 cgroup_to_bcache(cgrp)->verify = val;
88 return 0;
89 }
90
91 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92 {
93 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94 return atomic_read(&bcachecg->stats.cache_hits);
95 }
96
97 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98 {
99 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100 return atomic_read(&bcachecg->stats.cache_misses);
101 }
102
103 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104 struct cftype *cft)
105 {
106 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107 return atomic_read(&bcachecg->stats.cache_bypass_hits);
108 }
109
110 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111 struct cftype *cft)
112 {
113 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114 return atomic_read(&bcachecg->stats.cache_bypass_misses);
115 }
116
117 static struct cftype bch_files[] = {
118 {
119 .name = "cache_mode",
120 .read = cache_mode_read,
121 .write_string = cache_mode_write,
122 },
123 {
124 .name = "verify",
125 .read_u64 = bch_verify_read,
126 .write_u64 = bch_verify_write,
127 },
128 {
129 .name = "cache_hits",
130 .read_u64 = bch_cache_hits_read,
131 },
132 {
133 .name = "cache_misses",
134 .read_u64 = bch_cache_misses_read,
135 },
136 {
137 .name = "cache_bypass_hits",
138 .read_u64 = bch_cache_bypass_hits_read,
139 },
140 {
141 .name = "cache_bypass_misses",
142 .read_u64 = bch_cache_bypass_misses_read,
143 },
144 { } /* terminate */
145 };
146
147 static void init_bch_cgroup(struct bch_cgroup *cg)
148 {
149 cg->cache_mode = -1;
150 }
151
152 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153 {
154 struct bch_cgroup *cg;
155
156 cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157 if (!cg)
158 return ERR_PTR(-ENOMEM);
159 init_bch_cgroup(cg);
160 return &cg->css;
161 }
162
163 static void bcachecg_destroy(struct cgroup *cgroup)
164 {
165 struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166 kfree(cg);
167 }
168
169 struct cgroup_subsys bcache_subsys = {
170 .create = bcachecg_create,
171 .destroy = bcachecg_destroy,
172 .subsys_id = bcache_subsys_id,
173 .name = "bcache",
174 .module = THIS_MODULE,
175 };
176 EXPORT_SYMBOL_GPL(bcache_subsys);
177 #endif
178
179 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
180 {
181 #ifdef CONFIG_CGROUP_BCACHE
182 int r = bch_bio_to_cgroup(bio)->cache_mode;
183 if (r >= 0)
184 return r;
185 #endif
186 return BDEV_CACHE_MODE(&dc->sb);
187 }
188
189 static bool verify(struct cached_dev *dc, struct bio *bio)
190 {
191 #ifdef CONFIG_CGROUP_BCACHE
192 if (bch_bio_to_cgroup(bio)->verify)
193 return true;
194 #endif
195 return dc->verify;
196 }
197
198 static void bio_csum(struct bio *bio, struct bkey *k)
199 {
200 struct bio_vec *bv;
201 uint64_t csum = 0;
202 int i;
203
204 bio_for_each_segment(bv, bio, i) {
205 void *d = kmap(bv->bv_page) + bv->bv_offset;
206 csum = bch_crc64_update(csum, d, bv->bv_len);
207 kunmap(bv->bv_page);
208 }
209
210 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
211 }
212
213 /* Insert data into cache */
214
215 static void bch_data_insert_keys(struct closure *cl)
216 {
217 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
218 atomic_t *journal_ref = NULL;
219 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
220 int ret;
221
222 /*
223 * If we're looping, might already be waiting on
224 * another journal write - can't wait on more than one journal write at
225 * a time
226 *
227 * XXX: this looks wrong
228 */
229 #if 0
230 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
231 closure_sync(&s->cl);
232 #endif
233
234 if (!op->replace)
235 journal_ref = bch_journal(op->c, &op->insert_keys,
236 op->flush_journal ? cl : NULL);
237
238 ret = bch_btree_insert(op->c, &op->insert_keys,
239 journal_ref, replace_key);
240 if (ret == -ESRCH) {
241 op->replace_collision = true;
242 } else if (ret) {
243 op->error = -ENOMEM;
244 op->insert_data_done = true;
245 }
246
247 if (journal_ref)
248 atomic_dec_bug(journal_ref);
249
250 if (!op->insert_data_done)
251 continue_at(cl, bch_data_insert_start, bcache_wq);
252
253 bch_keylist_free(&op->insert_keys);
254 closure_return(cl);
255 }
256
257 static void bch_data_invalidate(struct closure *cl)
258 {
259 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
260 struct bio *bio = op->bio;
261
262 pr_debug("invalidating %i sectors from %llu",
263 bio_sectors(bio), (uint64_t) bio->bi_sector);
264
265 while (bio_sectors(bio)) {
266 unsigned sectors = min(bio_sectors(bio),
267 1U << (KEY_SIZE_BITS - 1));
268
269 if (bch_keylist_realloc(&op->insert_keys, 0, op->c))
270 goto out;
271
272 bio->bi_sector += sectors;
273 bio->bi_size -= sectors << 9;
274
275 bch_keylist_add(&op->insert_keys,
276 &KEY(op->inode, bio->bi_sector, sectors));
277 }
278
279 op->insert_data_done = true;
280 bio_put(bio);
281 out:
282 continue_at(cl, bch_data_insert_keys, bcache_wq);
283 }
284
285 static void bch_data_insert_error(struct closure *cl)
286 {
287 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
288
289 /*
290 * Our data write just errored, which means we've got a bunch of keys to
291 * insert that point to data that wasn't succesfully written.
292 *
293 * We don't have to insert those keys but we still have to invalidate
294 * that region of the cache - so, if we just strip off all the pointers
295 * from the keys we'll accomplish just that.
296 */
297
298 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
299
300 while (src != op->insert_keys.top) {
301 struct bkey *n = bkey_next(src);
302
303 SET_KEY_PTRS(src, 0);
304 memmove(dst, src, bkey_bytes(src));
305
306 dst = bkey_next(dst);
307 src = n;
308 }
309
310 op->insert_keys.top = dst;
311
312 bch_data_insert_keys(cl);
313 }
314
315 static void bch_data_insert_endio(struct bio *bio, int error)
316 {
317 struct closure *cl = bio->bi_private;
318 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
319
320 if (error) {
321 /* TODO: We could try to recover from this. */
322 if (op->writeback)
323 op->error = error;
324 else if (!op->replace)
325 set_closure_fn(cl, bch_data_insert_error, bcache_wq);
326 else
327 set_closure_fn(cl, NULL, NULL);
328 }
329
330 bch_bbio_endio(op->c, bio, error, "writing data to cache");
331 }
332
333 static void bch_data_insert_start(struct closure *cl)
334 {
335 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
336 struct bio *bio = op->bio, *n;
337
338 if (op->bypass)
339 return bch_data_invalidate(cl);
340
341 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
342 set_gc_sectors(op->c);
343 wake_up_gc(op->c);
344 }
345
346 /*
347 * Journal writes are marked REQ_FLUSH; if the original write was a
348 * flush, it'll wait on the journal write.
349 */
350 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
351
352 do {
353 unsigned i;
354 struct bkey *k;
355 struct bio_set *split = op->c->bio_split;
356
357 /* 1 for the device pointer and 1 for the chksum */
358 if (bch_keylist_realloc(&op->insert_keys,
359 1 + (op->csum ? 1 : 0),
360 op->c))
361 continue_at(cl, bch_data_insert_keys, bcache_wq);
362
363 k = op->insert_keys.top;
364 bkey_init(k);
365 SET_KEY_INODE(k, op->inode);
366 SET_KEY_OFFSET(k, bio->bi_sector);
367
368 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
369 op->write_point, op->write_prio,
370 op->writeback))
371 goto err;
372
373 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
374
375 n->bi_end_io = bch_data_insert_endio;
376 n->bi_private = cl;
377
378 if (op->writeback) {
379 SET_KEY_DIRTY(k, true);
380
381 for (i = 0; i < KEY_PTRS(k); i++)
382 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
383 GC_MARK_DIRTY);
384 }
385
386 SET_KEY_CSUM(k, op->csum);
387 if (KEY_CSUM(k))
388 bio_csum(n, k);
389
390 trace_bcache_cache_insert(k);
391 bch_keylist_push(&op->insert_keys);
392
393 n->bi_rw |= REQ_WRITE;
394 bch_submit_bbio(n, op->c, k, 0);
395 } while (n != bio);
396
397 op->insert_data_done = true;
398 continue_at(cl, bch_data_insert_keys, bcache_wq);
399 err:
400 /* bch_alloc_sectors() blocks if s->writeback = true */
401 BUG_ON(op->writeback);
402
403 /*
404 * But if it's not a writeback write we'd rather just bail out if
405 * there aren't any buckets ready to write to - it might take awhile and
406 * we might be starving btree writes for gc or something.
407 */
408
409 if (!op->replace) {
410 /*
411 * Writethrough write: We can't complete the write until we've
412 * updated the index. But we don't want to delay the write while
413 * we wait for buckets to be freed up, so just invalidate the
414 * rest of the write.
415 */
416 op->bypass = true;
417 return bch_data_invalidate(cl);
418 } else {
419 /*
420 * From a cache miss, we can just insert the keys for the data
421 * we have written or bail out if we didn't do anything.
422 */
423 op->insert_data_done = true;
424 bio_put(bio);
425
426 if (!bch_keylist_empty(&op->insert_keys))
427 continue_at(cl, bch_data_insert_keys, bcache_wq);
428 else
429 closure_return(cl);
430 }
431 }
432
433 /**
434 * bch_data_insert - stick some data in the cache
435 *
436 * This is the starting point for any data to end up in a cache device; it could
437 * be from a normal write, or a writeback write, or a write to a flash only
438 * volume - it's also used by the moving garbage collector to compact data in
439 * mostly empty buckets.
440 *
441 * It first writes the data to the cache, creating a list of keys to be inserted
442 * (if the data had to be fragmented there will be multiple keys); after the
443 * data is written it calls bch_journal, and after the keys have been added to
444 * the next journal write they're inserted into the btree.
445 *
446 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
447 * and op->inode is used for the key inode.
448 *
449 * If s->bypass is true, instead of inserting the data it invalidates the
450 * region of the cache represented by s->cache_bio and op->inode.
451 */
452 void bch_data_insert(struct closure *cl)
453 {
454 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
455
456 trace_bcache_write(op->bio, op->writeback, op->bypass);
457
458 bch_keylist_init(&op->insert_keys);
459 bio_get(op->bio);
460 bch_data_insert_start(cl);
461 }
462
463 /* Congested? */
464
465 unsigned bch_get_congested(struct cache_set *c)
466 {
467 int i;
468 long rand;
469
470 if (!c->congested_read_threshold_us &&
471 !c->congested_write_threshold_us)
472 return 0;
473
474 i = (local_clock_us() - c->congested_last_us) / 1024;
475 if (i < 0)
476 return 0;
477
478 i += atomic_read(&c->congested);
479 if (i >= 0)
480 return 0;
481
482 i += CONGESTED_MAX;
483
484 if (i > 0)
485 i = fract_exp_two(i, 6);
486
487 rand = get_random_int();
488 i -= bitmap_weight(&rand, BITS_PER_LONG);
489
490 return i > 0 ? i : 1;
491 }
492
493 static void add_sequential(struct task_struct *t)
494 {
495 ewma_add(t->sequential_io_avg,
496 t->sequential_io, 8, 0);
497
498 t->sequential_io = 0;
499 }
500
501 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
502 {
503 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
504 }
505
506 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
507 {
508 struct cache_set *c = dc->disk.c;
509 unsigned mode = cache_mode(dc, bio);
510 unsigned sectors, congested = bch_get_congested(c);
511 struct task_struct *task = current;
512 struct io *i;
513
514 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
515 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
516 (bio->bi_rw & REQ_DISCARD))
517 goto skip;
518
519 if (mode == CACHE_MODE_NONE ||
520 (mode == CACHE_MODE_WRITEAROUND &&
521 (bio->bi_rw & REQ_WRITE)))
522 goto skip;
523
524 if (bio->bi_sector & (c->sb.block_size - 1) ||
525 bio_sectors(bio) & (c->sb.block_size - 1)) {
526 pr_debug("skipping unaligned io");
527 goto skip;
528 }
529
530 if (bypass_torture_test(dc)) {
531 if ((get_random_int() & 3) == 3)
532 goto skip;
533 else
534 goto rescale;
535 }
536
537 if (!congested && !dc->sequential_cutoff)
538 goto rescale;
539
540 if (!congested &&
541 mode == CACHE_MODE_WRITEBACK &&
542 (bio->bi_rw & REQ_WRITE) &&
543 (bio->bi_rw & REQ_SYNC))
544 goto rescale;
545
546 spin_lock(&dc->io_lock);
547
548 hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
549 if (i->last == bio->bi_sector &&
550 time_before(jiffies, i->jiffies))
551 goto found;
552
553 i = list_first_entry(&dc->io_lru, struct io, lru);
554
555 add_sequential(task);
556 i->sequential = 0;
557 found:
558 if (i->sequential + bio->bi_size > i->sequential)
559 i->sequential += bio->bi_size;
560
561 i->last = bio_end_sector(bio);
562 i->jiffies = jiffies + msecs_to_jiffies(5000);
563 task->sequential_io = i->sequential;
564
565 hlist_del(&i->hash);
566 hlist_add_head(&i->hash, iohash(dc, i->last));
567 list_move_tail(&i->lru, &dc->io_lru);
568
569 spin_unlock(&dc->io_lock);
570
571 sectors = max(task->sequential_io,
572 task->sequential_io_avg) >> 9;
573
574 if (dc->sequential_cutoff &&
575 sectors >= dc->sequential_cutoff >> 9) {
576 trace_bcache_bypass_sequential(bio);
577 goto skip;
578 }
579
580 if (congested && sectors >= congested) {
581 trace_bcache_bypass_congested(bio);
582 goto skip;
583 }
584
585 rescale:
586 bch_rescale_priorities(c, bio_sectors(bio));
587 return false;
588 skip:
589 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
590 return true;
591 }
592
593 /* Cache lookup */
594
595 struct search {
596 /* Stack frame for bio_complete */
597 struct closure cl;
598
599 struct bcache_device *d;
600
601 struct bbio bio;
602 struct bio *orig_bio;
603 struct bio *cache_miss;
604
605 unsigned insert_bio_sectors;
606
607 unsigned recoverable:1;
608 unsigned unaligned_bvec:1;
609 unsigned write:1;
610 unsigned read_dirty_data:1;
611
612 unsigned long start_time;
613
614 struct btree_op op;
615 struct data_insert_op iop;
616 };
617
618 static void bch_cache_read_endio(struct bio *bio, int error)
619 {
620 struct bbio *b = container_of(bio, struct bbio, bio);
621 struct closure *cl = bio->bi_private;
622 struct search *s = container_of(cl, struct search, cl);
623
624 /*
625 * If the bucket was reused while our bio was in flight, we might have
626 * read the wrong data. Set s->error but not error so it doesn't get
627 * counted against the cache device, but we'll still reread the data
628 * from the backing device.
629 */
630
631 if (error)
632 s->iop.error = error;
633 else if (ptr_stale(s->iop.c, &b->key, 0)) {
634 atomic_long_inc(&s->iop.c->cache_read_races);
635 s->iop.error = -EINTR;
636 }
637
638 bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
639 }
640
641 /*
642 * Read from a single key, handling the initial cache miss if the key starts in
643 * the middle of the bio
644 */
645 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
646 {
647 struct search *s = container_of(op, struct search, op);
648 struct bio *n, *bio = &s->bio.bio;
649 struct bkey *bio_key;
650 unsigned ptr;
651
652 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_sector, 0)) <= 0)
653 return MAP_CONTINUE;
654
655 if (KEY_INODE(k) != s->iop.inode ||
656 KEY_START(k) > bio->bi_sector) {
657 unsigned bio_sectors = bio_sectors(bio);
658 unsigned sectors = KEY_INODE(k) == s->iop.inode
659 ? min_t(uint64_t, INT_MAX,
660 KEY_START(k) - bio->bi_sector)
661 : INT_MAX;
662
663 int ret = s->d->cache_miss(b, s, bio, sectors);
664 if (ret != MAP_CONTINUE)
665 return ret;
666
667 /* if this was a complete miss we shouldn't get here */
668 BUG_ON(bio_sectors <= sectors);
669 }
670
671 if (!KEY_SIZE(k))
672 return MAP_CONTINUE;
673
674 /* XXX: figure out best pointer - for multiple cache devices */
675 ptr = 0;
676
677 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
678
679 if (KEY_DIRTY(k))
680 s->read_dirty_data = true;
681
682 n = bch_bio_split(bio, min_t(uint64_t, INT_MAX,
683 KEY_OFFSET(k) - bio->bi_sector),
684 GFP_NOIO, s->d->bio_split);
685
686 bio_key = &container_of(n, struct bbio, bio)->key;
687 bch_bkey_copy_single_ptr(bio_key, k, ptr);
688
689 bch_cut_front(&KEY(s->iop.inode, n->bi_sector, 0), bio_key);
690 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
691
692 n->bi_end_io = bch_cache_read_endio;
693 n->bi_private = &s->cl;
694
695 /*
696 * The bucket we're reading from might be reused while our bio
697 * is in flight, and we could then end up reading the wrong
698 * data.
699 *
700 * We guard against this by checking (in cache_read_endio()) if
701 * the pointer is stale again; if so, we treat it as an error
702 * and reread from the backing device (but we don't pass that
703 * error up anywhere).
704 */
705
706 __bch_submit_bbio(n, b->c);
707 return n == bio ? MAP_DONE : MAP_CONTINUE;
708 }
709
710 static void cache_lookup(struct closure *cl)
711 {
712 struct search *s = container_of(cl, struct search, iop.cl);
713 struct bio *bio = &s->bio.bio;
714
715 int ret = bch_btree_map_keys(&s->op, s->iop.c,
716 &KEY(s->iop.inode, bio->bi_sector, 0),
717 cache_lookup_fn, MAP_END_KEY);
718 if (ret == -EAGAIN)
719 continue_at(cl, cache_lookup, bcache_wq);
720
721 closure_return(cl);
722 }
723
724 /* Common code for the make_request functions */
725
726 static void request_endio(struct bio *bio, int error)
727 {
728 struct closure *cl = bio->bi_private;
729
730 if (error) {
731 struct search *s = container_of(cl, struct search, cl);
732 s->iop.error = error;
733 /* Only cache read errors are recoverable */
734 s->recoverable = false;
735 }
736
737 bio_put(bio);
738 closure_put(cl);
739 }
740
741 static void bio_complete(struct search *s)
742 {
743 if (s->orig_bio) {
744 int cpu, rw = bio_data_dir(s->orig_bio);
745 unsigned long duration = jiffies - s->start_time;
746
747 cpu = part_stat_lock();
748 part_round_stats(cpu, &s->d->disk->part0);
749 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
750 part_stat_unlock();
751
752 trace_bcache_request_end(s->d, s->orig_bio);
753 bio_endio(s->orig_bio, s->iop.error);
754 s->orig_bio = NULL;
755 }
756 }
757
758 static void do_bio_hook(struct search *s)
759 {
760 struct bio *bio = &s->bio.bio;
761 memcpy(bio, s->orig_bio, sizeof(struct bio));
762
763 bio->bi_end_io = request_endio;
764 bio->bi_private = &s->cl;
765 atomic_set(&bio->bi_cnt, 3);
766 }
767
768 static void search_free(struct closure *cl)
769 {
770 struct search *s = container_of(cl, struct search, cl);
771 bio_complete(s);
772
773 if (s->iop.bio)
774 bio_put(s->iop.bio);
775
776 if (s->unaligned_bvec)
777 mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
778
779 closure_debug_destroy(cl);
780 mempool_free(s, s->d->c->search);
781 }
782
783 static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
784 {
785 struct search *s;
786 struct bio_vec *bv;
787
788 s = mempool_alloc(d->c->search, GFP_NOIO);
789 memset(s, 0, offsetof(struct search, iop.insert_keys));
790
791 __closure_init(&s->cl, NULL);
792
793 s->iop.inode = d->id;
794 s->iop.c = d->c;
795 s->d = d;
796 s->op.lock = -1;
797 s->iop.write_point = hash_long((unsigned long) current, 16);
798 s->orig_bio = bio;
799 s->write = (bio->bi_rw & REQ_WRITE) != 0;
800 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
801 s->recoverable = 1;
802 s->start_time = jiffies;
803 do_bio_hook(s);
804
805 if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
806 bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
807 memcpy(bv, bio_iovec(bio),
808 sizeof(struct bio_vec) * bio_segments(bio));
809
810 s->bio.bio.bi_io_vec = bv;
811 s->unaligned_bvec = 1;
812 }
813
814 return s;
815 }
816
817 /* Cached devices */
818
819 static void cached_dev_bio_complete(struct closure *cl)
820 {
821 struct search *s = container_of(cl, struct search, cl);
822 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
823
824 search_free(cl);
825 cached_dev_put(dc);
826 }
827
828 /* Process reads */
829
830 static void cached_dev_cache_miss_done(struct closure *cl)
831 {
832 struct search *s = container_of(cl, struct search, cl);
833
834 if (s->iop.replace_collision)
835 bch_mark_cache_miss_collision(s->iop.c, s->d);
836
837 if (s->iop.bio) {
838 int i;
839 struct bio_vec *bv;
840
841 bio_for_each_segment_all(bv, s->iop.bio, i)
842 __free_page(bv->bv_page);
843 }
844
845 cached_dev_bio_complete(cl);
846 }
847
848 static void cached_dev_read_error(struct closure *cl)
849 {
850 struct search *s = container_of(cl, struct search, cl);
851 struct bio *bio = &s->bio.bio;
852 struct bio_vec *bv;
853 int i;
854
855 if (s->recoverable) {
856 /* Retry from the backing device: */
857 trace_bcache_read_retry(s->orig_bio);
858
859 s->iop.error = 0;
860 bv = s->bio.bio.bi_io_vec;
861 do_bio_hook(s);
862 s->bio.bio.bi_io_vec = bv;
863
864 if (!s->unaligned_bvec)
865 bio_for_each_segment(bv, s->orig_bio, i)
866 bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
867 else
868 memcpy(s->bio.bio.bi_io_vec,
869 bio_iovec(s->orig_bio),
870 sizeof(struct bio_vec) *
871 bio_segments(s->orig_bio));
872
873 /* XXX: invalidate cache */
874
875 closure_bio_submit(bio, cl, s->d);
876 }
877
878 continue_at(cl, cached_dev_cache_miss_done, NULL);
879 }
880
881 static void cached_dev_read_done(struct closure *cl)
882 {
883 struct search *s = container_of(cl, struct search, cl);
884 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
885
886 /*
887 * We had a cache miss; cache_bio now contains data ready to be inserted
888 * into the cache.
889 *
890 * First, we copy the data we just read from cache_bio's bounce buffers
891 * to the buffers the original bio pointed to:
892 */
893
894 if (s->iop.bio) {
895 bio_reset(s->iop.bio);
896 s->iop.bio->bi_sector = s->cache_miss->bi_sector;
897 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
898 s->iop.bio->bi_size = s->insert_bio_sectors << 9;
899 bch_bio_map(s->iop.bio, NULL);
900
901 bio_copy_data(s->cache_miss, s->iop.bio);
902
903 bio_put(s->cache_miss);
904 s->cache_miss = NULL;
905 }
906
907 if (verify(dc, &s->bio.bio) && s->recoverable &&
908 !s->unaligned_bvec && !s->read_dirty_data)
909 bch_data_verify(dc, s->orig_bio);
910
911 bio_complete(s);
912
913 if (s->iop.bio &&
914 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
915 BUG_ON(!s->iop.replace);
916 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
917 }
918
919 continue_at(cl, cached_dev_cache_miss_done, NULL);
920 }
921
922 static void cached_dev_read_done_bh(struct closure *cl)
923 {
924 struct search *s = container_of(cl, struct search, cl);
925 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
926
927 bch_mark_cache_accounting(s->iop.c, s->d,
928 !s->cache_miss, s->iop.bypass);
929 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
930
931 if (s->iop.error)
932 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
933 else if (s->iop.bio || verify(dc, &s->bio.bio))
934 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
935 else
936 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
937 }
938
939 static int cached_dev_cache_miss(struct btree *b, struct search *s,
940 struct bio *bio, unsigned sectors)
941 {
942 int ret = MAP_CONTINUE;
943 unsigned reada = 0;
944 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
945 struct bio *miss, *cache_bio;
946
947 if (s->cache_miss || s->iop.bypass) {
948 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
949 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
950 goto out_submit;
951 }
952
953 if (!(bio->bi_rw & REQ_RAHEAD) &&
954 !(bio->bi_rw & REQ_META) &&
955 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
956 reada = min_t(sector_t, dc->readahead >> 9,
957 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
958
959 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
960
961 s->iop.replace_key = KEY(s->iop.inode,
962 bio->bi_sector + s->insert_bio_sectors,
963 s->insert_bio_sectors);
964
965 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
966 if (ret)
967 return ret;
968
969 s->iop.replace = true;
970
971 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
972
973 /* btree_search_recurse()'s btree iterator is no good anymore */
974 ret = miss == bio ? MAP_DONE : -EINTR;
975
976 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
977 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
978 dc->disk.bio_split);
979 if (!cache_bio)
980 goto out_submit;
981
982 cache_bio->bi_sector = miss->bi_sector;
983 cache_bio->bi_bdev = miss->bi_bdev;
984 cache_bio->bi_size = s->insert_bio_sectors << 9;
985
986 cache_bio->bi_end_io = request_endio;
987 cache_bio->bi_private = &s->cl;
988
989 bch_bio_map(cache_bio, NULL);
990 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
991 goto out_put;
992
993 if (reada)
994 bch_mark_cache_readahead(s->iop.c, s->d);
995
996 s->cache_miss = miss;
997 s->iop.bio = cache_bio;
998 bio_get(cache_bio);
999 closure_bio_submit(cache_bio, &s->cl, s->d);
1000
1001 return ret;
1002 out_put:
1003 bio_put(cache_bio);
1004 out_submit:
1005 miss->bi_end_io = request_endio;
1006 miss->bi_private = &s->cl;
1007 closure_bio_submit(miss, &s->cl, s->d);
1008 return ret;
1009 }
1010
1011 static void cached_dev_read(struct cached_dev *dc, struct search *s)
1012 {
1013 struct closure *cl = &s->cl;
1014
1015 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1016 continue_at(cl, cached_dev_read_done_bh, NULL);
1017 }
1018
1019 /* Process writes */
1020
1021 static void cached_dev_write_complete(struct closure *cl)
1022 {
1023 struct search *s = container_of(cl, struct search, cl);
1024 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1025
1026 up_read_non_owner(&dc->writeback_lock);
1027 cached_dev_bio_complete(cl);
1028 }
1029
1030 static void cached_dev_write(struct cached_dev *dc, struct search *s)
1031 {
1032 struct closure *cl = &s->cl;
1033 struct bio *bio = &s->bio.bio;
1034 struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
1035 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
1036
1037 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
1038
1039 down_read_non_owner(&dc->writeback_lock);
1040 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1041 /*
1042 * We overlap with some dirty data undergoing background
1043 * writeback, force this write to writeback
1044 */
1045 s->iop.bypass = false;
1046 s->iop.writeback = true;
1047 }
1048
1049 /*
1050 * Discards aren't _required_ to do anything, so skipping if
1051 * check_overlapping returned true is ok
1052 *
1053 * But check_overlapping drops dirty keys for which io hasn't started,
1054 * so we still want to call it.
1055 */
1056 if (bio->bi_rw & REQ_DISCARD)
1057 s->iop.bypass = true;
1058
1059 if (should_writeback(dc, s->orig_bio,
1060 cache_mode(dc, bio),
1061 s->iop.bypass)) {
1062 s->iop.bypass = false;
1063 s->iop.writeback = true;
1064 }
1065
1066 if (s->iop.bypass) {
1067 s->iop.bio = s->orig_bio;
1068 bio_get(s->iop.bio);
1069
1070 if (!(bio->bi_rw & REQ_DISCARD) ||
1071 blk_queue_discard(bdev_get_queue(dc->bdev)))
1072 closure_bio_submit(bio, cl, s->d);
1073 } else if (s->iop.writeback) {
1074 bch_writeback_add(dc);
1075 s->iop.bio = bio;
1076
1077 if (bio->bi_rw & REQ_FLUSH) {
1078 /* Also need to send a flush to the backing device */
1079 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1080 dc->disk.bio_split);
1081
1082 flush->bi_rw = WRITE_FLUSH;
1083 flush->bi_bdev = bio->bi_bdev;
1084 flush->bi_end_io = request_endio;
1085 flush->bi_private = cl;
1086
1087 closure_bio_submit(flush, cl, s->d);
1088 }
1089 } else {
1090 s->iop.bio = bio_clone_bioset(bio, GFP_NOIO,
1091 dc->disk.bio_split);
1092
1093 closure_bio_submit(bio, cl, s->d);
1094 }
1095
1096 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1097 continue_at(cl, cached_dev_write_complete, NULL);
1098 }
1099
1100 static void cached_dev_nodata(struct closure *cl)
1101 {
1102 struct search *s = container_of(cl, struct search, cl);
1103 struct bio *bio = &s->bio.bio;
1104
1105 if (s->iop.flush_journal)
1106 bch_journal_meta(s->iop.c, cl);
1107
1108 /* If it's a flush, we send the flush to the backing device too */
1109 closure_bio_submit(bio, cl, s->d);
1110
1111 continue_at(cl, cached_dev_bio_complete, NULL);
1112 }
1113
1114 /* Cached devices - read & write stuff */
1115
1116 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1117 {
1118 struct search *s;
1119 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1120 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1121 int cpu, rw = bio_data_dir(bio);
1122
1123 cpu = part_stat_lock();
1124 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1125 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1126 part_stat_unlock();
1127
1128 bio->bi_bdev = dc->bdev;
1129 bio->bi_sector += dc->sb.data_offset;
1130
1131 if (cached_dev_get(dc)) {
1132 s = search_alloc(bio, d);
1133 trace_bcache_request_start(s->d, bio);
1134
1135 if (!bio->bi_size) {
1136 /*
1137 * can't call bch_journal_meta from under
1138 * generic_make_request
1139 */
1140 continue_at_nobarrier(&s->cl,
1141 cached_dev_nodata,
1142 bcache_wq);
1143 } else {
1144 s->iop.bypass = check_should_bypass(dc, bio);
1145
1146 if (rw)
1147 cached_dev_write(dc, s);
1148 else
1149 cached_dev_read(dc, s);
1150 }
1151 } else {
1152 if ((bio->bi_rw & REQ_DISCARD) &&
1153 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1154 bio_endio(bio, 0);
1155 else
1156 bch_generic_make_request(bio, &d->bio_split_hook);
1157 }
1158 }
1159
1160 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1161 unsigned int cmd, unsigned long arg)
1162 {
1163 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1164 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1165 }
1166
1167 static int cached_dev_congested(void *data, int bits)
1168 {
1169 struct bcache_device *d = data;
1170 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1171 struct request_queue *q = bdev_get_queue(dc->bdev);
1172 int ret = 0;
1173
1174 if (bdi_congested(&q->backing_dev_info, bits))
1175 return 1;
1176
1177 if (cached_dev_get(dc)) {
1178 unsigned i;
1179 struct cache *ca;
1180
1181 for_each_cache(ca, d->c, i) {
1182 q = bdev_get_queue(ca->bdev);
1183 ret |= bdi_congested(&q->backing_dev_info, bits);
1184 }
1185
1186 cached_dev_put(dc);
1187 }
1188
1189 return ret;
1190 }
1191
1192 void bch_cached_dev_request_init(struct cached_dev *dc)
1193 {
1194 struct gendisk *g = dc->disk.disk;
1195
1196 g->queue->make_request_fn = cached_dev_make_request;
1197 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1198 dc->disk.cache_miss = cached_dev_cache_miss;
1199 dc->disk.ioctl = cached_dev_ioctl;
1200 }
1201
1202 /* Flash backed devices */
1203
1204 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1205 struct bio *bio, unsigned sectors)
1206 {
1207 struct bio_vec *bv;
1208 int i;
1209
1210 /* Zero fill bio */
1211
1212 bio_for_each_segment(bv, bio, i) {
1213 unsigned j = min(bv->bv_len >> 9, sectors);
1214
1215 void *p = kmap(bv->bv_page);
1216 memset(p + bv->bv_offset, 0, j << 9);
1217 kunmap(bv->bv_page);
1218
1219 sectors -= j;
1220 }
1221
1222 bio_advance(bio, min(sectors << 9, bio->bi_size));
1223
1224 if (!bio->bi_size)
1225 return MAP_DONE;
1226
1227 return MAP_CONTINUE;
1228 }
1229
1230 static void flash_dev_nodata(struct closure *cl)
1231 {
1232 struct search *s = container_of(cl, struct search, cl);
1233
1234 if (s->iop.flush_journal)
1235 bch_journal_meta(s->iop.c, cl);
1236
1237 continue_at(cl, search_free, NULL);
1238 }
1239
1240 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1241 {
1242 struct search *s;
1243 struct closure *cl;
1244 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1245 int cpu, rw = bio_data_dir(bio);
1246
1247 cpu = part_stat_lock();
1248 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1249 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1250 part_stat_unlock();
1251
1252 s = search_alloc(bio, d);
1253 cl = &s->cl;
1254 bio = &s->bio.bio;
1255
1256 trace_bcache_request_start(s->d, bio);
1257
1258 if (!bio->bi_size) {
1259 /*
1260 * can't call bch_journal_meta from under
1261 * generic_make_request
1262 */
1263 continue_at_nobarrier(&s->cl,
1264 flash_dev_nodata,
1265 bcache_wq);
1266 } else if (rw) {
1267 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1268 &KEY(d->id, bio->bi_sector, 0),
1269 &KEY(d->id, bio_end_sector(bio), 0));
1270
1271 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
1272 s->iop.writeback = true;
1273 s->iop.bio = bio;
1274
1275 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1276 } else {
1277 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1278 }
1279
1280 continue_at(cl, search_free, NULL);
1281 }
1282
1283 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1284 unsigned int cmd, unsigned long arg)
1285 {
1286 return -ENOTTY;
1287 }
1288
1289 static int flash_dev_congested(void *data, int bits)
1290 {
1291 struct bcache_device *d = data;
1292 struct request_queue *q;
1293 struct cache *ca;
1294 unsigned i;
1295 int ret = 0;
1296
1297 for_each_cache(ca, d->c, i) {
1298 q = bdev_get_queue(ca->bdev);
1299 ret |= bdi_congested(&q->backing_dev_info, bits);
1300 }
1301
1302 return ret;
1303 }
1304
1305 void bch_flash_dev_request_init(struct bcache_device *d)
1306 {
1307 struct gendisk *g = d->disk;
1308
1309 g->queue->make_request_fn = flash_dev_make_request;
1310 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1311 d->cache_miss = flash_dev_cache_miss;
1312 d->ioctl = flash_dev_ioctl;
1313 }
1314
1315 void bch_request_exit(void)
1316 {
1317 #ifdef CONFIG_CGROUP_BCACHE
1318 cgroup_unload_subsys(&bcache_subsys);
1319 #endif
1320 if (bch_search_cache)
1321 kmem_cache_destroy(bch_search_cache);
1322 }
1323
1324 int __init bch_request_init(void)
1325 {
1326 bch_search_cache = KMEM_CACHE(search, 0);
1327 if (!bch_search_cache)
1328 return -ENOMEM;
1329
1330 #ifdef CONFIG_CGROUP_BCACHE
1331 cgroup_load_subsys(&bcache_subsys);
1332 init_bch_cgroup(&bcache_default_cgroup);
1333
1334 cgroup_add_cftypes(&bcache_subsys, bch_files);
1335 #endif
1336 return 0;
1337 }