Merge branches 'at91', 'ep93xx', 'etm', 'ks8695', 'nuc', 'u300' and 'u8500' into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / lguest / core.c
1 /*P:400
2 * This contains run_guest() which actually calls into the Host<->Guest
3 * Switcher and analyzes the return, such as determining if the Guest wants the
4 * Host to do something. This file also contains useful helper routines.
5 :*/
6 #include <linux/module.h>
7 #include <linux/stringify.h>
8 #include <linux/stddef.h>
9 #include <linux/io.h>
10 #include <linux/mm.h>
11 #include <linux/vmalloc.h>
12 #include <linux/cpu.h>
13 #include <linux/freezer.h>
14 #include <linux/highmem.h>
15 #include <asm/paravirt.h>
16 #include <asm/pgtable.h>
17 #include <asm/uaccess.h>
18 #include <asm/poll.h>
19 #include <asm/asm-offsets.h>
20 #include "lg.h"
21
22
23 static struct vm_struct *switcher_vma;
24 static struct page **switcher_page;
25
26 /* This One Big lock protects all inter-guest data structures. */
27 DEFINE_MUTEX(lguest_lock);
28
29 /*H:010
30 * We need to set up the Switcher at a high virtual address. Remember the
31 * Switcher is a few hundred bytes of assembler code which actually changes the
32 * CPU to run the Guest, and then changes back to the Host when a trap or
33 * interrupt happens.
34 *
35 * The Switcher code must be at the same virtual address in the Guest as the
36 * Host since it will be running as the switchover occurs.
37 *
38 * Trying to map memory at a particular address is an unusual thing to do, so
39 * it's not a simple one-liner.
40 */
41 static __init int map_switcher(void)
42 {
43 int i, err;
44 struct page **pagep;
45
46 /*
47 * Map the Switcher in to high memory.
48 *
49 * It turns out that if we choose the address 0xFFC00000 (4MB under the
50 * top virtual address), it makes setting up the page tables really
51 * easy.
52 */
53
54 /*
55 * We allocate an array of struct page pointers. map_vm_area() wants
56 * this, rather than just an array of pages.
57 */
58 switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
59 GFP_KERNEL);
60 if (!switcher_page) {
61 err = -ENOMEM;
62 goto out;
63 }
64
65 /*
66 * Now we actually allocate the pages. The Guest will see these pages,
67 * so we make sure they're zeroed.
68 */
69 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
70 switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
71 if (!switcher_page[i]) {
72 err = -ENOMEM;
73 goto free_some_pages;
74 }
75 }
76
77 /*
78 * First we check that the Switcher won't overlap the fixmap area at
79 * the top of memory. It's currently nowhere near, but it could have
80 * very strange effects if it ever happened.
81 */
82 if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
83 err = -ENOMEM;
84 printk("lguest: mapping switcher would thwack fixmap\n");
85 goto free_pages;
86 }
87
88 /*
89 * Now we reserve the "virtual memory area" we want: 0xFFC00000
90 * (SWITCHER_ADDR). We might not get it in theory, but in practice
91 * it's worked so far. The end address needs +1 because __get_vm_area
92 * allocates an extra guard page, so we need space for that.
93 */
94 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
95 VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR
96 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
97 if (!switcher_vma) {
98 err = -ENOMEM;
99 printk("lguest: could not map switcher pages high\n");
100 goto free_pages;
101 }
102
103 /*
104 * This code actually sets up the pages we've allocated to appear at
105 * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
106 * kind of pages we're mapping (kernel pages), and a pointer to our
107 * array of struct pages. It increments that pointer, but we don't
108 * care.
109 */
110 pagep = switcher_page;
111 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
112 if (err) {
113 printk("lguest: map_vm_area failed: %i\n", err);
114 goto free_vma;
115 }
116
117 /*
118 * Now the Switcher is mapped at the right address, we can't fail!
119 * Copy in the compiled-in Switcher code (from <arch>_switcher.S).
120 */
121 memcpy(switcher_vma->addr, start_switcher_text,
122 end_switcher_text - start_switcher_text);
123
124 printk(KERN_INFO "lguest: mapped switcher at %p\n",
125 switcher_vma->addr);
126 /* And we succeeded... */
127 return 0;
128
129 free_vma:
130 vunmap(switcher_vma->addr);
131 free_pages:
132 i = TOTAL_SWITCHER_PAGES;
133 free_some_pages:
134 for (--i; i >= 0; i--)
135 __free_pages(switcher_page[i], 0);
136 kfree(switcher_page);
137 out:
138 return err;
139 }
140 /*:*/
141
142 /* Cleaning up the mapping when the module is unloaded is almost... too easy. */
143 static void unmap_switcher(void)
144 {
145 unsigned int i;
146
147 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
148 vunmap(switcher_vma->addr);
149 /* Now we just need to free the pages we copied the switcher into */
150 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
151 __free_pages(switcher_page[i], 0);
152 kfree(switcher_page);
153 }
154
155 /*H:032
156 * Dealing With Guest Memory.
157 *
158 * Before we go too much further into the Host, we need to grok the routines
159 * we use to deal with Guest memory.
160 *
161 * When the Guest gives us (what it thinks is) a physical address, we can use
162 * the normal copy_from_user() & copy_to_user() on the corresponding place in
163 * the memory region allocated by the Launcher.
164 *
165 * But we can't trust the Guest: it might be trying to access the Launcher
166 * code. We have to check that the range is below the pfn_limit the Launcher
167 * gave us. We have to make sure that addr + len doesn't give us a false
168 * positive by overflowing, too.
169 */
170 bool lguest_address_ok(const struct lguest *lg,
171 unsigned long addr, unsigned long len)
172 {
173 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
174 }
175
176 /*
177 * This routine copies memory from the Guest. Here we can see how useful the
178 * kill_lguest() routine we met in the Launcher can be: we return a random
179 * value (all zeroes) instead of needing to return an error.
180 */
181 void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
182 {
183 if (!lguest_address_ok(cpu->lg, addr, bytes)
184 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
185 /* copy_from_user should do this, but as we rely on it... */
186 memset(b, 0, bytes);
187 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
188 }
189 }
190
191 /* This is the write (copy into Guest) version. */
192 void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
193 unsigned bytes)
194 {
195 if (!lguest_address_ok(cpu->lg, addr, bytes)
196 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
197 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
198 }
199 /*:*/
200
201 /*H:030
202 * Let's jump straight to the the main loop which runs the Guest.
203 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
204 * going around and around until something interesting happens.
205 */
206 int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
207 {
208 /* We stop running once the Guest is dead. */
209 while (!cpu->lg->dead) {
210 unsigned int irq;
211 bool more;
212
213 /* First we run any hypercalls the Guest wants done. */
214 if (cpu->hcall)
215 do_hypercalls(cpu);
216
217 /*
218 * It's possible the Guest did a NOTIFY hypercall to the
219 * Launcher.
220 */
221 if (cpu->pending_notify) {
222 /*
223 * Does it just needs to write to a registered
224 * eventfd (ie. the appropriate virtqueue thread)?
225 */
226 if (!send_notify_to_eventfd(cpu)) {
227 /* OK, we tell the main Laucher. */
228 if (put_user(cpu->pending_notify, user))
229 return -EFAULT;
230 return sizeof(cpu->pending_notify);
231 }
232 }
233
234 /* Check for signals */
235 if (signal_pending(current))
236 return -ERESTARTSYS;
237
238 /*
239 * Check if there are any interrupts which can be delivered now:
240 * if so, this sets up the hander to be executed when we next
241 * run the Guest.
242 */
243 irq = interrupt_pending(cpu, &more);
244 if (irq < LGUEST_IRQS)
245 try_deliver_interrupt(cpu, irq, more);
246
247 /*
248 * All long-lived kernel loops need to check with this horrible
249 * thing called the freezer. If the Host is trying to suspend,
250 * it stops us.
251 */
252 try_to_freeze();
253
254 /*
255 * Just make absolutely sure the Guest is still alive. One of
256 * those hypercalls could have been fatal, for example.
257 */
258 if (cpu->lg->dead)
259 break;
260
261 /*
262 * If the Guest asked to be stopped, we sleep. The Guest's
263 * clock timer will wake us.
264 */
265 if (cpu->halted) {
266 set_current_state(TASK_INTERRUPTIBLE);
267 /*
268 * Just before we sleep, make sure no interrupt snuck in
269 * which we should be doing.
270 */
271 if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
272 set_current_state(TASK_RUNNING);
273 else
274 schedule();
275 continue;
276 }
277
278 /*
279 * OK, now we're ready to jump into the Guest. First we put up
280 * the "Do Not Disturb" sign:
281 */
282 local_irq_disable();
283
284 /* Actually run the Guest until something happens. */
285 lguest_arch_run_guest(cpu);
286
287 /* Now we're ready to be interrupted or moved to other CPUs */
288 local_irq_enable();
289
290 /* Now we deal with whatever happened to the Guest. */
291 lguest_arch_handle_trap(cpu);
292 }
293
294 /* Special case: Guest is 'dead' but wants a reboot. */
295 if (cpu->lg->dead == ERR_PTR(-ERESTART))
296 return -ERESTART;
297
298 /* The Guest is dead => "No such file or directory" */
299 return -ENOENT;
300 }
301
302 /*H:000
303 * Welcome to the Host!
304 *
305 * By this point your brain has been tickled by the Guest code and numbed by
306 * the Launcher code; prepare for it to be stretched by the Host code. This is
307 * the heart. Let's begin at the initialization routine for the Host's lg
308 * module.
309 */
310 static int __init init(void)
311 {
312 int err;
313
314 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
315 if (paravirt_enabled()) {
316 printk("lguest is afraid of being a guest\n");
317 return -EPERM;
318 }
319
320 /* First we put the Switcher up in very high virtual memory. */
321 err = map_switcher();
322 if (err)
323 goto out;
324
325 /* Now we set up the pagetable implementation for the Guests. */
326 err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
327 if (err)
328 goto unmap;
329
330 /* We might need to reserve an interrupt vector. */
331 err = init_interrupts();
332 if (err)
333 goto free_pgtables;
334
335 /* /dev/lguest needs to be registered. */
336 err = lguest_device_init();
337 if (err)
338 goto free_interrupts;
339
340 /* Finally we do some architecture-specific setup. */
341 lguest_arch_host_init();
342
343 /* All good! */
344 return 0;
345
346 free_interrupts:
347 free_interrupts();
348 free_pgtables:
349 free_pagetables();
350 unmap:
351 unmap_switcher();
352 out:
353 return err;
354 }
355
356 /* Cleaning up is just the same code, backwards. With a little French. */
357 static void __exit fini(void)
358 {
359 lguest_device_remove();
360 free_interrupts();
361 free_pagetables();
362 unmap_switcher();
363
364 lguest_arch_host_fini();
365 }
366 /*:*/
367
368 /*
369 * The Host side of lguest can be a module. This is a nice way for people to
370 * play with it.
371 */
372 module_init(init);
373 module_exit(fini);
374 MODULE_LICENSE("GPL");
375 MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");