KVM: MMU: Selectively set PageDirty when releasing guest memory
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / kvm / kvm_main.c
1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 *
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
15 *
16 */
17
18 #include "kvm.h"
19 #include "x86.h"
20 #include "irq.h"
21
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <linux/reboot.h>
31 #include <linux/debugfs.h>
32 #include <linux/highmem.h>
33 #include <linux/file.h>
34 #include <linux/sysdev.h>
35 #include <linux/cpu.h>
36 #include <linux/sched.h>
37 #include <linux/cpumask.h>
38 #include <linux/smp.h>
39 #include <linux/anon_inodes.h>
40 #include <linux/profile.h>
41 #include <linux/kvm_para.h>
42 #include <linux/pagemap.h>
43 #include <linux/mman.h>
44
45 #include <asm/processor.h>
46 #include <asm/io.h>
47 #include <asm/uaccess.h>
48 #include <asm/desc.h>
49 #include <asm/pgtable.h>
50
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53
54 DEFINE_SPINLOCK(kvm_lock);
55 LIST_HEAD(vm_list);
56
57 static cpumask_t cpus_hardware_enabled;
58
59 struct kmem_cache *kvm_vcpu_cache;
60 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
61
62 static __read_mostly struct preempt_ops kvm_preempt_ops;
63
64 static struct dentry *debugfs_dir;
65
66 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
67 unsigned long arg);
68
69 static inline int valid_vcpu(int n)
70 {
71 return likely(n >= 0 && n < KVM_MAX_VCPUS);
72 }
73
74 /*
75 * Switches to specified vcpu, until a matching vcpu_put()
76 */
77 void vcpu_load(struct kvm_vcpu *vcpu)
78 {
79 int cpu;
80
81 mutex_lock(&vcpu->mutex);
82 cpu = get_cpu();
83 preempt_notifier_register(&vcpu->preempt_notifier);
84 kvm_arch_vcpu_load(vcpu, cpu);
85 put_cpu();
86 }
87
88 void vcpu_put(struct kvm_vcpu *vcpu)
89 {
90 preempt_disable();
91 kvm_arch_vcpu_put(vcpu);
92 preempt_notifier_unregister(&vcpu->preempt_notifier);
93 preempt_enable();
94 mutex_unlock(&vcpu->mutex);
95 }
96
97 static void ack_flush(void *_completed)
98 {
99 }
100
101 void kvm_flush_remote_tlbs(struct kvm *kvm)
102 {
103 int i, cpu;
104 cpumask_t cpus;
105 struct kvm_vcpu *vcpu;
106
107 cpus_clear(cpus);
108 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
109 vcpu = kvm->vcpus[i];
110 if (!vcpu)
111 continue;
112 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
113 continue;
114 cpu = vcpu->cpu;
115 if (cpu != -1 && cpu != raw_smp_processor_id())
116 cpu_set(cpu, cpus);
117 }
118 smp_call_function_mask(cpus, ack_flush, NULL, 1);
119 }
120
121 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
122 {
123 struct page *page;
124 int r;
125
126 mutex_init(&vcpu->mutex);
127 vcpu->cpu = -1;
128 vcpu->kvm = kvm;
129 vcpu->vcpu_id = id;
130 init_waitqueue_head(&vcpu->wq);
131
132 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
133 if (!page) {
134 r = -ENOMEM;
135 goto fail;
136 }
137 vcpu->run = page_address(page);
138
139 r = kvm_arch_vcpu_init(vcpu);
140 if (r < 0)
141 goto fail_free_run;
142 return 0;
143
144 fail_free_run:
145 free_page((unsigned long)vcpu->run);
146 fail:
147 return r;
148 }
149 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
150
151 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
152 {
153 kvm_arch_vcpu_uninit(vcpu);
154 free_page((unsigned long)vcpu->run);
155 }
156 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
157
158 static struct kvm *kvm_create_vm(void)
159 {
160 struct kvm *kvm = kvm_arch_create_vm();
161
162 if (IS_ERR(kvm))
163 goto out;
164
165 kvm_io_bus_init(&kvm->pio_bus);
166 mutex_init(&kvm->lock);
167 kvm_io_bus_init(&kvm->mmio_bus);
168 spin_lock(&kvm_lock);
169 list_add(&kvm->vm_list, &vm_list);
170 spin_unlock(&kvm_lock);
171 out:
172 return kvm;
173 }
174
175 /*
176 * Free any memory in @free but not in @dont.
177 */
178 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
179 struct kvm_memory_slot *dont)
180 {
181 if (!dont || free->rmap != dont->rmap)
182 vfree(free->rmap);
183
184 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
185 vfree(free->dirty_bitmap);
186
187 free->npages = 0;
188 free->dirty_bitmap = NULL;
189 free->rmap = NULL;
190 }
191
192 void kvm_free_physmem(struct kvm *kvm)
193 {
194 int i;
195
196 for (i = 0; i < kvm->nmemslots; ++i)
197 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
198 }
199
200 static void kvm_destroy_vm(struct kvm *kvm)
201 {
202 spin_lock(&kvm_lock);
203 list_del(&kvm->vm_list);
204 spin_unlock(&kvm_lock);
205 kvm_io_bus_destroy(&kvm->pio_bus);
206 kvm_io_bus_destroy(&kvm->mmio_bus);
207 kvm_arch_destroy_vm(kvm);
208 }
209
210 static int kvm_vm_release(struct inode *inode, struct file *filp)
211 {
212 struct kvm *kvm = filp->private_data;
213
214 kvm_destroy_vm(kvm);
215 return 0;
216 }
217
218 /*
219 * Allocate some memory and give it an address in the guest physical address
220 * space.
221 *
222 * Discontiguous memory is allowed, mostly for framebuffers.
223 *
224 * Must be called holding kvm->lock.
225 */
226 int __kvm_set_memory_region(struct kvm *kvm,
227 struct kvm_userspace_memory_region *mem,
228 int user_alloc)
229 {
230 int r;
231 gfn_t base_gfn;
232 unsigned long npages;
233 unsigned long i;
234 struct kvm_memory_slot *memslot;
235 struct kvm_memory_slot old, new;
236
237 r = -EINVAL;
238 /* General sanity checks */
239 if (mem->memory_size & (PAGE_SIZE - 1))
240 goto out;
241 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
242 goto out;
243 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
244 goto out;
245 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
246 goto out;
247
248 memslot = &kvm->memslots[mem->slot];
249 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
250 npages = mem->memory_size >> PAGE_SHIFT;
251
252 if (!npages)
253 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
254
255 new = old = *memslot;
256
257 new.base_gfn = base_gfn;
258 new.npages = npages;
259 new.flags = mem->flags;
260
261 /* Disallow changing a memory slot's size. */
262 r = -EINVAL;
263 if (npages && old.npages && npages != old.npages)
264 goto out_free;
265
266 /* Check for overlaps */
267 r = -EEXIST;
268 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
269 struct kvm_memory_slot *s = &kvm->memslots[i];
270
271 if (s == memslot)
272 continue;
273 if (!((base_gfn + npages <= s->base_gfn) ||
274 (base_gfn >= s->base_gfn + s->npages)))
275 goto out_free;
276 }
277
278 /* Free page dirty bitmap if unneeded */
279 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
280 new.dirty_bitmap = NULL;
281
282 r = -ENOMEM;
283
284 /* Allocate if a slot is being created */
285 if (npages && !new.rmap) {
286 new.rmap = vmalloc(npages * sizeof(struct page *));
287
288 if (!new.rmap)
289 goto out_free;
290
291 memset(new.rmap, 0, npages * sizeof(*new.rmap));
292
293 new.user_alloc = user_alloc;
294 if (user_alloc)
295 new.userspace_addr = mem->userspace_addr;
296 else {
297 down_write(&current->mm->mmap_sem);
298 new.userspace_addr = do_mmap(NULL, 0,
299 npages * PAGE_SIZE,
300 PROT_READ | PROT_WRITE,
301 MAP_SHARED | MAP_ANONYMOUS,
302 0);
303 up_write(&current->mm->mmap_sem);
304
305 if (IS_ERR((void *)new.userspace_addr))
306 goto out_free;
307 }
308 } else {
309 if (!old.user_alloc && old.rmap) {
310 int ret;
311
312 down_write(&current->mm->mmap_sem);
313 ret = do_munmap(current->mm, old.userspace_addr,
314 old.npages * PAGE_SIZE);
315 up_write(&current->mm->mmap_sem);
316 if (ret < 0)
317 printk(KERN_WARNING
318 "kvm_vm_ioctl_set_memory_region: "
319 "failed to munmap memory\n");
320 }
321 }
322
323 /* Allocate page dirty bitmap if needed */
324 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
325 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
326
327 new.dirty_bitmap = vmalloc(dirty_bytes);
328 if (!new.dirty_bitmap)
329 goto out_free;
330 memset(new.dirty_bitmap, 0, dirty_bytes);
331 }
332
333 if (mem->slot >= kvm->nmemslots)
334 kvm->nmemslots = mem->slot + 1;
335
336 if (!kvm->n_requested_mmu_pages) {
337 unsigned int n_pages;
338
339 if (npages) {
340 n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
341 kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
342 n_pages);
343 } else {
344 unsigned int nr_mmu_pages;
345
346 n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
347 nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
348 nr_mmu_pages = max(nr_mmu_pages,
349 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
350 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
351 }
352 }
353
354 *memslot = new;
355
356 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
357 kvm_flush_remote_tlbs(kvm);
358
359 kvm_free_physmem_slot(&old, &new);
360 return 0;
361
362 out_free:
363 kvm_free_physmem_slot(&new, &old);
364 out:
365 return r;
366
367 }
368 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
369
370 int kvm_set_memory_region(struct kvm *kvm,
371 struct kvm_userspace_memory_region *mem,
372 int user_alloc)
373 {
374 int r;
375
376 mutex_lock(&kvm->lock);
377 r = __kvm_set_memory_region(kvm, mem, user_alloc);
378 mutex_unlock(&kvm->lock);
379 return r;
380 }
381 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
382
383 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
384 struct
385 kvm_userspace_memory_region *mem,
386 int user_alloc)
387 {
388 if (mem->slot >= KVM_MEMORY_SLOTS)
389 return -EINVAL;
390 return kvm_set_memory_region(kvm, mem, user_alloc);
391 }
392
393 int kvm_get_dirty_log(struct kvm *kvm,
394 struct kvm_dirty_log *log, int *is_dirty)
395 {
396 struct kvm_memory_slot *memslot;
397 int r, i;
398 int n;
399 unsigned long any = 0;
400
401 r = -EINVAL;
402 if (log->slot >= KVM_MEMORY_SLOTS)
403 goto out;
404
405 memslot = &kvm->memslots[log->slot];
406 r = -ENOENT;
407 if (!memslot->dirty_bitmap)
408 goto out;
409
410 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
411
412 for (i = 0; !any && i < n/sizeof(long); ++i)
413 any = memslot->dirty_bitmap[i];
414
415 r = -EFAULT;
416 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
417 goto out;
418
419 if (any)
420 *is_dirty = 1;
421
422 r = 0;
423 out:
424 return r;
425 }
426
427 int is_error_page(struct page *page)
428 {
429 return page == bad_page;
430 }
431 EXPORT_SYMBOL_GPL(is_error_page);
432
433 static inline unsigned long bad_hva(void)
434 {
435 return PAGE_OFFSET;
436 }
437
438 int kvm_is_error_hva(unsigned long addr)
439 {
440 return addr == bad_hva();
441 }
442 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
443
444 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
445 {
446 int i;
447 struct kvm_mem_alias *alias;
448
449 for (i = 0; i < kvm->naliases; ++i) {
450 alias = &kvm->aliases[i];
451 if (gfn >= alias->base_gfn
452 && gfn < alias->base_gfn + alias->npages)
453 return alias->target_gfn + gfn - alias->base_gfn;
454 }
455 return gfn;
456 }
457
458 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
459 {
460 int i;
461
462 for (i = 0; i < kvm->nmemslots; ++i) {
463 struct kvm_memory_slot *memslot = &kvm->memslots[i];
464
465 if (gfn >= memslot->base_gfn
466 && gfn < memslot->base_gfn + memslot->npages)
467 return memslot;
468 }
469 return NULL;
470 }
471
472 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
473 {
474 gfn = unalias_gfn(kvm, gfn);
475 return __gfn_to_memslot(kvm, gfn);
476 }
477
478 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
479 {
480 int i;
481
482 gfn = unalias_gfn(kvm, gfn);
483 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
484 struct kvm_memory_slot *memslot = &kvm->memslots[i];
485
486 if (gfn >= memslot->base_gfn
487 && gfn < memslot->base_gfn + memslot->npages)
488 return 1;
489 }
490 return 0;
491 }
492 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
493
494 static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
495 {
496 struct kvm_memory_slot *slot;
497
498 gfn = unalias_gfn(kvm, gfn);
499 slot = __gfn_to_memslot(kvm, gfn);
500 if (!slot)
501 return bad_hva();
502 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
503 }
504
505 /*
506 * Requires current->mm->mmap_sem to be held
507 */
508 static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
509 {
510 struct page *page[1];
511 unsigned long addr;
512 int npages;
513
514 might_sleep();
515
516 addr = gfn_to_hva(kvm, gfn);
517 if (kvm_is_error_hva(addr)) {
518 get_page(bad_page);
519 return bad_page;
520 }
521
522 npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
523 NULL);
524
525 if (npages != 1) {
526 get_page(bad_page);
527 return bad_page;
528 }
529
530 return page[0];
531 }
532
533 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
534 {
535 struct page *page;
536
537 down_read(&current->mm->mmap_sem);
538 page = __gfn_to_page(kvm, gfn);
539 up_read(&current->mm->mmap_sem);
540
541 return page;
542 }
543
544 EXPORT_SYMBOL_GPL(gfn_to_page);
545
546 void kvm_release_page_clean(struct page *page)
547 {
548 put_page(page);
549 }
550 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
551
552 void kvm_release_page_dirty(struct page *page)
553 {
554 if (!PageReserved(page))
555 SetPageDirty(page);
556 put_page(page);
557 }
558 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
559
560 static int next_segment(unsigned long len, int offset)
561 {
562 if (len > PAGE_SIZE - offset)
563 return PAGE_SIZE - offset;
564 else
565 return len;
566 }
567
568 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
569 int len)
570 {
571 int r;
572 unsigned long addr;
573
574 addr = gfn_to_hva(kvm, gfn);
575 if (kvm_is_error_hva(addr))
576 return -EFAULT;
577 r = copy_from_user(data, (void __user *)addr + offset, len);
578 if (r)
579 return -EFAULT;
580 return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
583
584 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
585 {
586 gfn_t gfn = gpa >> PAGE_SHIFT;
587 int seg;
588 int offset = offset_in_page(gpa);
589 int ret;
590
591 while ((seg = next_segment(len, offset)) != 0) {
592 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
593 if (ret < 0)
594 return ret;
595 offset = 0;
596 len -= seg;
597 data += seg;
598 ++gfn;
599 }
600 return 0;
601 }
602 EXPORT_SYMBOL_GPL(kvm_read_guest);
603
604 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
605 int offset, int len)
606 {
607 int r;
608 unsigned long addr;
609
610 addr = gfn_to_hva(kvm, gfn);
611 if (kvm_is_error_hva(addr))
612 return -EFAULT;
613 r = copy_to_user((void __user *)addr + offset, data, len);
614 if (r)
615 return -EFAULT;
616 mark_page_dirty(kvm, gfn);
617 return 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
620
621 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
622 unsigned long len)
623 {
624 gfn_t gfn = gpa >> PAGE_SHIFT;
625 int seg;
626 int offset = offset_in_page(gpa);
627 int ret;
628
629 while ((seg = next_segment(len, offset)) != 0) {
630 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
631 if (ret < 0)
632 return ret;
633 offset = 0;
634 len -= seg;
635 data += seg;
636 ++gfn;
637 }
638 return 0;
639 }
640
641 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
642 {
643 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
644 }
645 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
646
647 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
648 {
649 gfn_t gfn = gpa >> PAGE_SHIFT;
650 int seg;
651 int offset = offset_in_page(gpa);
652 int ret;
653
654 while ((seg = next_segment(len, offset)) != 0) {
655 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
656 if (ret < 0)
657 return ret;
658 offset = 0;
659 len -= seg;
660 ++gfn;
661 }
662 return 0;
663 }
664 EXPORT_SYMBOL_GPL(kvm_clear_guest);
665
666 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
667 {
668 struct kvm_memory_slot *memslot;
669
670 gfn = unalias_gfn(kvm, gfn);
671 memslot = __gfn_to_memslot(kvm, gfn);
672 if (memslot && memslot->dirty_bitmap) {
673 unsigned long rel_gfn = gfn - memslot->base_gfn;
674
675 /* avoid RMW */
676 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
677 set_bit(rel_gfn, memslot->dirty_bitmap);
678 }
679 }
680
681 /*
682 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
683 */
684 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
685 {
686 DECLARE_WAITQUEUE(wait, current);
687
688 add_wait_queue(&vcpu->wq, &wait);
689
690 /*
691 * We will block until either an interrupt or a signal wakes us up
692 */
693 while (!kvm_cpu_has_interrupt(vcpu)
694 && !signal_pending(current)
695 && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
696 && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
697 set_current_state(TASK_INTERRUPTIBLE);
698 vcpu_put(vcpu);
699 schedule();
700 vcpu_load(vcpu);
701 }
702
703 __set_current_state(TASK_RUNNING);
704 remove_wait_queue(&vcpu->wq, &wait);
705 }
706
707 void kvm_resched(struct kvm_vcpu *vcpu)
708 {
709 if (!need_resched())
710 return;
711 cond_resched();
712 }
713 EXPORT_SYMBOL_GPL(kvm_resched);
714
715 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
716 struct kvm_interrupt *irq)
717 {
718 if (irq->irq < 0 || irq->irq >= 256)
719 return -EINVAL;
720 if (irqchip_in_kernel(vcpu->kvm))
721 return -ENXIO;
722 vcpu_load(vcpu);
723
724 set_bit(irq->irq, vcpu->irq_pending);
725 set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
726
727 vcpu_put(vcpu);
728
729 return 0;
730 }
731
732 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
733 unsigned long address,
734 int *type)
735 {
736 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
737 unsigned long pgoff;
738 struct page *page;
739
740 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
741 if (pgoff == 0)
742 page = virt_to_page(vcpu->run);
743 else if (pgoff == KVM_PIO_PAGE_OFFSET)
744 page = virt_to_page(vcpu->pio_data);
745 else
746 return NOPAGE_SIGBUS;
747 get_page(page);
748 if (type != NULL)
749 *type = VM_FAULT_MINOR;
750
751 return page;
752 }
753
754 static struct vm_operations_struct kvm_vcpu_vm_ops = {
755 .nopage = kvm_vcpu_nopage,
756 };
757
758 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
759 {
760 vma->vm_ops = &kvm_vcpu_vm_ops;
761 return 0;
762 }
763
764 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
765 {
766 struct kvm_vcpu *vcpu = filp->private_data;
767
768 fput(vcpu->kvm->filp);
769 return 0;
770 }
771
772 static struct file_operations kvm_vcpu_fops = {
773 .release = kvm_vcpu_release,
774 .unlocked_ioctl = kvm_vcpu_ioctl,
775 .compat_ioctl = kvm_vcpu_ioctl,
776 .mmap = kvm_vcpu_mmap,
777 };
778
779 /*
780 * Allocates an inode for the vcpu.
781 */
782 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
783 {
784 int fd, r;
785 struct inode *inode;
786 struct file *file;
787
788 r = anon_inode_getfd(&fd, &inode, &file,
789 "kvm-vcpu", &kvm_vcpu_fops, vcpu);
790 if (r)
791 return r;
792 atomic_inc(&vcpu->kvm->filp->f_count);
793 return fd;
794 }
795
796 /*
797 * Creates some virtual cpus. Good luck creating more than one.
798 */
799 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
800 {
801 int r;
802 struct kvm_vcpu *vcpu;
803
804 if (!valid_vcpu(n))
805 return -EINVAL;
806
807 vcpu = kvm_arch_vcpu_create(kvm, n);
808 if (IS_ERR(vcpu))
809 return PTR_ERR(vcpu);
810
811 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
812
813 mutex_lock(&kvm->lock);
814 if (kvm->vcpus[n]) {
815 r = -EEXIST;
816 mutex_unlock(&kvm->lock);
817 goto vcpu_destroy;
818 }
819 kvm->vcpus[n] = vcpu;
820 mutex_unlock(&kvm->lock);
821
822 /* Now it's all set up, let userspace reach it */
823 r = create_vcpu_fd(vcpu);
824 if (r < 0)
825 goto unlink;
826 return r;
827
828 unlink:
829 mutex_lock(&kvm->lock);
830 kvm->vcpus[n] = NULL;
831 mutex_unlock(&kvm->lock);
832 vcpu_destroy:
833 kvm_arch_vcpu_destroy(vcpu);
834 return r;
835 }
836
837 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
838 {
839 if (sigset) {
840 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
841 vcpu->sigset_active = 1;
842 vcpu->sigset = *sigset;
843 } else
844 vcpu->sigset_active = 0;
845 return 0;
846 }
847
848 static long kvm_vcpu_ioctl(struct file *filp,
849 unsigned int ioctl, unsigned long arg)
850 {
851 struct kvm_vcpu *vcpu = filp->private_data;
852 void __user *argp = (void __user *)arg;
853 int r;
854
855 switch (ioctl) {
856 case KVM_RUN:
857 r = -EINVAL;
858 if (arg)
859 goto out;
860 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
861 break;
862 case KVM_GET_REGS: {
863 struct kvm_regs kvm_regs;
864
865 memset(&kvm_regs, 0, sizeof kvm_regs);
866 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
867 if (r)
868 goto out;
869 r = -EFAULT;
870 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
871 goto out;
872 r = 0;
873 break;
874 }
875 case KVM_SET_REGS: {
876 struct kvm_regs kvm_regs;
877
878 r = -EFAULT;
879 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
880 goto out;
881 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
882 if (r)
883 goto out;
884 r = 0;
885 break;
886 }
887 case KVM_GET_SREGS: {
888 struct kvm_sregs kvm_sregs;
889
890 memset(&kvm_sregs, 0, sizeof kvm_sregs);
891 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
892 if (r)
893 goto out;
894 r = -EFAULT;
895 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
896 goto out;
897 r = 0;
898 break;
899 }
900 case KVM_SET_SREGS: {
901 struct kvm_sregs kvm_sregs;
902
903 r = -EFAULT;
904 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
905 goto out;
906 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
907 if (r)
908 goto out;
909 r = 0;
910 break;
911 }
912 case KVM_TRANSLATE: {
913 struct kvm_translation tr;
914
915 r = -EFAULT;
916 if (copy_from_user(&tr, argp, sizeof tr))
917 goto out;
918 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
919 if (r)
920 goto out;
921 r = -EFAULT;
922 if (copy_to_user(argp, &tr, sizeof tr))
923 goto out;
924 r = 0;
925 break;
926 }
927 case KVM_INTERRUPT: {
928 struct kvm_interrupt irq;
929
930 r = -EFAULT;
931 if (copy_from_user(&irq, argp, sizeof irq))
932 goto out;
933 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
934 if (r)
935 goto out;
936 r = 0;
937 break;
938 }
939 case KVM_DEBUG_GUEST: {
940 struct kvm_debug_guest dbg;
941
942 r = -EFAULT;
943 if (copy_from_user(&dbg, argp, sizeof dbg))
944 goto out;
945 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
946 if (r)
947 goto out;
948 r = 0;
949 break;
950 }
951 case KVM_SET_SIGNAL_MASK: {
952 struct kvm_signal_mask __user *sigmask_arg = argp;
953 struct kvm_signal_mask kvm_sigmask;
954 sigset_t sigset, *p;
955
956 p = NULL;
957 if (argp) {
958 r = -EFAULT;
959 if (copy_from_user(&kvm_sigmask, argp,
960 sizeof kvm_sigmask))
961 goto out;
962 r = -EINVAL;
963 if (kvm_sigmask.len != sizeof sigset)
964 goto out;
965 r = -EFAULT;
966 if (copy_from_user(&sigset, sigmask_arg->sigset,
967 sizeof sigset))
968 goto out;
969 p = &sigset;
970 }
971 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
972 break;
973 }
974 case KVM_GET_FPU: {
975 struct kvm_fpu fpu;
976
977 memset(&fpu, 0, sizeof fpu);
978 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
979 if (r)
980 goto out;
981 r = -EFAULT;
982 if (copy_to_user(argp, &fpu, sizeof fpu))
983 goto out;
984 r = 0;
985 break;
986 }
987 case KVM_SET_FPU: {
988 struct kvm_fpu fpu;
989
990 r = -EFAULT;
991 if (copy_from_user(&fpu, argp, sizeof fpu))
992 goto out;
993 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
994 if (r)
995 goto out;
996 r = 0;
997 break;
998 }
999 default:
1000 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1001 }
1002 out:
1003 return r;
1004 }
1005
1006 static long kvm_vm_ioctl(struct file *filp,
1007 unsigned int ioctl, unsigned long arg)
1008 {
1009 struct kvm *kvm = filp->private_data;
1010 void __user *argp = (void __user *)arg;
1011 int r;
1012
1013 switch (ioctl) {
1014 case KVM_CREATE_VCPU:
1015 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1016 if (r < 0)
1017 goto out;
1018 break;
1019 case KVM_SET_USER_MEMORY_REGION: {
1020 struct kvm_userspace_memory_region kvm_userspace_mem;
1021
1022 r = -EFAULT;
1023 if (copy_from_user(&kvm_userspace_mem, argp,
1024 sizeof kvm_userspace_mem))
1025 goto out;
1026
1027 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1028 if (r)
1029 goto out;
1030 break;
1031 }
1032 case KVM_GET_DIRTY_LOG: {
1033 struct kvm_dirty_log log;
1034
1035 r = -EFAULT;
1036 if (copy_from_user(&log, argp, sizeof log))
1037 goto out;
1038 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1039 if (r)
1040 goto out;
1041 break;
1042 }
1043 default:
1044 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1045 }
1046 out:
1047 return r;
1048 }
1049
1050 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
1051 unsigned long address,
1052 int *type)
1053 {
1054 struct kvm *kvm = vma->vm_file->private_data;
1055 unsigned long pgoff;
1056 struct page *page;
1057
1058 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1059 if (!kvm_is_visible_gfn(kvm, pgoff))
1060 return NOPAGE_SIGBUS;
1061 /* current->mm->mmap_sem is already held so call lockless version */
1062 page = __gfn_to_page(kvm, pgoff);
1063 if (is_error_page(page)) {
1064 kvm_release_page_clean(page);
1065 return NOPAGE_SIGBUS;
1066 }
1067 if (type != NULL)
1068 *type = VM_FAULT_MINOR;
1069
1070 return page;
1071 }
1072
1073 static struct vm_operations_struct kvm_vm_vm_ops = {
1074 .nopage = kvm_vm_nopage,
1075 };
1076
1077 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1078 {
1079 vma->vm_ops = &kvm_vm_vm_ops;
1080 return 0;
1081 }
1082
1083 static struct file_operations kvm_vm_fops = {
1084 .release = kvm_vm_release,
1085 .unlocked_ioctl = kvm_vm_ioctl,
1086 .compat_ioctl = kvm_vm_ioctl,
1087 .mmap = kvm_vm_mmap,
1088 };
1089
1090 static int kvm_dev_ioctl_create_vm(void)
1091 {
1092 int fd, r;
1093 struct inode *inode;
1094 struct file *file;
1095 struct kvm *kvm;
1096
1097 kvm = kvm_create_vm();
1098 if (IS_ERR(kvm))
1099 return PTR_ERR(kvm);
1100 r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
1101 if (r) {
1102 kvm_destroy_vm(kvm);
1103 return r;
1104 }
1105
1106 kvm->filp = file;
1107
1108 return fd;
1109 }
1110
1111 static long kvm_dev_ioctl(struct file *filp,
1112 unsigned int ioctl, unsigned long arg)
1113 {
1114 void __user *argp = (void __user *)arg;
1115 long r = -EINVAL;
1116
1117 switch (ioctl) {
1118 case KVM_GET_API_VERSION:
1119 r = -EINVAL;
1120 if (arg)
1121 goto out;
1122 r = KVM_API_VERSION;
1123 break;
1124 case KVM_CREATE_VM:
1125 r = -EINVAL;
1126 if (arg)
1127 goto out;
1128 r = kvm_dev_ioctl_create_vm();
1129 break;
1130 case KVM_CHECK_EXTENSION:
1131 r = kvm_dev_ioctl_check_extension((long)argp);
1132 break;
1133 case KVM_GET_VCPU_MMAP_SIZE:
1134 r = -EINVAL;
1135 if (arg)
1136 goto out;
1137 r = 2 * PAGE_SIZE;
1138 break;
1139 default:
1140 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1141 }
1142 out:
1143 return r;
1144 }
1145
1146 static struct file_operations kvm_chardev_ops = {
1147 .unlocked_ioctl = kvm_dev_ioctl,
1148 .compat_ioctl = kvm_dev_ioctl,
1149 };
1150
1151 static struct miscdevice kvm_dev = {
1152 KVM_MINOR,
1153 "kvm",
1154 &kvm_chardev_ops,
1155 };
1156
1157 static void hardware_enable(void *junk)
1158 {
1159 int cpu = raw_smp_processor_id();
1160
1161 if (cpu_isset(cpu, cpus_hardware_enabled))
1162 return;
1163 cpu_set(cpu, cpus_hardware_enabled);
1164 kvm_arch_hardware_enable(NULL);
1165 }
1166
1167 static void hardware_disable(void *junk)
1168 {
1169 int cpu = raw_smp_processor_id();
1170
1171 if (!cpu_isset(cpu, cpus_hardware_enabled))
1172 return;
1173 cpu_clear(cpu, cpus_hardware_enabled);
1174 decache_vcpus_on_cpu(cpu);
1175 kvm_arch_hardware_disable(NULL);
1176 }
1177
1178 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1179 void *v)
1180 {
1181 int cpu = (long)v;
1182
1183 val &= ~CPU_TASKS_FROZEN;
1184 switch (val) {
1185 case CPU_DYING:
1186 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1187 cpu);
1188 hardware_disable(NULL);
1189 break;
1190 case CPU_UP_CANCELED:
1191 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1192 cpu);
1193 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
1194 break;
1195 case CPU_ONLINE:
1196 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1197 cpu);
1198 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
1199 break;
1200 }
1201 return NOTIFY_OK;
1202 }
1203
1204 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1205 void *v)
1206 {
1207 if (val == SYS_RESTART) {
1208 /*
1209 * Some (well, at least mine) BIOSes hang on reboot if
1210 * in vmx root mode.
1211 */
1212 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1213 on_each_cpu(hardware_disable, NULL, 0, 1);
1214 }
1215 return NOTIFY_OK;
1216 }
1217
1218 static struct notifier_block kvm_reboot_notifier = {
1219 .notifier_call = kvm_reboot,
1220 .priority = 0,
1221 };
1222
1223 void kvm_io_bus_init(struct kvm_io_bus *bus)
1224 {
1225 memset(bus, 0, sizeof(*bus));
1226 }
1227
1228 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1229 {
1230 int i;
1231
1232 for (i = 0; i < bus->dev_count; i++) {
1233 struct kvm_io_device *pos = bus->devs[i];
1234
1235 kvm_iodevice_destructor(pos);
1236 }
1237 }
1238
1239 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
1240 {
1241 int i;
1242
1243 for (i = 0; i < bus->dev_count; i++) {
1244 struct kvm_io_device *pos = bus->devs[i];
1245
1246 if (pos->in_range(pos, addr))
1247 return pos;
1248 }
1249
1250 return NULL;
1251 }
1252
1253 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1254 {
1255 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1256
1257 bus->devs[bus->dev_count++] = dev;
1258 }
1259
1260 static struct notifier_block kvm_cpu_notifier = {
1261 .notifier_call = kvm_cpu_hotplug,
1262 .priority = 20, /* must be > scheduler priority */
1263 };
1264
1265 static u64 vm_stat_get(void *_offset)
1266 {
1267 unsigned offset = (long)_offset;
1268 u64 total = 0;
1269 struct kvm *kvm;
1270
1271 spin_lock(&kvm_lock);
1272 list_for_each_entry(kvm, &vm_list, vm_list)
1273 total += *(u32 *)((void *)kvm + offset);
1274 spin_unlock(&kvm_lock);
1275 return total;
1276 }
1277
1278 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
1279
1280 static u64 vcpu_stat_get(void *_offset)
1281 {
1282 unsigned offset = (long)_offset;
1283 u64 total = 0;
1284 struct kvm *kvm;
1285 struct kvm_vcpu *vcpu;
1286 int i;
1287
1288 spin_lock(&kvm_lock);
1289 list_for_each_entry(kvm, &vm_list, vm_list)
1290 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1291 vcpu = kvm->vcpus[i];
1292 if (vcpu)
1293 total += *(u32 *)((void *)vcpu + offset);
1294 }
1295 spin_unlock(&kvm_lock);
1296 return total;
1297 }
1298
1299 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
1300
1301 static struct file_operations *stat_fops[] = {
1302 [KVM_STAT_VCPU] = &vcpu_stat_fops,
1303 [KVM_STAT_VM] = &vm_stat_fops,
1304 };
1305
1306 static void kvm_init_debug(void)
1307 {
1308 struct kvm_stats_debugfs_item *p;
1309
1310 debugfs_dir = debugfs_create_dir("kvm", NULL);
1311 for (p = debugfs_entries; p->name; ++p)
1312 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
1313 (void *)(long)p->offset,
1314 stat_fops[p->kind]);
1315 }
1316
1317 static void kvm_exit_debug(void)
1318 {
1319 struct kvm_stats_debugfs_item *p;
1320
1321 for (p = debugfs_entries; p->name; ++p)
1322 debugfs_remove(p->dentry);
1323 debugfs_remove(debugfs_dir);
1324 }
1325
1326 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1327 {
1328 hardware_disable(NULL);
1329 return 0;
1330 }
1331
1332 static int kvm_resume(struct sys_device *dev)
1333 {
1334 hardware_enable(NULL);
1335 return 0;
1336 }
1337
1338 static struct sysdev_class kvm_sysdev_class = {
1339 .name = "kvm",
1340 .suspend = kvm_suspend,
1341 .resume = kvm_resume,
1342 };
1343
1344 static struct sys_device kvm_sysdev = {
1345 .id = 0,
1346 .cls = &kvm_sysdev_class,
1347 };
1348
1349 struct page *bad_page;
1350
1351 static inline
1352 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1353 {
1354 return container_of(pn, struct kvm_vcpu, preempt_notifier);
1355 }
1356
1357 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1358 {
1359 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1360
1361 kvm_arch_vcpu_load(vcpu, cpu);
1362 }
1363
1364 static void kvm_sched_out(struct preempt_notifier *pn,
1365 struct task_struct *next)
1366 {
1367 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1368
1369 kvm_arch_vcpu_put(vcpu);
1370 }
1371
1372 int kvm_init(void *opaque, unsigned int vcpu_size,
1373 struct module *module)
1374 {
1375 int r;
1376 int cpu;
1377
1378 kvm_init_debug();
1379
1380 r = kvm_arch_init(opaque);
1381 if (r)
1382 goto out4;
1383
1384 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1385
1386 if (bad_page == NULL) {
1387 r = -ENOMEM;
1388 goto out;
1389 }
1390
1391 r = kvm_arch_hardware_setup();
1392 if (r < 0)
1393 goto out;
1394
1395 for_each_online_cpu(cpu) {
1396 smp_call_function_single(cpu,
1397 kvm_arch_check_processor_compat,
1398 &r, 0, 1);
1399 if (r < 0)
1400 goto out_free_0;
1401 }
1402
1403 on_each_cpu(hardware_enable, NULL, 0, 1);
1404 r = register_cpu_notifier(&kvm_cpu_notifier);
1405 if (r)
1406 goto out_free_1;
1407 register_reboot_notifier(&kvm_reboot_notifier);
1408
1409 r = sysdev_class_register(&kvm_sysdev_class);
1410 if (r)
1411 goto out_free_2;
1412
1413 r = sysdev_register(&kvm_sysdev);
1414 if (r)
1415 goto out_free_3;
1416
1417 /* A kmem cache lets us meet the alignment requirements of fx_save. */
1418 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1419 __alignof__(struct kvm_vcpu),
1420 0, NULL);
1421 if (!kvm_vcpu_cache) {
1422 r = -ENOMEM;
1423 goto out_free_4;
1424 }
1425
1426 kvm_chardev_ops.owner = module;
1427
1428 r = misc_register(&kvm_dev);
1429 if (r) {
1430 printk(KERN_ERR "kvm: misc device register failed\n");
1431 goto out_free;
1432 }
1433
1434 kvm_preempt_ops.sched_in = kvm_sched_in;
1435 kvm_preempt_ops.sched_out = kvm_sched_out;
1436
1437 return 0;
1438
1439 out_free:
1440 kmem_cache_destroy(kvm_vcpu_cache);
1441 out_free_4:
1442 sysdev_unregister(&kvm_sysdev);
1443 out_free_3:
1444 sysdev_class_unregister(&kvm_sysdev_class);
1445 out_free_2:
1446 unregister_reboot_notifier(&kvm_reboot_notifier);
1447 unregister_cpu_notifier(&kvm_cpu_notifier);
1448 out_free_1:
1449 on_each_cpu(hardware_disable, NULL, 0, 1);
1450 out_free_0:
1451 kvm_arch_hardware_unsetup();
1452 out:
1453 kvm_arch_exit();
1454 kvm_exit_debug();
1455 out4:
1456 return r;
1457 }
1458 EXPORT_SYMBOL_GPL(kvm_init);
1459
1460 void kvm_exit(void)
1461 {
1462 misc_deregister(&kvm_dev);
1463 kmem_cache_destroy(kvm_vcpu_cache);
1464 sysdev_unregister(&kvm_sysdev);
1465 sysdev_class_unregister(&kvm_sysdev_class);
1466 unregister_reboot_notifier(&kvm_reboot_notifier);
1467 unregister_cpu_notifier(&kvm_cpu_notifier);
1468 on_each_cpu(hardware_disable, NULL, 0, 1);
1469 kvm_arch_hardware_unsetup();
1470 kvm_arch_exit();
1471 kvm_exit_debug();
1472 __free_page(bad_page);
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_exit);