Merge branch 'next' into for-linus
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / drivers / input / touchscreen / ads7846.c
1 /*
2 * ADS7846 based touchscreen and sensor driver
3 *
4 * Copyright (c) 2005 David Brownell
5 * Copyright (c) 2006 Nokia Corporation
6 * Various changes: Imre Deak <imre.deak@nokia.com>
7 *
8 * Using code from:
9 * - corgi_ts.c
10 * Copyright (C) 2004-2005 Richard Purdie
11 * - omap_ts.[hc], ads7846.h, ts_osk.c
12 * Copyright (C) 2002 MontaVista Software
13 * Copyright (C) 2004 Texas Instruments
14 * Copyright (C) 2005 Dirk Behme
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2 as
18 * published by the Free Software Foundation.
19 */
20 #include <linux/types.h>
21 #include <linux/hwmon.h>
22 #include <linux/init.h>
23 #include <linux/err.h>
24 #include <linux/sched.h>
25 #include <linux/delay.h>
26 #include <linux/input.h>
27 #include <linux/interrupt.h>
28 #include <linux/slab.h>
29 #include <linux/pm.h>
30 #include <linux/gpio.h>
31 #include <linux/spi/spi.h>
32 #include <linux/spi/ads7846.h>
33 #include <linux/regulator/consumer.h>
34 #include <asm/irq.h>
35
36 /*
37 * This code has been heavily tested on a Nokia 770, and lightly
38 * tested on other ads7846 devices (OSK/Mistral, Lubbock, Spitz).
39 * TSC2046 is just newer ads7846 silicon.
40 * Support for ads7843 tested on Atmel at91sam926x-EK.
41 * Support for ads7845 has only been stubbed in.
42 * Support for Analog Devices AD7873 and AD7843 tested.
43 *
44 * IRQ handling needs a workaround because of a shortcoming in handling
45 * edge triggered IRQs on some platforms like the OMAP1/2. These
46 * platforms don't handle the ARM lazy IRQ disabling properly, thus we
47 * have to maintain our own SW IRQ disabled status. This should be
48 * removed as soon as the affected platform's IRQ handling is fixed.
49 *
50 * App note sbaa036 talks in more detail about accurate sampling...
51 * that ought to help in situations like LCDs inducing noise (which
52 * can also be helped by using synch signals) and more generally.
53 * This driver tries to utilize the measures described in the app
54 * note. The strength of filtering can be set in the board-* specific
55 * files.
56 */
57
58 #define TS_POLL_DELAY 1 /* ms delay before the first sample */
59 #define TS_POLL_PERIOD 5 /* ms delay between samples */
60
61 /* this driver doesn't aim at the peak continuous sample rate */
62 #define SAMPLE_BITS (8 /*cmd*/ + 16 /*sample*/ + 2 /* before, after */)
63
64 struct ts_event {
65 /*
66 * For portability, we can't read 12 bit values using SPI (which
67 * would make the controller deliver them as native byte order u16
68 * with msbs zeroed). Instead, we read them as two 8-bit values,
69 * *** WHICH NEED BYTESWAPPING *** and range adjustment.
70 */
71 u16 x;
72 u16 y;
73 u16 z1, z2;
74 bool ignore;
75 u8 x_buf[3];
76 u8 y_buf[3];
77 };
78
79 /*
80 * We allocate this separately to avoid cache line sharing issues when
81 * driver is used with DMA-based SPI controllers (like atmel_spi) on
82 * systems where main memory is not DMA-coherent (most non-x86 boards).
83 */
84 struct ads7846_packet {
85 u8 read_x, read_y, read_z1, read_z2, pwrdown;
86 u16 dummy; /* for the pwrdown read */
87 struct ts_event tc;
88 /* for ads7845 with mpc5121 psc spi we use 3-byte buffers */
89 u8 read_x_cmd[3], read_y_cmd[3], pwrdown_cmd[3];
90 };
91
92 struct ads7846 {
93 struct input_dev *input;
94 char phys[32];
95 char name[32];
96
97 struct spi_device *spi;
98 struct regulator *reg;
99
100 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
101 struct attribute_group *attr_group;
102 struct device *hwmon;
103 #endif
104
105 u16 model;
106 u16 vref_mv;
107 u16 vref_delay_usecs;
108 u16 x_plate_ohms;
109 u16 pressure_max;
110
111 bool swap_xy;
112 bool use_internal;
113
114 struct ads7846_packet *packet;
115
116 struct spi_transfer xfer[18];
117 struct spi_message msg[5];
118 int msg_count;
119 wait_queue_head_t wait;
120
121 bool pendown;
122
123 int read_cnt;
124 int read_rep;
125 int last_read;
126
127 u16 debounce_max;
128 u16 debounce_tol;
129 u16 debounce_rep;
130
131 u16 penirq_recheck_delay_usecs;
132
133 struct mutex lock;
134 bool stopped; /* P: lock */
135 bool disabled; /* P: lock */
136 bool suspended; /* P: lock */
137
138 int (*filter)(void *data, int data_idx, int *val);
139 void *filter_data;
140 void (*filter_cleanup)(void *data);
141 int (*get_pendown_state)(void);
142 int gpio_pendown;
143
144 void (*wait_for_sync)(void);
145 };
146
147 /* leave chip selected when we're done, for quicker re-select? */
148 #if 0
149 #define CS_CHANGE(xfer) ((xfer).cs_change = 1)
150 #else
151 #define CS_CHANGE(xfer) ((xfer).cs_change = 0)
152 #endif
153
154 /*--------------------------------------------------------------------------*/
155
156 /* The ADS7846 has touchscreen and other sensors.
157 * Earlier ads784x chips are somewhat compatible.
158 */
159 #define ADS_START (1 << 7)
160 #define ADS_A2A1A0_d_y (1 << 4) /* differential */
161 #define ADS_A2A1A0_d_z1 (3 << 4) /* differential */
162 #define ADS_A2A1A0_d_z2 (4 << 4) /* differential */
163 #define ADS_A2A1A0_d_x (5 << 4) /* differential */
164 #define ADS_A2A1A0_temp0 (0 << 4) /* non-differential */
165 #define ADS_A2A1A0_vbatt (2 << 4) /* non-differential */
166 #define ADS_A2A1A0_vaux (6 << 4) /* non-differential */
167 #define ADS_A2A1A0_temp1 (7 << 4) /* non-differential */
168 #define ADS_8_BIT (1 << 3)
169 #define ADS_12_BIT (0 << 3)
170 #define ADS_SER (1 << 2) /* non-differential */
171 #define ADS_DFR (0 << 2) /* differential */
172 #define ADS_PD10_PDOWN (0 << 0) /* low power mode + penirq */
173 #define ADS_PD10_ADC_ON (1 << 0) /* ADC on */
174 #define ADS_PD10_REF_ON (2 << 0) /* vREF on + penirq */
175 #define ADS_PD10_ALL_ON (3 << 0) /* ADC + vREF on */
176
177 #define MAX_12BIT ((1<<12)-1)
178
179 /* leave ADC powered up (disables penirq) between differential samples */
180 #define READ_12BIT_DFR(x, adc, vref) (ADS_START | ADS_A2A1A0_d_ ## x \
181 | ADS_12_BIT | ADS_DFR | \
182 (adc ? ADS_PD10_ADC_ON : 0) | (vref ? ADS_PD10_REF_ON : 0))
183
184 #define READ_Y(vref) (READ_12BIT_DFR(y, 1, vref))
185 #define READ_Z1(vref) (READ_12BIT_DFR(z1, 1, vref))
186 #define READ_Z2(vref) (READ_12BIT_DFR(z2, 1, vref))
187
188 #define READ_X(vref) (READ_12BIT_DFR(x, 1, vref))
189 #define PWRDOWN (READ_12BIT_DFR(y, 0, 0)) /* LAST */
190
191 /* single-ended samples need to first power up reference voltage;
192 * we leave both ADC and VREF powered
193 */
194 #define READ_12BIT_SER(x) (ADS_START | ADS_A2A1A0_ ## x \
195 | ADS_12_BIT | ADS_SER)
196
197 #define REF_ON (READ_12BIT_DFR(x, 1, 1))
198 #define REF_OFF (READ_12BIT_DFR(y, 0, 0))
199
200 /* Must be called with ts->lock held */
201 static void ads7846_stop(struct ads7846 *ts)
202 {
203 if (!ts->disabled && !ts->suspended) {
204 /* Signal IRQ thread to stop polling and disable the handler. */
205 ts->stopped = true;
206 mb();
207 wake_up(&ts->wait);
208 disable_irq(ts->spi->irq);
209 }
210 }
211
212 /* Must be called with ts->lock held */
213 static void ads7846_restart(struct ads7846 *ts)
214 {
215 if (!ts->disabled && !ts->suspended) {
216 /* Tell IRQ thread that it may poll the device. */
217 ts->stopped = false;
218 mb();
219 enable_irq(ts->spi->irq);
220 }
221 }
222
223 /* Must be called with ts->lock held */
224 static void __ads7846_disable(struct ads7846 *ts)
225 {
226 ads7846_stop(ts);
227 regulator_disable(ts->reg);
228
229 /*
230 * We know the chip's in low power mode since we always
231 * leave it that way after every request
232 */
233 }
234
235 /* Must be called with ts->lock held */
236 static void __ads7846_enable(struct ads7846 *ts)
237 {
238 regulator_enable(ts->reg);
239 ads7846_restart(ts);
240 }
241
242 static void ads7846_disable(struct ads7846 *ts)
243 {
244 mutex_lock(&ts->lock);
245
246 if (!ts->disabled) {
247
248 if (!ts->suspended)
249 __ads7846_disable(ts);
250
251 ts->disabled = true;
252 }
253
254 mutex_unlock(&ts->lock);
255 }
256
257 static void ads7846_enable(struct ads7846 *ts)
258 {
259 mutex_lock(&ts->lock);
260
261 if (ts->disabled) {
262
263 ts->disabled = false;
264
265 if (!ts->suspended)
266 __ads7846_enable(ts);
267 }
268
269 mutex_unlock(&ts->lock);
270 }
271
272 /*--------------------------------------------------------------------------*/
273
274 /*
275 * Non-touchscreen sensors only use single-ended conversions.
276 * The range is GND..vREF. The ads7843 and ads7835 must use external vREF;
277 * ads7846 lets that pin be unconnected, to use internal vREF.
278 */
279
280 struct ser_req {
281 u8 ref_on;
282 u8 command;
283 u8 ref_off;
284 u16 scratch;
285 struct spi_message msg;
286 struct spi_transfer xfer[6];
287 /*
288 * DMA (thus cache coherency maintenance) requires the
289 * transfer buffers to live in their own cache lines.
290 */
291 __be16 sample ____cacheline_aligned;
292 };
293
294 struct ads7845_ser_req {
295 u8 command[3];
296 struct spi_message msg;
297 struct spi_transfer xfer[2];
298 /*
299 * DMA (thus cache coherency maintenance) requires the
300 * transfer buffers to live in their own cache lines.
301 */
302 u8 sample[3] ____cacheline_aligned;
303 };
304
305 static int ads7846_read12_ser(struct device *dev, unsigned command)
306 {
307 struct spi_device *spi = to_spi_device(dev);
308 struct ads7846 *ts = dev_get_drvdata(dev);
309 struct ser_req *req;
310 int status;
311
312 req = kzalloc(sizeof *req, GFP_KERNEL);
313 if (!req)
314 return -ENOMEM;
315
316 spi_message_init(&req->msg);
317
318 /* maybe turn on internal vREF, and let it settle */
319 if (ts->use_internal) {
320 req->ref_on = REF_ON;
321 req->xfer[0].tx_buf = &req->ref_on;
322 req->xfer[0].len = 1;
323 spi_message_add_tail(&req->xfer[0], &req->msg);
324
325 req->xfer[1].rx_buf = &req->scratch;
326 req->xfer[1].len = 2;
327
328 /* for 1uF, settle for 800 usec; no cap, 100 usec. */
329 req->xfer[1].delay_usecs = ts->vref_delay_usecs;
330 spi_message_add_tail(&req->xfer[1], &req->msg);
331
332 /* Enable reference voltage */
333 command |= ADS_PD10_REF_ON;
334 }
335
336 /* Enable ADC in every case */
337 command |= ADS_PD10_ADC_ON;
338
339 /* take sample */
340 req->command = (u8) command;
341 req->xfer[2].tx_buf = &req->command;
342 req->xfer[2].len = 1;
343 spi_message_add_tail(&req->xfer[2], &req->msg);
344
345 req->xfer[3].rx_buf = &req->sample;
346 req->xfer[3].len = 2;
347 spi_message_add_tail(&req->xfer[3], &req->msg);
348
349 /* REVISIT: take a few more samples, and compare ... */
350
351 /* converter in low power mode & enable PENIRQ */
352 req->ref_off = PWRDOWN;
353 req->xfer[4].tx_buf = &req->ref_off;
354 req->xfer[4].len = 1;
355 spi_message_add_tail(&req->xfer[4], &req->msg);
356
357 req->xfer[5].rx_buf = &req->scratch;
358 req->xfer[5].len = 2;
359 CS_CHANGE(req->xfer[5]);
360 spi_message_add_tail(&req->xfer[5], &req->msg);
361
362 mutex_lock(&ts->lock);
363 ads7846_stop(ts);
364 status = spi_sync(spi, &req->msg);
365 ads7846_restart(ts);
366 mutex_unlock(&ts->lock);
367
368 if (status == 0) {
369 /* on-wire is a must-ignore bit, a BE12 value, then padding */
370 status = be16_to_cpu(req->sample);
371 status = status >> 3;
372 status &= 0x0fff;
373 }
374
375 kfree(req);
376 return status;
377 }
378
379 static int ads7845_read12_ser(struct device *dev, unsigned command)
380 {
381 struct spi_device *spi = to_spi_device(dev);
382 struct ads7846 *ts = dev_get_drvdata(dev);
383 struct ads7845_ser_req *req;
384 int status;
385
386 req = kzalloc(sizeof *req, GFP_KERNEL);
387 if (!req)
388 return -ENOMEM;
389
390 spi_message_init(&req->msg);
391
392 req->command[0] = (u8) command;
393 req->xfer[0].tx_buf = req->command;
394 req->xfer[0].rx_buf = req->sample;
395 req->xfer[0].len = 3;
396 spi_message_add_tail(&req->xfer[0], &req->msg);
397
398 mutex_lock(&ts->lock);
399 ads7846_stop(ts);
400 status = spi_sync(spi, &req->msg);
401 ads7846_restart(ts);
402 mutex_unlock(&ts->lock);
403
404 if (status == 0) {
405 /* BE12 value, then padding */
406 status = be16_to_cpu(*((u16 *)&req->sample[1]));
407 status = status >> 3;
408 status &= 0x0fff;
409 }
410
411 kfree(req);
412 return status;
413 }
414
415 #if defined(CONFIG_HWMON) || defined(CONFIG_HWMON_MODULE)
416
417 #define SHOW(name, var, adjust) static ssize_t \
418 name ## _show(struct device *dev, struct device_attribute *attr, char *buf) \
419 { \
420 struct ads7846 *ts = dev_get_drvdata(dev); \
421 ssize_t v = ads7846_read12_ser(dev, \
422 READ_12BIT_SER(var)); \
423 if (v < 0) \
424 return v; \
425 return sprintf(buf, "%u\n", adjust(ts, v)); \
426 } \
427 static DEVICE_ATTR(name, S_IRUGO, name ## _show, NULL);
428
429
430 /* Sysfs conventions report temperatures in millidegrees Celsius.
431 * ADS7846 could use the low-accuracy two-sample scheme, but can't do the high
432 * accuracy scheme without calibration data. For now we won't try either;
433 * userspace sees raw sensor values, and must scale/calibrate appropriately.
434 */
435 static inline unsigned null_adjust(struct ads7846 *ts, ssize_t v)
436 {
437 return v;
438 }
439
440 SHOW(temp0, temp0, null_adjust) /* temp1_input */
441 SHOW(temp1, temp1, null_adjust) /* temp2_input */
442
443
444 /* sysfs conventions report voltages in millivolts. We can convert voltages
445 * if we know vREF. userspace may need to scale vAUX to match the board's
446 * external resistors; we assume that vBATT only uses the internal ones.
447 */
448 static inline unsigned vaux_adjust(struct ads7846 *ts, ssize_t v)
449 {
450 unsigned retval = v;
451
452 /* external resistors may scale vAUX into 0..vREF */
453 retval *= ts->vref_mv;
454 retval = retval >> 12;
455
456 return retval;
457 }
458
459 static inline unsigned vbatt_adjust(struct ads7846 *ts, ssize_t v)
460 {
461 unsigned retval = vaux_adjust(ts, v);
462
463 /* ads7846 has a resistor ladder to scale this signal down */
464 if (ts->model == 7846)
465 retval *= 4;
466
467 return retval;
468 }
469
470 SHOW(in0_input, vaux, vaux_adjust)
471 SHOW(in1_input, vbatt, vbatt_adjust)
472
473 static struct attribute *ads7846_attributes[] = {
474 &dev_attr_temp0.attr,
475 &dev_attr_temp1.attr,
476 &dev_attr_in0_input.attr,
477 &dev_attr_in1_input.attr,
478 NULL,
479 };
480
481 static struct attribute_group ads7846_attr_group = {
482 .attrs = ads7846_attributes,
483 };
484
485 static struct attribute *ads7843_attributes[] = {
486 &dev_attr_in0_input.attr,
487 &dev_attr_in1_input.attr,
488 NULL,
489 };
490
491 static struct attribute_group ads7843_attr_group = {
492 .attrs = ads7843_attributes,
493 };
494
495 static struct attribute *ads7845_attributes[] = {
496 &dev_attr_in0_input.attr,
497 NULL,
498 };
499
500 static struct attribute_group ads7845_attr_group = {
501 .attrs = ads7845_attributes,
502 };
503
504 static int ads784x_hwmon_register(struct spi_device *spi, struct ads7846 *ts)
505 {
506 struct device *hwmon;
507 int err;
508
509 /* hwmon sensors need a reference voltage */
510 switch (ts->model) {
511 case 7846:
512 if (!ts->vref_mv) {
513 dev_dbg(&spi->dev, "assuming 2.5V internal vREF\n");
514 ts->vref_mv = 2500;
515 ts->use_internal = true;
516 }
517 break;
518 case 7845:
519 case 7843:
520 if (!ts->vref_mv) {
521 dev_warn(&spi->dev,
522 "external vREF for ADS%d not specified\n",
523 ts->model);
524 return 0;
525 }
526 break;
527 }
528
529 /* different chips have different sensor groups */
530 switch (ts->model) {
531 case 7846:
532 ts->attr_group = &ads7846_attr_group;
533 break;
534 case 7845:
535 ts->attr_group = &ads7845_attr_group;
536 break;
537 case 7843:
538 ts->attr_group = &ads7843_attr_group;
539 break;
540 default:
541 dev_dbg(&spi->dev, "ADS%d not recognized\n", ts->model);
542 return 0;
543 }
544
545 err = sysfs_create_group(&spi->dev.kobj, ts->attr_group);
546 if (err)
547 return err;
548
549 hwmon = hwmon_device_register(&spi->dev);
550 if (IS_ERR(hwmon)) {
551 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
552 return PTR_ERR(hwmon);
553 }
554
555 ts->hwmon = hwmon;
556 return 0;
557 }
558
559 static void ads784x_hwmon_unregister(struct spi_device *spi,
560 struct ads7846 *ts)
561 {
562 if (ts->hwmon) {
563 sysfs_remove_group(&spi->dev.kobj, ts->attr_group);
564 hwmon_device_unregister(ts->hwmon);
565 }
566 }
567
568 #else
569 static inline int ads784x_hwmon_register(struct spi_device *spi,
570 struct ads7846 *ts)
571 {
572 return 0;
573 }
574
575 static inline void ads784x_hwmon_unregister(struct spi_device *spi,
576 struct ads7846 *ts)
577 {
578 }
579 #endif
580
581 static ssize_t ads7846_pen_down_show(struct device *dev,
582 struct device_attribute *attr, char *buf)
583 {
584 struct ads7846 *ts = dev_get_drvdata(dev);
585
586 return sprintf(buf, "%u\n", ts->pendown);
587 }
588
589 static DEVICE_ATTR(pen_down, S_IRUGO, ads7846_pen_down_show, NULL);
590
591 static ssize_t ads7846_disable_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct ads7846 *ts = dev_get_drvdata(dev);
595
596 return sprintf(buf, "%u\n", ts->disabled);
597 }
598
599 static ssize_t ads7846_disable_store(struct device *dev,
600 struct device_attribute *attr,
601 const char *buf, size_t count)
602 {
603 struct ads7846 *ts = dev_get_drvdata(dev);
604 unsigned long i;
605
606 if (strict_strtoul(buf, 10, &i))
607 return -EINVAL;
608
609 if (i)
610 ads7846_disable(ts);
611 else
612 ads7846_enable(ts);
613
614 return count;
615 }
616
617 static DEVICE_ATTR(disable, 0664, ads7846_disable_show, ads7846_disable_store);
618
619 static struct attribute *ads784x_attributes[] = {
620 &dev_attr_pen_down.attr,
621 &dev_attr_disable.attr,
622 NULL,
623 };
624
625 static struct attribute_group ads784x_attr_group = {
626 .attrs = ads784x_attributes,
627 };
628
629 /*--------------------------------------------------------------------------*/
630
631 static int get_pendown_state(struct ads7846 *ts)
632 {
633 if (ts->get_pendown_state)
634 return ts->get_pendown_state();
635
636 return !gpio_get_value(ts->gpio_pendown);
637 }
638
639 static void null_wait_for_sync(void)
640 {
641 }
642
643 static int ads7846_debounce_filter(void *ads, int data_idx, int *val)
644 {
645 struct ads7846 *ts = ads;
646
647 if (!ts->read_cnt || (abs(ts->last_read - *val) > ts->debounce_tol)) {
648 /* Start over collecting consistent readings. */
649 ts->read_rep = 0;
650 /*
651 * Repeat it, if this was the first read or the read
652 * wasn't consistent enough.
653 */
654 if (ts->read_cnt < ts->debounce_max) {
655 ts->last_read = *val;
656 ts->read_cnt++;
657 return ADS7846_FILTER_REPEAT;
658 } else {
659 /*
660 * Maximum number of debouncing reached and still
661 * not enough number of consistent readings. Abort
662 * the whole sample, repeat it in the next sampling
663 * period.
664 */
665 ts->read_cnt = 0;
666 return ADS7846_FILTER_IGNORE;
667 }
668 } else {
669 if (++ts->read_rep > ts->debounce_rep) {
670 /*
671 * Got a good reading for this coordinate,
672 * go for the next one.
673 */
674 ts->read_cnt = 0;
675 ts->read_rep = 0;
676 return ADS7846_FILTER_OK;
677 } else {
678 /* Read more values that are consistent. */
679 ts->read_cnt++;
680 return ADS7846_FILTER_REPEAT;
681 }
682 }
683 }
684
685 static int ads7846_no_filter(void *ads, int data_idx, int *val)
686 {
687 return ADS7846_FILTER_OK;
688 }
689
690 static int ads7846_get_value(struct ads7846 *ts, struct spi_message *m)
691 {
692 struct spi_transfer *t =
693 list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
694
695 if (ts->model == 7845) {
696 return be16_to_cpup((__be16 *)&(((char*)t->rx_buf)[1])) >> 3;
697 } else {
698 /*
699 * adjust: on-wire is a must-ignore bit, a BE12 value, then
700 * padding; built from two 8 bit values written msb-first.
701 */
702 return be16_to_cpup((__be16 *)t->rx_buf) >> 3;
703 }
704 }
705
706 static void ads7846_update_value(struct spi_message *m, int val)
707 {
708 struct spi_transfer *t =
709 list_entry(m->transfers.prev, struct spi_transfer, transfer_list);
710
711 *(u16 *)t->rx_buf = val;
712 }
713
714 static void ads7846_read_state(struct ads7846 *ts)
715 {
716 struct ads7846_packet *packet = ts->packet;
717 struct spi_message *m;
718 int msg_idx = 0;
719 int val;
720 int action;
721 int error;
722
723 while (msg_idx < ts->msg_count) {
724
725 ts->wait_for_sync();
726
727 m = &ts->msg[msg_idx];
728 error = spi_sync(ts->spi, m);
729 if (error) {
730 dev_err(&ts->spi->dev, "spi_async --> %d\n", error);
731 packet->tc.ignore = true;
732 return;
733 }
734
735 /*
736 * Last message is power down request, no need to convert
737 * or filter the value.
738 */
739 if (msg_idx < ts->msg_count - 1) {
740
741 val = ads7846_get_value(ts, m);
742
743 action = ts->filter(ts->filter_data, msg_idx, &val);
744 switch (action) {
745 case ADS7846_FILTER_REPEAT:
746 continue;
747
748 case ADS7846_FILTER_IGNORE:
749 packet->tc.ignore = true;
750 msg_idx = ts->msg_count - 1;
751 continue;
752
753 case ADS7846_FILTER_OK:
754 ads7846_update_value(m, val);
755 packet->tc.ignore = false;
756 msg_idx++;
757 break;
758
759 default:
760 BUG();
761 }
762 } else {
763 msg_idx++;
764 }
765 }
766 }
767
768 static void ads7846_report_state(struct ads7846 *ts)
769 {
770 struct ads7846_packet *packet = ts->packet;
771 unsigned int Rt;
772 u16 x, y, z1, z2;
773
774 /*
775 * ads7846_get_value() does in-place conversion (including byte swap)
776 * from on-the-wire format as part of debouncing to get stable
777 * readings.
778 */
779 if (ts->model == 7845) {
780 x = *(u16 *)packet->tc.x_buf;
781 y = *(u16 *)packet->tc.y_buf;
782 z1 = 0;
783 z2 = 0;
784 } else {
785 x = packet->tc.x;
786 y = packet->tc.y;
787 z1 = packet->tc.z1;
788 z2 = packet->tc.z2;
789 }
790
791 /* range filtering */
792 if (x == MAX_12BIT)
793 x = 0;
794
795 if (ts->model == 7843) {
796 Rt = ts->pressure_max / 2;
797 } else if (ts->model == 7845) {
798 if (get_pendown_state(ts))
799 Rt = ts->pressure_max / 2;
800 else
801 Rt = 0;
802 dev_vdbg(&ts->spi->dev, "x/y: %d/%d, PD %d\n", x, y, Rt);
803 } else if (likely(x && z1)) {
804 /* compute touch pressure resistance using equation #2 */
805 Rt = z2;
806 Rt -= z1;
807 Rt *= x;
808 Rt *= ts->x_plate_ohms;
809 Rt /= z1;
810 Rt = (Rt + 2047) >> 12;
811 } else {
812 Rt = 0;
813 }
814
815 /*
816 * Sample found inconsistent by debouncing or pressure is beyond
817 * the maximum. Don't report it to user space, repeat at least
818 * once more the measurement
819 */
820 if (packet->tc.ignore || Rt > ts->pressure_max) {
821 dev_vdbg(&ts->spi->dev, "ignored %d pressure %d\n",
822 packet->tc.ignore, Rt);
823 return;
824 }
825
826 /*
827 * Maybe check the pendown state before reporting. This discards
828 * false readings when the pen is lifted.
829 */
830 if (ts->penirq_recheck_delay_usecs) {
831 udelay(ts->penirq_recheck_delay_usecs);
832 if (!get_pendown_state(ts))
833 Rt = 0;
834 }
835
836 /*
837 * NOTE: We can't rely on the pressure to determine the pen down
838 * state, even this controller has a pressure sensor. The pressure
839 * value can fluctuate for quite a while after lifting the pen and
840 * in some cases may not even settle at the expected value.
841 *
842 * The only safe way to check for the pen up condition is in the
843 * timer by reading the pen signal state (it's a GPIO _and_ IRQ).
844 */
845 if (Rt) {
846 struct input_dev *input = ts->input;
847
848 if (ts->swap_xy)
849 swap(x, y);
850
851 if (!ts->pendown) {
852 input_report_key(input, BTN_TOUCH, 1);
853 ts->pendown = true;
854 dev_vdbg(&ts->spi->dev, "DOWN\n");
855 }
856
857 input_report_abs(input, ABS_X, x);
858 input_report_abs(input, ABS_Y, y);
859 input_report_abs(input, ABS_PRESSURE, ts->pressure_max - Rt);
860
861 input_sync(input);
862 dev_vdbg(&ts->spi->dev, "%4d/%4d/%4d\n", x, y, Rt);
863 }
864 }
865
866 static irqreturn_t ads7846_hard_irq(int irq, void *handle)
867 {
868 struct ads7846 *ts = handle;
869
870 return get_pendown_state(ts) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
871 }
872
873
874 static irqreturn_t ads7846_irq(int irq, void *handle)
875 {
876 struct ads7846 *ts = handle;
877
878 /* Start with a small delay before checking pendown state */
879 msleep(TS_POLL_DELAY);
880
881 while (!ts->stopped && get_pendown_state(ts)) {
882
883 /* pen is down, continue with the measurement */
884 ads7846_read_state(ts);
885
886 if (!ts->stopped)
887 ads7846_report_state(ts);
888
889 wait_event_timeout(ts->wait, ts->stopped,
890 msecs_to_jiffies(TS_POLL_PERIOD));
891 }
892
893 if (ts->pendown) {
894 struct input_dev *input = ts->input;
895
896 input_report_key(input, BTN_TOUCH, 0);
897 input_report_abs(input, ABS_PRESSURE, 0);
898 input_sync(input);
899
900 ts->pendown = false;
901 dev_vdbg(&ts->spi->dev, "UP\n");
902 }
903
904 return IRQ_HANDLED;
905 }
906
907 #ifdef CONFIG_PM_SLEEP
908 static int ads7846_suspend(struct device *dev)
909 {
910 struct ads7846 *ts = dev_get_drvdata(dev);
911
912 mutex_lock(&ts->lock);
913
914 if (!ts->suspended) {
915
916 if (!ts->disabled)
917 __ads7846_disable(ts);
918
919 if (device_may_wakeup(&ts->spi->dev))
920 enable_irq_wake(ts->spi->irq);
921
922 ts->suspended = true;
923 }
924
925 mutex_unlock(&ts->lock);
926
927 return 0;
928 }
929
930 static int ads7846_resume(struct device *dev)
931 {
932 struct ads7846 *ts = dev_get_drvdata(dev);
933
934 mutex_lock(&ts->lock);
935
936 if (ts->suspended) {
937
938 ts->suspended = false;
939
940 if (device_may_wakeup(&ts->spi->dev))
941 disable_irq_wake(ts->spi->irq);
942
943 if (!ts->disabled)
944 __ads7846_enable(ts);
945 }
946
947 mutex_unlock(&ts->lock);
948
949 return 0;
950 }
951 #endif
952
953 static SIMPLE_DEV_PM_OPS(ads7846_pm, ads7846_suspend, ads7846_resume);
954
955 static int __devinit ads7846_setup_pendown(struct spi_device *spi, struct ads7846 *ts)
956 {
957 struct ads7846_platform_data *pdata = spi->dev.platform_data;
958 int err;
959
960 /*
961 * REVISIT when the irq can be triggered active-low, or if for some
962 * reason the touchscreen isn't hooked up, we don't need to access
963 * the pendown state.
964 */
965
966 if (pdata->get_pendown_state) {
967 ts->get_pendown_state = pdata->get_pendown_state;
968 } else if (gpio_is_valid(pdata->gpio_pendown)) {
969
970 err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
971 if (err) {
972 dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
973 pdata->gpio_pendown);
974 return err;
975 }
976 err = gpio_direction_input(pdata->gpio_pendown);
977 if (err) {
978 dev_err(&spi->dev, "failed to setup pendown GPIO%d\n",
979 pdata->gpio_pendown);
980 gpio_free(pdata->gpio_pendown);
981 return err;
982 }
983
984 ts->gpio_pendown = pdata->gpio_pendown;
985
986 } else {
987 dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
988 return -EINVAL;
989 }
990
991 return 0;
992 }
993
994 /*
995 * Set up the transfers to read touchscreen state; this assumes we
996 * use formula #2 for pressure, not #3.
997 */
998 static void __devinit ads7846_setup_spi_msg(struct ads7846 *ts,
999 const struct ads7846_platform_data *pdata)
1000 {
1001 struct spi_message *m = &ts->msg[0];
1002 struct spi_transfer *x = ts->xfer;
1003 struct ads7846_packet *packet = ts->packet;
1004 int vref = pdata->keep_vref_on;
1005
1006 if (ts->model == 7873) {
1007 /*
1008 * The AD7873 is almost identical to the ADS7846
1009 * keep VREF off during differential/ratiometric
1010 * conversion modes.
1011 */
1012 ts->model = 7846;
1013 vref = 0;
1014 }
1015
1016 ts->msg_count = 1;
1017 spi_message_init(m);
1018 m->context = ts;
1019
1020 if (ts->model == 7845) {
1021 packet->read_y_cmd[0] = READ_Y(vref);
1022 packet->read_y_cmd[1] = 0;
1023 packet->read_y_cmd[2] = 0;
1024 x->tx_buf = &packet->read_y_cmd[0];
1025 x->rx_buf = &packet->tc.y_buf[0];
1026 x->len = 3;
1027 spi_message_add_tail(x, m);
1028 } else {
1029 /* y- still on; turn on only y+ (and ADC) */
1030 packet->read_y = READ_Y(vref);
1031 x->tx_buf = &packet->read_y;
1032 x->len = 1;
1033 spi_message_add_tail(x, m);
1034
1035 x++;
1036 x->rx_buf = &packet->tc.y;
1037 x->len = 2;
1038 spi_message_add_tail(x, m);
1039 }
1040
1041 /*
1042 * The first sample after switching drivers can be low quality;
1043 * optionally discard it, using a second one after the signals
1044 * have had enough time to stabilize.
1045 */
1046 if (pdata->settle_delay_usecs) {
1047 x->delay_usecs = pdata->settle_delay_usecs;
1048
1049 x++;
1050 x->tx_buf = &packet->read_y;
1051 x->len = 1;
1052 spi_message_add_tail(x, m);
1053
1054 x++;
1055 x->rx_buf = &packet->tc.y;
1056 x->len = 2;
1057 spi_message_add_tail(x, m);
1058 }
1059
1060 ts->msg_count++;
1061 m++;
1062 spi_message_init(m);
1063 m->context = ts;
1064
1065 if (ts->model == 7845) {
1066 x++;
1067 packet->read_x_cmd[0] = READ_X(vref);
1068 packet->read_x_cmd[1] = 0;
1069 packet->read_x_cmd[2] = 0;
1070 x->tx_buf = &packet->read_x_cmd[0];
1071 x->rx_buf = &packet->tc.x_buf[0];
1072 x->len = 3;
1073 spi_message_add_tail(x, m);
1074 } else {
1075 /* turn y- off, x+ on, then leave in lowpower */
1076 x++;
1077 packet->read_x = READ_X(vref);
1078 x->tx_buf = &packet->read_x;
1079 x->len = 1;
1080 spi_message_add_tail(x, m);
1081
1082 x++;
1083 x->rx_buf = &packet->tc.x;
1084 x->len = 2;
1085 spi_message_add_tail(x, m);
1086 }
1087
1088 /* ... maybe discard first sample ... */
1089 if (pdata->settle_delay_usecs) {
1090 x->delay_usecs = pdata->settle_delay_usecs;
1091
1092 x++;
1093 x->tx_buf = &packet->read_x;
1094 x->len = 1;
1095 spi_message_add_tail(x, m);
1096
1097 x++;
1098 x->rx_buf = &packet->tc.x;
1099 x->len = 2;
1100 spi_message_add_tail(x, m);
1101 }
1102
1103 /* turn y+ off, x- on; we'll use formula #2 */
1104 if (ts->model == 7846) {
1105 ts->msg_count++;
1106 m++;
1107 spi_message_init(m);
1108 m->context = ts;
1109
1110 x++;
1111 packet->read_z1 = READ_Z1(vref);
1112 x->tx_buf = &packet->read_z1;
1113 x->len = 1;
1114 spi_message_add_tail(x, m);
1115
1116 x++;
1117 x->rx_buf = &packet->tc.z1;
1118 x->len = 2;
1119 spi_message_add_tail(x, m);
1120
1121 /* ... maybe discard first sample ... */
1122 if (pdata->settle_delay_usecs) {
1123 x->delay_usecs = pdata->settle_delay_usecs;
1124
1125 x++;
1126 x->tx_buf = &packet->read_z1;
1127 x->len = 1;
1128 spi_message_add_tail(x, m);
1129
1130 x++;
1131 x->rx_buf = &packet->tc.z1;
1132 x->len = 2;
1133 spi_message_add_tail(x, m);
1134 }
1135
1136 ts->msg_count++;
1137 m++;
1138 spi_message_init(m);
1139 m->context = ts;
1140
1141 x++;
1142 packet->read_z2 = READ_Z2(vref);
1143 x->tx_buf = &packet->read_z2;
1144 x->len = 1;
1145 spi_message_add_tail(x, m);
1146
1147 x++;
1148 x->rx_buf = &packet->tc.z2;
1149 x->len = 2;
1150 spi_message_add_tail(x, m);
1151
1152 /* ... maybe discard first sample ... */
1153 if (pdata->settle_delay_usecs) {
1154 x->delay_usecs = pdata->settle_delay_usecs;
1155
1156 x++;
1157 x->tx_buf = &packet->read_z2;
1158 x->len = 1;
1159 spi_message_add_tail(x, m);
1160
1161 x++;
1162 x->rx_buf = &packet->tc.z2;
1163 x->len = 2;
1164 spi_message_add_tail(x, m);
1165 }
1166 }
1167
1168 /* power down */
1169 ts->msg_count++;
1170 m++;
1171 spi_message_init(m);
1172 m->context = ts;
1173
1174 if (ts->model == 7845) {
1175 x++;
1176 packet->pwrdown_cmd[0] = PWRDOWN;
1177 packet->pwrdown_cmd[1] = 0;
1178 packet->pwrdown_cmd[2] = 0;
1179 x->tx_buf = &packet->pwrdown_cmd[0];
1180 x->len = 3;
1181 } else {
1182 x++;
1183 packet->pwrdown = PWRDOWN;
1184 x->tx_buf = &packet->pwrdown;
1185 x->len = 1;
1186 spi_message_add_tail(x, m);
1187
1188 x++;
1189 x->rx_buf = &packet->dummy;
1190 x->len = 2;
1191 }
1192
1193 CS_CHANGE(*x);
1194 spi_message_add_tail(x, m);
1195 }
1196
1197 static int __devinit ads7846_probe(struct spi_device *spi)
1198 {
1199 struct ads7846 *ts;
1200 struct ads7846_packet *packet;
1201 struct input_dev *input_dev;
1202 struct ads7846_platform_data *pdata = spi->dev.platform_data;
1203 unsigned long irq_flags;
1204 int err;
1205
1206 if (!spi->irq) {
1207 dev_dbg(&spi->dev, "no IRQ?\n");
1208 return -ENODEV;
1209 }
1210
1211 if (!pdata) {
1212 dev_dbg(&spi->dev, "no platform data?\n");
1213 return -ENODEV;
1214 }
1215
1216 /* don't exceed max specified sample rate */
1217 if (spi->max_speed_hz > (125000 * SAMPLE_BITS)) {
1218 dev_dbg(&spi->dev, "f(sample) %d KHz?\n",
1219 (spi->max_speed_hz/SAMPLE_BITS)/1000);
1220 return -EINVAL;
1221 }
1222
1223 /* We'd set TX word size 8 bits and RX word size to 13 bits ... except
1224 * that even if the hardware can do that, the SPI controller driver
1225 * may not. So we stick to very-portable 8 bit words, both RX and TX.
1226 */
1227 spi->bits_per_word = 8;
1228 spi->mode = SPI_MODE_0;
1229 err = spi_setup(spi);
1230 if (err < 0)
1231 return err;
1232
1233 ts = kzalloc(sizeof(struct ads7846), GFP_KERNEL);
1234 packet = kzalloc(sizeof(struct ads7846_packet), GFP_KERNEL);
1235 input_dev = input_allocate_device();
1236 if (!ts || !packet || !input_dev) {
1237 err = -ENOMEM;
1238 goto err_free_mem;
1239 }
1240
1241 dev_set_drvdata(&spi->dev, ts);
1242
1243 ts->packet = packet;
1244 ts->spi = spi;
1245 ts->input = input_dev;
1246 ts->vref_mv = pdata->vref_mv;
1247 ts->swap_xy = pdata->swap_xy;
1248
1249 mutex_init(&ts->lock);
1250 init_waitqueue_head(&ts->wait);
1251
1252 ts->model = pdata->model ? : 7846;
1253 ts->vref_delay_usecs = pdata->vref_delay_usecs ? : 100;
1254 ts->x_plate_ohms = pdata->x_plate_ohms ? : 400;
1255 ts->pressure_max = pdata->pressure_max ? : ~0;
1256
1257 if (pdata->filter != NULL) {
1258 if (pdata->filter_init != NULL) {
1259 err = pdata->filter_init(pdata, &ts->filter_data);
1260 if (err < 0)
1261 goto err_free_mem;
1262 }
1263 ts->filter = pdata->filter;
1264 ts->filter_cleanup = pdata->filter_cleanup;
1265 } else if (pdata->debounce_max) {
1266 ts->debounce_max = pdata->debounce_max;
1267 if (ts->debounce_max < 2)
1268 ts->debounce_max = 2;
1269 ts->debounce_tol = pdata->debounce_tol;
1270 ts->debounce_rep = pdata->debounce_rep;
1271 ts->filter = ads7846_debounce_filter;
1272 ts->filter_data = ts;
1273 } else {
1274 ts->filter = ads7846_no_filter;
1275 }
1276
1277 err = ads7846_setup_pendown(spi, ts);
1278 if (err)
1279 goto err_cleanup_filter;
1280
1281 if (pdata->penirq_recheck_delay_usecs)
1282 ts->penirq_recheck_delay_usecs =
1283 pdata->penirq_recheck_delay_usecs;
1284
1285 ts->wait_for_sync = pdata->wait_for_sync ? : null_wait_for_sync;
1286
1287 snprintf(ts->phys, sizeof(ts->phys), "%s/input0", dev_name(&spi->dev));
1288 snprintf(ts->name, sizeof(ts->name), "ADS%d Touchscreen", ts->model);
1289
1290 input_dev->name = ts->name;
1291 input_dev->phys = ts->phys;
1292 input_dev->dev.parent = &spi->dev;
1293
1294 input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
1295 input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
1296 input_set_abs_params(input_dev, ABS_X,
1297 pdata->x_min ? : 0,
1298 pdata->x_max ? : MAX_12BIT,
1299 0, 0);
1300 input_set_abs_params(input_dev, ABS_Y,
1301 pdata->y_min ? : 0,
1302 pdata->y_max ? : MAX_12BIT,
1303 0, 0);
1304 input_set_abs_params(input_dev, ABS_PRESSURE,
1305 pdata->pressure_min, pdata->pressure_max, 0, 0);
1306
1307 ads7846_setup_spi_msg(ts, pdata);
1308
1309 ts->reg = regulator_get(&spi->dev, "vcc");
1310 if (IS_ERR(ts->reg)) {
1311 err = PTR_ERR(ts->reg);
1312 dev_err(&spi->dev, "unable to get regulator: %d\n", err);
1313 goto err_free_gpio;
1314 }
1315
1316 err = regulator_enable(ts->reg);
1317 if (err) {
1318 dev_err(&spi->dev, "unable to enable regulator: %d\n", err);
1319 goto err_put_regulator;
1320 }
1321
1322 irq_flags = pdata->irq_flags ? : IRQF_TRIGGER_FALLING;
1323 irq_flags |= IRQF_ONESHOT;
1324
1325 err = request_threaded_irq(spi->irq, ads7846_hard_irq, ads7846_irq,
1326 irq_flags, spi->dev.driver->name, ts);
1327 if (err && !pdata->irq_flags) {
1328 dev_info(&spi->dev,
1329 "trying pin change workaround on irq %d\n", spi->irq);
1330 irq_flags |= IRQF_TRIGGER_RISING;
1331 err = request_threaded_irq(spi->irq,
1332 ads7846_hard_irq, ads7846_irq,
1333 irq_flags, spi->dev.driver->name, ts);
1334 }
1335
1336 if (err) {
1337 dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
1338 goto err_disable_regulator;
1339 }
1340
1341 err = ads784x_hwmon_register(spi, ts);
1342 if (err)
1343 goto err_free_irq;
1344
1345 dev_info(&spi->dev, "touchscreen, irq %d\n", spi->irq);
1346
1347 /*
1348 * Take a first sample, leaving nPENIRQ active and vREF off; avoid
1349 * the touchscreen, in case it's not connected.
1350 */
1351 if (ts->model == 7845)
1352 ads7845_read12_ser(&spi->dev, PWRDOWN);
1353 else
1354 (void) ads7846_read12_ser(&spi->dev, READ_12BIT_SER(vaux));
1355
1356 err = sysfs_create_group(&spi->dev.kobj, &ads784x_attr_group);
1357 if (err)
1358 goto err_remove_hwmon;
1359
1360 err = input_register_device(input_dev);
1361 if (err)
1362 goto err_remove_attr_group;
1363
1364 device_init_wakeup(&spi->dev, pdata->wakeup);
1365
1366 return 0;
1367
1368 err_remove_attr_group:
1369 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1370 err_remove_hwmon:
1371 ads784x_hwmon_unregister(spi, ts);
1372 err_free_irq:
1373 free_irq(spi->irq, ts);
1374 err_disable_regulator:
1375 regulator_disable(ts->reg);
1376 err_put_regulator:
1377 regulator_put(ts->reg);
1378 err_free_gpio:
1379 if (!ts->get_pendown_state)
1380 gpio_free(ts->gpio_pendown);
1381 err_cleanup_filter:
1382 if (ts->filter_cleanup)
1383 ts->filter_cleanup(ts->filter_data);
1384 err_free_mem:
1385 input_free_device(input_dev);
1386 kfree(packet);
1387 kfree(ts);
1388 return err;
1389 }
1390
1391 static int __devexit ads7846_remove(struct spi_device *spi)
1392 {
1393 struct ads7846 *ts = dev_get_drvdata(&spi->dev);
1394
1395 device_init_wakeup(&spi->dev, false);
1396
1397 sysfs_remove_group(&spi->dev.kobj, &ads784x_attr_group);
1398
1399 ads7846_disable(ts);
1400 free_irq(ts->spi->irq, ts);
1401
1402 input_unregister_device(ts->input);
1403
1404 ads784x_hwmon_unregister(spi, ts);
1405
1406 regulator_disable(ts->reg);
1407 regulator_put(ts->reg);
1408
1409 if (!ts->get_pendown_state) {
1410 /*
1411 * If we are not using specialized pendown method we must
1412 * have been relying on gpio we set up ourselves.
1413 */
1414 gpio_free(ts->gpio_pendown);
1415 }
1416
1417 if (ts->filter_cleanup)
1418 ts->filter_cleanup(ts->filter_data);
1419
1420 kfree(ts->packet);
1421 kfree(ts);
1422
1423 dev_dbg(&spi->dev, "unregistered touchscreen\n");
1424
1425 return 0;
1426 }
1427
1428 static struct spi_driver ads7846_driver = {
1429 .driver = {
1430 .name = "ads7846",
1431 .bus = &spi_bus_type,
1432 .owner = THIS_MODULE,
1433 .pm = &ads7846_pm,
1434 },
1435 .probe = ads7846_probe,
1436 .remove = __devexit_p(ads7846_remove),
1437 };
1438
1439 static int __init ads7846_init(void)
1440 {
1441 return spi_register_driver(&ads7846_driver);
1442 }
1443 module_init(ads7846_init);
1444
1445 static void __exit ads7846_exit(void)
1446 {
1447 spi_unregister_driver(&ads7846_driver);
1448 }
1449 module_exit(ads7846_exit);
1450
1451 MODULE_DESCRIPTION("ADS7846 TouchScreen Driver");
1452 MODULE_LICENSE("GPL");
1453 MODULE_ALIAS("spi:ads7846");