Merge branch 'synaptics-rmi4' into next
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / input / rmi4 / rmi_spi.c
1 /*
2 * Copyright (c) 2011-2016 Synaptics Incorporated
3 * Copyright (c) 2011 Unixphere
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/rmi.h>
13 #include <linux/slab.h>
14 #include <linux/spi/spi.h>
15 #include <linux/of.h>
16 #include "rmi_driver.h"
17
18 #define RMI_SPI_DEFAULT_XFER_BUF_SIZE 64
19
20 #define RMI_PAGE_SELECT_REGISTER 0x00FF
21 #define RMI_SPI_PAGE(addr) (((addr) >> 8) & 0x80)
22 #define RMI_SPI_XFER_SIZE_LIMIT 255
23
24 #define BUFFER_SIZE_INCREMENT 32
25
26 enum rmi_spi_op {
27 RMI_SPI_WRITE = 0,
28 RMI_SPI_READ,
29 RMI_SPI_V2_READ_UNIFIED,
30 RMI_SPI_V2_READ_SPLIT,
31 RMI_SPI_V2_WRITE,
32 };
33
34 struct rmi_spi_cmd {
35 enum rmi_spi_op op;
36 u16 addr;
37 };
38
39 struct rmi_spi_xport {
40 struct rmi_transport_dev xport;
41 struct spi_device *spi;
42
43 struct mutex page_mutex;
44 int page;
45
46 u8 *rx_buf;
47 u8 *tx_buf;
48 int xfer_buf_size;
49
50 struct spi_transfer *rx_xfers;
51 struct spi_transfer *tx_xfers;
52 int rx_xfer_count;
53 int tx_xfer_count;
54 };
55
56 static int rmi_spi_manage_pools(struct rmi_spi_xport *rmi_spi, int len)
57 {
58 struct spi_device *spi = rmi_spi->spi;
59 int buf_size = rmi_spi->xfer_buf_size
60 ? rmi_spi->xfer_buf_size : RMI_SPI_DEFAULT_XFER_BUF_SIZE;
61 struct spi_transfer *xfer_buf;
62 void *buf;
63 void *tmp;
64
65 while (buf_size < len)
66 buf_size *= 2;
67
68 if (buf_size > RMI_SPI_XFER_SIZE_LIMIT)
69 buf_size = RMI_SPI_XFER_SIZE_LIMIT;
70
71 tmp = rmi_spi->rx_buf;
72 buf = devm_kzalloc(&spi->dev, buf_size * 2,
73 GFP_KERNEL | GFP_DMA);
74 if (!buf)
75 return -ENOMEM;
76
77 rmi_spi->rx_buf = buf;
78 rmi_spi->tx_buf = &rmi_spi->rx_buf[buf_size];
79 rmi_spi->xfer_buf_size = buf_size;
80
81 if (tmp)
82 devm_kfree(&spi->dev, tmp);
83
84 if (rmi_spi->xport.pdata.spi_data.read_delay_us)
85 rmi_spi->rx_xfer_count = buf_size;
86 else
87 rmi_spi->rx_xfer_count = 1;
88
89 if (rmi_spi->xport.pdata.spi_data.write_delay_us)
90 rmi_spi->tx_xfer_count = buf_size;
91 else
92 rmi_spi->tx_xfer_count = 1;
93
94 /*
95 * Allocate a pool of spi_transfer buffers for devices which need
96 * per byte delays.
97 */
98 tmp = rmi_spi->rx_xfers;
99 xfer_buf = devm_kzalloc(&spi->dev,
100 (rmi_spi->rx_xfer_count + rmi_spi->tx_xfer_count)
101 * sizeof(struct spi_transfer), GFP_KERNEL);
102 if (!xfer_buf)
103 return -ENOMEM;
104
105 rmi_spi->rx_xfers = xfer_buf;
106 rmi_spi->tx_xfers = &xfer_buf[rmi_spi->rx_xfer_count];
107
108 if (tmp)
109 devm_kfree(&spi->dev, tmp);
110
111 return 0;
112 }
113
114 static int rmi_spi_xfer(struct rmi_spi_xport *rmi_spi,
115 const struct rmi_spi_cmd *cmd, const u8 *tx_buf,
116 int tx_len, u8 *rx_buf, int rx_len)
117 {
118 struct spi_device *spi = rmi_spi->spi;
119 struct rmi_device_platform_data_spi *spi_data =
120 &rmi_spi->xport.pdata.spi_data;
121 struct spi_message msg;
122 struct spi_transfer *xfer;
123 int ret = 0;
124 int len;
125 int cmd_len = 0;
126 int total_tx_len;
127 int i;
128 u16 addr = cmd->addr;
129
130 spi_message_init(&msg);
131
132 switch (cmd->op) {
133 case RMI_SPI_WRITE:
134 case RMI_SPI_READ:
135 cmd_len += 2;
136 break;
137 case RMI_SPI_V2_READ_UNIFIED:
138 case RMI_SPI_V2_READ_SPLIT:
139 case RMI_SPI_V2_WRITE:
140 cmd_len += 4;
141 break;
142 }
143
144 total_tx_len = cmd_len + tx_len;
145 len = max(total_tx_len, rx_len);
146
147 if (len > RMI_SPI_XFER_SIZE_LIMIT)
148 return -EINVAL;
149
150 if (rmi_spi->xfer_buf_size < len)
151 rmi_spi_manage_pools(rmi_spi, len);
152
153 if (addr == 0)
154 /*
155 * SPI needs an address. Use 0x7FF if we want to keep
156 * reading from the last position of the register pointer.
157 */
158 addr = 0x7FF;
159
160 switch (cmd->op) {
161 case RMI_SPI_WRITE:
162 rmi_spi->tx_buf[0] = (addr >> 8);
163 rmi_spi->tx_buf[1] = addr & 0xFF;
164 break;
165 case RMI_SPI_READ:
166 rmi_spi->tx_buf[0] = (addr >> 8) | 0x80;
167 rmi_spi->tx_buf[1] = addr & 0xFF;
168 break;
169 case RMI_SPI_V2_READ_UNIFIED:
170 break;
171 case RMI_SPI_V2_READ_SPLIT:
172 break;
173 case RMI_SPI_V2_WRITE:
174 rmi_spi->tx_buf[0] = 0x40;
175 rmi_spi->tx_buf[1] = (addr >> 8) & 0xFF;
176 rmi_spi->tx_buf[2] = addr & 0xFF;
177 rmi_spi->tx_buf[3] = tx_len;
178 break;
179 }
180
181 if (tx_buf)
182 memcpy(&rmi_spi->tx_buf[cmd_len], tx_buf, tx_len);
183
184 if (rmi_spi->tx_xfer_count > 1) {
185 for (i = 0; i < total_tx_len; i++) {
186 xfer = &rmi_spi->tx_xfers[i];
187 memset(xfer, 0, sizeof(struct spi_transfer));
188 xfer->tx_buf = &rmi_spi->tx_buf[i];
189 xfer->len = 1;
190 xfer->delay_usecs = spi_data->write_delay_us;
191 spi_message_add_tail(xfer, &msg);
192 }
193 } else {
194 xfer = rmi_spi->tx_xfers;
195 memset(xfer, 0, sizeof(struct spi_transfer));
196 xfer->tx_buf = rmi_spi->tx_buf;
197 xfer->len = total_tx_len;
198 spi_message_add_tail(xfer, &msg);
199 }
200
201 rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: cmd: %s tx_buf len: %d tx_buf: %*ph\n",
202 __func__, cmd->op == RMI_SPI_WRITE ? "WRITE" : "READ",
203 total_tx_len, total_tx_len, rmi_spi->tx_buf);
204
205 if (rx_buf) {
206 if (rmi_spi->rx_xfer_count > 1) {
207 for (i = 0; i < rx_len; i++) {
208 xfer = &rmi_spi->rx_xfers[i];
209 memset(xfer, 0, sizeof(struct spi_transfer));
210 xfer->rx_buf = &rmi_spi->rx_buf[i];
211 xfer->len = 1;
212 xfer->delay_usecs = spi_data->read_delay_us;
213 spi_message_add_tail(xfer, &msg);
214 }
215 } else {
216 xfer = rmi_spi->rx_xfers;
217 memset(xfer, 0, sizeof(struct spi_transfer));
218 xfer->rx_buf = rmi_spi->rx_buf;
219 xfer->len = rx_len;
220 spi_message_add_tail(xfer, &msg);
221 }
222 }
223
224 ret = spi_sync(spi, &msg);
225 if (ret < 0) {
226 dev_err(&spi->dev, "spi xfer failed: %d\n", ret);
227 return ret;
228 }
229
230 if (rx_buf) {
231 memcpy(rx_buf, rmi_spi->rx_buf, rx_len);
232 rmi_dbg(RMI_DEBUG_XPORT, &spi->dev, "%s: (%d) %*ph\n",
233 __func__, rx_len, rx_len, rx_buf);
234 }
235
236 return 0;
237 }
238
239 /*
240 * rmi_set_page - Set RMI page
241 * @xport: The pointer to the rmi_transport_dev struct
242 * @page: The new page address.
243 *
244 * RMI devices have 16-bit addressing, but some of the transport
245 * implementations (like SMBus) only have 8-bit addressing. So RMI implements
246 * a page address at 0xff of every page so we can reliable page addresses
247 * every 256 registers.
248 *
249 * The page_mutex lock must be held when this function is entered.
250 *
251 * Returns zero on success, non-zero on failure.
252 */
253 static int rmi_set_page(struct rmi_spi_xport *rmi_spi, u8 page)
254 {
255 struct rmi_spi_cmd cmd;
256 int ret;
257
258 cmd.op = RMI_SPI_WRITE;
259 cmd.addr = RMI_PAGE_SELECT_REGISTER;
260
261 ret = rmi_spi_xfer(rmi_spi, &cmd, &page, 1, NULL, 0);
262
263 if (ret)
264 rmi_spi->page = page;
265
266 return ret;
267 }
268
269 static int rmi_spi_write_block(struct rmi_transport_dev *xport, u16 addr,
270 const void *buf, size_t len)
271 {
272 struct rmi_spi_xport *rmi_spi =
273 container_of(xport, struct rmi_spi_xport, xport);
274 struct rmi_spi_cmd cmd;
275 int ret;
276
277 mutex_lock(&rmi_spi->page_mutex);
278
279 if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
280 ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
281 if (ret)
282 goto exit;
283 }
284
285 cmd.op = RMI_SPI_WRITE;
286 cmd.addr = addr;
287
288 ret = rmi_spi_xfer(rmi_spi, &cmd, buf, len, NULL, 0);
289
290 exit:
291 mutex_unlock(&rmi_spi->page_mutex);
292 return ret;
293 }
294
295 static int rmi_spi_read_block(struct rmi_transport_dev *xport, u16 addr,
296 void *buf, size_t len)
297 {
298 struct rmi_spi_xport *rmi_spi =
299 container_of(xport, struct rmi_spi_xport, xport);
300 struct rmi_spi_cmd cmd;
301 int ret;
302
303 mutex_lock(&rmi_spi->page_mutex);
304
305 if (RMI_SPI_PAGE(addr) != rmi_spi->page) {
306 ret = rmi_set_page(rmi_spi, RMI_SPI_PAGE(addr));
307 if (ret)
308 goto exit;
309 }
310
311 cmd.op = RMI_SPI_READ;
312 cmd.addr = addr;
313
314 ret = rmi_spi_xfer(rmi_spi, &cmd, NULL, 0, buf, len);
315
316 exit:
317 mutex_unlock(&rmi_spi->page_mutex);
318 return ret;
319 }
320
321 static const struct rmi_transport_ops rmi_spi_ops = {
322 .write_block = rmi_spi_write_block,
323 .read_block = rmi_spi_read_block,
324 };
325
326 #ifdef CONFIG_OF
327 static int rmi_spi_of_probe(struct spi_device *spi,
328 struct rmi_device_platform_data *pdata)
329 {
330 struct device *dev = &spi->dev;
331 int retval;
332
333 retval = rmi_of_property_read_u32(dev,
334 &pdata->spi_data.read_delay_us,
335 "spi-rx-delay-us", 1);
336 if (retval)
337 return retval;
338
339 retval = rmi_of_property_read_u32(dev,
340 &pdata->spi_data.write_delay_us,
341 "spi-tx-delay-us", 1);
342 if (retval)
343 return retval;
344
345 return 0;
346 }
347
348 static const struct of_device_id rmi_spi_of_match[] = {
349 { .compatible = "syna,rmi4-spi" },
350 {},
351 };
352 MODULE_DEVICE_TABLE(of, rmi_spi_of_match);
353 #else
354 static inline int rmi_spi_of_probe(struct spi_device *spi,
355 struct rmi_device_platform_data *pdata)
356 {
357 return -ENODEV;
358 }
359 #endif
360
361 static void rmi_spi_unregister_transport(void *data)
362 {
363 struct rmi_spi_xport *rmi_spi = data;
364
365 rmi_unregister_transport_device(&rmi_spi->xport);
366 }
367
368 static int rmi_spi_probe(struct spi_device *spi)
369 {
370 struct rmi_spi_xport *rmi_spi;
371 struct rmi_device_platform_data *pdata;
372 struct rmi_device_platform_data *spi_pdata = spi->dev.platform_data;
373 int retval;
374
375 if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
376 return -EINVAL;
377
378 rmi_spi = devm_kzalloc(&spi->dev, sizeof(struct rmi_spi_xport),
379 GFP_KERNEL);
380 if (!rmi_spi)
381 return -ENOMEM;
382
383 pdata = &rmi_spi->xport.pdata;
384
385 if (spi->dev.of_node) {
386 retval = rmi_spi_of_probe(spi, pdata);
387 if (retval)
388 return retval;
389 } else if (spi_pdata) {
390 *pdata = *spi_pdata;
391 }
392
393 if (pdata->spi_data.bits_per_word)
394 spi->bits_per_word = pdata->spi_data.bits_per_word;
395
396 if (pdata->spi_data.mode)
397 spi->mode = pdata->spi_data.mode;
398
399 retval = spi_setup(spi);
400 if (retval < 0) {
401 dev_err(&spi->dev, "spi_setup failed!\n");
402 return retval;
403 }
404
405 pdata->irq = spi->irq;
406
407 rmi_spi->spi = spi;
408 mutex_init(&rmi_spi->page_mutex);
409
410 rmi_spi->xport.dev = &spi->dev;
411 rmi_spi->xport.proto_name = "spi";
412 rmi_spi->xport.ops = &rmi_spi_ops;
413
414 spi_set_drvdata(spi, rmi_spi);
415
416 retval = rmi_spi_manage_pools(rmi_spi, RMI_SPI_DEFAULT_XFER_BUF_SIZE);
417 if (retval)
418 return retval;
419
420 /*
421 * Setting the page to zero will (a) make sure the PSR is in a
422 * known state, and (b) make sure we can talk to the device.
423 */
424 retval = rmi_set_page(rmi_spi, 0);
425 if (retval) {
426 dev_err(&spi->dev, "Failed to set page select to 0.\n");
427 return retval;
428 }
429
430 retval = rmi_register_transport_device(&rmi_spi->xport);
431 if (retval) {
432 dev_err(&spi->dev, "failed to register transport.\n");
433 return retval;
434 }
435 retval = devm_add_action_or_reset(&spi->dev,
436 rmi_spi_unregister_transport,
437 rmi_spi);
438 if (retval)
439 return retval;
440
441 dev_info(&spi->dev, "registered RMI SPI driver\n");
442 return 0;
443 }
444
445 #ifdef CONFIG_PM_SLEEP
446 static int rmi_spi_suspend(struct device *dev)
447 {
448 struct spi_device *spi = to_spi_device(dev);
449 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
450 int ret;
451
452 ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, true);
453 if (ret)
454 dev_warn(dev, "Failed to resume device: %d\n", ret);
455
456 return ret;
457 }
458
459 static int rmi_spi_resume(struct device *dev)
460 {
461 struct spi_device *spi = to_spi_device(dev);
462 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
463 int ret;
464
465 ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, true);
466 if (ret)
467 dev_warn(dev, "Failed to resume device: %d\n", ret);
468
469 return ret;
470 }
471 #endif
472
473 #ifdef CONFIG_PM
474 static int rmi_spi_runtime_suspend(struct device *dev)
475 {
476 struct spi_device *spi = to_spi_device(dev);
477 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
478 int ret;
479
480 ret = rmi_driver_suspend(rmi_spi->xport.rmi_dev, false);
481 if (ret)
482 dev_warn(dev, "Failed to resume device: %d\n", ret);
483
484 return 0;
485 }
486
487 static int rmi_spi_runtime_resume(struct device *dev)
488 {
489 struct spi_device *spi = to_spi_device(dev);
490 struct rmi_spi_xport *rmi_spi = spi_get_drvdata(spi);
491 int ret;
492
493 ret = rmi_driver_resume(rmi_spi->xport.rmi_dev, false);
494 if (ret)
495 dev_warn(dev, "Failed to resume device: %d\n", ret);
496
497 return 0;
498 }
499 #endif
500
501 static const struct dev_pm_ops rmi_spi_pm = {
502 SET_SYSTEM_SLEEP_PM_OPS(rmi_spi_suspend, rmi_spi_resume)
503 SET_RUNTIME_PM_OPS(rmi_spi_runtime_suspend, rmi_spi_runtime_resume,
504 NULL)
505 };
506
507 static const struct spi_device_id rmi_id[] = {
508 { "rmi4_spi", 0 },
509 { }
510 };
511 MODULE_DEVICE_TABLE(spi, rmi_id);
512
513 static struct spi_driver rmi_spi_driver = {
514 .driver = {
515 .name = "rmi4_spi",
516 .pm = &rmi_spi_pm,
517 .of_match_table = of_match_ptr(rmi_spi_of_match),
518 },
519 .id_table = rmi_id,
520 .probe = rmi_spi_probe,
521 };
522
523 module_spi_driver(rmi_spi_driver);
524
525 MODULE_AUTHOR("Christopher Heiny <cheiny@synaptics.com>");
526 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
527 MODULE_DESCRIPTION("RMI SPI driver");
528 MODULE_LICENSE("GPL");
529 MODULE_VERSION(RMI_DRIVER_VERSION);