drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54 #define DRV_VERSION "2.0.0"
55 #define DRV_RELDATE "2011-02-14"
56
57 #define SRPT_ID_STRING "Linux SRP target"
58
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66
67 /*
68 * Global Variables
69 */
70
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
74
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95 static struct ib_client srpt_client;
96 static struct target_fabric_configfs *srpt_target;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
99
100 /**
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102 */
103 static inline
104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105 {
106 switch (dir) {
107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
109 default: return dir;
110 }
111 }
112
113 /**
114 * srpt_sdev_name() - Return the name associated with the HCA.
115 *
116 * Examples are ib0, ib1, ...
117 */
118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119 {
120 return sdev->device->name;
121 }
122
123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124 {
125 unsigned long flags;
126 enum rdma_ch_state state;
127
128 spin_lock_irqsave(&ch->spinlock, flags);
129 state = ch->state;
130 spin_unlock_irqrestore(&ch->spinlock, flags);
131 return state;
132 }
133
134 static enum rdma_ch_state
135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136 {
137 unsigned long flags;
138 enum rdma_ch_state prev;
139
140 spin_lock_irqsave(&ch->spinlock, flags);
141 prev = ch->state;
142 ch->state = new_state;
143 spin_unlock_irqrestore(&ch->spinlock, flags);
144 return prev;
145 }
146
147 /**
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
149 *
150 * Returns true if and only if the channel state has been set to the new state.
151 */
152 static bool
153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 enum rdma_ch_state new)
155 {
156 unsigned long flags;
157 enum rdma_ch_state prev;
158
159 spin_lock_irqsave(&ch->spinlock, flags);
160 prev = ch->state;
161 if (prev == old)
162 ch->state = new;
163 spin_unlock_irqrestore(&ch->spinlock, flags);
164 return prev == old;
165 }
166
167 /**
168 * srpt_event_handler() - Asynchronous IB event callback function.
169 *
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
174 */
175 static void srpt_event_handler(struct ib_event_handler *handler,
176 struct ib_event *event)
177 {
178 struct srpt_device *sdev;
179 struct srpt_port *sport;
180
181 sdev = ib_get_client_data(event->device, &srpt_client);
182 if (!sdev || sdev->device != event->device)
183 return;
184
185 pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 srpt_sdev_name(sdev));
187
188 switch (event->event) {
189 case IB_EVENT_PORT_ERR:
190 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 sport = &sdev->port[event->element.port_num - 1];
192 sport->lid = 0;
193 sport->sm_lid = 0;
194 }
195 break;
196 case IB_EVENT_PORT_ACTIVE:
197 case IB_EVENT_LID_CHANGE:
198 case IB_EVENT_PKEY_CHANGE:
199 case IB_EVENT_SM_CHANGE:
200 case IB_EVENT_CLIENT_REREGISTER:
201 /* Refresh port data asynchronously. */
202 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 sport = &sdev->port[event->element.port_num - 1];
204 if (!sport->lid && !sport->sm_lid)
205 schedule_work(&sport->work);
206 }
207 break;
208 default:
209 printk(KERN_ERR "received unrecognized IB event %d\n",
210 event->event);
211 break;
212 }
213 }
214
215 /**
216 * srpt_srq_event() - SRQ event callback function.
217 */
218 static void srpt_srq_event(struct ib_event *event, void *ctx)
219 {
220 printk(KERN_INFO "SRQ event %d\n", event->event);
221 }
222
223 /**
224 * srpt_qp_event() - QP event callback function.
225 */
226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227 {
228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231 switch (event->event) {
232 case IB_EVENT_COMM_EST:
233 ib_cm_notify(ch->cm_id, event->event);
234 break;
235 case IB_EVENT_QP_LAST_WQE_REACHED:
236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 CH_RELEASING))
238 srpt_release_channel(ch);
239 else
240 pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 ch->sess_name, srpt_get_ch_state(ch));
242 break;
243 default:
244 printk(KERN_ERR "received unrecognized IB QP event %d\n",
245 event->event);
246 break;
247 }
248 }
249
250 /**
251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252 *
253 * @slot: one-based slot number.
254 * @value: four-bit value.
255 *
256 * Copies the lowest four bits of value in element slot of the array of four
257 * bit elements called c_list (controller list). The index slot is one-based.
258 */
259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260 {
261 u16 id;
262 u8 tmp;
263
264 id = (slot - 1) / 2;
265 if (slot & 0x1) {
266 tmp = c_list[id] & 0xf;
267 c_list[id] = (value << 4) | tmp;
268 } else {
269 tmp = c_list[id] & 0xf0;
270 c_list[id] = (value & 0xf) | tmp;
271 }
272 }
273
274 /**
275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276 *
277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278 * Specification.
279 */
280 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281 {
282 struct ib_class_port_info *cif;
283
284 cif = (struct ib_class_port_info *)mad->data;
285 memset(cif, 0, sizeof *cif);
286 cif->base_version = 1;
287 cif->class_version = 1;
288 cif->resp_time_value = 20;
289
290 mad->mad_hdr.status = 0;
291 }
292
293 /**
294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295 *
296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
298 */
299 static void srpt_get_iou(struct ib_dm_mad *mad)
300 {
301 struct ib_dm_iou_info *ioui;
302 u8 slot;
303 int i;
304
305 ioui = (struct ib_dm_iou_info *)mad->data;
306 ioui->change_id = __constant_cpu_to_be16(1);
307 ioui->max_controllers = 16;
308
309 /* set present for slot 1 and empty for the rest */
310 srpt_set_ioc(ioui->controller_list, 1, 1);
311 for (i = 1, slot = 2; i < 16; i++, slot++)
312 srpt_set_ioc(ioui->controller_list, slot, 0);
313
314 mad->mad_hdr.status = 0;
315 }
316
317 /**
318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 struct ib_dm_mad *mad)
326 {
327 struct srpt_device *sdev = sport->sdev;
328 struct ib_dm_ioc_profile *iocp;
329
330 iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332 if (!slot || slot > 16) {
333 mad->mad_hdr.status
334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 return;
336 }
337
338 if (slot > 2) {
339 mad->mad_hdr.status
340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341 return;
342 }
343
344 memset(iocp, 0, sizeof *iocp);
345 strcpy(iocp->id_string, SRPT_ID_STRING);
346 iocp->guid = cpu_to_be64(srpt_service_guid);
347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351 iocp->subsys_device_id = 0x0;
352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357 iocp->rdma_read_depth = 4;
358 iocp->send_size = cpu_to_be32(srp_max_req_size);
359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360 1U << 24));
361 iocp->num_svc_entries = 1;
362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365 mad->mad_hdr.status = 0;
366 }
367
368 /**
369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370 *
371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
373 */
374 static void srpt_get_svc_entries(u64 ioc_guid,
375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376 {
377 struct ib_dm_svc_entries *svc_entries;
378
379 WARN_ON(!ioc_guid);
380
381 if (!slot || slot > 16) {
382 mad->mad_hdr.status
383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384 return;
385 }
386
387 if (slot > 2 || lo > hi || hi > 1) {
388 mad->mad_hdr.status
389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390 return;
391 }
392
393 svc_entries = (struct ib_dm_svc_entries *)mad->data;
394 memset(svc_entries, 0, sizeof *svc_entries);
395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396 snprintf(svc_entries->service_entries[0].name,
397 sizeof(svc_entries->service_entries[0].name),
398 "%s%016llx",
399 SRP_SERVICE_NAME_PREFIX,
400 ioc_guid);
401
402 mad->mad_hdr.status = 0;
403 }
404
405 /**
406 * srpt_mgmt_method_get() - Process a received management datagram.
407 * @sp: source port through which the MAD has been received.
408 * @rq_mad: received MAD.
409 * @rsp_mad: response MAD.
410 */
411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412 struct ib_dm_mad *rsp_mad)
413 {
414 u16 attr_id;
415 u32 slot;
416 u8 hi, lo;
417
418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419 switch (attr_id) {
420 case DM_ATTR_CLASS_PORT_INFO:
421 srpt_get_class_port_info(rsp_mad);
422 break;
423 case DM_ATTR_IOU_INFO:
424 srpt_get_iou(rsp_mad);
425 break;
426 case DM_ATTR_IOC_PROFILE:
427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428 srpt_get_ioc(sp, slot, rsp_mad);
429 break;
430 case DM_ATTR_SVC_ENTRIES:
431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432 hi = (u8) ((slot >> 8) & 0xff);
433 lo = (u8) (slot & 0xff);
434 slot = (u16) ((slot >> 16) & 0xffff);
435 srpt_get_svc_entries(srpt_service_guid,
436 slot, hi, lo, rsp_mad);
437 break;
438 default:
439 rsp_mad->mad_hdr.status =
440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441 break;
442 }
443 }
444
445 /**
446 * srpt_mad_send_handler() - Post MAD-send callback function.
447 */
448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449 struct ib_mad_send_wc *mad_wc)
450 {
451 ib_destroy_ah(mad_wc->send_buf->ah);
452 ib_free_send_mad(mad_wc->send_buf);
453 }
454
455 /**
456 * srpt_mad_recv_handler() - MAD reception callback function.
457 */
458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459 struct ib_mad_recv_wc *mad_wc)
460 {
461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 struct ib_ah *ah;
463 struct ib_mad_send_buf *rsp;
464 struct ib_dm_mad *dm_mad;
465
466 if (!mad_wc || !mad_wc->recv_buf.mad)
467 return;
468
469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 mad_wc->recv_buf.grh, mad_agent->port_num);
471 if (IS_ERR(ah))
472 goto err;
473
474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 mad_wc->wc->pkey_index, 0,
478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 GFP_KERNEL);
480 if (IS_ERR(rsp))
481 goto err_rsp;
482
483 rsp->ah = ah;
484
485 dm_mad = rsp->mad;
486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 dm_mad->mad_hdr.status = 0;
489
490 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 case IB_MGMT_METHOD_GET:
492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 break;
494 case IB_MGMT_METHOD_SET:
495 dm_mad->mad_hdr.status =
496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 break;
498 default:
499 dm_mad->mad_hdr.status =
500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 break;
502 }
503
504 if (!ib_post_send_mad(rsp, NULL)) {
505 ib_free_recv_mad(mad_wc);
506 /* will destroy_ah & free_send_mad in send completion */
507 return;
508 }
509
510 ib_free_send_mad(rsp);
511
512 err_rsp:
513 ib_destroy_ah(ah);
514 err:
515 ib_free_recv_mad(mad_wc);
516 }
517
518 /**
519 * srpt_refresh_port() - Configure a HCA port.
520 *
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
524 *
525 * Note: It is safe to call this function more than once for the same port.
526 */
527 static int srpt_refresh_port(struct srpt_port *sport)
528 {
529 struct ib_mad_reg_req reg_req;
530 struct ib_port_modify port_modify;
531 struct ib_port_attr port_attr;
532 int ret;
533
534 memset(&port_modify, 0, sizeof port_modify);
535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 port_modify.clr_port_cap_mask = 0;
537
538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 if (ret)
540 goto err_mod_port;
541
542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 if (ret)
544 goto err_query_port;
545
546 sport->sm_lid = port_attr.sm_lid;
547 sport->lid = port_attr.lid;
548
549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 if (ret)
551 goto err_query_port;
552
553 if (!sport->mad_agent) {
554 memset(&reg_req, 0, sizeof reg_req);
555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 sport->port,
562 IB_QPT_GSI,
563 &reg_req, 0,
564 srpt_mad_send_handler,
565 srpt_mad_recv_handler,
566 sport);
567 if (IS_ERR(sport->mad_agent)) {
568 ret = PTR_ERR(sport->mad_agent);
569 sport->mad_agent = NULL;
570 goto err_query_port;
571 }
572 }
573
574 return 0;
575
576 err_query_port:
577
578 port_modify.set_port_cap_mask = 0;
579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582 err_mod_port:
583
584 return ret;
585 }
586
587 /**
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 *
590 * Note: It is safe to call this function more than once for the same device.
591 */
592 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593 {
594 struct ib_port_modify port_modify = {
595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 };
597 struct srpt_port *sport;
598 int i;
599
600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 sport = &sdev->port[i - 1];
602 WARN_ON(sport->port != i);
603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 printk(KERN_ERR "disabling MAD processing failed.\n");
605 if (sport->mad_agent) {
606 ib_unregister_mad_agent(sport->mad_agent);
607 sport->mad_agent = NULL;
608 }
609 }
610 }
611
612 /**
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 */
615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 int ioctx_size, int dma_size,
617 enum dma_data_direction dir)
618 {
619 struct srpt_ioctx *ioctx;
620
621 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 if (!ioctx)
623 goto err;
624
625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 if (!ioctx->buf)
627 goto err_free_ioctx;
628
629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 goto err_free_buf;
632
633 return ioctx;
634
635 err_free_buf:
636 kfree(ioctx->buf);
637 err_free_ioctx:
638 kfree(ioctx);
639 err:
640 return NULL;
641 }
642
643 /**
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 */
646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 int dma_size, enum dma_data_direction dir)
648 {
649 if (!ioctx)
650 return;
651
652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 kfree(ioctx->buf);
654 kfree(ioctx);
655 }
656
657 /**
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev: Device to allocate the I/O context ring for.
660 * @ring_size: Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size: DMA buffer size.
663 * @dir: DMA data direction.
664 */
665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 int ring_size, int ioctx_size,
667 int dma_size, enum dma_data_direction dir)
668 {
669 struct srpt_ioctx **ring;
670 int i;
671
672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 if (!ring)
677 goto out;
678 for (i = 0; i < ring_size; ++i) {
679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 if (!ring[i])
681 goto err;
682 ring[i]->index = i;
683 }
684 goto out;
685
686 err:
687 while (--i >= 0)
688 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 kfree(ring);
690 ring = NULL;
691 out:
692 return ring;
693 }
694
695 /**
696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697 */
698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699 struct srpt_device *sdev, int ring_size,
700 int dma_size, enum dma_data_direction dir)
701 {
702 int i;
703
704 for (i = 0; i < ring_size; ++i)
705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706 kfree(ioctx_ring);
707 }
708
709 /**
710 * srpt_get_cmd_state() - Get the state of a SCSI command.
711 */
712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713 {
714 enum srpt_command_state state;
715 unsigned long flags;
716
717 BUG_ON(!ioctx);
718
719 spin_lock_irqsave(&ioctx->spinlock, flags);
720 state = ioctx->state;
721 spin_unlock_irqrestore(&ioctx->spinlock, flags);
722 return state;
723 }
724
725 /**
726 * srpt_set_cmd_state() - Set the state of a SCSI command.
727 *
728 * Does not modify the state of aborted commands. Returns the previous command
729 * state.
730 */
731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732 enum srpt_command_state new)
733 {
734 enum srpt_command_state previous;
735 unsigned long flags;
736
737 BUG_ON(!ioctx);
738
739 spin_lock_irqsave(&ioctx->spinlock, flags);
740 previous = ioctx->state;
741 if (previous != SRPT_STATE_DONE)
742 ioctx->state = new;
743 spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745 return previous;
746 }
747
748 /**
749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750 *
751 * Returns true if and only if the previous command state was equal to 'old'.
752 */
753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754 enum srpt_command_state old,
755 enum srpt_command_state new)
756 {
757 enum srpt_command_state previous;
758 unsigned long flags;
759
760 WARN_ON(!ioctx);
761 WARN_ON(old == SRPT_STATE_DONE);
762 WARN_ON(new == SRPT_STATE_NEW);
763
764 spin_lock_irqsave(&ioctx->spinlock, flags);
765 previous = ioctx->state;
766 if (previous == old)
767 ioctx->state = new;
768 spin_unlock_irqrestore(&ioctx->spinlock, flags);
769 return previous == old;
770 }
771
772 /**
773 * srpt_post_recv() - Post an IB receive request.
774 */
775 static int srpt_post_recv(struct srpt_device *sdev,
776 struct srpt_recv_ioctx *ioctx)
777 {
778 struct ib_sge list;
779 struct ib_recv_wr wr, *bad_wr;
780
781 BUG_ON(!sdev);
782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784 list.addr = ioctx->ioctx.dma;
785 list.length = srp_max_req_size;
786 list.lkey = sdev->mr->lkey;
787
788 wr.next = NULL;
789 wr.sg_list = &list;
790 wr.num_sge = 1;
791
792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793 }
794
795 /**
796 * srpt_post_send() - Post an IB send request.
797 *
798 * Returns zero upon success and a non-zero value upon failure.
799 */
800 static int srpt_post_send(struct srpt_rdma_ch *ch,
801 struct srpt_send_ioctx *ioctx, int len)
802 {
803 struct ib_sge list;
804 struct ib_send_wr wr, *bad_wr;
805 struct srpt_device *sdev = ch->sport->sdev;
806 int ret;
807
808 atomic_inc(&ch->req_lim);
809
810 ret = -ENOMEM;
811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812 printk(KERN_WARNING "IB send queue full (needed 1)\n");
813 goto out;
814 }
815
816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817 DMA_TO_DEVICE);
818
819 list.addr = ioctx->ioctx.dma;
820 list.length = len;
821 list.lkey = sdev->mr->lkey;
822
823 wr.next = NULL;
824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825 wr.sg_list = &list;
826 wr.num_sge = 1;
827 wr.opcode = IB_WR_SEND;
828 wr.send_flags = IB_SEND_SIGNALED;
829
830 ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832 out:
833 if (ret < 0) {
834 atomic_inc(&ch->sq_wr_avail);
835 atomic_dec(&ch->req_lim);
836 }
837 return ret;
838 }
839
840 /**
841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842 * @ioctx: Pointer to the I/O context associated with the request.
843 * @srp_cmd: Pointer to the SRP_CMD request data.
844 * @dir: Pointer to the variable to which the transfer direction will be
845 * written.
846 * @data_len: Pointer to the variable to which the total data length of all
847 * descriptors in the SRP_CMD request will be written.
848 *
849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850 *
851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852 * -ENOMEM when memory allocation fails and zero upon success.
853 */
854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855 struct srp_cmd *srp_cmd,
856 enum dma_data_direction *dir, u64 *data_len)
857 {
858 struct srp_indirect_buf *idb;
859 struct srp_direct_buf *db;
860 unsigned add_cdb_offset;
861 int ret;
862
863 /*
864 * The pointer computations below will only be compiled correctly
865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866 * whether srp_cmd::add_data has been declared as a byte pointer.
867 */
868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869 && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871 BUG_ON(!dir);
872 BUG_ON(!data_len);
873
874 ret = 0;
875 *data_len = 0;
876
877 /*
878 * The lower four bits of the buffer format field contain the DATA-IN
879 * buffer descriptor format, and the highest four bits contain the
880 * DATA-OUT buffer descriptor format.
881 */
882 *dir = DMA_NONE;
883 if (srp_cmd->buf_fmt & 0xf)
884 /* DATA-IN: transfer data from target to initiator (read). */
885 *dir = DMA_FROM_DEVICE;
886 else if (srp_cmd->buf_fmt >> 4)
887 /* DATA-OUT: transfer data from initiator to target (write). */
888 *dir = DMA_TO_DEVICE;
889
890 /*
891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892 * CDB LENGTH' field are reserved and the size in bytes of this field
893 * is four times the value specified in bits 3..7. Hence the "& ~3".
894 */
895 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898 ioctx->n_rbuf = 1;
899 ioctx->rbufs = &ioctx->single_rbuf;
900
901 db = (struct srp_direct_buf *)(srp_cmd->add_data
902 + add_cdb_offset);
903 memcpy(ioctx->rbufs, db, sizeof *db);
904 *data_len = be32_to_cpu(db->len);
905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908 + add_cdb_offset);
909
910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912 if (ioctx->n_rbuf >
913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914 printk(KERN_ERR "received unsupported SRP_CMD request"
915 " type (%u out + %u in != %u / %zu)\n",
916 srp_cmd->data_out_desc_cnt,
917 srp_cmd->data_in_desc_cnt,
918 be32_to_cpu(idb->table_desc.len),
919 sizeof(*db));
920 ioctx->n_rbuf = 0;
921 ret = -EINVAL;
922 goto out;
923 }
924
925 if (ioctx->n_rbuf == 1)
926 ioctx->rbufs = &ioctx->single_rbuf;
927 else {
928 ioctx->rbufs =
929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930 if (!ioctx->rbufs) {
931 ioctx->n_rbuf = 0;
932 ret = -ENOMEM;
933 goto out;
934 }
935 }
936
937 db = idb->desc_list;
938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939 *data_len = be32_to_cpu(idb->len);
940 }
941 out:
942 return ret;
943 }
944
945 /**
946 * srpt_init_ch_qp() - Initialize queue pair attributes.
947 *
948 * Initialized the attributes of queue pair 'qp' by allowing local write,
949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950 */
951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952 {
953 struct ib_qp_attr *attr;
954 int ret;
955
956 attr = kzalloc(sizeof *attr, GFP_KERNEL);
957 if (!attr)
958 return -ENOMEM;
959
960 attr->qp_state = IB_QPS_INIT;
961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962 IB_ACCESS_REMOTE_WRITE;
963 attr->port_num = ch->sport->port;
964 attr->pkey_index = 0;
965
966 ret = ib_modify_qp(qp, attr,
967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968 IB_QP_PKEY_INDEX);
969
970 kfree(attr);
971 return ret;
972 }
973
974 /**
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
978 *
979 * Returns zero upon success and a negative value upon failure.
980 *
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
984 */
985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986 {
987 struct ib_qp_attr qp_attr;
988 int attr_mask;
989 int ret;
990
991 qp_attr.qp_state = IB_QPS_RTR;
992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993 if (ret)
994 goto out;
995
996 qp_attr.max_dest_rd_atomic = 4;
997
998 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000 out:
1001 return ret;
1002 }
1003
1004 /**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016 {
1017 struct ib_qp_attr qp_attr;
1018 int attr_mask;
1019 int ret;
1020
1021 qp_attr.qp_state = IB_QPS_RTS;
1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023 if (ret)
1024 goto out;
1025
1026 qp_attr.max_rd_atomic = 4;
1027
1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030 out:
1031 return ret;
1032 }
1033
1034 /**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038 {
1039 struct ib_qp_attr qp_attr;
1040
1041 qp_attr.qp_state = IB_QPS_ERR;
1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043 }
1044
1045 /**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049 struct srpt_send_ioctx *ioctx)
1050 {
1051 struct scatterlist *sg;
1052 enum dma_data_direction dir;
1053
1054 BUG_ON(!ch);
1055 BUG_ON(!ioctx);
1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058 while (ioctx->n_rdma)
1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061 kfree(ioctx->rdma_ius);
1062 ioctx->rdma_ius = NULL;
1063
1064 if (ioctx->mapped_sg_count) {
1065 sg = ioctx->sg;
1066 WARN_ON(!sg);
1067 dir = ioctx->cmd.data_direction;
1068 BUG_ON(dir == DMA_NONE);
1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070 opposite_dma_dir(dir));
1071 ioctx->mapped_sg_count = 0;
1072 }
1073 }
1074
1075 /**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079 struct srpt_send_ioctx *ioctx)
1080 {
1081 struct ib_device *dev = ch->sport->sdev->device;
1082 struct se_cmd *cmd;
1083 struct scatterlist *sg, *sg_orig;
1084 int sg_cnt;
1085 enum dma_data_direction dir;
1086 struct rdma_iu *riu;
1087 struct srp_direct_buf *db;
1088 dma_addr_t dma_addr;
1089 struct ib_sge *sge;
1090 u64 raddr;
1091 u32 rsize;
1092 u32 tsize;
1093 u32 dma_len;
1094 int count, nrdma;
1095 int i, j, k;
1096
1097 BUG_ON(!ch);
1098 BUG_ON(!ioctx);
1099 cmd = &ioctx->cmd;
1100 dir = cmd->data_direction;
1101 BUG_ON(dir == DMA_NONE);
1102
1103 ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1104 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1105
1106 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1107 opposite_dma_dir(dir));
1108 if (unlikely(!count))
1109 return -EAGAIN;
1110
1111 ioctx->mapped_sg_count = count;
1112
1113 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1114 nrdma = ioctx->n_rdma_ius;
1115 else {
1116 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1117 + ioctx->n_rbuf;
1118
1119 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1120 if (!ioctx->rdma_ius)
1121 goto free_mem;
1122
1123 ioctx->n_rdma_ius = nrdma;
1124 }
1125
1126 db = ioctx->rbufs;
1127 tsize = cmd->data_length;
1128 dma_len = ib_sg_dma_len(dev, &sg[0]);
1129 riu = ioctx->rdma_ius;
1130
1131 /*
1132 * For each remote desc - calculate the #ib_sge.
1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1134 * each remote desc rdma_iu is required a rdma wr;
1135 * else
1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1137 * another rdma wr
1138 */
1139 for (i = 0, j = 0;
1140 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1141 rsize = be32_to_cpu(db->len);
1142 raddr = be64_to_cpu(db->va);
1143 riu->raddr = raddr;
1144 riu->rkey = be32_to_cpu(db->key);
1145 riu->sge_cnt = 0;
1146
1147 /* calculate how many sge required for this remote_buf */
1148 while (rsize > 0 && tsize > 0) {
1149
1150 if (rsize >= dma_len) {
1151 tsize -= dma_len;
1152 rsize -= dma_len;
1153 raddr += dma_len;
1154
1155 if (tsize > 0) {
1156 ++j;
1157 if (j < count) {
1158 sg = sg_next(sg);
1159 dma_len = ib_sg_dma_len(
1160 dev, sg);
1161 }
1162 }
1163 } else {
1164 tsize -= rsize;
1165 dma_len -= rsize;
1166 rsize = 0;
1167 }
1168
1169 ++riu->sge_cnt;
1170
1171 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1172 ++ioctx->n_rdma;
1173 riu->sge =
1174 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1175 GFP_KERNEL);
1176 if (!riu->sge)
1177 goto free_mem;
1178
1179 ++riu;
1180 riu->sge_cnt = 0;
1181 riu->raddr = raddr;
1182 riu->rkey = be32_to_cpu(db->key);
1183 }
1184 }
1185
1186 ++ioctx->n_rdma;
1187 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1188 GFP_KERNEL);
1189 if (!riu->sge)
1190 goto free_mem;
1191 }
1192
1193 db = ioctx->rbufs;
1194 tsize = cmd->data_length;
1195 riu = ioctx->rdma_ius;
1196 sg = sg_orig;
1197 dma_len = ib_sg_dma_len(dev, &sg[0]);
1198 dma_addr = ib_sg_dma_address(dev, &sg[0]);
1199
1200 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1201 for (i = 0, j = 0;
1202 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1203 rsize = be32_to_cpu(db->len);
1204 sge = riu->sge;
1205 k = 0;
1206
1207 while (rsize > 0 && tsize > 0) {
1208 sge->addr = dma_addr;
1209 sge->lkey = ch->sport->sdev->mr->lkey;
1210
1211 if (rsize >= dma_len) {
1212 sge->length =
1213 (tsize < dma_len) ? tsize : dma_len;
1214 tsize -= dma_len;
1215 rsize -= dma_len;
1216
1217 if (tsize > 0) {
1218 ++j;
1219 if (j < count) {
1220 sg = sg_next(sg);
1221 dma_len = ib_sg_dma_len(
1222 dev, sg);
1223 dma_addr = ib_sg_dma_address(
1224 dev, sg);
1225 }
1226 }
1227 } else {
1228 sge->length = (tsize < rsize) ? tsize : rsize;
1229 tsize -= rsize;
1230 dma_len -= rsize;
1231 dma_addr += rsize;
1232 rsize = 0;
1233 }
1234
1235 ++k;
1236 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1237 ++riu;
1238 sge = riu->sge;
1239 k = 0;
1240 } else if (rsize > 0 && tsize > 0)
1241 ++sge;
1242 }
1243 }
1244
1245 return 0;
1246
1247 free_mem:
1248 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1249
1250 return -ENOMEM;
1251 }
1252
1253 /**
1254 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1255 */
1256 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1257 {
1258 struct srpt_send_ioctx *ioctx;
1259 unsigned long flags;
1260
1261 BUG_ON(!ch);
1262
1263 ioctx = NULL;
1264 spin_lock_irqsave(&ch->spinlock, flags);
1265 if (!list_empty(&ch->free_list)) {
1266 ioctx = list_first_entry(&ch->free_list,
1267 struct srpt_send_ioctx, free_list);
1268 list_del(&ioctx->free_list);
1269 }
1270 spin_unlock_irqrestore(&ch->spinlock, flags);
1271
1272 if (!ioctx)
1273 return ioctx;
1274
1275 BUG_ON(ioctx->ch != ch);
1276 spin_lock_init(&ioctx->spinlock);
1277 ioctx->state = SRPT_STATE_NEW;
1278 ioctx->n_rbuf = 0;
1279 ioctx->rbufs = NULL;
1280 ioctx->n_rdma = 0;
1281 ioctx->n_rdma_ius = 0;
1282 ioctx->rdma_ius = NULL;
1283 ioctx->mapped_sg_count = 0;
1284 init_completion(&ioctx->tx_done);
1285 ioctx->queue_status_only = false;
1286 /*
1287 * transport_init_se_cmd() does not initialize all fields, so do it
1288 * here.
1289 */
1290 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1291 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1292
1293 return ioctx;
1294 }
1295
1296 /**
1297 * srpt_abort_cmd() - Abort a SCSI command.
1298 * @ioctx: I/O context associated with the SCSI command.
1299 * @context: Preferred execution context.
1300 */
1301 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1302 {
1303 enum srpt_command_state state;
1304 unsigned long flags;
1305
1306 BUG_ON(!ioctx);
1307
1308 /*
1309 * If the command is in a state where the target core is waiting for
1310 * the ib_srpt driver, change the state to the next state. Changing
1311 * the state of the command from SRPT_STATE_NEED_DATA to
1312 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1313 * function a second time.
1314 */
1315
1316 spin_lock_irqsave(&ioctx->spinlock, flags);
1317 state = ioctx->state;
1318 switch (state) {
1319 case SRPT_STATE_NEED_DATA:
1320 ioctx->state = SRPT_STATE_DATA_IN;
1321 break;
1322 case SRPT_STATE_DATA_IN:
1323 case SRPT_STATE_CMD_RSP_SENT:
1324 case SRPT_STATE_MGMT_RSP_SENT:
1325 ioctx->state = SRPT_STATE_DONE;
1326 break;
1327 default:
1328 break;
1329 }
1330 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1331
1332 if (state == SRPT_STATE_DONE) {
1333 struct srpt_rdma_ch *ch = ioctx->ch;
1334
1335 BUG_ON(ch->sess == NULL);
1336
1337 target_put_sess_cmd(ch->sess, &ioctx->cmd);
1338 goto out;
1339 }
1340
1341 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1342 ioctx->tag);
1343
1344 switch (state) {
1345 case SRPT_STATE_NEW:
1346 case SRPT_STATE_DATA_IN:
1347 case SRPT_STATE_MGMT:
1348 /*
1349 * Do nothing - defer abort processing until
1350 * srpt_queue_response() is invoked.
1351 */
1352 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1353 break;
1354 case SRPT_STATE_NEED_DATA:
1355 /* DMA_TO_DEVICE (write) - RDMA read error. */
1356
1357 /* XXX(hch): this is a horrible layering violation.. */
1358 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1359 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1360 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1361 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1362
1363 complete(&ioctx->cmd.transport_lun_stop_comp);
1364 break;
1365 case SRPT_STATE_CMD_RSP_SENT:
1366 /*
1367 * SRP_RSP sending failed or the SRP_RSP send completion has
1368 * not been received in time.
1369 */
1370 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1371 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1372 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1373 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1374 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1375 break;
1376 case SRPT_STATE_MGMT_RSP_SENT:
1377 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1378 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1379 break;
1380 default:
1381 WARN(1, "Unexpected command state (%d)", state);
1382 break;
1383 }
1384
1385 out:
1386 return state;
1387 }
1388
1389 /**
1390 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1391 */
1392 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1393 {
1394 struct srpt_send_ioctx *ioctx;
1395 enum srpt_command_state state;
1396 struct se_cmd *cmd;
1397 u32 index;
1398
1399 atomic_inc(&ch->sq_wr_avail);
1400
1401 index = idx_from_wr_id(wr_id);
1402 ioctx = ch->ioctx_ring[index];
1403 state = srpt_get_cmd_state(ioctx);
1404 cmd = &ioctx->cmd;
1405
1406 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1407 && state != SRPT_STATE_MGMT_RSP_SENT
1408 && state != SRPT_STATE_NEED_DATA
1409 && state != SRPT_STATE_DONE);
1410
1411 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1412 if (state == SRPT_STATE_CMD_RSP_SENT
1413 || state == SRPT_STATE_MGMT_RSP_SENT)
1414 atomic_dec(&ch->req_lim);
1415
1416 srpt_abort_cmd(ioctx);
1417 }
1418
1419 /**
1420 * srpt_handle_send_comp() - Process an IB send completion notification.
1421 */
1422 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1423 struct srpt_send_ioctx *ioctx)
1424 {
1425 enum srpt_command_state state;
1426
1427 atomic_inc(&ch->sq_wr_avail);
1428
1429 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1430
1431 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1432 && state != SRPT_STATE_MGMT_RSP_SENT
1433 && state != SRPT_STATE_DONE))
1434 pr_debug("state = %d\n", state);
1435
1436 if (state != SRPT_STATE_DONE) {
1437 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1438 transport_generic_free_cmd(&ioctx->cmd, 0);
1439 } else {
1440 printk(KERN_ERR "IB completion has been received too late for"
1441 " wr_id = %u.\n", ioctx->ioctx.index);
1442 }
1443 }
1444
1445 /**
1446 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1447 *
1448 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1449 * the data that has been transferred via IB RDMA had to be postponed until the
1450 * check_stop_free() callback. None of this is necessary anymore and needs to
1451 * be cleaned up.
1452 */
1453 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1454 struct srpt_send_ioctx *ioctx,
1455 enum srpt_opcode opcode)
1456 {
1457 WARN_ON(ioctx->n_rdma <= 0);
1458 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1459
1460 if (opcode == SRPT_RDMA_READ_LAST) {
1461 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1462 SRPT_STATE_DATA_IN))
1463 target_execute_cmd(&ioctx->cmd);
1464 else
1465 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1466 __LINE__, srpt_get_cmd_state(ioctx));
1467 } else if (opcode == SRPT_RDMA_ABORT) {
1468 ioctx->rdma_aborted = true;
1469 } else {
1470 WARN(true, "unexpected opcode %d\n", opcode);
1471 }
1472 }
1473
1474 /**
1475 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1476 */
1477 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1478 struct srpt_send_ioctx *ioctx,
1479 enum srpt_opcode opcode)
1480 {
1481 struct se_cmd *cmd;
1482 enum srpt_command_state state;
1483 unsigned long flags;
1484
1485 cmd = &ioctx->cmd;
1486 state = srpt_get_cmd_state(ioctx);
1487 switch (opcode) {
1488 case SRPT_RDMA_READ_LAST:
1489 if (ioctx->n_rdma <= 0) {
1490 printk(KERN_ERR "Received invalid RDMA read"
1491 " error completion with idx %d\n",
1492 ioctx->ioctx.index);
1493 break;
1494 }
1495 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1496 if (state == SRPT_STATE_NEED_DATA)
1497 srpt_abort_cmd(ioctx);
1498 else
1499 printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1500 __func__, __LINE__, state);
1501 break;
1502 case SRPT_RDMA_WRITE_LAST:
1503 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1504 ioctx->cmd.transport_state |= CMD_T_LUN_STOP;
1505 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1506 break;
1507 default:
1508 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1509 __LINE__, opcode);
1510 break;
1511 }
1512 }
1513
1514 /**
1515 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1516 * @ch: RDMA channel through which the request has been received.
1517 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1518 * be built in the buffer ioctx->buf points at and hence this function will
1519 * overwrite the request data.
1520 * @tag: tag of the request for which this response is being generated.
1521 * @status: value for the STATUS field of the SRP_RSP information unit.
1522 *
1523 * Returns the size in bytes of the SRP_RSP response.
1524 *
1525 * An SRP_RSP response contains a SCSI status or service response. See also
1526 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1527 * response. See also SPC-2 for more information about sense data.
1528 */
1529 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1530 struct srpt_send_ioctx *ioctx, u64 tag,
1531 int status)
1532 {
1533 struct srp_rsp *srp_rsp;
1534 const u8 *sense_data;
1535 int sense_data_len, max_sense_len;
1536
1537 /*
1538 * The lowest bit of all SAM-3 status codes is zero (see also
1539 * paragraph 5.3 in SAM-3).
1540 */
1541 WARN_ON(status & 1);
1542
1543 srp_rsp = ioctx->ioctx.buf;
1544 BUG_ON(!srp_rsp);
1545
1546 sense_data = ioctx->sense_data;
1547 sense_data_len = ioctx->cmd.scsi_sense_length;
1548 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1549
1550 memset(srp_rsp, 0, sizeof *srp_rsp);
1551 srp_rsp->opcode = SRP_RSP;
1552 srp_rsp->req_lim_delta =
1553 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1554 srp_rsp->tag = tag;
1555 srp_rsp->status = status;
1556
1557 if (sense_data_len) {
1558 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1559 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1560 if (sense_data_len > max_sense_len) {
1561 printk(KERN_WARNING "truncated sense data from %d to %d"
1562 " bytes\n", sense_data_len, max_sense_len);
1563 sense_data_len = max_sense_len;
1564 }
1565
1566 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1567 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1568 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1569 }
1570
1571 return sizeof(*srp_rsp) + sense_data_len;
1572 }
1573
1574 /**
1575 * srpt_build_tskmgmt_rsp() - Build a task management response.
1576 * @ch: RDMA channel through which the request has been received.
1577 * @ioctx: I/O context in which the SRP_RSP response will be built.
1578 * @rsp_code: RSP_CODE that will be stored in the response.
1579 * @tag: Tag of the request for which this response is being generated.
1580 *
1581 * Returns the size in bytes of the SRP_RSP response.
1582 *
1583 * An SRP_RSP response contains a SCSI status or service response. See also
1584 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1585 * response.
1586 */
1587 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1588 struct srpt_send_ioctx *ioctx,
1589 u8 rsp_code, u64 tag)
1590 {
1591 struct srp_rsp *srp_rsp;
1592 int resp_data_len;
1593 int resp_len;
1594
1595 resp_data_len = 4;
1596 resp_len = sizeof(*srp_rsp) + resp_data_len;
1597
1598 srp_rsp = ioctx->ioctx.buf;
1599 BUG_ON(!srp_rsp);
1600 memset(srp_rsp, 0, sizeof *srp_rsp);
1601
1602 srp_rsp->opcode = SRP_RSP;
1603 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1604 + atomic_xchg(&ch->req_lim_delta, 0));
1605 srp_rsp->tag = tag;
1606
1607 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1608 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1609 srp_rsp->data[3] = rsp_code;
1610
1611 return resp_len;
1612 }
1613
1614 #define NO_SUCH_LUN ((uint64_t)-1LL)
1615
1616 /*
1617 * SCSI LUN addressing method. See also SAM-2 and the section about
1618 * eight byte LUNs.
1619 */
1620 enum scsi_lun_addr_method {
1621 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1622 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1623 SCSI_LUN_ADDR_METHOD_LUN = 2,
1624 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1625 };
1626
1627 /*
1628 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1629 *
1630 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1631 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1632 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1633 */
1634 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1635 {
1636 uint64_t res = NO_SUCH_LUN;
1637 int addressing_method;
1638
1639 if (unlikely(len < 2)) {
1640 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1641 "more", len);
1642 goto out;
1643 }
1644
1645 switch (len) {
1646 case 8:
1647 if ((*((__be64 *)lun) &
1648 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1649 goto out_err;
1650 break;
1651 case 4:
1652 if (*((__be16 *)&lun[2]) != 0)
1653 goto out_err;
1654 break;
1655 case 6:
1656 if (*((__be32 *)&lun[2]) != 0)
1657 goto out_err;
1658 break;
1659 case 2:
1660 break;
1661 default:
1662 goto out_err;
1663 }
1664
1665 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1666 switch (addressing_method) {
1667 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1668 case SCSI_LUN_ADDR_METHOD_FLAT:
1669 case SCSI_LUN_ADDR_METHOD_LUN:
1670 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1671 break;
1672
1673 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1674 default:
1675 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1676 addressing_method);
1677 break;
1678 }
1679
1680 out:
1681 return res;
1682
1683 out_err:
1684 printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1685 " implemented");
1686 goto out;
1687 }
1688
1689 static int srpt_check_stop_free(struct se_cmd *cmd)
1690 {
1691 struct srpt_send_ioctx *ioctx = container_of(cmd,
1692 struct srpt_send_ioctx, cmd);
1693
1694 return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1695 }
1696
1697 /**
1698 * srpt_handle_cmd() - Process SRP_CMD.
1699 */
1700 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1701 struct srpt_recv_ioctx *recv_ioctx,
1702 struct srpt_send_ioctx *send_ioctx)
1703 {
1704 struct se_cmd *cmd;
1705 struct srp_cmd *srp_cmd;
1706 uint64_t unpacked_lun;
1707 u64 data_len;
1708 enum dma_data_direction dir;
1709 sense_reason_t ret;
1710 int rc;
1711
1712 BUG_ON(!send_ioctx);
1713
1714 srp_cmd = recv_ioctx->ioctx.buf;
1715 cmd = &send_ioctx->cmd;
1716 send_ioctx->tag = srp_cmd->tag;
1717
1718 switch (srp_cmd->task_attr) {
1719 case SRP_CMD_SIMPLE_Q:
1720 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1721 break;
1722 case SRP_CMD_ORDERED_Q:
1723 default:
1724 cmd->sam_task_attr = MSG_ORDERED_TAG;
1725 break;
1726 case SRP_CMD_HEAD_OF_Q:
1727 cmd->sam_task_attr = MSG_HEAD_TAG;
1728 break;
1729 case SRP_CMD_ACA:
1730 cmd->sam_task_attr = MSG_ACA_TAG;
1731 break;
1732 }
1733
1734 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1735 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1736 srp_cmd->tag);
1737 ret = TCM_INVALID_CDB_FIELD;
1738 goto send_sense;
1739 }
1740
1741 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1742 sizeof(srp_cmd->lun));
1743 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1744 &send_ioctx->sense_data[0], unpacked_lun, data_len,
1745 MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1746 if (rc != 0) {
1747 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1748 goto send_sense;
1749 }
1750 return 0;
1751
1752 send_sense:
1753 transport_send_check_condition_and_sense(cmd, ret, 0);
1754 return -1;
1755 }
1756
1757 /**
1758 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1759 * @ch: RDMA channel of the task management request.
1760 * @fn: Task management function to perform.
1761 * @req_tag: Tag of the SRP task management request.
1762 * @mgmt_ioctx: I/O context of the task management request.
1763 *
1764 * Returns zero if the target core will process the task management
1765 * request asynchronously.
1766 *
1767 * Note: It is assumed that the initiator serializes tag-based task management
1768 * requests.
1769 */
1770 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1771 {
1772 struct srpt_device *sdev;
1773 struct srpt_rdma_ch *ch;
1774 struct srpt_send_ioctx *target;
1775 int ret, i;
1776
1777 ret = -EINVAL;
1778 ch = ioctx->ch;
1779 BUG_ON(!ch);
1780 BUG_ON(!ch->sport);
1781 sdev = ch->sport->sdev;
1782 BUG_ON(!sdev);
1783 spin_lock_irq(&sdev->spinlock);
1784 for (i = 0; i < ch->rq_size; ++i) {
1785 target = ch->ioctx_ring[i];
1786 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1787 target->tag == tag &&
1788 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1789 ret = 0;
1790 /* now let the target core abort &target->cmd; */
1791 break;
1792 }
1793 }
1794 spin_unlock_irq(&sdev->spinlock);
1795 return ret;
1796 }
1797
1798 static int srp_tmr_to_tcm(int fn)
1799 {
1800 switch (fn) {
1801 case SRP_TSK_ABORT_TASK:
1802 return TMR_ABORT_TASK;
1803 case SRP_TSK_ABORT_TASK_SET:
1804 return TMR_ABORT_TASK_SET;
1805 case SRP_TSK_CLEAR_TASK_SET:
1806 return TMR_CLEAR_TASK_SET;
1807 case SRP_TSK_LUN_RESET:
1808 return TMR_LUN_RESET;
1809 case SRP_TSK_CLEAR_ACA:
1810 return TMR_CLEAR_ACA;
1811 default:
1812 return -1;
1813 }
1814 }
1815
1816 /**
1817 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1818 *
1819 * Returns 0 if and only if the request will be processed by the target core.
1820 *
1821 * For more information about SRP_TSK_MGMT information units, see also section
1822 * 6.7 in the SRP r16a document.
1823 */
1824 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1825 struct srpt_recv_ioctx *recv_ioctx,
1826 struct srpt_send_ioctx *send_ioctx)
1827 {
1828 struct srp_tsk_mgmt *srp_tsk;
1829 struct se_cmd *cmd;
1830 struct se_session *sess = ch->sess;
1831 uint64_t unpacked_lun;
1832 uint32_t tag = 0;
1833 int tcm_tmr;
1834 int rc;
1835
1836 BUG_ON(!send_ioctx);
1837
1838 srp_tsk = recv_ioctx->ioctx.buf;
1839 cmd = &send_ioctx->cmd;
1840
1841 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1842 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1843 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1844
1845 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1846 send_ioctx->tag = srp_tsk->tag;
1847 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1848 if (tcm_tmr < 0) {
1849 send_ioctx->cmd.se_tmr_req->response =
1850 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1851 goto fail;
1852 }
1853 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1854 sizeof(srp_tsk->lun));
1855
1856 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1857 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1858 if (rc < 0) {
1859 send_ioctx->cmd.se_tmr_req->response =
1860 TMR_TASK_DOES_NOT_EXIST;
1861 goto fail;
1862 }
1863 tag = srp_tsk->task_tag;
1864 }
1865 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1866 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1867 TARGET_SCF_ACK_KREF);
1868 if (rc != 0) {
1869 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1870 goto fail;
1871 }
1872 return;
1873 fail:
1874 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1875 }
1876
1877 /**
1878 * srpt_handle_new_iu() - Process a newly received information unit.
1879 * @ch: RDMA channel through which the information unit has been received.
1880 * @ioctx: SRPT I/O context associated with the information unit.
1881 */
1882 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1883 struct srpt_recv_ioctx *recv_ioctx,
1884 struct srpt_send_ioctx *send_ioctx)
1885 {
1886 struct srp_cmd *srp_cmd;
1887 enum rdma_ch_state ch_state;
1888
1889 BUG_ON(!ch);
1890 BUG_ON(!recv_ioctx);
1891
1892 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1893 recv_ioctx->ioctx.dma, srp_max_req_size,
1894 DMA_FROM_DEVICE);
1895
1896 ch_state = srpt_get_ch_state(ch);
1897 if (unlikely(ch_state == CH_CONNECTING)) {
1898 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1899 goto out;
1900 }
1901
1902 if (unlikely(ch_state != CH_LIVE))
1903 goto out;
1904
1905 srp_cmd = recv_ioctx->ioctx.buf;
1906 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1907 if (!send_ioctx)
1908 send_ioctx = srpt_get_send_ioctx(ch);
1909 if (unlikely(!send_ioctx)) {
1910 list_add_tail(&recv_ioctx->wait_list,
1911 &ch->cmd_wait_list);
1912 goto out;
1913 }
1914 }
1915
1916 switch (srp_cmd->opcode) {
1917 case SRP_CMD:
1918 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1919 break;
1920 case SRP_TSK_MGMT:
1921 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1922 break;
1923 case SRP_I_LOGOUT:
1924 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1925 break;
1926 case SRP_CRED_RSP:
1927 pr_debug("received SRP_CRED_RSP\n");
1928 break;
1929 case SRP_AER_RSP:
1930 pr_debug("received SRP_AER_RSP\n");
1931 break;
1932 case SRP_RSP:
1933 printk(KERN_ERR "Received SRP_RSP\n");
1934 break;
1935 default:
1936 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1937 srp_cmd->opcode);
1938 break;
1939 }
1940
1941 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1942 out:
1943 return;
1944 }
1945
1946 static void srpt_process_rcv_completion(struct ib_cq *cq,
1947 struct srpt_rdma_ch *ch,
1948 struct ib_wc *wc)
1949 {
1950 struct srpt_device *sdev = ch->sport->sdev;
1951 struct srpt_recv_ioctx *ioctx;
1952 u32 index;
1953
1954 index = idx_from_wr_id(wc->wr_id);
1955 if (wc->status == IB_WC_SUCCESS) {
1956 int req_lim;
1957
1958 req_lim = atomic_dec_return(&ch->req_lim);
1959 if (unlikely(req_lim < 0))
1960 printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1961 ioctx = sdev->ioctx_ring[index];
1962 srpt_handle_new_iu(ch, ioctx, NULL);
1963 } else {
1964 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1965 index, wc->status);
1966 }
1967 }
1968
1969 /**
1970 * srpt_process_send_completion() - Process an IB send completion.
1971 *
1972 * Note: Although this has not yet been observed during tests, at least in
1973 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1974 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1975 * value in each response is set to one, and it is possible that this response
1976 * makes the initiator send a new request before the send completion for that
1977 * response has been processed. This could e.g. happen if the call to
1978 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1979 * if IB retransmission causes generation of the send completion to be
1980 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1981 * are queued on cmd_wait_list. The code below processes these delayed
1982 * requests one at a time.
1983 */
1984 static void srpt_process_send_completion(struct ib_cq *cq,
1985 struct srpt_rdma_ch *ch,
1986 struct ib_wc *wc)
1987 {
1988 struct srpt_send_ioctx *send_ioctx;
1989 uint32_t index;
1990 enum srpt_opcode opcode;
1991
1992 index = idx_from_wr_id(wc->wr_id);
1993 opcode = opcode_from_wr_id(wc->wr_id);
1994 send_ioctx = ch->ioctx_ring[index];
1995 if (wc->status == IB_WC_SUCCESS) {
1996 if (opcode == SRPT_SEND)
1997 srpt_handle_send_comp(ch, send_ioctx);
1998 else {
1999 WARN_ON(opcode != SRPT_RDMA_ABORT &&
2000 wc->opcode != IB_WC_RDMA_READ);
2001 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
2002 }
2003 } else {
2004 if (opcode == SRPT_SEND) {
2005 printk(KERN_INFO "sending response for idx %u failed"
2006 " with status %d\n", index, wc->status);
2007 srpt_handle_send_err_comp(ch, wc->wr_id);
2008 } else if (opcode != SRPT_RDMA_MID) {
2009 printk(KERN_INFO "RDMA t %d for idx %u failed with"
2010 " status %d", opcode, index, wc->status);
2011 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2012 }
2013 }
2014
2015 while (unlikely(opcode == SRPT_SEND
2016 && !list_empty(&ch->cmd_wait_list)
2017 && srpt_get_ch_state(ch) == CH_LIVE
2018 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2019 struct srpt_recv_ioctx *recv_ioctx;
2020
2021 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2022 struct srpt_recv_ioctx,
2023 wait_list);
2024 list_del(&recv_ioctx->wait_list);
2025 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2026 }
2027 }
2028
2029 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2030 {
2031 struct ib_wc *const wc = ch->wc;
2032 int i, n;
2033
2034 WARN_ON(cq != ch->cq);
2035
2036 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2037 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2038 for (i = 0; i < n; i++) {
2039 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2040 srpt_process_rcv_completion(cq, ch, &wc[i]);
2041 else
2042 srpt_process_send_completion(cq, ch, &wc[i]);
2043 }
2044 }
2045 }
2046
2047 /**
2048 * srpt_completion() - IB completion queue callback function.
2049 *
2050 * Notes:
2051 * - It is guaranteed that a completion handler will never be invoked
2052 * concurrently on two different CPUs for the same completion queue. See also
2053 * Documentation/infiniband/core_locking.txt and the implementation of
2054 * handle_edge_irq() in kernel/irq/chip.c.
2055 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2056 * context instead of interrupt context.
2057 */
2058 static void srpt_completion(struct ib_cq *cq, void *ctx)
2059 {
2060 struct srpt_rdma_ch *ch = ctx;
2061
2062 wake_up_interruptible(&ch->wait_queue);
2063 }
2064
2065 static int srpt_compl_thread(void *arg)
2066 {
2067 struct srpt_rdma_ch *ch;
2068
2069 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2070 current->flags |= PF_NOFREEZE;
2071
2072 ch = arg;
2073 BUG_ON(!ch);
2074 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2075 ch->sess_name, ch->thread->comm, current->pid);
2076 while (!kthread_should_stop()) {
2077 wait_event_interruptible(ch->wait_queue,
2078 (srpt_process_completion(ch->cq, ch),
2079 kthread_should_stop()));
2080 }
2081 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2082 ch->sess_name, ch->thread->comm, current->pid);
2083 return 0;
2084 }
2085
2086 /**
2087 * srpt_create_ch_ib() - Create receive and send completion queues.
2088 */
2089 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2090 {
2091 struct ib_qp_init_attr *qp_init;
2092 struct srpt_port *sport = ch->sport;
2093 struct srpt_device *sdev = sport->sdev;
2094 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2095 int ret;
2096
2097 WARN_ON(ch->rq_size < 1);
2098
2099 ret = -ENOMEM;
2100 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2101 if (!qp_init)
2102 goto out;
2103
2104 retry:
2105 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2106 ch->rq_size + srp_sq_size, 0);
2107 if (IS_ERR(ch->cq)) {
2108 ret = PTR_ERR(ch->cq);
2109 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2110 ch->rq_size + srp_sq_size, ret);
2111 goto out;
2112 }
2113
2114 qp_init->qp_context = (void *)ch;
2115 qp_init->event_handler
2116 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2117 qp_init->send_cq = ch->cq;
2118 qp_init->recv_cq = ch->cq;
2119 qp_init->srq = sdev->srq;
2120 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2121 qp_init->qp_type = IB_QPT_RC;
2122 qp_init->cap.max_send_wr = srp_sq_size;
2123 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2124
2125 ch->qp = ib_create_qp(sdev->pd, qp_init);
2126 if (IS_ERR(ch->qp)) {
2127 ret = PTR_ERR(ch->qp);
2128 if (ret == -ENOMEM) {
2129 srp_sq_size /= 2;
2130 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2131 ib_destroy_cq(ch->cq);
2132 goto retry;
2133 }
2134 }
2135 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2136 goto err_destroy_cq;
2137 }
2138
2139 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2140
2141 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2142 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2143 qp_init->cap.max_send_wr, ch->cm_id);
2144
2145 ret = srpt_init_ch_qp(ch, ch->qp);
2146 if (ret)
2147 goto err_destroy_qp;
2148
2149 init_waitqueue_head(&ch->wait_queue);
2150
2151 pr_debug("creating thread for session %s\n", ch->sess_name);
2152
2153 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2154 if (IS_ERR(ch->thread)) {
2155 printk(KERN_ERR "failed to create kernel thread %ld\n",
2156 PTR_ERR(ch->thread));
2157 ch->thread = NULL;
2158 goto err_destroy_qp;
2159 }
2160
2161 out:
2162 kfree(qp_init);
2163 return ret;
2164
2165 err_destroy_qp:
2166 ib_destroy_qp(ch->qp);
2167 err_destroy_cq:
2168 ib_destroy_cq(ch->cq);
2169 goto out;
2170 }
2171
2172 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2173 {
2174 if (ch->thread)
2175 kthread_stop(ch->thread);
2176
2177 ib_destroy_qp(ch->qp);
2178 ib_destroy_cq(ch->cq);
2179 }
2180
2181 /**
2182 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2183 *
2184 * Reset the QP and make sure all resources associated with the channel will
2185 * be deallocated at an appropriate time.
2186 *
2187 * Note: The caller must hold ch->sport->sdev->spinlock.
2188 */
2189 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2190 {
2191 struct srpt_device *sdev;
2192 enum rdma_ch_state prev_state;
2193 unsigned long flags;
2194
2195 sdev = ch->sport->sdev;
2196
2197 spin_lock_irqsave(&ch->spinlock, flags);
2198 prev_state = ch->state;
2199 switch (prev_state) {
2200 case CH_CONNECTING:
2201 case CH_LIVE:
2202 ch->state = CH_DISCONNECTING;
2203 break;
2204 default:
2205 break;
2206 }
2207 spin_unlock_irqrestore(&ch->spinlock, flags);
2208
2209 switch (prev_state) {
2210 case CH_CONNECTING:
2211 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2212 NULL, 0);
2213 /* fall through */
2214 case CH_LIVE:
2215 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2216 printk(KERN_ERR "sending CM DREQ failed.\n");
2217 break;
2218 case CH_DISCONNECTING:
2219 break;
2220 case CH_DRAINING:
2221 case CH_RELEASING:
2222 break;
2223 }
2224 }
2225
2226 /**
2227 * srpt_close_ch() - Close an RDMA channel.
2228 */
2229 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2230 {
2231 struct srpt_device *sdev;
2232
2233 sdev = ch->sport->sdev;
2234 spin_lock_irq(&sdev->spinlock);
2235 __srpt_close_ch(ch);
2236 spin_unlock_irq(&sdev->spinlock);
2237 }
2238
2239 /**
2240 * srpt_shutdown_session() - Whether or not a session may be shut down.
2241 */
2242 static int srpt_shutdown_session(struct se_session *se_sess)
2243 {
2244 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2245 unsigned long flags;
2246
2247 spin_lock_irqsave(&ch->spinlock, flags);
2248 if (ch->in_shutdown) {
2249 spin_unlock_irqrestore(&ch->spinlock, flags);
2250 return true;
2251 }
2252
2253 ch->in_shutdown = true;
2254 target_sess_cmd_list_set_waiting(se_sess);
2255 spin_unlock_irqrestore(&ch->spinlock, flags);
2256
2257 return true;
2258 }
2259
2260 /**
2261 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2262 * @cm_id: Pointer to the CM ID of the channel to be drained.
2263 *
2264 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2265 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2266 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2267 * waits until all target sessions for the associated IB device have been
2268 * unregistered and target session registration involves a call to
2269 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2270 * this function has finished).
2271 */
2272 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2273 {
2274 struct srpt_device *sdev;
2275 struct srpt_rdma_ch *ch;
2276 int ret;
2277 bool do_reset = false;
2278
2279 WARN_ON_ONCE(irqs_disabled());
2280
2281 sdev = cm_id->context;
2282 BUG_ON(!sdev);
2283 spin_lock_irq(&sdev->spinlock);
2284 list_for_each_entry(ch, &sdev->rch_list, list) {
2285 if (ch->cm_id == cm_id) {
2286 do_reset = srpt_test_and_set_ch_state(ch,
2287 CH_CONNECTING, CH_DRAINING) ||
2288 srpt_test_and_set_ch_state(ch,
2289 CH_LIVE, CH_DRAINING) ||
2290 srpt_test_and_set_ch_state(ch,
2291 CH_DISCONNECTING, CH_DRAINING);
2292 break;
2293 }
2294 }
2295 spin_unlock_irq(&sdev->spinlock);
2296
2297 if (do_reset) {
2298 if (ch->sess)
2299 srpt_shutdown_session(ch->sess);
2300
2301 ret = srpt_ch_qp_err(ch);
2302 if (ret < 0)
2303 printk(KERN_ERR "Setting queue pair in error state"
2304 " failed: %d\n", ret);
2305 }
2306 }
2307
2308 /**
2309 * srpt_find_channel() - Look up an RDMA channel.
2310 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2311 *
2312 * Return NULL if no matching RDMA channel has been found.
2313 */
2314 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2315 struct ib_cm_id *cm_id)
2316 {
2317 struct srpt_rdma_ch *ch;
2318 bool found;
2319
2320 WARN_ON_ONCE(irqs_disabled());
2321 BUG_ON(!sdev);
2322
2323 found = false;
2324 spin_lock_irq(&sdev->spinlock);
2325 list_for_each_entry(ch, &sdev->rch_list, list) {
2326 if (ch->cm_id == cm_id) {
2327 found = true;
2328 break;
2329 }
2330 }
2331 spin_unlock_irq(&sdev->spinlock);
2332
2333 return found ? ch : NULL;
2334 }
2335
2336 /**
2337 * srpt_release_channel() - Release channel resources.
2338 *
2339 * Schedules the actual release because:
2340 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2341 * trigger a deadlock.
2342 * - It is not safe to call TCM transport_* functions from interrupt context.
2343 */
2344 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2345 {
2346 schedule_work(&ch->release_work);
2347 }
2348
2349 static void srpt_release_channel_work(struct work_struct *w)
2350 {
2351 struct srpt_rdma_ch *ch;
2352 struct srpt_device *sdev;
2353 struct se_session *se_sess;
2354
2355 ch = container_of(w, struct srpt_rdma_ch, release_work);
2356 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2357 ch->release_done);
2358
2359 sdev = ch->sport->sdev;
2360 BUG_ON(!sdev);
2361
2362 se_sess = ch->sess;
2363 BUG_ON(!se_sess);
2364
2365 target_wait_for_sess_cmds(se_sess);
2366
2367 transport_deregister_session_configfs(se_sess);
2368 transport_deregister_session(se_sess);
2369 ch->sess = NULL;
2370
2371 ib_destroy_cm_id(ch->cm_id);
2372
2373 srpt_destroy_ch_ib(ch);
2374
2375 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2376 ch->sport->sdev, ch->rq_size,
2377 ch->rsp_size, DMA_TO_DEVICE);
2378
2379 spin_lock_irq(&sdev->spinlock);
2380 list_del(&ch->list);
2381 spin_unlock_irq(&sdev->spinlock);
2382
2383 if (ch->release_done)
2384 complete(ch->release_done);
2385
2386 wake_up(&sdev->ch_releaseQ);
2387
2388 kfree(ch);
2389 }
2390
2391 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2392 u8 i_port_id[16])
2393 {
2394 struct srpt_node_acl *nacl;
2395
2396 list_for_each_entry(nacl, &sport->port_acl_list, list)
2397 if (memcmp(nacl->i_port_id, i_port_id,
2398 sizeof(nacl->i_port_id)) == 0)
2399 return nacl;
2400
2401 return NULL;
2402 }
2403
2404 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2405 u8 i_port_id[16])
2406 {
2407 struct srpt_node_acl *nacl;
2408
2409 spin_lock_irq(&sport->port_acl_lock);
2410 nacl = __srpt_lookup_acl(sport, i_port_id);
2411 spin_unlock_irq(&sport->port_acl_lock);
2412
2413 return nacl;
2414 }
2415
2416 /**
2417 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2418 *
2419 * Ownership of the cm_id is transferred to the target session if this
2420 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2421 */
2422 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2423 struct ib_cm_req_event_param *param,
2424 void *private_data)
2425 {
2426 struct srpt_device *sdev = cm_id->context;
2427 struct srpt_port *sport = &sdev->port[param->port - 1];
2428 struct srp_login_req *req;
2429 struct srp_login_rsp *rsp;
2430 struct srp_login_rej *rej;
2431 struct ib_cm_rep_param *rep_param;
2432 struct srpt_rdma_ch *ch, *tmp_ch;
2433 struct srpt_node_acl *nacl;
2434 u32 it_iu_len;
2435 int i;
2436 int ret = 0;
2437
2438 WARN_ON_ONCE(irqs_disabled());
2439
2440 if (WARN_ON(!sdev || !private_data))
2441 return -EINVAL;
2442
2443 req = (struct srp_login_req *)private_data;
2444
2445 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2446
2447 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2448 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2449 " (guid=0x%llx:0x%llx)\n",
2450 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2451 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2452 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2453 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2454 it_iu_len,
2455 param->port,
2456 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2457 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2458
2459 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2460 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2461 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2462
2463 if (!rsp || !rej || !rep_param) {
2464 ret = -ENOMEM;
2465 goto out;
2466 }
2467
2468 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2469 rej->reason = __constant_cpu_to_be32(
2470 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2471 ret = -EINVAL;
2472 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2473 " length (%d bytes) is out of range (%d .. %d)\n",
2474 it_iu_len, 64, srp_max_req_size);
2475 goto reject;
2476 }
2477
2478 if (!sport->enabled) {
2479 rej->reason = __constant_cpu_to_be32(
2480 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2481 ret = -EINVAL;
2482 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2483 " has not yet been enabled\n");
2484 goto reject;
2485 }
2486
2487 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2488 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2489
2490 spin_lock_irq(&sdev->spinlock);
2491
2492 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2493 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2494 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2495 && param->port == ch->sport->port
2496 && param->listen_id == ch->sport->sdev->cm_id
2497 && ch->cm_id) {
2498 enum rdma_ch_state ch_state;
2499
2500 ch_state = srpt_get_ch_state(ch);
2501 if (ch_state != CH_CONNECTING
2502 && ch_state != CH_LIVE)
2503 continue;
2504
2505 /* found an existing channel */
2506 pr_debug("Found existing channel %s"
2507 " cm_id= %p state= %d\n",
2508 ch->sess_name, ch->cm_id, ch_state);
2509
2510 __srpt_close_ch(ch);
2511
2512 rsp->rsp_flags =
2513 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2514 }
2515 }
2516
2517 spin_unlock_irq(&sdev->spinlock);
2518
2519 } else
2520 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2521
2522 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2523 || *(__be64 *)(req->target_port_id + 8) !=
2524 cpu_to_be64(srpt_service_guid)) {
2525 rej->reason = __constant_cpu_to_be32(
2526 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2527 ret = -ENOMEM;
2528 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2529 " has an invalid target port identifier.\n");
2530 goto reject;
2531 }
2532
2533 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2534 if (!ch) {
2535 rej->reason = __constant_cpu_to_be32(
2536 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2537 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2538 ret = -ENOMEM;
2539 goto reject;
2540 }
2541
2542 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2543 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2544 memcpy(ch->t_port_id, req->target_port_id, 16);
2545 ch->sport = &sdev->port[param->port - 1];
2546 ch->cm_id = cm_id;
2547 /*
2548 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2549 * for the SRP protocol to the command queue size.
2550 */
2551 ch->rq_size = SRPT_RQ_SIZE;
2552 spin_lock_init(&ch->spinlock);
2553 ch->state = CH_CONNECTING;
2554 INIT_LIST_HEAD(&ch->cmd_wait_list);
2555 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2556
2557 ch->ioctx_ring = (struct srpt_send_ioctx **)
2558 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2559 sizeof(*ch->ioctx_ring[0]),
2560 ch->rsp_size, DMA_TO_DEVICE);
2561 if (!ch->ioctx_ring)
2562 goto free_ch;
2563
2564 INIT_LIST_HEAD(&ch->free_list);
2565 for (i = 0; i < ch->rq_size; i++) {
2566 ch->ioctx_ring[i]->ch = ch;
2567 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2568 }
2569
2570 ret = srpt_create_ch_ib(ch);
2571 if (ret) {
2572 rej->reason = __constant_cpu_to_be32(
2573 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2574 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2575 " a new RDMA channel failed.\n");
2576 goto free_ring;
2577 }
2578
2579 ret = srpt_ch_qp_rtr(ch, ch->qp);
2580 if (ret) {
2581 rej->reason = __constant_cpu_to_be32(
2582 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2583 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2584 " RTR failed (error code = %d)\n", ret);
2585 goto destroy_ib;
2586 }
2587 /*
2588 * Use the initator port identifier as the session name.
2589 */
2590 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2591 be64_to_cpu(*(__be64 *)ch->i_port_id),
2592 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2593
2594 pr_debug("registering session %s\n", ch->sess_name);
2595
2596 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2597 if (!nacl) {
2598 printk(KERN_INFO "Rejected login because no ACL has been"
2599 " configured yet for initiator %s.\n", ch->sess_name);
2600 rej->reason = __constant_cpu_to_be32(
2601 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2602 goto destroy_ib;
2603 }
2604
2605 ch->sess = transport_init_session();
2606 if (IS_ERR(ch->sess)) {
2607 rej->reason = __constant_cpu_to_be32(
2608 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2609 pr_debug("Failed to create session\n");
2610 goto deregister_session;
2611 }
2612 ch->sess->se_node_acl = &nacl->nacl;
2613 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2614
2615 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2616 ch->sess_name, ch->cm_id);
2617
2618 /* create srp_login_response */
2619 rsp->opcode = SRP_LOGIN_RSP;
2620 rsp->tag = req->tag;
2621 rsp->max_it_iu_len = req->req_it_iu_len;
2622 rsp->max_ti_iu_len = req->req_it_iu_len;
2623 ch->max_ti_iu_len = it_iu_len;
2624 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2625 | SRP_BUF_FORMAT_INDIRECT);
2626 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2627 atomic_set(&ch->req_lim, ch->rq_size);
2628 atomic_set(&ch->req_lim_delta, 0);
2629
2630 /* create cm reply */
2631 rep_param->qp_num = ch->qp->qp_num;
2632 rep_param->private_data = (void *)rsp;
2633 rep_param->private_data_len = sizeof *rsp;
2634 rep_param->rnr_retry_count = 7;
2635 rep_param->flow_control = 1;
2636 rep_param->failover_accepted = 0;
2637 rep_param->srq = 1;
2638 rep_param->responder_resources = 4;
2639 rep_param->initiator_depth = 4;
2640
2641 ret = ib_send_cm_rep(cm_id, rep_param);
2642 if (ret) {
2643 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2644 " (error code = %d)\n", ret);
2645 goto release_channel;
2646 }
2647
2648 spin_lock_irq(&sdev->spinlock);
2649 list_add_tail(&ch->list, &sdev->rch_list);
2650 spin_unlock_irq(&sdev->spinlock);
2651
2652 goto out;
2653
2654 release_channel:
2655 srpt_set_ch_state(ch, CH_RELEASING);
2656 transport_deregister_session_configfs(ch->sess);
2657
2658 deregister_session:
2659 transport_deregister_session(ch->sess);
2660 ch->sess = NULL;
2661
2662 destroy_ib:
2663 srpt_destroy_ch_ib(ch);
2664
2665 free_ring:
2666 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2667 ch->sport->sdev, ch->rq_size,
2668 ch->rsp_size, DMA_TO_DEVICE);
2669 free_ch:
2670 kfree(ch);
2671
2672 reject:
2673 rej->opcode = SRP_LOGIN_REJ;
2674 rej->tag = req->tag;
2675 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2676 | SRP_BUF_FORMAT_INDIRECT);
2677
2678 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2679 (void *)rej, sizeof *rej);
2680
2681 out:
2682 kfree(rep_param);
2683 kfree(rsp);
2684 kfree(rej);
2685
2686 return ret;
2687 }
2688
2689 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2690 {
2691 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2692 srpt_drain_channel(cm_id);
2693 }
2694
2695 /**
2696 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2697 *
2698 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2699 * and that the recipient may begin transmitting (RTU = ready to use).
2700 */
2701 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2702 {
2703 struct srpt_rdma_ch *ch;
2704 int ret;
2705
2706 ch = srpt_find_channel(cm_id->context, cm_id);
2707 BUG_ON(!ch);
2708
2709 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2710 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2711
2712 ret = srpt_ch_qp_rts(ch, ch->qp);
2713
2714 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2715 wait_list) {
2716 list_del(&ioctx->wait_list);
2717 srpt_handle_new_iu(ch, ioctx, NULL);
2718 }
2719 if (ret)
2720 srpt_close_ch(ch);
2721 }
2722 }
2723
2724 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2725 {
2726 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2727 srpt_drain_channel(cm_id);
2728 }
2729
2730 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2731 {
2732 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2733 srpt_drain_channel(cm_id);
2734 }
2735
2736 /**
2737 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2738 */
2739 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2740 {
2741 struct srpt_rdma_ch *ch;
2742 unsigned long flags;
2743 bool send_drep = false;
2744
2745 ch = srpt_find_channel(cm_id->context, cm_id);
2746 BUG_ON(!ch);
2747
2748 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2749
2750 spin_lock_irqsave(&ch->spinlock, flags);
2751 switch (ch->state) {
2752 case CH_CONNECTING:
2753 case CH_LIVE:
2754 send_drep = true;
2755 ch->state = CH_DISCONNECTING;
2756 break;
2757 case CH_DISCONNECTING:
2758 case CH_DRAINING:
2759 case CH_RELEASING:
2760 WARN(true, "unexpected channel state %d\n", ch->state);
2761 break;
2762 }
2763 spin_unlock_irqrestore(&ch->spinlock, flags);
2764
2765 if (send_drep) {
2766 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2767 printk(KERN_ERR "Sending IB DREP failed.\n");
2768 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2769 ch->sess_name);
2770 }
2771 }
2772
2773 /**
2774 * srpt_cm_drep_recv() - Process reception of a DREP message.
2775 */
2776 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2777 {
2778 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2779 cm_id);
2780 srpt_drain_channel(cm_id);
2781 }
2782
2783 /**
2784 * srpt_cm_handler() - IB connection manager callback function.
2785 *
2786 * A non-zero return value will cause the caller destroy the CM ID.
2787 *
2788 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2789 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2790 * a non-zero value in any other case will trigger a race with the
2791 * ib_destroy_cm_id() call in srpt_release_channel().
2792 */
2793 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2794 {
2795 int ret;
2796
2797 ret = 0;
2798 switch (event->event) {
2799 case IB_CM_REQ_RECEIVED:
2800 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2801 event->private_data);
2802 break;
2803 case IB_CM_REJ_RECEIVED:
2804 srpt_cm_rej_recv(cm_id);
2805 break;
2806 case IB_CM_RTU_RECEIVED:
2807 case IB_CM_USER_ESTABLISHED:
2808 srpt_cm_rtu_recv(cm_id);
2809 break;
2810 case IB_CM_DREQ_RECEIVED:
2811 srpt_cm_dreq_recv(cm_id);
2812 break;
2813 case IB_CM_DREP_RECEIVED:
2814 srpt_cm_drep_recv(cm_id);
2815 break;
2816 case IB_CM_TIMEWAIT_EXIT:
2817 srpt_cm_timewait_exit(cm_id);
2818 break;
2819 case IB_CM_REP_ERROR:
2820 srpt_cm_rep_error(cm_id);
2821 break;
2822 case IB_CM_DREQ_ERROR:
2823 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2824 break;
2825 case IB_CM_MRA_RECEIVED:
2826 printk(KERN_INFO "Received IB MRA event\n");
2827 break;
2828 default:
2829 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2830 event->event);
2831 break;
2832 }
2833
2834 return ret;
2835 }
2836
2837 /**
2838 * srpt_perform_rdmas() - Perform IB RDMA.
2839 *
2840 * Returns zero upon success or a negative number upon failure.
2841 */
2842 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2843 struct srpt_send_ioctx *ioctx)
2844 {
2845 struct ib_send_wr wr;
2846 struct ib_send_wr *bad_wr;
2847 struct rdma_iu *riu;
2848 int i;
2849 int ret;
2850 int sq_wr_avail;
2851 enum dma_data_direction dir;
2852 const int n_rdma = ioctx->n_rdma;
2853
2854 dir = ioctx->cmd.data_direction;
2855 if (dir == DMA_TO_DEVICE) {
2856 /* write */
2857 ret = -ENOMEM;
2858 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2859 if (sq_wr_avail < 0) {
2860 printk(KERN_WARNING "IB send queue full (needed %d)\n",
2861 n_rdma);
2862 goto out;
2863 }
2864 }
2865
2866 ioctx->rdma_aborted = false;
2867 ret = 0;
2868 riu = ioctx->rdma_ius;
2869 memset(&wr, 0, sizeof wr);
2870
2871 for (i = 0; i < n_rdma; ++i, ++riu) {
2872 if (dir == DMA_FROM_DEVICE) {
2873 wr.opcode = IB_WR_RDMA_WRITE;
2874 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2875 SRPT_RDMA_WRITE_LAST :
2876 SRPT_RDMA_MID,
2877 ioctx->ioctx.index);
2878 } else {
2879 wr.opcode = IB_WR_RDMA_READ;
2880 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2881 SRPT_RDMA_READ_LAST :
2882 SRPT_RDMA_MID,
2883 ioctx->ioctx.index);
2884 }
2885 wr.next = NULL;
2886 wr.wr.rdma.remote_addr = riu->raddr;
2887 wr.wr.rdma.rkey = riu->rkey;
2888 wr.num_sge = riu->sge_cnt;
2889 wr.sg_list = riu->sge;
2890
2891 /* only get completion event for the last rdma write */
2892 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2893 wr.send_flags = IB_SEND_SIGNALED;
2894
2895 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2896 if (ret)
2897 break;
2898 }
2899
2900 if (ret)
2901 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2902 __func__, __LINE__, ret, i, n_rdma);
2903 if (ret && i > 0) {
2904 wr.num_sge = 0;
2905 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2906 wr.send_flags = IB_SEND_SIGNALED;
2907 while (ch->state == CH_LIVE &&
2908 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2909 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2910 ioctx->ioctx.index);
2911 msleep(1000);
2912 }
2913 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2914 printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2915 ioctx->ioctx.index);
2916 msleep(1000);
2917 }
2918 }
2919 out:
2920 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2921 atomic_add(n_rdma, &ch->sq_wr_avail);
2922 return ret;
2923 }
2924
2925 /**
2926 * srpt_xfer_data() - Start data transfer from initiator to target.
2927 */
2928 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2929 struct srpt_send_ioctx *ioctx)
2930 {
2931 int ret;
2932
2933 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2934 if (ret) {
2935 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2936 goto out;
2937 }
2938
2939 ret = srpt_perform_rdmas(ch, ioctx);
2940 if (ret) {
2941 if (ret == -EAGAIN || ret == -ENOMEM)
2942 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2943 __func__, __LINE__, ret);
2944 else
2945 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2946 __func__, __LINE__, ret);
2947 goto out_unmap;
2948 }
2949
2950 out:
2951 return ret;
2952 out_unmap:
2953 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2954 goto out;
2955 }
2956
2957 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2958 {
2959 struct srpt_send_ioctx *ioctx;
2960
2961 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2962 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2963 }
2964
2965 /*
2966 * srpt_write_pending() - Start data transfer from initiator to target (write).
2967 */
2968 static int srpt_write_pending(struct se_cmd *se_cmd)
2969 {
2970 struct srpt_rdma_ch *ch;
2971 struct srpt_send_ioctx *ioctx;
2972 enum srpt_command_state new_state;
2973 enum rdma_ch_state ch_state;
2974 int ret;
2975
2976 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2977
2978 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2979 WARN_ON(new_state == SRPT_STATE_DONE);
2980
2981 ch = ioctx->ch;
2982 BUG_ON(!ch);
2983
2984 ch_state = srpt_get_ch_state(ch);
2985 switch (ch_state) {
2986 case CH_CONNECTING:
2987 WARN(true, "unexpected channel state %d\n", ch_state);
2988 ret = -EINVAL;
2989 goto out;
2990 case CH_LIVE:
2991 break;
2992 case CH_DISCONNECTING:
2993 case CH_DRAINING:
2994 case CH_RELEASING:
2995 pr_debug("cmd with tag %lld: channel disconnecting\n",
2996 ioctx->tag);
2997 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2998 ret = -EINVAL;
2999 goto out;
3000 }
3001 ret = srpt_xfer_data(ch, ioctx);
3002
3003 out:
3004 return ret;
3005 }
3006
3007 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
3008 {
3009 switch (tcm_mgmt_status) {
3010 case TMR_FUNCTION_COMPLETE:
3011 return SRP_TSK_MGMT_SUCCESS;
3012 case TMR_FUNCTION_REJECTED:
3013 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3014 }
3015 return SRP_TSK_MGMT_FAILED;
3016 }
3017
3018 /**
3019 * srpt_queue_response() - Transmits the response to a SCSI command.
3020 *
3021 * Callback function called by the TCM core. Must not block since it can be
3022 * invoked on the context of the IB completion handler.
3023 */
3024 static int srpt_queue_response(struct se_cmd *cmd)
3025 {
3026 struct srpt_rdma_ch *ch;
3027 struct srpt_send_ioctx *ioctx;
3028 enum srpt_command_state state;
3029 unsigned long flags;
3030 int ret;
3031 enum dma_data_direction dir;
3032 int resp_len;
3033 u8 srp_tm_status;
3034
3035 ret = 0;
3036
3037 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3038 ch = ioctx->ch;
3039 BUG_ON(!ch);
3040
3041 spin_lock_irqsave(&ioctx->spinlock, flags);
3042 state = ioctx->state;
3043 switch (state) {
3044 case SRPT_STATE_NEW:
3045 case SRPT_STATE_DATA_IN:
3046 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3047 break;
3048 case SRPT_STATE_MGMT:
3049 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3050 break;
3051 default:
3052 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3053 ch, ioctx->ioctx.index, ioctx->state);
3054 break;
3055 }
3056 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3057
3058 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3059 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3060 atomic_inc(&ch->req_lim_delta);
3061 srpt_abort_cmd(ioctx);
3062 goto out;
3063 }
3064
3065 dir = ioctx->cmd.data_direction;
3066
3067 /* For read commands, transfer the data to the initiator. */
3068 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3069 !ioctx->queue_status_only) {
3070 ret = srpt_xfer_data(ch, ioctx);
3071 if (ret) {
3072 printk(KERN_ERR "xfer_data failed for tag %llu\n",
3073 ioctx->tag);
3074 goto out;
3075 }
3076 }
3077
3078 if (state != SRPT_STATE_MGMT)
3079 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3080 cmd->scsi_status);
3081 else {
3082 srp_tm_status
3083 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3084 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3085 ioctx->tag);
3086 }
3087 ret = srpt_post_send(ch, ioctx, resp_len);
3088 if (ret) {
3089 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3090 ioctx->tag);
3091 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3092 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3093 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
3094 }
3095
3096 out:
3097 return ret;
3098 }
3099
3100 static int srpt_queue_status(struct se_cmd *cmd)
3101 {
3102 struct srpt_send_ioctx *ioctx;
3103
3104 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3105 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3106 if (cmd->se_cmd_flags &
3107 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3108 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3109 ioctx->queue_status_only = true;
3110 return srpt_queue_response(cmd);
3111 }
3112
3113 static void srpt_refresh_port_work(struct work_struct *work)
3114 {
3115 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3116
3117 srpt_refresh_port(sport);
3118 }
3119
3120 static int srpt_ch_list_empty(struct srpt_device *sdev)
3121 {
3122 int res;
3123
3124 spin_lock_irq(&sdev->spinlock);
3125 res = list_empty(&sdev->rch_list);
3126 spin_unlock_irq(&sdev->spinlock);
3127
3128 return res;
3129 }
3130
3131 /**
3132 * srpt_release_sdev() - Free the channel resources associated with a target.
3133 */
3134 static int srpt_release_sdev(struct srpt_device *sdev)
3135 {
3136 struct srpt_rdma_ch *ch, *tmp_ch;
3137 int res;
3138
3139 WARN_ON_ONCE(irqs_disabled());
3140
3141 BUG_ON(!sdev);
3142
3143 spin_lock_irq(&sdev->spinlock);
3144 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3145 __srpt_close_ch(ch);
3146 spin_unlock_irq(&sdev->spinlock);
3147
3148 res = wait_event_interruptible(sdev->ch_releaseQ,
3149 srpt_ch_list_empty(sdev));
3150 if (res)
3151 printk(KERN_ERR "%s: interrupted.\n", __func__);
3152
3153 return 0;
3154 }
3155
3156 static struct srpt_port *__srpt_lookup_port(const char *name)
3157 {
3158 struct ib_device *dev;
3159 struct srpt_device *sdev;
3160 struct srpt_port *sport;
3161 int i;
3162
3163 list_for_each_entry(sdev, &srpt_dev_list, list) {
3164 dev = sdev->device;
3165 if (!dev)
3166 continue;
3167
3168 for (i = 0; i < dev->phys_port_cnt; i++) {
3169 sport = &sdev->port[i];
3170
3171 if (!strcmp(sport->port_guid, name))
3172 return sport;
3173 }
3174 }
3175
3176 return NULL;
3177 }
3178
3179 static struct srpt_port *srpt_lookup_port(const char *name)
3180 {
3181 struct srpt_port *sport;
3182
3183 spin_lock(&srpt_dev_lock);
3184 sport = __srpt_lookup_port(name);
3185 spin_unlock(&srpt_dev_lock);
3186
3187 return sport;
3188 }
3189
3190 /**
3191 * srpt_add_one() - Infiniband device addition callback function.
3192 */
3193 static void srpt_add_one(struct ib_device *device)
3194 {
3195 struct srpt_device *sdev;
3196 struct srpt_port *sport;
3197 struct ib_srq_init_attr srq_attr;
3198 int i;
3199
3200 pr_debug("device = %p, device->dma_ops = %p\n", device,
3201 device->dma_ops);
3202
3203 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3204 if (!sdev)
3205 goto err;
3206
3207 sdev->device = device;
3208 INIT_LIST_HEAD(&sdev->rch_list);
3209 init_waitqueue_head(&sdev->ch_releaseQ);
3210 spin_lock_init(&sdev->spinlock);
3211
3212 if (ib_query_device(device, &sdev->dev_attr))
3213 goto free_dev;
3214
3215 sdev->pd = ib_alloc_pd(device);
3216 if (IS_ERR(sdev->pd))
3217 goto free_dev;
3218
3219 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3220 if (IS_ERR(sdev->mr))
3221 goto err_pd;
3222
3223 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3224
3225 srq_attr.event_handler = srpt_srq_event;
3226 srq_attr.srq_context = (void *)sdev;
3227 srq_attr.attr.max_wr = sdev->srq_size;
3228 srq_attr.attr.max_sge = 1;
3229 srq_attr.attr.srq_limit = 0;
3230 srq_attr.srq_type = IB_SRQT_BASIC;
3231
3232 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3233 if (IS_ERR(sdev->srq))
3234 goto err_mr;
3235
3236 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3237 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3238 device->name);
3239
3240 if (!srpt_service_guid)
3241 srpt_service_guid = be64_to_cpu(device->node_guid);
3242
3243 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3244 if (IS_ERR(sdev->cm_id))
3245 goto err_srq;
3246
3247 /* print out target login information */
3248 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3249 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3250 srpt_service_guid, srpt_service_guid);
3251
3252 /*
3253 * We do not have a consistent service_id (ie. also id_ext of target_id)
3254 * to identify this target. We currently use the guid of the first HCA
3255 * in the system as service_id; therefore, the target_id will change
3256 * if this HCA is gone bad and replaced by different HCA
3257 */
3258 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3259 goto err_cm;
3260
3261 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3262 srpt_event_handler);
3263 if (ib_register_event_handler(&sdev->event_handler))
3264 goto err_cm;
3265
3266 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3267 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3268 sizeof(*sdev->ioctx_ring[0]),
3269 srp_max_req_size, DMA_FROM_DEVICE);
3270 if (!sdev->ioctx_ring)
3271 goto err_event;
3272
3273 for (i = 0; i < sdev->srq_size; ++i)
3274 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3275
3276 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3277
3278 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3279 sport = &sdev->port[i - 1];
3280 sport->sdev = sdev;
3281 sport->port = i;
3282 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3283 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3284 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3285 INIT_WORK(&sport->work, srpt_refresh_port_work);
3286 INIT_LIST_HEAD(&sport->port_acl_list);
3287 spin_lock_init(&sport->port_acl_lock);
3288
3289 if (srpt_refresh_port(sport)) {
3290 printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3291 srpt_sdev_name(sdev), i);
3292 goto err_ring;
3293 }
3294 snprintf(sport->port_guid, sizeof(sport->port_guid),
3295 "0x%016llx%016llx",
3296 be64_to_cpu(sport->gid.global.subnet_prefix),
3297 be64_to_cpu(sport->gid.global.interface_id));
3298 }
3299
3300 spin_lock(&srpt_dev_lock);
3301 list_add_tail(&sdev->list, &srpt_dev_list);
3302 spin_unlock(&srpt_dev_lock);
3303
3304 out:
3305 ib_set_client_data(device, &srpt_client, sdev);
3306 pr_debug("added %s.\n", device->name);
3307 return;
3308
3309 err_ring:
3310 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3311 sdev->srq_size, srp_max_req_size,
3312 DMA_FROM_DEVICE);
3313 err_event:
3314 ib_unregister_event_handler(&sdev->event_handler);
3315 err_cm:
3316 ib_destroy_cm_id(sdev->cm_id);
3317 err_srq:
3318 ib_destroy_srq(sdev->srq);
3319 err_mr:
3320 ib_dereg_mr(sdev->mr);
3321 err_pd:
3322 ib_dealloc_pd(sdev->pd);
3323 free_dev:
3324 kfree(sdev);
3325 err:
3326 sdev = NULL;
3327 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3328 goto out;
3329 }
3330
3331 /**
3332 * srpt_remove_one() - InfiniBand device removal callback function.
3333 */
3334 static void srpt_remove_one(struct ib_device *device)
3335 {
3336 struct srpt_device *sdev;
3337 int i;
3338
3339 sdev = ib_get_client_data(device, &srpt_client);
3340 if (!sdev) {
3341 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3342 device->name);
3343 return;
3344 }
3345
3346 srpt_unregister_mad_agent(sdev);
3347
3348 ib_unregister_event_handler(&sdev->event_handler);
3349
3350 /* Cancel any work queued by the just unregistered IB event handler. */
3351 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3352 cancel_work_sync(&sdev->port[i].work);
3353
3354 ib_destroy_cm_id(sdev->cm_id);
3355
3356 /*
3357 * Unregistering a target must happen after destroying sdev->cm_id
3358 * such that no new SRP_LOGIN_REQ information units can arrive while
3359 * destroying the target.
3360 */
3361 spin_lock(&srpt_dev_lock);
3362 list_del(&sdev->list);
3363 spin_unlock(&srpt_dev_lock);
3364 srpt_release_sdev(sdev);
3365
3366 ib_destroy_srq(sdev->srq);
3367 ib_dereg_mr(sdev->mr);
3368 ib_dealloc_pd(sdev->pd);
3369
3370 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3371 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3372 sdev->ioctx_ring = NULL;
3373 kfree(sdev);
3374 }
3375
3376 static struct ib_client srpt_client = {
3377 .name = DRV_NAME,
3378 .add = srpt_add_one,
3379 .remove = srpt_remove_one
3380 };
3381
3382 static int srpt_check_true(struct se_portal_group *se_tpg)
3383 {
3384 return 1;
3385 }
3386
3387 static int srpt_check_false(struct se_portal_group *se_tpg)
3388 {
3389 return 0;
3390 }
3391
3392 static char *srpt_get_fabric_name(void)
3393 {
3394 return "srpt";
3395 }
3396
3397 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3398 {
3399 return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3400 }
3401
3402 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3403 {
3404 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3405
3406 return sport->port_guid;
3407 }
3408
3409 static u16 srpt_get_tag(struct se_portal_group *tpg)
3410 {
3411 return 1;
3412 }
3413
3414 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3415 {
3416 return 1;
3417 }
3418
3419 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3420 struct se_node_acl *se_nacl,
3421 struct t10_pr_registration *pr_reg,
3422 int *format_code, unsigned char *buf)
3423 {
3424 struct srpt_node_acl *nacl;
3425 struct spc_rdma_transport_id *tr_id;
3426
3427 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3428 tr_id = (void *)buf;
3429 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3430 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3431 return sizeof(*tr_id);
3432 }
3433
3434 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3435 struct se_node_acl *se_nacl,
3436 struct t10_pr_registration *pr_reg,
3437 int *format_code)
3438 {
3439 *format_code = 0;
3440 return sizeof(struct spc_rdma_transport_id);
3441 }
3442
3443 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3444 const char *buf, u32 *out_tid_len,
3445 char **port_nexus_ptr)
3446 {
3447 struct spc_rdma_transport_id *tr_id;
3448
3449 *port_nexus_ptr = NULL;
3450 *out_tid_len = sizeof(struct spc_rdma_transport_id);
3451 tr_id = (void *)buf;
3452 return (char *)tr_id->i_port_id;
3453 }
3454
3455 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3456 {
3457 struct srpt_node_acl *nacl;
3458
3459 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3460 if (!nacl) {
3461 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3462 return NULL;
3463 }
3464
3465 return &nacl->nacl;
3466 }
3467
3468 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3469 struct se_node_acl *se_nacl)
3470 {
3471 struct srpt_node_acl *nacl;
3472
3473 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3474 kfree(nacl);
3475 }
3476
3477 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3478 {
3479 return 1;
3480 }
3481
3482 static void srpt_release_cmd(struct se_cmd *se_cmd)
3483 {
3484 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3485 struct srpt_send_ioctx, cmd);
3486 struct srpt_rdma_ch *ch = ioctx->ch;
3487 unsigned long flags;
3488
3489 WARN_ON(ioctx->state != SRPT_STATE_DONE);
3490 WARN_ON(ioctx->mapped_sg_count != 0);
3491
3492 if (ioctx->n_rbuf > 1) {
3493 kfree(ioctx->rbufs);
3494 ioctx->rbufs = NULL;
3495 ioctx->n_rbuf = 0;
3496 }
3497
3498 spin_lock_irqsave(&ch->spinlock, flags);
3499 list_add(&ioctx->free_list, &ch->free_list);
3500 spin_unlock_irqrestore(&ch->spinlock, flags);
3501 }
3502
3503 /**
3504 * srpt_close_session() - Forcibly close a session.
3505 *
3506 * Callback function invoked by the TCM core to clean up sessions associated
3507 * with a node ACL when the user invokes
3508 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3509 */
3510 static void srpt_close_session(struct se_session *se_sess)
3511 {
3512 DECLARE_COMPLETION_ONSTACK(release_done);
3513 struct srpt_rdma_ch *ch;
3514 struct srpt_device *sdev;
3515 int res;
3516
3517 ch = se_sess->fabric_sess_ptr;
3518 WARN_ON(ch->sess != se_sess);
3519
3520 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3521
3522 sdev = ch->sport->sdev;
3523 spin_lock_irq(&sdev->spinlock);
3524 BUG_ON(ch->release_done);
3525 ch->release_done = &release_done;
3526 __srpt_close_ch(ch);
3527 spin_unlock_irq(&sdev->spinlock);
3528
3529 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3530 WARN_ON(res <= 0);
3531 }
3532
3533 /**
3534 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3535 *
3536 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3537 * This object represents an arbitrary integer used to uniquely identify a
3538 * particular attached remote initiator port to a particular SCSI target port
3539 * within a particular SCSI target device within a particular SCSI instance.
3540 */
3541 static u32 srpt_sess_get_index(struct se_session *se_sess)
3542 {
3543 return 0;
3544 }
3545
3546 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3547 {
3548 }
3549
3550 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3551 {
3552 struct srpt_send_ioctx *ioctx;
3553
3554 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3555 return ioctx->tag;
3556 }
3557
3558 /* Note: only used from inside debug printk's by the TCM core. */
3559 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3560 {
3561 struct srpt_send_ioctx *ioctx;
3562
3563 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3564 return srpt_get_cmd_state(ioctx);
3565 }
3566
3567 /**
3568 * srpt_parse_i_port_id() - Parse an initiator port ID.
3569 * @name: ASCII representation of a 128-bit initiator port ID.
3570 * @i_port_id: Binary 128-bit port ID.
3571 */
3572 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3573 {
3574 const char *p;
3575 unsigned len, count, leading_zero_bytes;
3576 int ret, rc;
3577
3578 p = name;
3579 if (strnicmp(p, "0x", 2) == 0)
3580 p += 2;
3581 ret = -EINVAL;
3582 len = strlen(p);
3583 if (len % 2)
3584 goto out;
3585 count = min(len / 2, 16U);
3586 leading_zero_bytes = 16 - count;
3587 memset(i_port_id, 0, leading_zero_bytes);
3588 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3589 if (rc < 0)
3590 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3591 ret = 0;
3592 out:
3593 return ret;
3594 }
3595
3596 /*
3597 * configfs callback function invoked for
3598 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3599 */
3600 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3601 struct config_group *group,
3602 const char *name)
3603 {
3604 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3605 struct se_node_acl *se_nacl, *se_nacl_new;
3606 struct srpt_node_acl *nacl;
3607 int ret = 0;
3608 u32 nexus_depth = 1;
3609 u8 i_port_id[16];
3610
3611 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3612 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3613 ret = -EINVAL;
3614 goto err;
3615 }
3616
3617 se_nacl_new = srpt_alloc_fabric_acl(tpg);
3618 if (!se_nacl_new) {
3619 ret = -ENOMEM;
3620 goto err;
3621 }
3622 /*
3623 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3624 * when converting a node ACL from demo mode to explict
3625 */
3626 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3627 nexus_depth);
3628 if (IS_ERR(se_nacl)) {
3629 ret = PTR_ERR(se_nacl);
3630 goto err;
3631 }
3632 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3633 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3634 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3635 nacl->sport = sport;
3636
3637 spin_lock_irq(&sport->port_acl_lock);
3638 list_add_tail(&nacl->list, &sport->port_acl_list);
3639 spin_unlock_irq(&sport->port_acl_lock);
3640
3641 return se_nacl;
3642 err:
3643 return ERR_PTR(ret);
3644 }
3645
3646 /*
3647 * configfs callback function invoked for
3648 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3649 */
3650 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3651 {
3652 struct srpt_node_acl *nacl;
3653 struct srpt_device *sdev;
3654 struct srpt_port *sport;
3655
3656 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3657 sport = nacl->sport;
3658 sdev = sport->sdev;
3659 spin_lock_irq(&sport->port_acl_lock);
3660 list_del(&nacl->list);
3661 spin_unlock_irq(&sport->port_acl_lock);
3662 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3663 srpt_release_fabric_acl(NULL, se_nacl);
3664 }
3665
3666 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3667 struct se_portal_group *se_tpg,
3668 char *page)
3669 {
3670 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3671
3672 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3673 }
3674
3675 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3676 struct se_portal_group *se_tpg,
3677 const char *page,
3678 size_t count)
3679 {
3680 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3681 unsigned long val;
3682 int ret;
3683
3684 ret = strict_strtoul(page, 0, &val);
3685 if (ret < 0) {
3686 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3687 return -EINVAL;
3688 }
3689 if (val > MAX_SRPT_RDMA_SIZE) {
3690 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3691 MAX_SRPT_RDMA_SIZE);
3692 return -EINVAL;
3693 }
3694 if (val < DEFAULT_MAX_RDMA_SIZE) {
3695 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3696 val, DEFAULT_MAX_RDMA_SIZE);
3697 return -EINVAL;
3698 }
3699 sport->port_attrib.srp_max_rdma_size = val;
3700
3701 return count;
3702 }
3703
3704 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3705
3706 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3707 struct se_portal_group *se_tpg,
3708 char *page)
3709 {
3710 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3711
3712 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3713 }
3714
3715 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3716 struct se_portal_group *se_tpg,
3717 const char *page,
3718 size_t count)
3719 {
3720 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3721 unsigned long val;
3722 int ret;
3723
3724 ret = strict_strtoul(page, 0, &val);
3725 if (ret < 0) {
3726 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3727 return -EINVAL;
3728 }
3729 if (val > MAX_SRPT_RSP_SIZE) {
3730 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3731 MAX_SRPT_RSP_SIZE);
3732 return -EINVAL;
3733 }
3734 if (val < MIN_MAX_RSP_SIZE) {
3735 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3736 MIN_MAX_RSP_SIZE);
3737 return -EINVAL;
3738 }
3739 sport->port_attrib.srp_max_rsp_size = val;
3740
3741 return count;
3742 }
3743
3744 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3745
3746 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3747 struct se_portal_group *se_tpg,
3748 char *page)
3749 {
3750 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3751
3752 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3753 }
3754
3755 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3756 struct se_portal_group *se_tpg,
3757 const char *page,
3758 size_t count)
3759 {
3760 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3761 unsigned long val;
3762 int ret;
3763
3764 ret = strict_strtoul(page, 0, &val);
3765 if (ret < 0) {
3766 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3767 return -EINVAL;
3768 }
3769 if (val > MAX_SRPT_SRQ_SIZE) {
3770 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3771 MAX_SRPT_SRQ_SIZE);
3772 return -EINVAL;
3773 }
3774 if (val < MIN_SRPT_SRQ_SIZE) {
3775 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3776 MIN_SRPT_SRQ_SIZE);
3777 return -EINVAL;
3778 }
3779 sport->port_attrib.srp_sq_size = val;
3780
3781 return count;
3782 }
3783
3784 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3785
3786 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3787 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3788 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3789 &srpt_tpg_attrib_srp_sq_size.attr,
3790 NULL,
3791 };
3792
3793 static ssize_t srpt_tpg_show_enable(
3794 struct se_portal_group *se_tpg,
3795 char *page)
3796 {
3797 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3798
3799 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3800 }
3801
3802 static ssize_t srpt_tpg_store_enable(
3803 struct se_portal_group *se_tpg,
3804 const char *page,
3805 size_t count)
3806 {
3807 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3808 unsigned long tmp;
3809 int ret;
3810
3811 ret = strict_strtoul(page, 0, &tmp);
3812 if (ret < 0) {
3813 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3814 return -EINVAL;
3815 }
3816
3817 if ((tmp != 0) && (tmp != 1)) {
3818 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3819 return -EINVAL;
3820 }
3821 if (tmp == 1)
3822 sport->enabled = true;
3823 else
3824 sport->enabled = false;
3825
3826 return count;
3827 }
3828
3829 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3830
3831 static struct configfs_attribute *srpt_tpg_attrs[] = {
3832 &srpt_tpg_enable.attr,
3833 NULL,
3834 };
3835
3836 /**
3837 * configfs callback invoked for
3838 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3839 */
3840 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3841 struct config_group *group,
3842 const char *name)
3843 {
3844 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3845 int res;
3846
3847 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3848 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3849 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3850 if (res)
3851 return ERR_PTR(res);
3852
3853 return &sport->port_tpg_1;
3854 }
3855
3856 /**
3857 * configfs callback invoked for
3858 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3859 */
3860 static void srpt_drop_tpg(struct se_portal_group *tpg)
3861 {
3862 struct srpt_port *sport = container_of(tpg,
3863 struct srpt_port, port_tpg_1);
3864
3865 sport->enabled = false;
3866 core_tpg_deregister(&sport->port_tpg_1);
3867 }
3868
3869 /**
3870 * configfs callback invoked for
3871 * mkdir /sys/kernel/config/target/$driver/$port
3872 */
3873 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3874 struct config_group *group,
3875 const char *name)
3876 {
3877 struct srpt_port *sport;
3878 int ret;
3879
3880 sport = srpt_lookup_port(name);
3881 pr_debug("make_tport(%s)\n", name);
3882 ret = -EINVAL;
3883 if (!sport)
3884 goto err;
3885
3886 return &sport->port_wwn;
3887
3888 err:
3889 return ERR_PTR(ret);
3890 }
3891
3892 /**
3893 * configfs callback invoked for
3894 * rmdir /sys/kernel/config/target/$driver/$port
3895 */
3896 static void srpt_drop_tport(struct se_wwn *wwn)
3897 {
3898 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3899
3900 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3901 }
3902
3903 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3904 char *buf)
3905 {
3906 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3907 }
3908
3909 TF_WWN_ATTR_RO(srpt, version);
3910
3911 static struct configfs_attribute *srpt_wwn_attrs[] = {
3912 &srpt_wwn_version.attr,
3913 NULL,
3914 };
3915
3916 static struct target_core_fabric_ops srpt_template = {
3917 .get_fabric_name = srpt_get_fabric_name,
3918 .get_fabric_proto_ident = srpt_get_fabric_proto_ident,
3919 .tpg_get_wwn = srpt_get_fabric_wwn,
3920 .tpg_get_tag = srpt_get_tag,
3921 .tpg_get_default_depth = srpt_get_default_depth,
3922 .tpg_get_pr_transport_id = srpt_get_pr_transport_id,
3923 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
3924 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
3925 .tpg_check_demo_mode = srpt_check_false,
3926 .tpg_check_demo_mode_cache = srpt_check_true,
3927 .tpg_check_demo_mode_write_protect = srpt_check_true,
3928 .tpg_check_prod_mode_write_protect = srpt_check_false,
3929 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
3930 .tpg_release_fabric_acl = srpt_release_fabric_acl,
3931 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3932 .release_cmd = srpt_release_cmd,
3933 .check_stop_free = srpt_check_stop_free,
3934 .shutdown_session = srpt_shutdown_session,
3935 .close_session = srpt_close_session,
3936 .sess_get_index = srpt_sess_get_index,
3937 .sess_get_initiator_sid = NULL,
3938 .write_pending = srpt_write_pending,
3939 .write_pending_status = srpt_write_pending_status,
3940 .set_default_node_attributes = srpt_set_default_node_attrs,
3941 .get_task_tag = srpt_get_task_tag,
3942 .get_cmd_state = srpt_get_tcm_cmd_state,
3943 .queue_data_in = srpt_queue_response,
3944 .queue_status = srpt_queue_status,
3945 .queue_tm_rsp = srpt_queue_response,
3946 /*
3947 * Setup function pointers for generic logic in
3948 * target_core_fabric_configfs.c
3949 */
3950 .fabric_make_wwn = srpt_make_tport,
3951 .fabric_drop_wwn = srpt_drop_tport,
3952 .fabric_make_tpg = srpt_make_tpg,
3953 .fabric_drop_tpg = srpt_drop_tpg,
3954 .fabric_post_link = NULL,
3955 .fabric_pre_unlink = NULL,
3956 .fabric_make_np = NULL,
3957 .fabric_drop_np = NULL,
3958 .fabric_make_nodeacl = srpt_make_nodeacl,
3959 .fabric_drop_nodeacl = srpt_drop_nodeacl,
3960 };
3961
3962 /**
3963 * srpt_init_module() - Kernel module initialization.
3964 *
3965 * Note: Since ib_register_client() registers callback functions, and since at
3966 * least one of these callback functions (srpt_add_one()) calls target core
3967 * functions, this driver must be registered with the target core before
3968 * ib_register_client() is called.
3969 */
3970 static int __init srpt_init_module(void)
3971 {
3972 int ret;
3973
3974 ret = -EINVAL;
3975 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3976 printk(KERN_ERR "invalid value %d for kernel module parameter"
3977 " srp_max_req_size -- must be at least %d.\n",
3978 srp_max_req_size, MIN_MAX_REQ_SIZE);
3979 goto out;
3980 }
3981
3982 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3983 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3984 printk(KERN_ERR "invalid value %d for kernel module parameter"
3985 " srpt_srq_size -- must be in the range [%d..%d].\n",
3986 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3987 goto out;
3988 }
3989
3990 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3991 if (IS_ERR(srpt_target)) {
3992 printk(KERN_ERR "couldn't register\n");
3993 ret = PTR_ERR(srpt_target);
3994 goto out;
3995 }
3996
3997 srpt_target->tf_ops = srpt_template;
3998
3999 /*
4000 * Set up default attribute lists.
4001 */
4002 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
4003 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
4004 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4005 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4006 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4007 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4008 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4009 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4010 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4011
4012 ret = target_fabric_configfs_register(srpt_target);
4013 if (ret < 0) {
4014 printk(KERN_ERR "couldn't register\n");
4015 goto out_free_target;
4016 }
4017
4018 ret = ib_register_client(&srpt_client);
4019 if (ret) {
4020 printk(KERN_ERR "couldn't register IB client\n");
4021 goto out_unregister_target;
4022 }
4023
4024 return 0;
4025
4026 out_unregister_target:
4027 target_fabric_configfs_deregister(srpt_target);
4028 srpt_target = NULL;
4029 out_free_target:
4030 if (srpt_target)
4031 target_fabric_configfs_free(srpt_target);
4032 out:
4033 return ret;
4034 }
4035
4036 static void __exit srpt_cleanup_module(void)
4037 {
4038 ib_unregister_client(&srpt_client);
4039 target_fabric_configfs_deregister(srpt_target);
4040 srpt_target = NULL;
4041 }
4042
4043 module_init(srpt_init_module);
4044 module_exit(srpt_cleanup_module);