Merge branches 'x86/cache', 'x86/debug' and 'x86/irq' into x86/urgent
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / infiniband / sw / rxe / rxe_resp.c
1 /*
2 * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/skbuff.h>
35
36 #include "rxe.h"
37 #include "rxe_loc.h"
38 #include "rxe_queue.h"
39
40 enum resp_states {
41 RESPST_NONE,
42 RESPST_GET_REQ,
43 RESPST_CHK_PSN,
44 RESPST_CHK_OP_SEQ,
45 RESPST_CHK_OP_VALID,
46 RESPST_CHK_RESOURCE,
47 RESPST_CHK_LENGTH,
48 RESPST_CHK_RKEY,
49 RESPST_EXECUTE,
50 RESPST_READ_REPLY,
51 RESPST_COMPLETE,
52 RESPST_ACKNOWLEDGE,
53 RESPST_CLEANUP,
54 RESPST_DUPLICATE_REQUEST,
55 RESPST_ERR_MALFORMED_WQE,
56 RESPST_ERR_UNSUPPORTED_OPCODE,
57 RESPST_ERR_MISALIGNED_ATOMIC,
58 RESPST_ERR_PSN_OUT_OF_SEQ,
59 RESPST_ERR_MISSING_OPCODE_FIRST,
60 RESPST_ERR_MISSING_OPCODE_LAST_C,
61 RESPST_ERR_MISSING_OPCODE_LAST_D1E,
62 RESPST_ERR_TOO_MANY_RDMA_ATM_REQ,
63 RESPST_ERR_RNR,
64 RESPST_ERR_RKEY_VIOLATION,
65 RESPST_ERR_LENGTH,
66 RESPST_ERR_CQ_OVERFLOW,
67 RESPST_ERROR,
68 RESPST_RESET,
69 RESPST_DONE,
70 RESPST_EXIT,
71 };
72
73 static char *resp_state_name[] = {
74 [RESPST_NONE] = "NONE",
75 [RESPST_GET_REQ] = "GET_REQ",
76 [RESPST_CHK_PSN] = "CHK_PSN",
77 [RESPST_CHK_OP_SEQ] = "CHK_OP_SEQ",
78 [RESPST_CHK_OP_VALID] = "CHK_OP_VALID",
79 [RESPST_CHK_RESOURCE] = "CHK_RESOURCE",
80 [RESPST_CHK_LENGTH] = "CHK_LENGTH",
81 [RESPST_CHK_RKEY] = "CHK_RKEY",
82 [RESPST_EXECUTE] = "EXECUTE",
83 [RESPST_READ_REPLY] = "READ_REPLY",
84 [RESPST_COMPLETE] = "COMPLETE",
85 [RESPST_ACKNOWLEDGE] = "ACKNOWLEDGE",
86 [RESPST_CLEANUP] = "CLEANUP",
87 [RESPST_DUPLICATE_REQUEST] = "DUPLICATE_REQUEST",
88 [RESPST_ERR_MALFORMED_WQE] = "ERR_MALFORMED_WQE",
89 [RESPST_ERR_UNSUPPORTED_OPCODE] = "ERR_UNSUPPORTED_OPCODE",
90 [RESPST_ERR_MISALIGNED_ATOMIC] = "ERR_MISALIGNED_ATOMIC",
91 [RESPST_ERR_PSN_OUT_OF_SEQ] = "ERR_PSN_OUT_OF_SEQ",
92 [RESPST_ERR_MISSING_OPCODE_FIRST] = "ERR_MISSING_OPCODE_FIRST",
93 [RESPST_ERR_MISSING_OPCODE_LAST_C] = "ERR_MISSING_OPCODE_LAST_C",
94 [RESPST_ERR_MISSING_OPCODE_LAST_D1E] = "ERR_MISSING_OPCODE_LAST_D1E",
95 [RESPST_ERR_TOO_MANY_RDMA_ATM_REQ] = "ERR_TOO_MANY_RDMA_ATM_REQ",
96 [RESPST_ERR_RNR] = "ERR_RNR",
97 [RESPST_ERR_RKEY_VIOLATION] = "ERR_RKEY_VIOLATION",
98 [RESPST_ERR_LENGTH] = "ERR_LENGTH",
99 [RESPST_ERR_CQ_OVERFLOW] = "ERR_CQ_OVERFLOW",
100 [RESPST_ERROR] = "ERROR",
101 [RESPST_RESET] = "RESET",
102 [RESPST_DONE] = "DONE",
103 [RESPST_EXIT] = "EXIT",
104 };
105
106 /* rxe_recv calls here to add a request packet to the input queue */
107 void rxe_resp_queue_pkt(struct rxe_dev *rxe, struct rxe_qp *qp,
108 struct sk_buff *skb)
109 {
110 int must_sched;
111 struct rxe_pkt_info *pkt = SKB_TO_PKT(skb);
112
113 skb_queue_tail(&qp->req_pkts, skb);
114
115 must_sched = (pkt->opcode == IB_OPCODE_RC_RDMA_READ_REQUEST) ||
116 (skb_queue_len(&qp->req_pkts) > 1);
117
118 rxe_run_task(&qp->resp.task, must_sched);
119 }
120
121 static inline enum resp_states get_req(struct rxe_qp *qp,
122 struct rxe_pkt_info **pkt_p)
123 {
124 struct sk_buff *skb;
125
126 if (qp->resp.state == QP_STATE_ERROR) {
127 skb = skb_dequeue(&qp->req_pkts);
128 if (skb) {
129 /* drain request packet queue */
130 rxe_drop_ref(qp);
131 kfree_skb(skb);
132 return RESPST_GET_REQ;
133 }
134
135 /* go drain recv wr queue */
136 return RESPST_CHK_RESOURCE;
137 }
138
139 skb = skb_peek(&qp->req_pkts);
140 if (!skb)
141 return RESPST_EXIT;
142
143 *pkt_p = SKB_TO_PKT(skb);
144
145 return (qp->resp.res) ? RESPST_READ_REPLY : RESPST_CHK_PSN;
146 }
147
148 static enum resp_states check_psn(struct rxe_qp *qp,
149 struct rxe_pkt_info *pkt)
150 {
151 int diff = psn_compare(pkt->psn, qp->resp.psn);
152
153 switch (qp_type(qp)) {
154 case IB_QPT_RC:
155 if (diff > 0) {
156 if (qp->resp.sent_psn_nak)
157 return RESPST_CLEANUP;
158
159 qp->resp.sent_psn_nak = 1;
160 return RESPST_ERR_PSN_OUT_OF_SEQ;
161
162 } else if (diff < 0) {
163 return RESPST_DUPLICATE_REQUEST;
164 }
165
166 if (qp->resp.sent_psn_nak)
167 qp->resp.sent_psn_nak = 0;
168
169 break;
170
171 case IB_QPT_UC:
172 if (qp->resp.drop_msg || diff != 0) {
173 if (pkt->mask & RXE_START_MASK) {
174 qp->resp.drop_msg = 0;
175 return RESPST_CHK_OP_SEQ;
176 }
177
178 qp->resp.drop_msg = 1;
179 return RESPST_CLEANUP;
180 }
181 break;
182 default:
183 break;
184 }
185
186 return RESPST_CHK_OP_SEQ;
187 }
188
189 static enum resp_states check_op_seq(struct rxe_qp *qp,
190 struct rxe_pkt_info *pkt)
191 {
192 switch (qp_type(qp)) {
193 case IB_QPT_RC:
194 switch (qp->resp.opcode) {
195 case IB_OPCODE_RC_SEND_FIRST:
196 case IB_OPCODE_RC_SEND_MIDDLE:
197 switch (pkt->opcode) {
198 case IB_OPCODE_RC_SEND_MIDDLE:
199 case IB_OPCODE_RC_SEND_LAST:
200 case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
201 case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
202 return RESPST_CHK_OP_VALID;
203 default:
204 return RESPST_ERR_MISSING_OPCODE_LAST_C;
205 }
206
207 case IB_OPCODE_RC_RDMA_WRITE_FIRST:
208 case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
209 switch (pkt->opcode) {
210 case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
211 case IB_OPCODE_RC_RDMA_WRITE_LAST:
212 case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
213 return RESPST_CHK_OP_VALID;
214 default:
215 return RESPST_ERR_MISSING_OPCODE_LAST_C;
216 }
217
218 default:
219 switch (pkt->opcode) {
220 case IB_OPCODE_RC_SEND_MIDDLE:
221 case IB_OPCODE_RC_SEND_LAST:
222 case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE:
223 case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE:
224 case IB_OPCODE_RC_RDMA_WRITE_MIDDLE:
225 case IB_OPCODE_RC_RDMA_WRITE_LAST:
226 case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
227 return RESPST_ERR_MISSING_OPCODE_FIRST;
228 default:
229 return RESPST_CHK_OP_VALID;
230 }
231 }
232 break;
233
234 case IB_QPT_UC:
235 switch (qp->resp.opcode) {
236 case IB_OPCODE_UC_SEND_FIRST:
237 case IB_OPCODE_UC_SEND_MIDDLE:
238 switch (pkt->opcode) {
239 case IB_OPCODE_UC_SEND_MIDDLE:
240 case IB_OPCODE_UC_SEND_LAST:
241 case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
242 return RESPST_CHK_OP_VALID;
243 default:
244 return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
245 }
246
247 case IB_OPCODE_UC_RDMA_WRITE_FIRST:
248 case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
249 switch (pkt->opcode) {
250 case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
251 case IB_OPCODE_UC_RDMA_WRITE_LAST:
252 case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
253 return RESPST_CHK_OP_VALID;
254 default:
255 return RESPST_ERR_MISSING_OPCODE_LAST_D1E;
256 }
257
258 default:
259 switch (pkt->opcode) {
260 case IB_OPCODE_UC_SEND_MIDDLE:
261 case IB_OPCODE_UC_SEND_LAST:
262 case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE:
263 case IB_OPCODE_UC_RDMA_WRITE_MIDDLE:
264 case IB_OPCODE_UC_RDMA_WRITE_LAST:
265 case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE:
266 qp->resp.drop_msg = 1;
267 return RESPST_CLEANUP;
268 default:
269 return RESPST_CHK_OP_VALID;
270 }
271 }
272 break;
273
274 default:
275 return RESPST_CHK_OP_VALID;
276 }
277 }
278
279 static enum resp_states check_op_valid(struct rxe_qp *qp,
280 struct rxe_pkt_info *pkt)
281 {
282 switch (qp_type(qp)) {
283 case IB_QPT_RC:
284 if (((pkt->mask & RXE_READ_MASK) &&
285 !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_READ)) ||
286 ((pkt->mask & RXE_WRITE_MASK) &&
287 !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) ||
288 ((pkt->mask & RXE_ATOMIC_MASK) &&
289 !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) {
290 return RESPST_ERR_UNSUPPORTED_OPCODE;
291 }
292
293 break;
294
295 case IB_QPT_UC:
296 if ((pkt->mask & RXE_WRITE_MASK) &&
297 !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) {
298 qp->resp.drop_msg = 1;
299 return RESPST_CLEANUP;
300 }
301
302 break;
303
304 case IB_QPT_UD:
305 case IB_QPT_SMI:
306 case IB_QPT_GSI:
307 break;
308
309 default:
310 WARN_ON(1);
311 break;
312 }
313
314 return RESPST_CHK_RESOURCE;
315 }
316
317 static enum resp_states get_srq_wqe(struct rxe_qp *qp)
318 {
319 struct rxe_srq *srq = qp->srq;
320 struct rxe_queue *q = srq->rq.queue;
321 struct rxe_recv_wqe *wqe;
322 struct ib_event ev;
323
324 if (srq->error)
325 return RESPST_ERR_RNR;
326
327 spin_lock_bh(&srq->rq.consumer_lock);
328
329 wqe = queue_head(q);
330 if (!wqe) {
331 spin_unlock_bh(&srq->rq.consumer_lock);
332 return RESPST_ERR_RNR;
333 }
334
335 /* note kernel and user space recv wqes have same size */
336 memcpy(&qp->resp.srq_wqe, wqe, sizeof(qp->resp.srq_wqe));
337
338 qp->resp.wqe = &qp->resp.srq_wqe.wqe;
339 advance_consumer(q);
340
341 if (srq->limit && srq->ibsrq.event_handler &&
342 (queue_count(q) < srq->limit)) {
343 srq->limit = 0;
344 goto event;
345 }
346
347 spin_unlock_bh(&srq->rq.consumer_lock);
348 return RESPST_CHK_LENGTH;
349
350 event:
351 spin_unlock_bh(&srq->rq.consumer_lock);
352 ev.device = qp->ibqp.device;
353 ev.element.srq = qp->ibqp.srq;
354 ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
355 srq->ibsrq.event_handler(&ev, srq->ibsrq.srq_context);
356 return RESPST_CHK_LENGTH;
357 }
358
359 static enum resp_states check_resource(struct rxe_qp *qp,
360 struct rxe_pkt_info *pkt)
361 {
362 struct rxe_srq *srq = qp->srq;
363
364 if (qp->resp.state == QP_STATE_ERROR) {
365 if (qp->resp.wqe) {
366 qp->resp.status = IB_WC_WR_FLUSH_ERR;
367 return RESPST_COMPLETE;
368 } else if (!srq) {
369 qp->resp.wqe = queue_head(qp->rq.queue);
370 if (qp->resp.wqe) {
371 qp->resp.status = IB_WC_WR_FLUSH_ERR;
372 return RESPST_COMPLETE;
373 } else {
374 return RESPST_EXIT;
375 }
376 } else {
377 return RESPST_EXIT;
378 }
379 }
380
381 if (pkt->mask & RXE_READ_OR_ATOMIC) {
382 /* it is the requesters job to not send
383 * too many read/atomic ops, we just
384 * recycle the responder resource queue
385 */
386 if (likely(qp->attr.max_dest_rd_atomic > 0))
387 return RESPST_CHK_LENGTH;
388 else
389 return RESPST_ERR_TOO_MANY_RDMA_ATM_REQ;
390 }
391
392 if (pkt->mask & RXE_RWR_MASK) {
393 if (srq)
394 return get_srq_wqe(qp);
395
396 qp->resp.wqe = queue_head(qp->rq.queue);
397 return (qp->resp.wqe) ? RESPST_CHK_LENGTH : RESPST_ERR_RNR;
398 }
399
400 return RESPST_CHK_LENGTH;
401 }
402
403 static enum resp_states check_length(struct rxe_qp *qp,
404 struct rxe_pkt_info *pkt)
405 {
406 switch (qp_type(qp)) {
407 case IB_QPT_RC:
408 return RESPST_CHK_RKEY;
409
410 case IB_QPT_UC:
411 return RESPST_CHK_RKEY;
412
413 default:
414 return RESPST_CHK_RKEY;
415 }
416 }
417
418 static enum resp_states check_rkey(struct rxe_qp *qp,
419 struct rxe_pkt_info *pkt)
420 {
421 struct rxe_mem *mem;
422 u64 va;
423 u32 rkey;
424 u32 resid;
425 u32 pktlen;
426 int mtu = qp->mtu;
427 enum resp_states state;
428 int access;
429
430 if (pkt->mask & (RXE_READ_MASK | RXE_WRITE_MASK)) {
431 if (pkt->mask & RXE_RETH_MASK) {
432 qp->resp.va = reth_va(pkt);
433 qp->resp.rkey = reth_rkey(pkt);
434 qp->resp.resid = reth_len(pkt);
435 }
436 access = (pkt->mask & RXE_READ_MASK) ? IB_ACCESS_REMOTE_READ
437 : IB_ACCESS_REMOTE_WRITE;
438 } else if (pkt->mask & RXE_ATOMIC_MASK) {
439 qp->resp.va = atmeth_va(pkt);
440 qp->resp.rkey = atmeth_rkey(pkt);
441 qp->resp.resid = sizeof(u64);
442 access = IB_ACCESS_REMOTE_ATOMIC;
443 } else {
444 return RESPST_EXECUTE;
445 }
446
447 /* A zero-byte op is not required to set an addr or rkey. */
448 if ((pkt->mask & (RXE_READ_MASK | RXE_WRITE_OR_SEND)) &&
449 (pkt->mask & RXE_RETH_MASK) &&
450 reth_len(pkt) == 0) {
451 return RESPST_EXECUTE;
452 }
453
454 va = qp->resp.va;
455 rkey = qp->resp.rkey;
456 resid = qp->resp.resid;
457 pktlen = payload_size(pkt);
458
459 mem = lookup_mem(qp->pd, access, rkey, lookup_remote);
460 if (!mem) {
461 state = RESPST_ERR_RKEY_VIOLATION;
462 goto err1;
463 }
464
465 if (unlikely(mem->state == RXE_MEM_STATE_FREE)) {
466 state = RESPST_ERR_RKEY_VIOLATION;
467 goto err1;
468 }
469
470 if (mem_check_range(mem, va, resid)) {
471 state = RESPST_ERR_RKEY_VIOLATION;
472 goto err2;
473 }
474
475 if (pkt->mask & RXE_WRITE_MASK) {
476 if (resid > mtu) {
477 if (pktlen != mtu || bth_pad(pkt)) {
478 state = RESPST_ERR_LENGTH;
479 goto err2;
480 }
481
482 qp->resp.resid = mtu;
483 } else {
484 if (pktlen != resid) {
485 state = RESPST_ERR_LENGTH;
486 goto err2;
487 }
488 if ((bth_pad(pkt) != (0x3 & (-resid)))) {
489 /* This case may not be exactly that
490 * but nothing else fits.
491 */
492 state = RESPST_ERR_LENGTH;
493 goto err2;
494 }
495 }
496 }
497
498 WARN_ON(qp->resp.mr);
499
500 qp->resp.mr = mem;
501 return RESPST_EXECUTE;
502
503 err2:
504 rxe_drop_ref(mem);
505 err1:
506 return state;
507 }
508
509 static enum resp_states send_data_in(struct rxe_qp *qp, void *data_addr,
510 int data_len)
511 {
512 int err;
513 struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
514
515 err = copy_data(rxe, qp->pd, IB_ACCESS_LOCAL_WRITE, &qp->resp.wqe->dma,
516 data_addr, data_len, to_mem_obj, NULL);
517 if (unlikely(err))
518 return (err == -ENOSPC) ? RESPST_ERR_LENGTH
519 : RESPST_ERR_MALFORMED_WQE;
520
521 return RESPST_NONE;
522 }
523
524 static enum resp_states write_data_in(struct rxe_qp *qp,
525 struct rxe_pkt_info *pkt)
526 {
527 enum resp_states rc = RESPST_NONE;
528 int err;
529 int data_len = payload_size(pkt);
530
531 err = rxe_mem_copy(qp->resp.mr, qp->resp.va, payload_addr(pkt),
532 data_len, to_mem_obj, NULL);
533 if (err) {
534 rc = RESPST_ERR_RKEY_VIOLATION;
535 goto out;
536 }
537
538 qp->resp.va += data_len;
539 qp->resp.resid -= data_len;
540
541 out:
542 return rc;
543 }
544
545 /* Guarantee atomicity of atomic operations at the machine level. */
546 static DEFINE_SPINLOCK(atomic_ops_lock);
547
548 static enum resp_states process_atomic(struct rxe_qp *qp,
549 struct rxe_pkt_info *pkt)
550 {
551 u64 iova = atmeth_va(pkt);
552 u64 *vaddr;
553 enum resp_states ret;
554 struct rxe_mem *mr = qp->resp.mr;
555
556 if (mr->state != RXE_MEM_STATE_VALID) {
557 ret = RESPST_ERR_RKEY_VIOLATION;
558 goto out;
559 }
560
561 vaddr = iova_to_vaddr(mr, iova, sizeof(u64));
562
563 /* check vaddr is 8 bytes aligned. */
564 if (!vaddr || (uintptr_t)vaddr & 7) {
565 ret = RESPST_ERR_MISALIGNED_ATOMIC;
566 goto out;
567 }
568
569 spin_lock_bh(&atomic_ops_lock);
570
571 qp->resp.atomic_orig = *vaddr;
572
573 if (pkt->opcode == IB_OPCODE_RC_COMPARE_SWAP ||
574 pkt->opcode == IB_OPCODE_RD_COMPARE_SWAP) {
575 if (*vaddr == atmeth_comp(pkt))
576 *vaddr = atmeth_swap_add(pkt);
577 } else {
578 *vaddr += atmeth_swap_add(pkt);
579 }
580
581 spin_unlock_bh(&atomic_ops_lock);
582
583 ret = RESPST_NONE;
584 out:
585 return ret;
586 }
587
588 static struct sk_buff *prepare_ack_packet(struct rxe_qp *qp,
589 struct rxe_pkt_info *pkt,
590 struct rxe_pkt_info *ack,
591 int opcode,
592 int payload,
593 u32 psn,
594 u8 syndrome,
595 u32 *crcp)
596 {
597 struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
598 struct sk_buff *skb;
599 u32 crc = 0;
600 u32 *p;
601 int paylen;
602 int pad;
603 int err;
604
605 /*
606 * allocate packet
607 */
608 pad = (-payload) & 0x3;
609 paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE;
610
611 skb = rxe->ifc_ops->init_packet(rxe, &qp->pri_av, paylen, ack);
612 if (!skb)
613 return NULL;
614
615 ack->qp = qp;
616 ack->opcode = opcode;
617 ack->mask = rxe_opcode[opcode].mask;
618 ack->offset = pkt->offset;
619 ack->paylen = paylen;
620
621 /* fill in bth using the request packet headers */
622 memcpy(ack->hdr, pkt->hdr, pkt->offset + RXE_BTH_BYTES);
623
624 bth_set_opcode(ack, opcode);
625 bth_set_qpn(ack, qp->attr.dest_qp_num);
626 bth_set_pad(ack, pad);
627 bth_set_se(ack, 0);
628 bth_set_psn(ack, psn);
629 bth_set_ack(ack, 0);
630 ack->psn = psn;
631
632 if (ack->mask & RXE_AETH_MASK) {
633 aeth_set_syn(ack, syndrome);
634 aeth_set_msn(ack, qp->resp.msn);
635 }
636
637 if (ack->mask & RXE_ATMACK_MASK)
638 atmack_set_orig(ack, qp->resp.atomic_orig);
639
640 err = rxe->ifc_ops->prepare(rxe, ack, skb, &crc);
641 if (err) {
642 kfree_skb(skb);
643 return NULL;
644 }
645
646 if (crcp) {
647 /* CRC computation will be continued by the caller */
648 *crcp = crc;
649 } else {
650 p = payload_addr(ack) + payload + bth_pad(ack);
651 *p = ~crc;
652 }
653
654 return skb;
655 }
656
657 /* RDMA read response. If res is not NULL, then we have a current RDMA request
658 * being processed or replayed.
659 */
660 static enum resp_states read_reply(struct rxe_qp *qp,
661 struct rxe_pkt_info *req_pkt)
662 {
663 struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
664 struct rxe_pkt_info ack_pkt;
665 struct sk_buff *skb;
666 int mtu = qp->mtu;
667 enum resp_states state;
668 int payload;
669 int opcode;
670 int err;
671 struct resp_res *res = qp->resp.res;
672 u32 icrc;
673 u32 *p;
674
675 if (!res) {
676 /* This is the first time we process that request. Get a
677 * resource
678 */
679 res = &qp->resp.resources[qp->resp.res_head];
680
681 free_rd_atomic_resource(qp, res);
682 rxe_advance_resp_resource(qp);
683
684 res->type = RXE_READ_MASK;
685
686 res->read.va = qp->resp.va;
687 res->read.va_org = qp->resp.va;
688
689 res->first_psn = req_pkt->psn;
690
691 if (reth_len(req_pkt)) {
692 res->last_psn = (req_pkt->psn +
693 (reth_len(req_pkt) + mtu - 1) /
694 mtu - 1) & BTH_PSN_MASK;
695 } else {
696 res->last_psn = res->first_psn;
697 }
698 res->cur_psn = req_pkt->psn;
699
700 res->read.resid = qp->resp.resid;
701 res->read.length = qp->resp.resid;
702 res->read.rkey = qp->resp.rkey;
703
704 /* note res inherits the reference to mr from qp */
705 res->read.mr = qp->resp.mr;
706 qp->resp.mr = NULL;
707
708 qp->resp.res = res;
709 res->state = rdatm_res_state_new;
710 }
711
712 if (res->state == rdatm_res_state_new) {
713 if (res->read.resid <= mtu)
714 opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY;
715 else
716 opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST;
717 } else {
718 if (res->read.resid > mtu)
719 opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE;
720 else
721 opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST;
722 }
723
724 res->state = rdatm_res_state_next;
725
726 payload = min_t(int, res->read.resid, mtu);
727
728 skb = prepare_ack_packet(qp, req_pkt, &ack_pkt, opcode, payload,
729 res->cur_psn, AETH_ACK_UNLIMITED, &icrc);
730 if (!skb)
731 return RESPST_ERR_RNR;
732
733 err = rxe_mem_copy(res->read.mr, res->read.va, payload_addr(&ack_pkt),
734 payload, from_mem_obj, &icrc);
735 if (err)
736 pr_err("Failed copying memory\n");
737
738 p = payload_addr(&ack_pkt) + payload + bth_pad(&ack_pkt);
739 *p = ~icrc;
740
741 err = rxe_xmit_packet(rxe, qp, &ack_pkt, skb);
742 if (err) {
743 pr_err("Failed sending RDMA reply.\n");
744 kfree_skb(skb);
745 return RESPST_ERR_RNR;
746 }
747
748 res->read.va += payload;
749 res->read.resid -= payload;
750 res->cur_psn = (res->cur_psn + 1) & BTH_PSN_MASK;
751
752 if (res->read.resid > 0) {
753 state = RESPST_DONE;
754 } else {
755 qp->resp.res = NULL;
756 qp->resp.opcode = -1;
757 if (psn_compare(res->cur_psn, qp->resp.psn) >= 0)
758 qp->resp.psn = res->cur_psn;
759 state = RESPST_CLEANUP;
760 }
761
762 return state;
763 }
764
765 static void build_rdma_network_hdr(union rdma_network_hdr *hdr,
766 struct rxe_pkt_info *pkt)
767 {
768 struct sk_buff *skb = PKT_TO_SKB(pkt);
769
770 memset(hdr, 0, sizeof(*hdr));
771 if (skb->protocol == htons(ETH_P_IP))
772 memcpy(&hdr->roce4grh, ip_hdr(skb), sizeof(hdr->roce4grh));
773 else if (skb->protocol == htons(ETH_P_IPV6))
774 memcpy(&hdr->ibgrh, ipv6_hdr(skb), sizeof(hdr->ibgrh));
775 }
776
777 /* Executes a new request. A retried request never reach that function (send
778 * and writes are discarded, and reads and atomics are retried elsewhere.
779 */
780 static enum resp_states execute(struct rxe_qp *qp, struct rxe_pkt_info *pkt)
781 {
782 enum resp_states err;
783
784 if (pkt->mask & RXE_SEND_MASK) {
785 if (qp_type(qp) == IB_QPT_UD ||
786 qp_type(qp) == IB_QPT_SMI ||
787 qp_type(qp) == IB_QPT_GSI) {
788 union rdma_network_hdr hdr;
789
790 build_rdma_network_hdr(&hdr, pkt);
791
792 err = send_data_in(qp, &hdr, sizeof(hdr));
793 if (err)
794 return err;
795 }
796 err = send_data_in(qp, payload_addr(pkt), payload_size(pkt));
797 if (err)
798 return err;
799 } else if (pkt->mask & RXE_WRITE_MASK) {
800 err = write_data_in(qp, pkt);
801 if (err)
802 return err;
803 } else if (pkt->mask & RXE_READ_MASK) {
804 /* For RDMA Read we can increment the msn now. See C9-148. */
805 qp->resp.msn++;
806 return RESPST_READ_REPLY;
807 } else if (pkt->mask & RXE_ATOMIC_MASK) {
808 err = process_atomic(qp, pkt);
809 if (err)
810 return err;
811 } else
812 /* Unreachable */
813 WARN_ON(1);
814
815 /* We successfully processed this new request. */
816 qp->resp.msn++;
817
818 /* next expected psn, read handles this separately */
819 qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK;
820
821 qp->resp.opcode = pkt->opcode;
822 qp->resp.status = IB_WC_SUCCESS;
823
824 if (pkt->mask & RXE_COMP_MASK)
825 return RESPST_COMPLETE;
826 else if (qp_type(qp) == IB_QPT_RC)
827 return RESPST_ACKNOWLEDGE;
828 else
829 return RESPST_CLEANUP;
830 }
831
832 static enum resp_states do_complete(struct rxe_qp *qp,
833 struct rxe_pkt_info *pkt)
834 {
835 struct rxe_cqe cqe;
836 struct ib_wc *wc = &cqe.ibwc;
837 struct ib_uverbs_wc *uwc = &cqe.uibwc;
838 struct rxe_recv_wqe *wqe = qp->resp.wqe;
839
840 if (unlikely(!wqe))
841 return RESPST_CLEANUP;
842
843 memset(&cqe, 0, sizeof(cqe));
844
845 wc->wr_id = wqe->wr_id;
846 wc->status = qp->resp.status;
847 wc->qp = &qp->ibqp;
848
849 /* fields after status are not required for errors */
850 if (wc->status == IB_WC_SUCCESS) {
851 wc->opcode = (pkt->mask & RXE_IMMDT_MASK &&
852 pkt->mask & RXE_WRITE_MASK) ?
853 IB_WC_RECV_RDMA_WITH_IMM : IB_WC_RECV;
854 wc->vendor_err = 0;
855 wc->byte_len = wqe->dma.length - wqe->dma.resid;
856
857 /* fields after byte_len are different between kernel and user
858 * space
859 */
860 if (qp->rcq->is_user) {
861 uwc->wc_flags = IB_WC_GRH;
862
863 if (pkt->mask & RXE_IMMDT_MASK) {
864 uwc->wc_flags |= IB_WC_WITH_IMM;
865 uwc->ex.imm_data =
866 (__u32 __force)immdt_imm(pkt);
867 }
868
869 if (pkt->mask & RXE_IETH_MASK) {
870 uwc->wc_flags |= IB_WC_WITH_INVALIDATE;
871 uwc->ex.invalidate_rkey = ieth_rkey(pkt);
872 }
873
874 uwc->qp_num = qp->ibqp.qp_num;
875
876 if (pkt->mask & RXE_DETH_MASK)
877 uwc->src_qp = deth_sqp(pkt);
878
879 uwc->port_num = qp->attr.port_num;
880 } else {
881 struct sk_buff *skb = PKT_TO_SKB(pkt);
882
883 wc->wc_flags = IB_WC_GRH | IB_WC_WITH_NETWORK_HDR_TYPE;
884 if (skb->protocol == htons(ETH_P_IP))
885 wc->network_hdr_type = RDMA_NETWORK_IPV4;
886 else
887 wc->network_hdr_type = RDMA_NETWORK_IPV6;
888
889 if (pkt->mask & RXE_IMMDT_MASK) {
890 wc->wc_flags |= IB_WC_WITH_IMM;
891 wc->ex.imm_data = immdt_imm(pkt);
892 }
893
894 if (pkt->mask & RXE_IETH_MASK) {
895 struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
896 struct rxe_mem *rmr;
897
898 wc->wc_flags |= IB_WC_WITH_INVALIDATE;
899 wc->ex.invalidate_rkey = ieth_rkey(pkt);
900
901 rmr = rxe_pool_get_index(&rxe->mr_pool,
902 wc->ex.invalidate_rkey >> 8);
903 if (unlikely(!rmr)) {
904 pr_err("Bad rkey %#x invalidation\n",
905 wc->ex.invalidate_rkey);
906 return RESPST_ERROR;
907 }
908 rmr->state = RXE_MEM_STATE_FREE;
909 }
910
911 wc->qp = &qp->ibqp;
912
913 if (pkt->mask & RXE_DETH_MASK)
914 wc->src_qp = deth_sqp(pkt);
915
916 wc->port_num = qp->attr.port_num;
917 }
918 }
919
920 /* have copy for srq and reference for !srq */
921 if (!qp->srq)
922 advance_consumer(qp->rq.queue);
923
924 qp->resp.wqe = NULL;
925
926 if (rxe_cq_post(qp->rcq, &cqe, pkt ? bth_se(pkt) : 1))
927 return RESPST_ERR_CQ_OVERFLOW;
928
929 if (qp->resp.state == QP_STATE_ERROR)
930 return RESPST_CHK_RESOURCE;
931
932 if (!pkt)
933 return RESPST_DONE;
934 else if (qp_type(qp) == IB_QPT_RC)
935 return RESPST_ACKNOWLEDGE;
936 else
937 return RESPST_CLEANUP;
938 }
939
940 static int send_ack(struct rxe_qp *qp, struct rxe_pkt_info *pkt,
941 u8 syndrome, u32 psn)
942 {
943 int err = 0;
944 struct rxe_pkt_info ack_pkt;
945 struct sk_buff *skb;
946 struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
947
948 skb = prepare_ack_packet(qp, pkt, &ack_pkt, IB_OPCODE_RC_ACKNOWLEDGE,
949 0, psn, syndrome, NULL);
950 if (!skb) {
951 err = -ENOMEM;
952 goto err1;
953 }
954
955 err = rxe_xmit_packet(rxe, qp, &ack_pkt, skb);
956 if (err) {
957 pr_err_ratelimited("Failed sending ack\n");
958 kfree_skb(skb);
959 }
960
961 err1:
962 return err;
963 }
964
965 static int send_atomic_ack(struct rxe_qp *qp, struct rxe_pkt_info *pkt,
966 u8 syndrome)
967 {
968 int rc = 0;
969 struct rxe_pkt_info ack_pkt;
970 struct sk_buff *skb;
971 struct sk_buff *skb_copy;
972 struct rxe_dev *rxe = to_rdev(qp->ibqp.device);
973 struct resp_res *res;
974
975 skb = prepare_ack_packet(qp, pkt, &ack_pkt,
976 IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE, 0, pkt->psn,
977 syndrome, NULL);
978 if (!skb) {
979 rc = -ENOMEM;
980 goto out;
981 }
982
983 skb_copy = skb_clone(skb, GFP_ATOMIC);
984 if (skb_copy)
985 rxe_add_ref(qp); /* for the new SKB */
986 else {
987 pr_warn("Could not clone atomic response\n");
988 rc = -ENOMEM;
989 goto out;
990 }
991
992 res = &qp->resp.resources[qp->resp.res_head];
993 free_rd_atomic_resource(qp, res);
994 rxe_advance_resp_resource(qp);
995
996 memcpy(SKB_TO_PKT(skb), &ack_pkt, sizeof(skb->cb));
997
998 res->type = RXE_ATOMIC_MASK;
999 res->atomic.skb = skb;
1000 res->first_psn = ack_pkt.psn;
1001 res->last_psn = ack_pkt.psn;
1002 res->cur_psn = ack_pkt.psn;
1003
1004 rc = rxe_xmit_packet(rxe, qp, &ack_pkt, skb_copy);
1005 if (rc) {
1006 pr_err_ratelimited("Failed sending ack\n");
1007 rxe_drop_ref(qp);
1008 kfree_skb(skb_copy);
1009 }
1010
1011 out:
1012 return rc;
1013 }
1014
1015 static enum resp_states acknowledge(struct rxe_qp *qp,
1016 struct rxe_pkt_info *pkt)
1017 {
1018 if (qp_type(qp) != IB_QPT_RC)
1019 return RESPST_CLEANUP;
1020
1021 if (qp->resp.aeth_syndrome != AETH_ACK_UNLIMITED)
1022 send_ack(qp, pkt, qp->resp.aeth_syndrome, pkt->psn);
1023 else if (pkt->mask & RXE_ATOMIC_MASK)
1024 send_atomic_ack(qp, pkt, AETH_ACK_UNLIMITED);
1025 else if (bth_ack(pkt))
1026 send_ack(qp, pkt, AETH_ACK_UNLIMITED, pkt->psn);
1027
1028 return RESPST_CLEANUP;
1029 }
1030
1031 static enum resp_states cleanup(struct rxe_qp *qp,
1032 struct rxe_pkt_info *pkt)
1033 {
1034 struct sk_buff *skb;
1035
1036 if (pkt) {
1037 skb = skb_dequeue(&qp->req_pkts);
1038 rxe_drop_ref(qp);
1039 kfree_skb(skb);
1040 }
1041
1042 if (qp->resp.mr) {
1043 rxe_drop_ref(qp->resp.mr);
1044 qp->resp.mr = NULL;
1045 }
1046
1047 return RESPST_DONE;
1048 }
1049
1050 static struct resp_res *find_resource(struct rxe_qp *qp, u32 psn)
1051 {
1052 int i;
1053
1054 for (i = 0; i < qp->attr.max_rd_atomic; i++) {
1055 struct resp_res *res = &qp->resp.resources[i];
1056
1057 if (res->type == 0)
1058 continue;
1059
1060 if (psn_compare(psn, res->first_psn) >= 0 &&
1061 psn_compare(psn, res->last_psn) <= 0) {
1062 return res;
1063 }
1064 }
1065
1066 return NULL;
1067 }
1068
1069 static enum resp_states duplicate_request(struct rxe_qp *qp,
1070 struct rxe_pkt_info *pkt)
1071 {
1072 enum resp_states rc;
1073 u32 prev_psn = (qp->resp.psn - 1) & BTH_PSN_MASK;
1074
1075 if (pkt->mask & RXE_SEND_MASK ||
1076 pkt->mask & RXE_WRITE_MASK) {
1077 /* SEND. Ack again and cleanup. C9-105. */
1078 if (bth_ack(pkt))
1079 send_ack(qp, pkt, AETH_ACK_UNLIMITED, prev_psn);
1080 rc = RESPST_CLEANUP;
1081 goto out;
1082 } else if (pkt->mask & RXE_READ_MASK) {
1083 struct resp_res *res;
1084
1085 res = find_resource(qp, pkt->psn);
1086 if (!res) {
1087 /* Resource not found. Class D error. Drop the
1088 * request.
1089 */
1090 rc = RESPST_CLEANUP;
1091 goto out;
1092 } else {
1093 /* Ensure this new request is the same as the previous
1094 * one or a subset of it.
1095 */
1096 u64 iova = reth_va(pkt);
1097 u32 resid = reth_len(pkt);
1098
1099 if (iova < res->read.va_org ||
1100 resid > res->read.length ||
1101 (iova + resid) > (res->read.va_org +
1102 res->read.length)) {
1103 rc = RESPST_CLEANUP;
1104 goto out;
1105 }
1106
1107 if (reth_rkey(pkt) != res->read.rkey) {
1108 rc = RESPST_CLEANUP;
1109 goto out;
1110 }
1111
1112 res->cur_psn = pkt->psn;
1113 res->state = (pkt->psn == res->first_psn) ?
1114 rdatm_res_state_new :
1115 rdatm_res_state_replay;
1116
1117 /* Reset the resource, except length. */
1118 res->read.va_org = iova;
1119 res->read.va = iova;
1120 res->read.resid = resid;
1121
1122 /* Replay the RDMA read reply. */
1123 qp->resp.res = res;
1124 rc = RESPST_READ_REPLY;
1125 goto out;
1126 }
1127 } else {
1128 struct resp_res *res;
1129
1130 /* Find the operation in our list of responder resources. */
1131 res = find_resource(qp, pkt->psn);
1132 if (res) {
1133 struct sk_buff *skb_copy;
1134
1135 skb_copy = skb_clone(res->atomic.skb, GFP_ATOMIC);
1136 if (skb_copy) {
1137 rxe_add_ref(qp); /* for the new SKB */
1138 } else {
1139 pr_warn("Couldn't clone atomic resp\n");
1140 rc = RESPST_CLEANUP;
1141 goto out;
1142 }
1143
1144 /* Resend the result. */
1145 rc = rxe_xmit_packet(to_rdev(qp->ibqp.device), qp,
1146 pkt, skb_copy);
1147 if (rc) {
1148 pr_err("Failed resending result. This flow is not handled - skb ignored\n");
1149 rxe_drop_ref(qp);
1150 kfree_skb(skb_copy);
1151 rc = RESPST_CLEANUP;
1152 goto out;
1153 }
1154 }
1155
1156 /* Resource not found. Class D error. Drop the request. */
1157 rc = RESPST_CLEANUP;
1158 goto out;
1159 }
1160 out:
1161 return rc;
1162 }
1163
1164 /* Process a class A or C. Both are treated the same in this implementation. */
1165 static void do_class_ac_error(struct rxe_qp *qp, u8 syndrome,
1166 enum ib_wc_status status)
1167 {
1168 qp->resp.aeth_syndrome = syndrome;
1169 qp->resp.status = status;
1170
1171 /* indicate that we should go through the ERROR state */
1172 qp->resp.goto_error = 1;
1173 }
1174
1175 static enum resp_states do_class_d1e_error(struct rxe_qp *qp)
1176 {
1177 /* UC */
1178 if (qp->srq) {
1179 /* Class E */
1180 qp->resp.drop_msg = 1;
1181 if (qp->resp.wqe) {
1182 qp->resp.status = IB_WC_REM_INV_REQ_ERR;
1183 return RESPST_COMPLETE;
1184 } else {
1185 return RESPST_CLEANUP;
1186 }
1187 } else {
1188 /* Class D1. This packet may be the start of a
1189 * new message and could be valid. The previous
1190 * message is invalid and ignored. reset the
1191 * recv wr to its original state
1192 */
1193 if (qp->resp.wqe) {
1194 qp->resp.wqe->dma.resid = qp->resp.wqe->dma.length;
1195 qp->resp.wqe->dma.cur_sge = 0;
1196 qp->resp.wqe->dma.sge_offset = 0;
1197 qp->resp.opcode = -1;
1198 }
1199
1200 if (qp->resp.mr) {
1201 rxe_drop_ref(qp->resp.mr);
1202 qp->resp.mr = NULL;
1203 }
1204
1205 return RESPST_CLEANUP;
1206 }
1207 }
1208
1209 int rxe_responder(void *arg)
1210 {
1211 struct rxe_qp *qp = (struct rxe_qp *)arg;
1212 enum resp_states state;
1213 struct rxe_pkt_info *pkt = NULL;
1214 int ret = 0;
1215
1216 rxe_add_ref(qp);
1217
1218 qp->resp.aeth_syndrome = AETH_ACK_UNLIMITED;
1219
1220 if (!qp->valid) {
1221 ret = -EINVAL;
1222 goto done;
1223 }
1224
1225 switch (qp->resp.state) {
1226 case QP_STATE_RESET:
1227 state = RESPST_RESET;
1228 break;
1229
1230 default:
1231 state = RESPST_GET_REQ;
1232 break;
1233 }
1234
1235 while (1) {
1236 pr_debug("qp#%d state = %s\n", qp_num(qp),
1237 resp_state_name[state]);
1238 switch (state) {
1239 case RESPST_GET_REQ:
1240 state = get_req(qp, &pkt);
1241 break;
1242 case RESPST_CHK_PSN:
1243 state = check_psn(qp, pkt);
1244 break;
1245 case RESPST_CHK_OP_SEQ:
1246 state = check_op_seq(qp, pkt);
1247 break;
1248 case RESPST_CHK_OP_VALID:
1249 state = check_op_valid(qp, pkt);
1250 break;
1251 case RESPST_CHK_RESOURCE:
1252 state = check_resource(qp, pkt);
1253 break;
1254 case RESPST_CHK_LENGTH:
1255 state = check_length(qp, pkt);
1256 break;
1257 case RESPST_CHK_RKEY:
1258 state = check_rkey(qp, pkt);
1259 break;
1260 case RESPST_EXECUTE:
1261 state = execute(qp, pkt);
1262 break;
1263 case RESPST_COMPLETE:
1264 state = do_complete(qp, pkt);
1265 break;
1266 case RESPST_READ_REPLY:
1267 state = read_reply(qp, pkt);
1268 break;
1269 case RESPST_ACKNOWLEDGE:
1270 state = acknowledge(qp, pkt);
1271 break;
1272 case RESPST_CLEANUP:
1273 state = cleanup(qp, pkt);
1274 break;
1275 case RESPST_DUPLICATE_REQUEST:
1276 state = duplicate_request(qp, pkt);
1277 break;
1278 case RESPST_ERR_PSN_OUT_OF_SEQ:
1279 /* RC only - Class B. Drop packet. */
1280 send_ack(qp, pkt, AETH_NAK_PSN_SEQ_ERROR, qp->resp.psn);
1281 state = RESPST_CLEANUP;
1282 break;
1283
1284 case RESPST_ERR_TOO_MANY_RDMA_ATM_REQ:
1285 case RESPST_ERR_MISSING_OPCODE_FIRST:
1286 case RESPST_ERR_MISSING_OPCODE_LAST_C:
1287 case RESPST_ERR_UNSUPPORTED_OPCODE:
1288 case RESPST_ERR_MISALIGNED_ATOMIC:
1289 /* RC Only - Class C. */
1290 do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
1291 IB_WC_REM_INV_REQ_ERR);
1292 state = RESPST_COMPLETE;
1293 break;
1294
1295 case RESPST_ERR_MISSING_OPCODE_LAST_D1E:
1296 state = do_class_d1e_error(qp);
1297 break;
1298 case RESPST_ERR_RNR:
1299 if (qp_type(qp) == IB_QPT_RC) {
1300 /* RC - class B */
1301 send_ack(qp, pkt, AETH_RNR_NAK |
1302 (~AETH_TYPE_MASK &
1303 qp->attr.min_rnr_timer),
1304 pkt->psn);
1305 } else {
1306 /* UD/UC - class D */
1307 qp->resp.drop_msg = 1;
1308 }
1309 state = RESPST_CLEANUP;
1310 break;
1311
1312 case RESPST_ERR_RKEY_VIOLATION:
1313 if (qp_type(qp) == IB_QPT_RC) {
1314 /* Class C */
1315 do_class_ac_error(qp, AETH_NAK_REM_ACC_ERR,
1316 IB_WC_REM_ACCESS_ERR);
1317 state = RESPST_COMPLETE;
1318 } else {
1319 qp->resp.drop_msg = 1;
1320 if (qp->srq) {
1321 /* UC/SRQ Class D */
1322 qp->resp.status = IB_WC_REM_ACCESS_ERR;
1323 state = RESPST_COMPLETE;
1324 } else {
1325 /* UC/non-SRQ Class E. */
1326 state = RESPST_CLEANUP;
1327 }
1328 }
1329 break;
1330
1331 case RESPST_ERR_LENGTH:
1332 if (qp_type(qp) == IB_QPT_RC) {
1333 /* Class C */
1334 do_class_ac_error(qp, AETH_NAK_INVALID_REQ,
1335 IB_WC_REM_INV_REQ_ERR);
1336 state = RESPST_COMPLETE;
1337 } else if (qp->srq) {
1338 /* UC/UD - class E */
1339 qp->resp.status = IB_WC_REM_INV_REQ_ERR;
1340 state = RESPST_COMPLETE;
1341 } else {
1342 /* UC/UD - class D */
1343 qp->resp.drop_msg = 1;
1344 state = RESPST_CLEANUP;
1345 }
1346 break;
1347
1348 case RESPST_ERR_MALFORMED_WQE:
1349 /* All, Class A. */
1350 do_class_ac_error(qp, AETH_NAK_REM_OP_ERR,
1351 IB_WC_LOC_QP_OP_ERR);
1352 state = RESPST_COMPLETE;
1353 break;
1354
1355 case RESPST_ERR_CQ_OVERFLOW:
1356 /* All - Class G */
1357 state = RESPST_ERROR;
1358 break;
1359
1360 case RESPST_DONE:
1361 if (qp->resp.goto_error) {
1362 state = RESPST_ERROR;
1363 break;
1364 }
1365
1366 goto done;
1367
1368 case RESPST_EXIT:
1369 if (qp->resp.goto_error) {
1370 state = RESPST_ERROR;
1371 break;
1372 }
1373
1374 goto exit;
1375
1376 case RESPST_RESET: {
1377 struct sk_buff *skb;
1378
1379 while ((skb = skb_dequeue(&qp->req_pkts))) {
1380 rxe_drop_ref(qp);
1381 kfree_skb(skb);
1382 }
1383
1384 while (!qp->srq && qp->rq.queue &&
1385 queue_head(qp->rq.queue))
1386 advance_consumer(qp->rq.queue);
1387
1388 qp->resp.wqe = NULL;
1389 goto exit;
1390 }
1391
1392 case RESPST_ERROR:
1393 qp->resp.goto_error = 0;
1394 pr_warn("qp#%d moved to error state\n", qp_num(qp));
1395 rxe_qp_error(qp);
1396 goto exit;
1397
1398 default:
1399 WARN_ON(1);
1400 }
1401 }
1402
1403 exit:
1404 ret = -EAGAIN;
1405 done:
1406 rxe_drop_ref(qp);
1407 return ret;
1408 }