x86/irq, trace: Add __irq_entry annotation to x86's platform IRQ handlers
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / infiniband / hw / cxgb4 / cm.c
1 /*
2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49
50 #include <rdma/ib_addr.h>
51
52 #include <libcxgb_cm.h>
53 #include "iw_cxgb4.h"
54 #include "clip_tbl.h"
55
56 static char *states[] = {
57 "idle",
58 "listen",
59 "connecting",
60 "mpa_wait_req",
61 "mpa_req_sent",
62 "mpa_req_rcvd",
63 "mpa_rep_sent",
64 "fpdu_mode",
65 "aborting",
66 "closing",
67 "moribund",
68 "dead",
69 NULL,
70 };
71
72 static int nocong;
73 module_param(nocong, int, 0644);
74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
75
76 static int enable_ecn;
77 module_param(enable_ecn, int, 0644);
78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
79
80 static int dack_mode = 1;
81 module_param(dack_mode, int, 0644);
82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
83
84 uint c4iw_max_read_depth = 32;
85 module_param(c4iw_max_read_depth, int, 0644);
86 MODULE_PARM_DESC(c4iw_max_read_depth,
87 "Per-connection max ORD/IRD (default=32)");
88
89 static int enable_tcp_timestamps;
90 module_param(enable_tcp_timestamps, int, 0644);
91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
92
93 static int enable_tcp_sack;
94 module_param(enable_tcp_sack, int, 0644);
95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
96
97 static int enable_tcp_window_scaling = 1;
98 module_param(enable_tcp_window_scaling, int, 0644);
99 MODULE_PARM_DESC(enable_tcp_window_scaling,
100 "Enable tcp window scaling (default=1)");
101
102 int c4iw_debug;
103 module_param(c4iw_debug, int, 0644);
104 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)");
105
106 static int peer2peer = 1;
107 module_param(peer2peer, int, 0644);
108 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
109
110 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
111 module_param(p2p_type, int, 0644);
112 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
113 "1=RDMA_READ 0=RDMA_WRITE (default 1)");
114
115 static int ep_timeout_secs = 60;
116 module_param(ep_timeout_secs, int, 0644);
117 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
118 "in seconds (default=60)");
119
120 static int mpa_rev = 2;
121 module_param(mpa_rev, int, 0644);
122 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
123 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
124 " compliant (default=2)");
125
126 static int markers_enabled;
127 module_param(markers_enabled, int, 0644);
128 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
129
130 static int crc_enabled = 1;
131 module_param(crc_enabled, int, 0644);
132 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
133
134 static int rcv_win = 256 * 1024;
135 module_param(rcv_win, int, 0644);
136 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
137
138 static int snd_win = 128 * 1024;
139 module_param(snd_win, int, 0644);
140 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
141
142 static struct workqueue_struct *workq;
143
144 static struct sk_buff_head rxq;
145
146 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
147 static void ep_timeout(unsigned long arg);
148 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
149 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
150
151 static LIST_HEAD(timeout_list);
152 static spinlock_t timeout_lock;
153
154 static void deref_cm_id(struct c4iw_ep_common *epc)
155 {
156 epc->cm_id->rem_ref(epc->cm_id);
157 epc->cm_id = NULL;
158 set_bit(CM_ID_DEREFED, &epc->history);
159 }
160
161 static void ref_cm_id(struct c4iw_ep_common *epc)
162 {
163 set_bit(CM_ID_REFED, &epc->history);
164 epc->cm_id->add_ref(epc->cm_id);
165 }
166
167 static void deref_qp(struct c4iw_ep *ep)
168 {
169 c4iw_qp_rem_ref(&ep->com.qp->ibqp);
170 clear_bit(QP_REFERENCED, &ep->com.flags);
171 set_bit(QP_DEREFED, &ep->com.history);
172 }
173
174 static void ref_qp(struct c4iw_ep *ep)
175 {
176 set_bit(QP_REFERENCED, &ep->com.flags);
177 set_bit(QP_REFED, &ep->com.history);
178 c4iw_qp_add_ref(&ep->com.qp->ibqp);
179 }
180
181 static void start_ep_timer(struct c4iw_ep *ep)
182 {
183 PDBG("%s ep %p\n", __func__, ep);
184 if (timer_pending(&ep->timer)) {
185 pr_err("%s timer already started! ep %p\n",
186 __func__, ep);
187 return;
188 }
189 clear_bit(TIMEOUT, &ep->com.flags);
190 c4iw_get_ep(&ep->com);
191 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
192 ep->timer.data = (unsigned long)ep;
193 ep->timer.function = ep_timeout;
194 add_timer(&ep->timer);
195 }
196
197 static int stop_ep_timer(struct c4iw_ep *ep)
198 {
199 PDBG("%s ep %p stopping\n", __func__, ep);
200 del_timer_sync(&ep->timer);
201 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
202 c4iw_put_ep(&ep->com);
203 return 0;
204 }
205 return 1;
206 }
207
208 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
209 struct l2t_entry *l2e)
210 {
211 int error = 0;
212
213 if (c4iw_fatal_error(rdev)) {
214 kfree_skb(skb);
215 PDBG("%s - device in error state - dropping\n", __func__);
216 return -EIO;
217 }
218 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
219 if (error < 0)
220 kfree_skb(skb);
221 else if (error == NET_XMIT_DROP)
222 return -ENOMEM;
223 return error < 0 ? error : 0;
224 }
225
226 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
227 {
228 int error = 0;
229
230 if (c4iw_fatal_error(rdev)) {
231 kfree_skb(skb);
232 PDBG("%s - device in error state - dropping\n", __func__);
233 return -EIO;
234 }
235 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
236 if (error < 0)
237 kfree_skb(skb);
238 return error < 0 ? error : 0;
239 }
240
241 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
242 {
243 u32 len = roundup(sizeof(struct cpl_tid_release), 16);
244
245 skb = get_skb(skb, len, GFP_KERNEL);
246 if (!skb)
247 return;
248
249 cxgb_mk_tid_release(skb, len, hwtid, 0);
250 c4iw_ofld_send(rdev, skb);
251 return;
252 }
253
254 static void set_emss(struct c4iw_ep *ep, u16 opt)
255 {
256 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
257 ((AF_INET == ep->com.remote_addr.ss_family) ?
258 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
259 sizeof(struct tcphdr);
260 ep->mss = ep->emss;
261 if (TCPOPT_TSTAMP_G(opt))
262 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
263 if (ep->emss < 128)
264 ep->emss = 128;
265 if (ep->emss & 7)
266 PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n",
267 TCPOPT_MSS_G(opt), ep->mss, ep->emss);
268 PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt),
269 ep->mss, ep->emss);
270 }
271
272 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
273 {
274 enum c4iw_ep_state state;
275
276 mutex_lock(&epc->mutex);
277 state = epc->state;
278 mutex_unlock(&epc->mutex);
279 return state;
280 }
281
282 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
283 {
284 epc->state = new;
285 }
286
287 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
288 {
289 mutex_lock(&epc->mutex);
290 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
291 __state_set(epc, new);
292 mutex_unlock(&epc->mutex);
293 return;
294 }
295
296 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
297 {
298 struct sk_buff *skb;
299 unsigned int i;
300 size_t len;
301
302 len = roundup(sizeof(union cpl_wr_size), 16);
303 for (i = 0; i < size; i++) {
304 skb = alloc_skb(len, GFP_KERNEL);
305 if (!skb)
306 goto fail;
307 skb_queue_tail(ep_skb_list, skb);
308 }
309 return 0;
310 fail:
311 skb_queue_purge(ep_skb_list);
312 return -ENOMEM;
313 }
314
315 static void *alloc_ep(int size, gfp_t gfp)
316 {
317 struct c4iw_ep_common *epc;
318
319 epc = kzalloc(size, gfp);
320 if (epc) {
321 kref_init(&epc->kref);
322 mutex_init(&epc->mutex);
323 c4iw_init_wr_wait(&epc->wr_wait);
324 }
325 PDBG("%s alloc ep %p\n", __func__, epc);
326 return epc;
327 }
328
329 static void remove_ep_tid(struct c4iw_ep *ep)
330 {
331 unsigned long flags;
332
333 spin_lock_irqsave(&ep->com.dev->lock, flags);
334 _remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0);
335 if (idr_is_empty(&ep->com.dev->hwtid_idr))
336 wake_up(&ep->com.dev->wait);
337 spin_unlock_irqrestore(&ep->com.dev->lock, flags);
338 }
339
340 static void insert_ep_tid(struct c4iw_ep *ep)
341 {
342 unsigned long flags;
343
344 spin_lock_irqsave(&ep->com.dev->lock, flags);
345 _insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0);
346 spin_unlock_irqrestore(&ep->com.dev->lock, flags);
347 }
348
349 /*
350 * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
351 */
352 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
353 {
354 struct c4iw_ep *ep;
355 unsigned long flags;
356
357 spin_lock_irqsave(&dev->lock, flags);
358 ep = idr_find(&dev->hwtid_idr, tid);
359 if (ep)
360 c4iw_get_ep(&ep->com);
361 spin_unlock_irqrestore(&dev->lock, flags);
362 return ep;
363 }
364
365 /*
366 * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
367 */
368 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
369 unsigned int stid)
370 {
371 struct c4iw_listen_ep *ep;
372 unsigned long flags;
373
374 spin_lock_irqsave(&dev->lock, flags);
375 ep = idr_find(&dev->stid_idr, stid);
376 if (ep)
377 c4iw_get_ep(&ep->com);
378 spin_unlock_irqrestore(&dev->lock, flags);
379 return ep;
380 }
381
382 void _c4iw_free_ep(struct kref *kref)
383 {
384 struct c4iw_ep *ep;
385
386 ep = container_of(kref, struct c4iw_ep, com.kref);
387 PDBG("%s ep %p state %s\n", __func__, ep, states[ep->com.state]);
388 if (test_bit(QP_REFERENCED, &ep->com.flags))
389 deref_qp(ep);
390 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
391 if (ep->com.remote_addr.ss_family == AF_INET6) {
392 struct sockaddr_in6 *sin6 =
393 (struct sockaddr_in6 *)
394 &ep->com.local_addr;
395
396 cxgb4_clip_release(
397 ep->com.dev->rdev.lldi.ports[0],
398 (const u32 *)&sin6->sin6_addr.s6_addr,
399 1);
400 }
401 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
402 dst_release(ep->dst);
403 cxgb4_l2t_release(ep->l2t);
404 if (ep->mpa_skb)
405 kfree_skb(ep->mpa_skb);
406 }
407 if (!skb_queue_empty(&ep->com.ep_skb_list))
408 skb_queue_purge(&ep->com.ep_skb_list);
409 kfree(ep);
410 }
411
412 static void release_ep_resources(struct c4iw_ep *ep)
413 {
414 set_bit(RELEASE_RESOURCES, &ep->com.flags);
415
416 /*
417 * If we have a hwtid, then remove it from the idr table
418 * so lookups will no longer find this endpoint. Otherwise
419 * we have a race where one thread finds the ep ptr just
420 * before the other thread is freeing the ep memory.
421 */
422 if (ep->hwtid != -1)
423 remove_ep_tid(ep);
424 c4iw_put_ep(&ep->com);
425 }
426
427 static int status2errno(int status)
428 {
429 switch (status) {
430 case CPL_ERR_NONE:
431 return 0;
432 case CPL_ERR_CONN_RESET:
433 return -ECONNRESET;
434 case CPL_ERR_ARP_MISS:
435 return -EHOSTUNREACH;
436 case CPL_ERR_CONN_TIMEDOUT:
437 return -ETIMEDOUT;
438 case CPL_ERR_TCAM_FULL:
439 return -ENOMEM;
440 case CPL_ERR_CONN_EXIST:
441 return -EADDRINUSE;
442 default:
443 return -EIO;
444 }
445 }
446
447 /*
448 * Try and reuse skbs already allocated...
449 */
450 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
451 {
452 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
453 skb_trim(skb, 0);
454 skb_get(skb);
455 skb_reset_transport_header(skb);
456 } else {
457 skb = alloc_skb(len, gfp);
458 }
459 t4_set_arp_err_handler(skb, NULL, NULL);
460 return skb;
461 }
462
463 static struct net_device *get_real_dev(struct net_device *egress_dev)
464 {
465 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
466 }
467
468 static void arp_failure_discard(void *handle, struct sk_buff *skb)
469 {
470 pr_err(MOD "ARP failure\n");
471 kfree_skb(skb);
472 }
473
474 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
475 {
476 pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
477 }
478
479 enum {
480 NUM_FAKE_CPLS = 2,
481 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
482 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
483 };
484
485 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
486 {
487 struct c4iw_ep *ep;
488
489 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
490 release_ep_resources(ep);
491 return 0;
492 }
493
494 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
495 {
496 struct c4iw_ep *ep;
497
498 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
499 c4iw_put_ep(&ep->parent_ep->com);
500 release_ep_resources(ep);
501 return 0;
502 }
503
504 /*
505 * Fake up a special CPL opcode and call sched() so process_work() will call
506 * _put_ep_safe() in a safe context to free the ep resources. This is needed
507 * because ARP error handlers are called in an ATOMIC context, and
508 * _c4iw_free_ep() needs to block.
509 */
510 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
511 int cpl)
512 {
513 struct cpl_act_establish *rpl = cplhdr(skb);
514
515 /* Set our special ARP_FAILURE opcode */
516 rpl->ot.opcode = cpl;
517
518 /*
519 * Save ep in the skb->cb area, after where sched() will save the dev
520 * ptr.
521 */
522 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
523 sched(ep->com.dev, skb);
524 }
525
526 /* Handle an ARP failure for an accept */
527 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
528 {
529 struct c4iw_ep *ep = handle;
530
531 pr_err(MOD "ARP failure during accept - tid %u -dropping connection\n",
532 ep->hwtid);
533
534 __state_set(&ep->com, DEAD);
535 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
536 }
537
538 /*
539 * Handle an ARP failure for an active open.
540 */
541 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
542 {
543 struct c4iw_ep *ep = handle;
544
545 printk(KERN_ERR MOD "ARP failure during connect\n");
546 connect_reply_upcall(ep, -EHOSTUNREACH);
547 __state_set(&ep->com, DEAD);
548 if (ep->com.remote_addr.ss_family == AF_INET6) {
549 struct sockaddr_in6 *sin6 =
550 (struct sockaddr_in6 *)&ep->com.local_addr;
551 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
552 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
553 }
554 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
555 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
556 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
557 }
558
559 /*
560 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
561 * and send it along.
562 */
563 static void abort_arp_failure(void *handle, struct sk_buff *skb)
564 {
565 int ret;
566 struct c4iw_ep *ep = handle;
567 struct c4iw_rdev *rdev = &ep->com.dev->rdev;
568 struct cpl_abort_req *req = cplhdr(skb);
569
570 PDBG("%s rdev %p\n", __func__, rdev);
571 req->cmd = CPL_ABORT_NO_RST;
572 ret = c4iw_ofld_send(rdev, skb);
573 if (ret) {
574 __state_set(&ep->com, DEAD);
575 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
576 }
577 }
578
579 static int send_flowc(struct c4iw_ep *ep)
580 {
581 struct fw_flowc_wr *flowc;
582 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
583 int i;
584 u16 vlan = ep->l2t->vlan;
585 int nparams;
586
587 if (WARN_ON(!skb))
588 return -ENOMEM;
589
590 if (vlan == CPL_L2T_VLAN_NONE)
591 nparams = 8;
592 else
593 nparams = 9;
594
595 flowc = (struct fw_flowc_wr *)__skb_put(skb, FLOWC_LEN);
596
597 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
598 FW_FLOWC_WR_NPARAMS_V(nparams));
599 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN,
600 16)) | FW_WR_FLOWID_V(ep->hwtid));
601
602 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
603 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
604 (ep->com.dev->rdev.lldi.pf));
605 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
606 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
607 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
608 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
609 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
610 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
611 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
612 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
613 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
614 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
615 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
616 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
617 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
618 flowc->mnemval[7].val = cpu_to_be32(ep->emss);
619 if (nparams == 9) {
620 u16 pri;
621
622 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
623 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
624 flowc->mnemval[8].val = cpu_to_be32(pri);
625 } else {
626 /* Pad WR to 16 byte boundary */
627 flowc->mnemval[8].mnemonic = 0;
628 flowc->mnemval[8].val = 0;
629 }
630 for (i = 0; i < 9; i++) {
631 flowc->mnemval[i].r4[0] = 0;
632 flowc->mnemval[i].r4[1] = 0;
633 flowc->mnemval[i].r4[2] = 0;
634 }
635
636 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
637 return c4iw_ofld_send(&ep->com.dev->rdev, skb);
638 }
639
640 static int send_halfclose(struct c4iw_ep *ep)
641 {
642 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
643 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16);
644
645 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
646 if (WARN_ON(!skb))
647 return -ENOMEM;
648
649 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx,
650 NULL, arp_failure_discard);
651
652 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
653 }
654
655 static int send_abort(struct c4iw_ep *ep)
656 {
657 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16);
658 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
659
660 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
661 if (WARN_ON(!req_skb))
662 return -ENOMEM;
663
664 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx,
665 ep, abort_arp_failure);
666
667 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
668 }
669
670 static int send_connect(struct c4iw_ep *ep)
671 {
672 struct cpl_act_open_req *req = NULL;
673 struct cpl_t5_act_open_req *t5req = NULL;
674 struct cpl_t6_act_open_req *t6req = NULL;
675 struct cpl_act_open_req6 *req6 = NULL;
676 struct cpl_t5_act_open_req6 *t5req6 = NULL;
677 struct cpl_t6_act_open_req6 *t6req6 = NULL;
678 struct sk_buff *skb;
679 u64 opt0;
680 u32 opt2;
681 unsigned int mtu_idx;
682 u32 wscale;
683 int win, sizev4, sizev6, wrlen;
684 struct sockaddr_in *la = (struct sockaddr_in *)
685 &ep->com.local_addr;
686 struct sockaddr_in *ra = (struct sockaddr_in *)
687 &ep->com.remote_addr;
688 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
689 &ep->com.local_addr;
690 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
691 &ep->com.remote_addr;
692 int ret;
693 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
694 u32 isn = (prandom_u32() & ~7UL) - 1;
695
696 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
697 case CHELSIO_T4:
698 sizev4 = sizeof(struct cpl_act_open_req);
699 sizev6 = sizeof(struct cpl_act_open_req6);
700 break;
701 case CHELSIO_T5:
702 sizev4 = sizeof(struct cpl_t5_act_open_req);
703 sizev6 = sizeof(struct cpl_t5_act_open_req6);
704 break;
705 case CHELSIO_T6:
706 sizev4 = sizeof(struct cpl_t6_act_open_req);
707 sizev6 = sizeof(struct cpl_t6_act_open_req6);
708 break;
709 default:
710 pr_err("T%d Chip is not supported\n",
711 CHELSIO_CHIP_VERSION(adapter_type));
712 return -EINVAL;
713 }
714
715 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
716 roundup(sizev4, 16) :
717 roundup(sizev6, 16);
718
719 PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid);
720
721 skb = get_skb(NULL, wrlen, GFP_KERNEL);
722 if (!skb) {
723 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
724 __func__);
725 return -ENOMEM;
726 }
727 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
728
729 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
730 enable_tcp_timestamps,
731 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
732 wscale = cxgb_compute_wscale(rcv_win);
733
734 /*
735 * Specify the largest window that will fit in opt0. The
736 * remainder will be specified in the rx_data_ack.
737 */
738 win = ep->rcv_win >> 10;
739 if (win > RCV_BUFSIZ_M)
740 win = RCV_BUFSIZ_M;
741
742 opt0 = (nocong ? NO_CONG_F : 0) |
743 KEEP_ALIVE_F |
744 DELACK_F |
745 WND_SCALE_V(wscale) |
746 MSS_IDX_V(mtu_idx) |
747 L2T_IDX_V(ep->l2t->idx) |
748 TX_CHAN_V(ep->tx_chan) |
749 SMAC_SEL_V(ep->smac_idx) |
750 DSCP_V(ep->tos >> 2) |
751 ULP_MODE_V(ULP_MODE_TCPDDP) |
752 RCV_BUFSIZ_V(win);
753 opt2 = RX_CHANNEL_V(0) |
754 CCTRL_ECN_V(enable_ecn) |
755 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
756 if (enable_tcp_timestamps)
757 opt2 |= TSTAMPS_EN_F;
758 if (enable_tcp_sack)
759 opt2 |= SACK_EN_F;
760 if (wscale && enable_tcp_window_scaling)
761 opt2 |= WND_SCALE_EN_F;
762 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
763 if (peer2peer)
764 isn += 4;
765
766 opt2 |= T5_OPT_2_VALID_F;
767 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
768 opt2 |= T5_ISS_F;
769 }
770
771 if (ep->com.remote_addr.ss_family == AF_INET6)
772 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
773 (const u32 *)&la6->sin6_addr.s6_addr, 1);
774
775 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
776
777 if (ep->com.remote_addr.ss_family == AF_INET) {
778 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
779 case CHELSIO_T4:
780 req = (struct cpl_act_open_req *)skb_put(skb, wrlen);
781 INIT_TP_WR(req, 0);
782 break;
783 case CHELSIO_T5:
784 t5req = (struct cpl_t5_act_open_req *)skb_put(skb,
785 wrlen);
786 INIT_TP_WR(t5req, 0);
787 req = (struct cpl_act_open_req *)t5req;
788 break;
789 case CHELSIO_T6:
790 t6req = (struct cpl_t6_act_open_req *)skb_put(skb,
791 wrlen);
792 INIT_TP_WR(t6req, 0);
793 req = (struct cpl_act_open_req *)t6req;
794 t5req = (struct cpl_t5_act_open_req *)t6req;
795 break;
796 default:
797 pr_err("T%d Chip is not supported\n",
798 CHELSIO_CHIP_VERSION(adapter_type));
799 ret = -EINVAL;
800 goto clip_release;
801 }
802
803 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
804 ((ep->rss_qid<<14) | ep->atid)));
805 req->local_port = la->sin_port;
806 req->peer_port = ra->sin_port;
807 req->local_ip = la->sin_addr.s_addr;
808 req->peer_ip = ra->sin_addr.s_addr;
809 req->opt0 = cpu_to_be64(opt0);
810
811 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
812 req->params = cpu_to_be32(cxgb4_select_ntuple(
813 ep->com.dev->rdev.lldi.ports[0],
814 ep->l2t));
815 req->opt2 = cpu_to_be32(opt2);
816 } else {
817 t5req->params = cpu_to_be64(FILTER_TUPLE_V(
818 cxgb4_select_ntuple(
819 ep->com.dev->rdev.lldi.ports[0],
820 ep->l2t)));
821 t5req->rsvd = cpu_to_be32(isn);
822 PDBG("%s snd_isn %u\n", __func__, t5req->rsvd);
823 t5req->opt2 = cpu_to_be32(opt2);
824 }
825 } else {
826 switch (CHELSIO_CHIP_VERSION(adapter_type)) {
827 case CHELSIO_T4:
828 req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen);
829 INIT_TP_WR(req6, 0);
830 break;
831 case CHELSIO_T5:
832 t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb,
833 wrlen);
834 INIT_TP_WR(t5req6, 0);
835 req6 = (struct cpl_act_open_req6 *)t5req6;
836 break;
837 case CHELSIO_T6:
838 t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb,
839 wrlen);
840 INIT_TP_WR(t6req6, 0);
841 req6 = (struct cpl_act_open_req6 *)t6req6;
842 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
843 break;
844 default:
845 pr_err("T%d Chip is not supported\n",
846 CHELSIO_CHIP_VERSION(adapter_type));
847 ret = -EINVAL;
848 goto clip_release;
849 }
850
851 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
852 ((ep->rss_qid<<14)|ep->atid)));
853 req6->local_port = la6->sin6_port;
854 req6->peer_port = ra6->sin6_port;
855 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
856 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
857 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
858 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
859 req6->opt0 = cpu_to_be64(opt0);
860
861 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
862 req6->params = cpu_to_be32(cxgb4_select_ntuple(
863 ep->com.dev->rdev.lldi.ports[0],
864 ep->l2t));
865 req6->opt2 = cpu_to_be32(opt2);
866 } else {
867 t5req6->params = cpu_to_be64(FILTER_TUPLE_V(
868 cxgb4_select_ntuple(
869 ep->com.dev->rdev.lldi.ports[0],
870 ep->l2t)));
871 t5req6->rsvd = cpu_to_be32(isn);
872 PDBG("%s snd_isn %u\n", __func__, t5req6->rsvd);
873 t5req6->opt2 = cpu_to_be32(opt2);
874 }
875 }
876
877 set_bit(ACT_OPEN_REQ, &ep->com.history);
878 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
879 clip_release:
880 if (ret && ep->com.remote_addr.ss_family == AF_INET6)
881 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
882 (const u32 *)&la6->sin6_addr.s6_addr, 1);
883 return ret;
884 }
885
886 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
887 u8 mpa_rev_to_use)
888 {
889 int mpalen, wrlen, ret;
890 struct fw_ofld_tx_data_wr *req;
891 struct mpa_message *mpa;
892 struct mpa_v2_conn_params mpa_v2_params;
893
894 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
895
896 BUG_ON(skb_cloned(skb));
897
898 mpalen = sizeof(*mpa) + ep->plen;
899 if (mpa_rev_to_use == 2)
900 mpalen += sizeof(struct mpa_v2_conn_params);
901 wrlen = roundup(mpalen + sizeof *req, 16);
902 skb = get_skb(skb, wrlen, GFP_KERNEL);
903 if (!skb) {
904 connect_reply_upcall(ep, -ENOMEM);
905 return -ENOMEM;
906 }
907 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
908
909 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
910 memset(req, 0, wrlen);
911 req->op_to_immdlen = cpu_to_be32(
912 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
913 FW_WR_COMPL_F |
914 FW_WR_IMMDLEN_V(mpalen));
915 req->flowid_len16 = cpu_to_be32(
916 FW_WR_FLOWID_V(ep->hwtid) |
917 FW_WR_LEN16_V(wrlen >> 4));
918 req->plen = cpu_to_be32(mpalen);
919 req->tunnel_to_proxy = cpu_to_be32(
920 FW_OFLD_TX_DATA_WR_FLUSH_F |
921 FW_OFLD_TX_DATA_WR_SHOVE_F);
922
923 mpa = (struct mpa_message *)(req + 1);
924 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
925
926 mpa->flags = 0;
927 if (crc_enabled)
928 mpa->flags |= MPA_CRC;
929 if (markers_enabled) {
930 mpa->flags |= MPA_MARKERS;
931 ep->mpa_attr.recv_marker_enabled = 1;
932 } else {
933 ep->mpa_attr.recv_marker_enabled = 0;
934 }
935 if (mpa_rev_to_use == 2)
936 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
937
938 mpa->private_data_size = htons(ep->plen);
939 mpa->revision = mpa_rev_to_use;
940 if (mpa_rev_to_use == 1) {
941 ep->tried_with_mpa_v1 = 1;
942 ep->retry_with_mpa_v1 = 0;
943 }
944
945 if (mpa_rev_to_use == 2) {
946 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
947 sizeof (struct mpa_v2_conn_params));
948 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
949 ep->ord);
950 mpa_v2_params.ird = htons((u16)ep->ird);
951 mpa_v2_params.ord = htons((u16)ep->ord);
952
953 if (peer2peer) {
954 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
955 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
956 mpa_v2_params.ord |=
957 htons(MPA_V2_RDMA_WRITE_RTR);
958 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
959 mpa_v2_params.ord |=
960 htons(MPA_V2_RDMA_READ_RTR);
961 }
962 memcpy(mpa->private_data, &mpa_v2_params,
963 sizeof(struct mpa_v2_conn_params));
964
965 if (ep->plen)
966 memcpy(mpa->private_data +
967 sizeof(struct mpa_v2_conn_params),
968 ep->mpa_pkt + sizeof(*mpa), ep->plen);
969 } else
970 if (ep->plen)
971 memcpy(mpa->private_data,
972 ep->mpa_pkt + sizeof(*mpa), ep->plen);
973
974 /*
975 * Reference the mpa skb. This ensures the data area
976 * will remain in memory until the hw acks the tx.
977 * Function fw4_ack() will deref it.
978 */
979 skb_get(skb);
980 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
981 BUG_ON(ep->mpa_skb);
982 ep->mpa_skb = skb;
983 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
984 if (ret)
985 return ret;
986 start_ep_timer(ep);
987 __state_set(&ep->com, MPA_REQ_SENT);
988 ep->mpa_attr.initiator = 1;
989 ep->snd_seq += mpalen;
990 return ret;
991 }
992
993 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
994 {
995 int mpalen, wrlen;
996 struct fw_ofld_tx_data_wr *req;
997 struct mpa_message *mpa;
998 struct sk_buff *skb;
999 struct mpa_v2_conn_params mpa_v2_params;
1000
1001 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1002
1003 mpalen = sizeof(*mpa) + plen;
1004 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1005 mpalen += sizeof(struct mpa_v2_conn_params);
1006 wrlen = roundup(mpalen + sizeof *req, 16);
1007
1008 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1009 if (!skb) {
1010 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1011 return -ENOMEM;
1012 }
1013 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1014
1015 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
1016 memset(req, 0, wrlen);
1017 req->op_to_immdlen = cpu_to_be32(
1018 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1019 FW_WR_COMPL_F |
1020 FW_WR_IMMDLEN_V(mpalen));
1021 req->flowid_len16 = cpu_to_be32(
1022 FW_WR_FLOWID_V(ep->hwtid) |
1023 FW_WR_LEN16_V(wrlen >> 4));
1024 req->plen = cpu_to_be32(mpalen);
1025 req->tunnel_to_proxy = cpu_to_be32(
1026 FW_OFLD_TX_DATA_WR_FLUSH_F |
1027 FW_OFLD_TX_DATA_WR_SHOVE_F);
1028
1029 mpa = (struct mpa_message *)(req + 1);
1030 memset(mpa, 0, sizeof(*mpa));
1031 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1032 mpa->flags = MPA_REJECT;
1033 mpa->revision = ep->mpa_attr.version;
1034 mpa->private_data_size = htons(plen);
1035
1036 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1037 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1038 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1039 sizeof (struct mpa_v2_conn_params));
1040 mpa_v2_params.ird = htons(((u16)ep->ird) |
1041 (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1042 0));
1043 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1044 (p2p_type ==
1045 FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1046 MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1047 FW_RI_INIT_P2PTYPE_READ_REQ ?
1048 MPA_V2_RDMA_READ_RTR : 0) : 0));
1049 memcpy(mpa->private_data, &mpa_v2_params,
1050 sizeof(struct mpa_v2_conn_params));
1051
1052 if (ep->plen)
1053 memcpy(mpa->private_data +
1054 sizeof(struct mpa_v2_conn_params), pdata, plen);
1055 } else
1056 if (plen)
1057 memcpy(mpa->private_data, pdata, plen);
1058
1059 /*
1060 * Reference the mpa skb again. This ensures the data area
1061 * will remain in memory until the hw acks the tx.
1062 * Function fw4_ack() will deref it.
1063 */
1064 skb_get(skb);
1065 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1066 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1067 BUG_ON(ep->mpa_skb);
1068 ep->mpa_skb = skb;
1069 ep->snd_seq += mpalen;
1070 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1071 }
1072
1073 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1074 {
1075 int mpalen, wrlen;
1076 struct fw_ofld_tx_data_wr *req;
1077 struct mpa_message *mpa;
1078 struct sk_buff *skb;
1079 struct mpa_v2_conn_params mpa_v2_params;
1080
1081 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1082
1083 mpalen = sizeof(*mpa) + plen;
1084 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1085 mpalen += sizeof(struct mpa_v2_conn_params);
1086 wrlen = roundup(mpalen + sizeof *req, 16);
1087
1088 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1089 if (!skb) {
1090 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1091 return -ENOMEM;
1092 }
1093 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1094
1095 req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen);
1096 memset(req, 0, wrlen);
1097 req->op_to_immdlen = cpu_to_be32(
1098 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1099 FW_WR_COMPL_F |
1100 FW_WR_IMMDLEN_V(mpalen));
1101 req->flowid_len16 = cpu_to_be32(
1102 FW_WR_FLOWID_V(ep->hwtid) |
1103 FW_WR_LEN16_V(wrlen >> 4));
1104 req->plen = cpu_to_be32(mpalen);
1105 req->tunnel_to_proxy = cpu_to_be32(
1106 FW_OFLD_TX_DATA_WR_FLUSH_F |
1107 FW_OFLD_TX_DATA_WR_SHOVE_F);
1108
1109 mpa = (struct mpa_message *)(req + 1);
1110 memset(mpa, 0, sizeof(*mpa));
1111 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1112 mpa->flags = 0;
1113 if (ep->mpa_attr.crc_enabled)
1114 mpa->flags |= MPA_CRC;
1115 if (ep->mpa_attr.recv_marker_enabled)
1116 mpa->flags |= MPA_MARKERS;
1117 mpa->revision = ep->mpa_attr.version;
1118 mpa->private_data_size = htons(plen);
1119
1120 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1121 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1122 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1123 sizeof (struct mpa_v2_conn_params));
1124 mpa_v2_params.ird = htons((u16)ep->ird);
1125 mpa_v2_params.ord = htons((u16)ep->ord);
1126 if (peer2peer && (ep->mpa_attr.p2p_type !=
1127 FW_RI_INIT_P2PTYPE_DISABLED)) {
1128 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1129
1130 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1131 mpa_v2_params.ord |=
1132 htons(MPA_V2_RDMA_WRITE_RTR);
1133 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1134 mpa_v2_params.ord |=
1135 htons(MPA_V2_RDMA_READ_RTR);
1136 }
1137
1138 memcpy(mpa->private_data, &mpa_v2_params,
1139 sizeof(struct mpa_v2_conn_params));
1140
1141 if (ep->plen)
1142 memcpy(mpa->private_data +
1143 sizeof(struct mpa_v2_conn_params), pdata, plen);
1144 } else
1145 if (plen)
1146 memcpy(mpa->private_data, pdata, plen);
1147
1148 /*
1149 * Reference the mpa skb. This ensures the data area
1150 * will remain in memory until the hw acks the tx.
1151 * Function fw4_ack() will deref it.
1152 */
1153 skb_get(skb);
1154 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1155 ep->mpa_skb = skb;
1156 __state_set(&ep->com, MPA_REP_SENT);
1157 ep->snd_seq += mpalen;
1158 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1159 }
1160
1161 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1162 {
1163 struct c4iw_ep *ep;
1164 struct cpl_act_establish *req = cplhdr(skb);
1165 unsigned int tid = GET_TID(req);
1166 unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1167 struct tid_info *t = dev->rdev.lldi.tids;
1168 int ret;
1169
1170 ep = lookup_atid(t, atid);
1171
1172 PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
1173 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1174
1175 mutex_lock(&ep->com.mutex);
1176 dst_confirm(ep->dst);
1177
1178 /* setup the hwtid for this connection */
1179 ep->hwtid = tid;
1180 cxgb4_insert_tid(t, ep, tid);
1181 insert_ep_tid(ep);
1182
1183 ep->snd_seq = be32_to_cpu(req->snd_isn);
1184 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1185
1186 set_emss(ep, ntohs(req->tcp_opt));
1187
1188 /* dealloc the atid */
1189 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
1190 cxgb4_free_atid(t, atid);
1191 set_bit(ACT_ESTAB, &ep->com.history);
1192
1193 /* start MPA negotiation */
1194 ret = send_flowc(ep);
1195 if (ret)
1196 goto err;
1197 if (ep->retry_with_mpa_v1)
1198 ret = send_mpa_req(ep, skb, 1);
1199 else
1200 ret = send_mpa_req(ep, skb, mpa_rev);
1201 if (ret)
1202 goto err;
1203 mutex_unlock(&ep->com.mutex);
1204 return 0;
1205 err:
1206 mutex_unlock(&ep->com.mutex);
1207 connect_reply_upcall(ep, -ENOMEM);
1208 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1209 return 0;
1210 }
1211
1212 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1213 {
1214 struct iw_cm_event event;
1215
1216 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1217 memset(&event, 0, sizeof(event));
1218 event.event = IW_CM_EVENT_CLOSE;
1219 event.status = status;
1220 if (ep->com.cm_id) {
1221 PDBG("close complete delivered ep %p cm_id %p tid %u\n",
1222 ep, ep->com.cm_id, ep->hwtid);
1223 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1224 deref_cm_id(&ep->com);
1225 set_bit(CLOSE_UPCALL, &ep->com.history);
1226 }
1227 }
1228
1229 static void peer_close_upcall(struct c4iw_ep *ep)
1230 {
1231 struct iw_cm_event event;
1232
1233 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1234 memset(&event, 0, sizeof(event));
1235 event.event = IW_CM_EVENT_DISCONNECT;
1236 if (ep->com.cm_id) {
1237 PDBG("peer close delivered ep %p cm_id %p tid %u\n",
1238 ep, ep->com.cm_id, ep->hwtid);
1239 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1240 set_bit(DISCONN_UPCALL, &ep->com.history);
1241 }
1242 }
1243
1244 static void peer_abort_upcall(struct c4iw_ep *ep)
1245 {
1246 struct iw_cm_event event;
1247
1248 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1249 memset(&event, 0, sizeof(event));
1250 event.event = IW_CM_EVENT_CLOSE;
1251 event.status = -ECONNRESET;
1252 if (ep->com.cm_id) {
1253 PDBG("abort delivered ep %p cm_id %p tid %u\n", ep,
1254 ep->com.cm_id, ep->hwtid);
1255 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1256 deref_cm_id(&ep->com);
1257 set_bit(ABORT_UPCALL, &ep->com.history);
1258 }
1259 }
1260
1261 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1262 {
1263 struct iw_cm_event event;
1264
1265 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status);
1266 memset(&event, 0, sizeof(event));
1267 event.event = IW_CM_EVENT_CONNECT_REPLY;
1268 event.status = status;
1269 memcpy(&event.local_addr, &ep->com.local_addr,
1270 sizeof(ep->com.local_addr));
1271 memcpy(&event.remote_addr, &ep->com.remote_addr,
1272 sizeof(ep->com.remote_addr));
1273
1274 if ((status == 0) || (status == -ECONNREFUSED)) {
1275 if (!ep->tried_with_mpa_v1) {
1276 /* this means MPA_v2 is used */
1277 event.ord = ep->ird;
1278 event.ird = ep->ord;
1279 event.private_data_len = ep->plen -
1280 sizeof(struct mpa_v2_conn_params);
1281 event.private_data = ep->mpa_pkt +
1282 sizeof(struct mpa_message) +
1283 sizeof(struct mpa_v2_conn_params);
1284 } else {
1285 /* this means MPA_v1 is used */
1286 event.ord = cur_max_read_depth(ep->com.dev);
1287 event.ird = cur_max_read_depth(ep->com.dev);
1288 event.private_data_len = ep->plen;
1289 event.private_data = ep->mpa_pkt +
1290 sizeof(struct mpa_message);
1291 }
1292 }
1293
1294 PDBG("%s ep %p tid %u status %d\n", __func__, ep,
1295 ep->hwtid, status);
1296 set_bit(CONN_RPL_UPCALL, &ep->com.history);
1297 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1298
1299 if (status < 0)
1300 deref_cm_id(&ep->com);
1301 }
1302
1303 static int connect_request_upcall(struct c4iw_ep *ep)
1304 {
1305 struct iw_cm_event event;
1306 int ret;
1307
1308 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1309 memset(&event, 0, sizeof(event));
1310 event.event = IW_CM_EVENT_CONNECT_REQUEST;
1311 memcpy(&event.local_addr, &ep->com.local_addr,
1312 sizeof(ep->com.local_addr));
1313 memcpy(&event.remote_addr, &ep->com.remote_addr,
1314 sizeof(ep->com.remote_addr));
1315 event.provider_data = ep;
1316 if (!ep->tried_with_mpa_v1) {
1317 /* this means MPA_v2 is used */
1318 event.ord = ep->ord;
1319 event.ird = ep->ird;
1320 event.private_data_len = ep->plen -
1321 sizeof(struct mpa_v2_conn_params);
1322 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1323 sizeof(struct mpa_v2_conn_params);
1324 } else {
1325 /* this means MPA_v1 is used. Send max supported */
1326 event.ord = cur_max_read_depth(ep->com.dev);
1327 event.ird = cur_max_read_depth(ep->com.dev);
1328 event.private_data_len = ep->plen;
1329 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1330 }
1331 c4iw_get_ep(&ep->com);
1332 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1333 &event);
1334 if (ret)
1335 c4iw_put_ep(&ep->com);
1336 set_bit(CONNREQ_UPCALL, &ep->com.history);
1337 c4iw_put_ep(&ep->parent_ep->com);
1338 return ret;
1339 }
1340
1341 static void established_upcall(struct c4iw_ep *ep)
1342 {
1343 struct iw_cm_event event;
1344
1345 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1346 memset(&event, 0, sizeof(event));
1347 event.event = IW_CM_EVENT_ESTABLISHED;
1348 event.ird = ep->ord;
1349 event.ord = ep->ird;
1350 if (ep->com.cm_id) {
1351 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1352 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1353 set_bit(ESTAB_UPCALL, &ep->com.history);
1354 }
1355 }
1356
1357 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1358 {
1359 struct sk_buff *skb;
1360 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16);
1361 u32 credit_dack;
1362
1363 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
1364 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1365 if (!skb) {
1366 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
1367 return 0;
1368 }
1369
1370 /*
1371 * If we couldn't specify the entire rcv window at connection setup
1372 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1373 * then add the overage in to the credits returned.
1374 */
1375 if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1376 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1377
1378 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F |
1379 RX_DACK_MODE_V(dack_mode);
1380
1381 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx,
1382 credit_dack);
1383
1384 c4iw_ofld_send(&ep->com.dev->rdev, skb);
1385 return credits;
1386 }
1387
1388 #define RELAXED_IRD_NEGOTIATION 1
1389
1390 /*
1391 * process_mpa_reply - process streaming mode MPA reply
1392 *
1393 * Returns:
1394 *
1395 * 0 upon success indicating a connect request was delivered to the ULP
1396 * or the mpa request is incomplete but valid so far.
1397 *
1398 * 1 if a failure requires the caller to close the connection.
1399 *
1400 * 2 if a failure requires the caller to abort the connection.
1401 */
1402 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1403 {
1404 struct mpa_message *mpa;
1405 struct mpa_v2_conn_params *mpa_v2_params;
1406 u16 plen;
1407 u16 resp_ird, resp_ord;
1408 u8 rtr_mismatch = 0, insuff_ird = 0;
1409 struct c4iw_qp_attributes attrs;
1410 enum c4iw_qp_attr_mask mask;
1411 int err;
1412 int disconnect = 0;
1413
1414 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1415
1416 /*
1417 * If we get more than the supported amount of private data
1418 * then we must fail this connection.
1419 */
1420 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1421 err = -EINVAL;
1422 goto err_stop_timer;
1423 }
1424
1425 /*
1426 * copy the new data into our accumulation buffer.
1427 */
1428 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1429 skb->len);
1430 ep->mpa_pkt_len += skb->len;
1431
1432 /*
1433 * if we don't even have the mpa message, then bail.
1434 */
1435 if (ep->mpa_pkt_len < sizeof(*mpa))
1436 return 0;
1437 mpa = (struct mpa_message *) ep->mpa_pkt;
1438
1439 /* Validate MPA header. */
1440 if (mpa->revision > mpa_rev) {
1441 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1442 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1443 err = -EPROTO;
1444 goto err_stop_timer;
1445 }
1446 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1447 err = -EPROTO;
1448 goto err_stop_timer;
1449 }
1450
1451 plen = ntohs(mpa->private_data_size);
1452
1453 /*
1454 * Fail if there's too much private data.
1455 */
1456 if (plen > MPA_MAX_PRIVATE_DATA) {
1457 err = -EPROTO;
1458 goto err_stop_timer;
1459 }
1460
1461 /*
1462 * If plen does not account for pkt size
1463 */
1464 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1465 err = -EPROTO;
1466 goto err_stop_timer;
1467 }
1468
1469 ep->plen = (u8) plen;
1470
1471 /*
1472 * If we don't have all the pdata yet, then bail.
1473 * We'll continue process when more data arrives.
1474 */
1475 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1476 return 0;
1477
1478 if (mpa->flags & MPA_REJECT) {
1479 err = -ECONNREFUSED;
1480 goto err_stop_timer;
1481 }
1482
1483 /*
1484 * Stop mpa timer. If it expired, then
1485 * we ignore the MPA reply. process_timeout()
1486 * will abort the connection.
1487 */
1488 if (stop_ep_timer(ep))
1489 return 0;
1490
1491 /*
1492 * If we get here we have accumulated the entire mpa
1493 * start reply message including private data. And
1494 * the MPA header is valid.
1495 */
1496 __state_set(&ep->com, FPDU_MODE);
1497 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1498 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1499 ep->mpa_attr.version = mpa->revision;
1500 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1501
1502 if (mpa->revision == 2) {
1503 ep->mpa_attr.enhanced_rdma_conn =
1504 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1505 if (ep->mpa_attr.enhanced_rdma_conn) {
1506 mpa_v2_params = (struct mpa_v2_conn_params *)
1507 (ep->mpa_pkt + sizeof(*mpa));
1508 resp_ird = ntohs(mpa_v2_params->ird) &
1509 MPA_V2_IRD_ORD_MASK;
1510 resp_ord = ntohs(mpa_v2_params->ord) &
1511 MPA_V2_IRD_ORD_MASK;
1512 PDBG("%s responder ird %u ord %u ep ird %u ord %u\n",
1513 __func__, resp_ird, resp_ord, ep->ird, ep->ord);
1514
1515 /*
1516 * This is a double-check. Ideally, below checks are
1517 * not required since ird/ord stuff has been taken
1518 * care of in c4iw_accept_cr
1519 */
1520 if (ep->ird < resp_ord) {
1521 if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1522 ep->com.dev->rdev.lldi.max_ordird_qp)
1523 ep->ird = resp_ord;
1524 else
1525 insuff_ird = 1;
1526 } else if (ep->ird > resp_ord) {
1527 ep->ird = resp_ord;
1528 }
1529 if (ep->ord > resp_ird) {
1530 if (RELAXED_IRD_NEGOTIATION)
1531 ep->ord = resp_ird;
1532 else
1533 insuff_ird = 1;
1534 }
1535 if (insuff_ird) {
1536 err = -ENOMEM;
1537 ep->ird = resp_ord;
1538 ep->ord = resp_ird;
1539 }
1540
1541 if (ntohs(mpa_v2_params->ird) &
1542 MPA_V2_PEER2PEER_MODEL) {
1543 if (ntohs(mpa_v2_params->ord) &
1544 MPA_V2_RDMA_WRITE_RTR)
1545 ep->mpa_attr.p2p_type =
1546 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1547 else if (ntohs(mpa_v2_params->ord) &
1548 MPA_V2_RDMA_READ_RTR)
1549 ep->mpa_attr.p2p_type =
1550 FW_RI_INIT_P2PTYPE_READ_REQ;
1551 }
1552 }
1553 } else if (mpa->revision == 1)
1554 if (peer2peer)
1555 ep->mpa_attr.p2p_type = p2p_type;
1556
1557 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1558 "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
1559 "%d\n", __func__, ep->mpa_attr.crc_enabled,
1560 ep->mpa_attr.recv_marker_enabled,
1561 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1562 ep->mpa_attr.p2p_type, p2p_type);
1563
1564 /*
1565 * If responder's RTR does not match with that of initiator, assign
1566 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1567 * generated when moving QP to RTS state.
1568 * A TERM message will be sent after QP has moved to RTS state
1569 */
1570 if ((ep->mpa_attr.version == 2) && peer2peer &&
1571 (ep->mpa_attr.p2p_type != p2p_type)) {
1572 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1573 rtr_mismatch = 1;
1574 }
1575
1576 attrs.mpa_attr = ep->mpa_attr;
1577 attrs.max_ird = ep->ird;
1578 attrs.max_ord = ep->ord;
1579 attrs.llp_stream_handle = ep;
1580 attrs.next_state = C4IW_QP_STATE_RTS;
1581
1582 mask = C4IW_QP_ATTR_NEXT_STATE |
1583 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1584 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1585
1586 /* bind QP and TID with INIT_WR */
1587 err = c4iw_modify_qp(ep->com.qp->rhp,
1588 ep->com.qp, mask, &attrs, 1);
1589 if (err)
1590 goto err;
1591
1592 /*
1593 * If responder's RTR requirement did not match with what initiator
1594 * supports, generate TERM message
1595 */
1596 if (rtr_mismatch) {
1597 printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
1598 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1599 attrs.ecode = MPA_NOMATCH_RTR;
1600 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1601 attrs.send_term = 1;
1602 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1603 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1604 err = -ENOMEM;
1605 disconnect = 1;
1606 goto out;
1607 }
1608
1609 /*
1610 * Generate TERM if initiator IRD is not sufficient for responder
1611 * provided ORD. Currently, we do the same behaviour even when
1612 * responder provided IRD is also not sufficient as regards to
1613 * initiator ORD.
1614 */
1615 if (insuff_ird) {
1616 printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
1617 __func__);
1618 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1619 attrs.ecode = MPA_INSUFF_IRD;
1620 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1621 attrs.send_term = 1;
1622 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1623 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1624 err = -ENOMEM;
1625 disconnect = 1;
1626 goto out;
1627 }
1628 goto out;
1629 err_stop_timer:
1630 stop_ep_timer(ep);
1631 err:
1632 disconnect = 2;
1633 out:
1634 connect_reply_upcall(ep, err);
1635 return disconnect;
1636 }
1637
1638 /*
1639 * process_mpa_request - process streaming mode MPA request
1640 *
1641 * Returns:
1642 *
1643 * 0 upon success indicating a connect request was delivered to the ULP
1644 * or the mpa request is incomplete but valid so far.
1645 *
1646 * 1 if a failure requires the caller to close the connection.
1647 *
1648 * 2 if a failure requires the caller to abort the connection.
1649 */
1650 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1651 {
1652 struct mpa_message *mpa;
1653 struct mpa_v2_conn_params *mpa_v2_params;
1654 u16 plen;
1655
1656 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1657
1658 /*
1659 * If we get more than the supported amount of private data
1660 * then we must fail this connection.
1661 */
1662 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1663 goto err_stop_timer;
1664
1665 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1666
1667 /*
1668 * Copy the new data into our accumulation buffer.
1669 */
1670 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1671 skb->len);
1672 ep->mpa_pkt_len += skb->len;
1673
1674 /*
1675 * If we don't even have the mpa message, then bail.
1676 * We'll continue process when more data arrives.
1677 */
1678 if (ep->mpa_pkt_len < sizeof(*mpa))
1679 return 0;
1680
1681 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1682 mpa = (struct mpa_message *) ep->mpa_pkt;
1683
1684 /*
1685 * Validate MPA Header.
1686 */
1687 if (mpa->revision > mpa_rev) {
1688 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1689 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1690 goto err_stop_timer;
1691 }
1692
1693 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1694 goto err_stop_timer;
1695
1696 plen = ntohs(mpa->private_data_size);
1697
1698 /*
1699 * Fail if there's too much private data.
1700 */
1701 if (plen > MPA_MAX_PRIVATE_DATA)
1702 goto err_stop_timer;
1703
1704 /*
1705 * If plen does not account for pkt size
1706 */
1707 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1708 goto err_stop_timer;
1709 ep->plen = (u8) plen;
1710
1711 /*
1712 * If we don't have all the pdata yet, then bail.
1713 */
1714 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1715 return 0;
1716
1717 /*
1718 * If we get here we have accumulated the entire mpa
1719 * start reply message including private data.
1720 */
1721 ep->mpa_attr.initiator = 0;
1722 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1723 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1724 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1725 ep->mpa_attr.version = mpa->revision;
1726 if (mpa->revision == 1)
1727 ep->tried_with_mpa_v1 = 1;
1728 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1729
1730 if (mpa->revision == 2) {
1731 ep->mpa_attr.enhanced_rdma_conn =
1732 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1733 if (ep->mpa_attr.enhanced_rdma_conn) {
1734 mpa_v2_params = (struct mpa_v2_conn_params *)
1735 (ep->mpa_pkt + sizeof(*mpa));
1736 ep->ird = ntohs(mpa_v2_params->ird) &
1737 MPA_V2_IRD_ORD_MASK;
1738 ep->ird = min_t(u32, ep->ird,
1739 cur_max_read_depth(ep->com.dev));
1740 ep->ord = ntohs(mpa_v2_params->ord) &
1741 MPA_V2_IRD_ORD_MASK;
1742 ep->ord = min_t(u32, ep->ord,
1743 cur_max_read_depth(ep->com.dev));
1744 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1745 ep->ord);
1746 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1747 if (peer2peer) {
1748 if (ntohs(mpa_v2_params->ord) &
1749 MPA_V2_RDMA_WRITE_RTR)
1750 ep->mpa_attr.p2p_type =
1751 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1752 else if (ntohs(mpa_v2_params->ord) &
1753 MPA_V2_RDMA_READ_RTR)
1754 ep->mpa_attr.p2p_type =
1755 FW_RI_INIT_P2PTYPE_READ_REQ;
1756 }
1757 }
1758 } else if (mpa->revision == 1)
1759 if (peer2peer)
1760 ep->mpa_attr.p2p_type = p2p_type;
1761
1762 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1763 "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__,
1764 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1765 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1766 ep->mpa_attr.p2p_type);
1767
1768 __state_set(&ep->com, MPA_REQ_RCVD);
1769
1770 /* drive upcall */
1771 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1772 if (ep->parent_ep->com.state != DEAD) {
1773 if (connect_request_upcall(ep))
1774 goto err_unlock_parent;
1775 } else {
1776 goto err_unlock_parent;
1777 }
1778 mutex_unlock(&ep->parent_ep->com.mutex);
1779 return 0;
1780
1781 err_unlock_parent:
1782 mutex_unlock(&ep->parent_ep->com.mutex);
1783 goto err_out;
1784 err_stop_timer:
1785 (void)stop_ep_timer(ep);
1786 err_out:
1787 return 2;
1788 }
1789
1790 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1791 {
1792 struct c4iw_ep *ep;
1793 struct cpl_rx_data *hdr = cplhdr(skb);
1794 unsigned int dlen = ntohs(hdr->len);
1795 unsigned int tid = GET_TID(hdr);
1796 __u8 status = hdr->status;
1797 int disconnect = 0;
1798
1799 ep = get_ep_from_tid(dev, tid);
1800 if (!ep)
1801 return 0;
1802 PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
1803 skb_pull(skb, sizeof(*hdr));
1804 skb_trim(skb, dlen);
1805 mutex_lock(&ep->com.mutex);
1806
1807 /* update RX credits */
1808 update_rx_credits(ep, dlen);
1809
1810 switch (ep->com.state) {
1811 case MPA_REQ_SENT:
1812 ep->rcv_seq += dlen;
1813 disconnect = process_mpa_reply(ep, skb);
1814 break;
1815 case MPA_REQ_WAIT:
1816 ep->rcv_seq += dlen;
1817 disconnect = process_mpa_request(ep, skb);
1818 break;
1819 case FPDU_MODE: {
1820 struct c4iw_qp_attributes attrs;
1821 BUG_ON(!ep->com.qp);
1822 if (status)
1823 pr_err("%s Unexpected streaming data." \
1824 " qpid %u ep %p state %d tid %u status %d\n",
1825 __func__, ep->com.qp->wq.sq.qid, ep,
1826 ep->com.state, ep->hwtid, status);
1827 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1828 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1829 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1830 disconnect = 1;
1831 break;
1832 }
1833 default:
1834 break;
1835 }
1836 mutex_unlock(&ep->com.mutex);
1837 if (disconnect)
1838 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1839 c4iw_put_ep(&ep->com);
1840 return 0;
1841 }
1842
1843 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1844 {
1845 struct c4iw_ep *ep;
1846 struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
1847 int release = 0;
1848 unsigned int tid = GET_TID(rpl);
1849
1850 ep = get_ep_from_tid(dev, tid);
1851 if (!ep) {
1852 printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n");
1853 return 0;
1854 }
1855 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1856 mutex_lock(&ep->com.mutex);
1857 switch (ep->com.state) {
1858 case ABORTING:
1859 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
1860 __state_set(&ep->com, DEAD);
1861 release = 1;
1862 break;
1863 default:
1864 printk(KERN_ERR "%s ep %p state %d\n",
1865 __func__, ep, ep->com.state);
1866 break;
1867 }
1868 mutex_unlock(&ep->com.mutex);
1869
1870 if (release)
1871 release_ep_resources(ep);
1872 c4iw_put_ep(&ep->com);
1873 return 0;
1874 }
1875
1876 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1877 {
1878 struct sk_buff *skb;
1879 struct fw_ofld_connection_wr *req;
1880 unsigned int mtu_idx;
1881 u32 wscale;
1882 struct sockaddr_in *sin;
1883 int win;
1884
1885 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1886 req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req));
1887 memset(req, 0, sizeof(*req));
1888 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1889 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1890 req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1891 ep->com.dev->rdev.lldi.ports[0],
1892 ep->l2t));
1893 sin = (struct sockaddr_in *)&ep->com.local_addr;
1894 req->le.lport = sin->sin_port;
1895 req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1896 sin = (struct sockaddr_in *)&ep->com.remote_addr;
1897 req->le.pport = sin->sin_port;
1898 req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1899 req->tcb.t_state_to_astid =
1900 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1901 FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1902 req->tcb.cplrxdataack_cplpassacceptrpl =
1903 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1904 req->tcb.tx_max = (__force __be32) jiffies;
1905 req->tcb.rcv_adv = htons(1);
1906 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1907 enable_tcp_timestamps,
1908 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
1909 wscale = cxgb_compute_wscale(rcv_win);
1910
1911 /*
1912 * Specify the largest window that will fit in opt0. The
1913 * remainder will be specified in the rx_data_ack.
1914 */
1915 win = ep->rcv_win >> 10;
1916 if (win > RCV_BUFSIZ_M)
1917 win = RCV_BUFSIZ_M;
1918
1919 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
1920 (nocong ? NO_CONG_F : 0) |
1921 KEEP_ALIVE_F |
1922 DELACK_F |
1923 WND_SCALE_V(wscale) |
1924 MSS_IDX_V(mtu_idx) |
1925 L2T_IDX_V(ep->l2t->idx) |
1926 TX_CHAN_V(ep->tx_chan) |
1927 SMAC_SEL_V(ep->smac_idx) |
1928 DSCP_V(ep->tos >> 2) |
1929 ULP_MODE_V(ULP_MODE_TCPDDP) |
1930 RCV_BUFSIZ_V(win));
1931 req->tcb.opt2 = (__force __be32) (PACE_V(1) |
1932 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
1933 RX_CHANNEL_V(0) |
1934 CCTRL_ECN_V(enable_ecn) |
1935 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
1936 if (enable_tcp_timestamps)
1937 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
1938 if (enable_tcp_sack)
1939 req->tcb.opt2 |= (__force __be32)SACK_EN_F;
1940 if (wscale && enable_tcp_window_scaling)
1941 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
1942 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
1943 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
1944 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
1945 set_bit(ACT_OFLD_CONN, &ep->com.history);
1946 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1947 }
1948
1949 /*
1950 * Some of the error codes above implicitly indicate that there is no TID
1951 * allocated with the result of an ACT_OPEN. We use this predicate to make
1952 * that explicit.
1953 */
1954 static inline int act_open_has_tid(int status)
1955 {
1956 return (status != CPL_ERR_TCAM_PARITY &&
1957 status != CPL_ERR_TCAM_MISS &&
1958 status != CPL_ERR_TCAM_FULL &&
1959 status != CPL_ERR_CONN_EXIST_SYNRECV &&
1960 status != CPL_ERR_CONN_EXIST);
1961 }
1962
1963 static char *neg_adv_str(unsigned int status)
1964 {
1965 switch (status) {
1966 case CPL_ERR_RTX_NEG_ADVICE:
1967 return "Retransmit timeout";
1968 case CPL_ERR_PERSIST_NEG_ADVICE:
1969 return "Persist timeout";
1970 case CPL_ERR_KEEPALV_NEG_ADVICE:
1971 return "Keepalive timeout";
1972 default:
1973 return "Unknown";
1974 }
1975 }
1976
1977 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
1978 {
1979 ep->snd_win = snd_win;
1980 ep->rcv_win = rcv_win;
1981 PDBG("%s snd_win %d rcv_win %d\n", __func__, ep->snd_win, ep->rcv_win);
1982 }
1983
1984 #define ACT_OPEN_RETRY_COUNT 2
1985
1986 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
1987 struct dst_entry *dst, struct c4iw_dev *cdev,
1988 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
1989 {
1990 struct neighbour *n;
1991 int err, step;
1992 struct net_device *pdev;
1993
1994 n = dst_neigh_lookup(dst, peer_ip);
1995 if (!n)
1996 return -ENODEV;
1997
1998 rcu_read_lock();
1999 err = -ENOMEM;
2000 if (n->dev->flags & IFF_LOOPBACK) {
2001 if (iptype == 4)
2002 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
2003 else if (IS_ENABLED(CONFIG_IPV6))
2004 for_each_netdev(&init_net, pdev) {
2005 if (ipv6_chk_addr(&init_net,
2006 (struct in6_addr *)peer_ip,
2007 pdev, 1))
2008 break;
2009 }
2010 else
2011 pdev = NULL;
2012
2013 if (!pdev) {
2014 err = -ENODEV;
2015 goto out;
2016 }
2017 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2018 n, pdev, rt_tos2priority(tos));
2019 if (!ep->l2t) {
2020 dev_put(pdev);
2021 goto out;
2022 }
2023 ep->mtu = pdev->mtu;
2024 ep->tx_chan = cxgb4_port_chan(pdev);
2025 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2026 cxgb4_port_viid(pdev));
2027 step = cdev->rdev.lldi.ntxq /
2028 cdev->rdev.lldi.nchan;
2029 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2030 step = cdev->rdev.lldi.nrxq /
2031 cdev->rdev.lldi.nchan;
2032 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2033 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2034 cxgb4_port_idx(pdev) * step];
2035 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2036 dev_put(pdev);
2037 } else {
2038 pdev = get_real_dev(n->dev);
2039 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2040 n, pdev, 0);
2041 if (!ep->l2t)
2042 goto out;
2043 ep->mtu = dst_mtu(dst);
2044 ep->tx_chan = cxgb4_port_chan(pdev);
2045 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2046 cxgb4_port_viid(pdev));
2047 step = cdev->rdev.lldi.ntxq /
2048 cdev->rdev.lldi.nchan;
2049 ep->txq_idx = cxgb4_port_idx(pdev) * step;
2050 ep->ctrlq_idx = cxgb4_port_idx(pdev);
2051 step = cdev->rdev.lldi.nrxq /
2052 cdev->rdev.lldi.nchan;
2053 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2054 cxgb4_port_idx(pdev) * step];
2055 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2056
2057 if (clear_mpa_v1) {
2058 ep->retry_with_mpa_v1 = 0;
2059 ep->tried_with_mpa_v1 = 0;
2060 }
2061 }
2062 err = 0;
2063 out:
2064 rcu_read_unlock();
2065
2066 neigh_release(n);
2067
2068 return err;
2069 }
2070
2071 static int c4iw_reconnect(struct c4iw_ep *ep)
2072 {
2073 int err = 0;
2074 int size = 0;
2075 struct sockaddr_in *laddr = (struct sockaddr_in *)
2076 &ep->com.cm_id->m_local_addr;
2077 struct sockaddr_in *raddr = (struct sockaddr_in *)
2078 &ep->com.cm_id->m_remote_addr;
2079 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2080 &ep->com.cm_id->m_local_addr;
2081 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2082 &ep->com.cm_id->m_remote_addr;
2083 int iptype;
2084 __u8 *ra;
2085
2086 PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
2087 init_timer(&ep->timer);
2088 c4iw_init_wr_wait(&ep->com.wr_wait);
2089
2090 /* When MPA revision is different on nodes, the node with MPA_rev=2
2091 * tries to reconnect with MPA_rev 1 for the same EP through
2092 * c4iw_reconnect(), where the same EP is assigned with new tid for
2093 * further connection establishment. As we are using the same EP pointer
2094 * for reconnect, few skbs are used during the previous c4iw_connect(),
2095 * which leaves the EP with inadequate skbs for further
2096 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty
2097 * skb_list() during peer_abort(). Allocate skbs which is already used.
2098 */
2099 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2100 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2101 err = -ENOMEM;
2102 goto fail1;
2103 }
2104
2105 /*
2106 * Allocate an active TID to initiate a TCP connection.
2107 */
2108 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2109 if (ep->atid == -1) {
2110 pr_err("%s - cannot alloc atid.\n", __func__);
2111 err = -ENOMEM;
2112 goto fail2;
2113 }
2114 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid);
2115
2116 /* find a route */
2117 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2118 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev,
2119 laddr->sin_addr.s_addr,
2120 raddr->sin_addr.s_addr,
2121 laddr->sin_port,
2122 raddr->sin_port, ep->com.cm_id->tos);
2123 iptype = 4;
2124 ra = (__u8 *)&raddr->sin_addr;
2125 } else {
2126 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi,
2127 get_real_dev,
2128 laddr6->sin6_addr.s6_addr,
2129 raddr6->sin6_addr.s6_addr,
2130 laddr6->sin6_port,
2131 raddr6->sin6_port, 0,
2132 raddr6->sin6_scope_id);
2133 iptype = 6;
2134 ra = (__u8 *)&raddr6->sin6_addr;
2135 }
2136 if (!ep->dst) {
2137 pr_err("%s - cannot find route.\n", __func__);
2138 err = -EHOSTUNREACH;
2139 goto fail3;
2140 }
2141 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2142 ep->com.dev->rdev.lldi.adapter_type,
2143 ep->com.cm_id->tos);
2144 if (err) {
2145 pr_err("%s - cannot alloc l2e.\n", __func__);
2146 goto fail4;
2147 }
2148
2149 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2150 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2151 ep->l2t->idx);
2152
2153 state_set(&ep->com, CONNECTING);
2154 ep->tos = ep->com.cm_id->tos;
2155
2156 /* send connect request to rnic */
2157 err = send_connect(ep);
2158 if (!err)
2159 goto out;
2160
2161 cxgb4_l2t_release(ep->l2t);
2162 fail4:
2163 dst_release(ep->dst);
2164 fail3:
2165 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
2166 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2167 fail2:
2168 /*
2169 * remember to send notification to upper layer.
2170 * We are in here so the upper layer is not aware that this is
2171 * re-connect attempt and so, upper layer is still waiting for
2172 * response of 1st connect request.
2173 */
2174 connect_reply_upcall(ep, -ECONNRESET);
2175 fail1:
2176 c4iw_put_ep(&ep->com);
2177 out:
2178 return err;
2179 }
2180
2181 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2182 {
2183 struct c4iw_ep *ep;
2184 struct cpl_act_open_rpl *rpl = cplhdr(skb);
2185 unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2186 ntohl(rpl->atid_status)));
2187 struct tid_info *t = dev->rdev.lldi.tids;
2188 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2189 struct sockaddr_in *la;
2190 struct sockaddr_in *ra;
2191 struct sockaddr_in6 *la6;
2192 struct sockaddr_in6 *ra6;
2193 int ret = 0;
2194
2195 ep = lookup_atid(t, atid);
2196 la = (struct sockaddr_in *)&ep->com.local_addr;
2197 ra = (struct sockaddr_in *)&ep->com.remote_addr;
2198 la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2199 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2200
2201 PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
2202 status, status2errno(status));
2203
2204 if (cxgb_is_neg_adv(status)) {
2205 PDBG("%s Connection problems for atid %u status %u (%s)\n",
2206 __func__, atid, status, neg_adv_str(status));
2207 ep->stats.connect_neg_adv++;
2208 mutex_lock(&dev->rdev.stats.lock);
2209 dev->rdev.stats.neg_adv++;
2210 mutex_unlock(&dev->rdev.stats.lock);
2211 return 0;
2212 }
2213
2214 set_bit(ACT_OPEN_RPL, &ep->com.history);
2215
2216 /*
2217 * Log interesting failures.
2218 */
2219 switch (status) {
2220 case CPL_ERR_CONN_RESET:
2221 case CPL_ERR_CONN_TIMEDOUT:
2222 break;
2223 case CPL_ERR_TCAM_FULL:
2224 mutex_lock(&dev->rdev.stats.lock);
2225 dev->rdev.stats.tcam_full++;
2226 mutex_unlock(&dev->rdev.stats.lock);
2227 if (ep->com.local_addr.ss_family == AF_INET &&
2228 dev->rdev.lldi.enable_fw_ofld_conn) {
2229 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2230 ntohl(rpl->atid_status))));
2231 if (ret)
2232 goto fail;
2233 return 0;
2234 }
2235 break;
2236 case CPL_ERR_CONN_EXIST:
2237 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2238 set_bit(ACT_RETRY_INUSE, &ep->com.history);
2239 if (ep->com.remote_addr.ss_family == AF_INET6) {
2240 struct sockaddr_in6 *sin6 =
2241 (struct sockaddr_in6 *)
2242 &ep->com.local_addr;
2243 cxgb4_clip_release(
2244 ep->com.dev->rdev.lldi.ports[0],
2245 (const u32 *)
2246 &sin6->sin6_addr.s6_addr, 1);
2247 }
2248 remove_handle(ep->com.dev, &ep->com.dev->atid_idr,
2249 atid);
2250 cxgb4_free_atid(t, atid);
2251 dst_release(ep->dst);
2252 cxgb4_l2t_release(ep->l2t);
2253 c4iw_reconnect(ep);
2254 return 0;
2255 }
2256 break;
2257 default:
2258 if (ep->com.local_addr.ss_family == AF_INET) {
2259 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2260 atid, status, status2errno(status),
2261 &la->sin_addr.s_addr, ntohs(la->sin_port),
2262 &ra->sin_addr.s_addr, ntohs(ra->sin_port));
2263 } else {
2264 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2265 atid, status, status2errno(status),
2266 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2267 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2268 }
2269 break;
2270 }
2271
2272 fail:
2273 connect_reply_upcall(ep, status2errno(status));
2274 state_set(&ep->com, DEAD);
2275
2276 if (ep->com.remote_addr.ss_family == AF_INET6) {
2277 struct sockaddr_in6 *sin6 =
2278 (struct sockaddr_in6 *)&ep->com.local_addr;
2279 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2280 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2281 }
2282 if (status && act_open_has_tid(status))
2283 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl));
2284
2285 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
2286 cxgb4_free_atid(t, atid);
2287 dst_release(ep->dst);
2288 cxgb4_l2t_release(ep->l2t);
2289 c4iw_put_ep(&ep->com);
2290
2291 return 0;
2292 }
2293
2294 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2295 {
2296 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2297 unsigned int stid = GET_TID(rpl);
2298 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2299
2300 if (!ep) {
2301 PDBG("%s stid %d lookup failure!\n", __func__, stid);
2302 goto out;
2303 }
2304 PDBG("%s ep %p status %d error %d\n", __func__, ep,
2305 rpl->status, status2errno(rpl->status));
2306 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2307 c4iw_put_ep(&ep->com);
2308 out:
2309 return 0;
2310 }
2311
2312 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2313 {
2314 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2315 unsigned int stid = GET_TID(rpl);
2316 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2317
2318 PDBG("%s ep %p\n", __func__, ep);
2319 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2320 c4iw_put_ep(&ep->com);
2321 return 0;
2322 }
2323
2324 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2325 struct cpl_pass_accept_req *req)
2326 {
2327 struct cpl_pass_accept_rpl *rpl;
2328 unsigned int mtu_idx;
2329 u64 opt0;
2330 u32 opt2;
2331 u32 wscale;
2332 struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2333 int win;
2334 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2335
2336 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2337 BUG_ON(skb_cloned(skb));
2338
2339 skb_get(skb);
2340 rpl = cplhdr(skb);
2341 if (!is_t4(adapter_type)) {
2342 skb_trim(skb, roundup(sizeof(*rpl5), 16));
2343 rpl5 = (void *)rpl;
2344 INIT_TP_WR(rpl5, ep->hwtid);
2345 } else {
2346 skb_trim(skb, sizeof(*rpl));
2347 INIT_TP_WR(rpl, ep->hwtid);
2348 }
2349 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
2350 ep->hwtid));
2351
2352 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2353 enable_tcp_timestamps && req->tcpopt.tstamp,
2354 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
2355 wscale = cxgb_compute_wscale(rcv_win);
2356
2357 /*
2358 * Specify the largest window that will fit in opt0. The
2359 * remainder will be specified in the rx_data_ack.
2360 */
2361 win = ep->rcv_win >> 10;
2362 if (win > RCV_BUFSIZ_M)
2363 win = RCV_BUFSIZ_M;
2364 opt0 = (nocong ? NO_CONG_F : 0) |
2365 KEEP_ALIVE_F |
2366 DELACK_F |
2367 WND_SCALE_V(wscale) |
2368 MSS_IDX_V(mtu_idx) |
2369 L2T_IDX_V(ep->l2t->idx) |
2370 TX_CHAN_V(ep->tx_chan) |
2371 SMAC_SEL_V(ep->smac_idx) |
2372 DSCP_V(ep->tos >> 2) |
2373 ULP_MODE_V(ULP_MODE_TCPDDP) |
2374 RCV_BUFSIZ_V(win);
2375 opt2 = RX_CHANNEL_V(0) |
2376 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2377
2378 if (enable_tcp_timestamps && req->tcpopt.tstamp)
2379 opt2 |= TSTAMPS_EN_F;
2380 if (enable_tcp_sack && req->tcpopt.sack)
2381 opt2 |= SACK_EN_F;
2382 if (wscale && enable_tcp_window_scaling)
2383 opt2 |= WND_SCALE_EN_F;
2384 if (enable_ecn) {
2385 const struct tcphdr *tcph;
2386 u32 hlen = ntohl(req->hdr_len);
2387
2388 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2389 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2390 IP_HDR_LEN_G(hlen);
2391 else
2392 tcph = (const void *)(req + 1) +
2393 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2394 if (tcph->ece && tcph->cwr)
2395 opt2 |= CCTRL_ECN_V(1);
2396 }
2397 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
2398 u32 isn = (prandom_u32() & ~7UL) - 1;
2399 opt2 |= T5_OPT_2_VALID_F;
2400 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2401 opt2 |= T5_ISS_F;
2402 rpl5 = (void *)rpl;
2403 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
2404 if (peer2peer)
2405 isn += 4;
2406 rpl5->iss = cpu_to_be32(isn);
2407 PDBG("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss));
2408 }
2409
2410 rpl->opt0 = cpu_to_be64(opt0);
2411 rpl->opt2 = cpu_to_be32(opt2);
2412 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2413 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2414
2415 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2416 }
2417
2418 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2419 {
2420 PDBG("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid);
2421 BUG_ON(skb_cloned(skb));
2422 skb_trim(skb, sizeof(struct cpl_tid_release));
2423 release_tid(&dev->rdev, hwtid, skb);
2424 return;
2425 }
2426
2427 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2428 {
2429 struct c4iw_ep *child_ep = NULL, *parent_ep;
2430 struct cpl_pass_accept_req *req = cplhdr(skb);
2431 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2432 struct tid_info *t = dev->rdev.lldi.tids;
2433 unsigned int hwtid = GET_TID(req);
2434 struct dst_entry *dst;
2435 __u8 local_ip[16], peer_ip[16];
2436 __be16 local_port, peer_port;
2437 struct sockaddr_in6 *sin6;
2438 int err;
2439 u16 peer_mss = ntohs(req->tcpopt.mss);
2440 int iptype;
2441 unsigned short hdrs;
2442 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2443
2444 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2445 if (!parent_ep) {
2446 PDBG("%s connect request on invalid stid %d\n", __func__, stid);
2447 goto reject;
2448 }
2449
2450 if (state_read(&parent_ep->com) != LISTEN) {
2451 PDBG("%s - listening ep not in LISTEN\n", __func__);
2452 goto reject;
2453 }
2454
2455 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type,
2456 &iptype, local_ip, peer_ip, &local_port, &peer_port);
2457
2458 /* Find output route */
2459 if (iptype == 4) {
2460 PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2461 , __func__, parent_ep, hwtid,
2462 local_ip, peer_ip, ntohs(local_port),
2463 ntohs(peer_port), peer_mss);
2464 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
2465 *(__be32 *)local_ip, *(__be32 *)peer_ip,
2466 local_port, peer_port, tos);
2467 } else {
2468 PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2469 , __func__, parent_ep, hwtid,
2470 local_ip, peer_ip, ntohs(local_port),
2471 ntohs(peer_port), peer_mss);
2472 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
2473 local_ip, peer_ip, local_port, peer_port,
2474 PASS_OPEN_TOS_G(ntohl(req->tos_stid)),
2475 ((struct sockaddr_in6 *)
2476 &parent_ep->com.local_addr)->sin6_scope_id);
2477 }
2478 if (!dst) {
2479 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
2480 __func__);
2481 goto reject;
2482 }
2483
2484 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2485 if (!child_ep) {
2486 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
2487 __func__);
2488 dst_release(dst);
2489 goto reject;
2490 }
2491
2492 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2493 parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2494 if (err) {
2495 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
2496 __func__);
2497 dst_release(dst);
2498 kfree(child_ep);
2499 goto reject;
2500 }
2501
2502 hdrs = sizeof(struct iphdr) + sizeof(struct tcphdr) +
2503 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2504 if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2505 child_ep->mtu = peer_mss + hdrs;
2506
2507 skb_queue_head_init(&child_ep->com.ep_skb_list);
2508 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2509 goto fail;
2510
2511 state_set(&child_ep->com, CONNECTING);
2512 child_ep->com.dev = dev;
2513 child_ep->com.cm_id = NULL;
2514
2515 if (iptype == 4) {
2516 struct sockaddr_in *sin = (struct sockaddr_in *)
2517 &child_ep->com.local_addr;
2518
2519 sin->sin_family = PF_INET;
2520 sin->sin_port = local_port;
2521 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2522
2523 sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2524 sin->sin_family = PF_INET;
2525 sin->sin_port = ((struct sockaddr_in *)
2526 &parent_ep->com.local_addr)->sin_port;
2527 sin->sin_addr.s_addr = *(__be32 *)local_ip;
2528
2529 sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2530 sin->sin_family = PF_INET;
2531 sin->sin_port = peer_port;
2532 sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2533 } else {
2534 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2535 sin6->sin6_family = PF_INET6;
2536 sin6->sin6_port = local_port;
2537 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2538
2539 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2540 sin6->sin6_family = PF_INET6;
2541 sin6->sin6_port = ((struct sockaddr_in6 *)
2542 &parent_ep->com.local_addr)->sin6_port;
2543 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2544
2545 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2546 sin6->sin6_family = PF_INET6;
2547 sin6->sin6_port = peer_port;
2548 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2549 }
2550
2551 c4iw_get_ep(&parent_ep->com);
2552 child_ep->parent_ep = parent_ep;
2553 child_ep->tos = tos;
2554 child_ep->dst = dst;
2555 child_ep->hwtid = hwtid;
2556
2557 PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
2558 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2559
2560 init_timer(&child_ep->timer);
2561 cxgb4_insert_tid(t, child_ep, hwtid);
2562 insert_ep_tid(child_ep);
2563 if (accept_cr(child_ep, skb, req)) {
2564 c4iw_put_ep(&parent_ep->com);
2565 release_ep_resources(child_ep);
2566 } else {
2567 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2568 }
2569 if (iptype == 6) {
2570 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2571 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2572 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2573 }
2574 goto out;
2575 fail:
2576 c4iw_put_ep(&child_ep->com);
2577 reject:
2578 reject_cr(dev, hwtid, skb);
2579 if (parent_ep)
2580 c4iw_put_ep(&parent_ep->com);
2581 out:
2582 return 0;
2583 }
2584
2585 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2586 {
2587 struct c4iw_ep *ep;
2588 struct cpl_pass_establish *req = cplhdr(skb);
2589 unsigned int tid = GET_TID(req);
2590 int ret;
2591
2592 ep = get_ep_from_tid(dev, tid);
2593 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2594 ep->snd_seq = be32_to_cpu(req->snd_isn);
2595 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2596
2597 PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid,
2598 ntohs(req->tcp_opt));
2599
2600 set_emss(ep, ntohs(req->tcp_opt));
2601
2602 dst_confirm(ep->dst);
2603 mutex_lock(&ep->com.mutex);
2604 ep->com.state = MPA_REQ_WAIT;
2605 start_ep_timer(ep);
2606 set_bit(PASS_ESTAB, &ep->com.history);
2607 ret = send_flowc(ep);
2608 mutex_unlock(&ep->com.mutex);
2609 if (ret)
2610 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2611 c4iw_put_ep(&ep->com);
2612
2613 return 0;
2614 }
2615
2616 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2617 {
2618 struct cpl_peer_close *hdr = cplhdr(skb);
2619 struct c4iw_ep *ep;
2620 struct c4iw_qp_attributes attrs;
2621 int disconnect = 1;
2622 int release = 0;
2623 unsigned int tid = GET_TID(hdr);
2624 int ret;
2625
2626 ep = get_ep_from_tid(dev, tid);
2627 if (!ep)
2628 return 0;
2629
2630 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2631 dst_confirm(ep->dst);
2632
2633 set_bit(PEER_CLOSE, &ep->com.history);
2634 mutex_lock(&ep->com.mutex);
2635 switch (ep->com.state) {
2636 case MPA_REQ_WAIT:
2637 __state_set(&ep->com, CLOSING);
2638 break;
2639 case MPA_REQ_SENT:
2640 __state_set(&ep->com, CLOSING);
2641 connect_reply_upcall(ep, -ECONNRESET);
2642 break;
2643 case MPA_REQ_RCVD:
2644
2645 /*
2646 * We're gonna mark this puppy DEAD, but keep
2647 * the reference on it until the ULP accepts or
2648 * rejects the CR. Also wake up anyone waiting
2649 * in rdma connection migration (see c4iw_accept_cr()).
2650 */
2651 __state_set(&ep->com, CLOSING);
2652 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2653 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2654 break;
2655 case MPA_REP_SENT:
2656 __state_set(&ep->com, CLOSING);
2657 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2658 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2659 break;
2660 case FPDU_MODE:
2661 start_ep_timer(ep);
2662 __state_set(&ep->com, CLOSING);
2663 attrs.next_state = C4IW_QP_STATE_CLOSING;
2664 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2665 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2666 if (ret != -ECONNRESET) {
2667 peer_close_upcall(ep);
2668 disconnect = 1;
2669 }
2670 break;
2671 case ABORTING:
2672 disconnect = 0;
2673 break;
2674 case CLOSING:
2675 __state_set(&ep->com, MORIBUND);
2676 disconnect = 0;
2677 break;
2678 case MORIBUND:
2679 (void)stop_ep_timer(ep);
2680 if (ep->com.cm_id && ep->com.qp) {
2681 attrs.next_state = C4IW_QP_STATE_IDLE;
2682 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2683 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2684 }
2685 close_complete_upcall(ep, 0);
2686 __state_set(&ep->com, DEAD);
2687 release = 1;
2688 disconnect = 0;
2689 break;
2690 case DEAD:
2691 disconnect = 0;
2692 break;
2693 default:
2694 BUG_ON(1);
2695 }
2696 mutex_unlock(&ep->com.mutex);
2697 if (disconnect)
2698 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2699 if (release)
2700 release_ep_resources(ep);
2701 c4iw_put_ep(&ep->com);
2702 return 0;
2703 }
2704
2705 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2706 {
2707 struct cpl_abort_req_rss *req = cplhdr(skb);
2708 struct c4iw_ep *ep;
2709 struct sk_buff *rpl_skb;
2710 struct c4iw_qp_attributes attrs;
2711 int ret;
2712 int release = 0;
2713 unsigned int tid = GET_TID(req);
2714 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16);
2715
2716 ep = get_ep_from_tid(dev, tid);
2717 if (!ep)
2718 return 0;
2719
2720 if (cxgb_is_neg_adv(req->status)) {
2721 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
2722 __func__, ep->hwtid, req->status,
2723 neg_adv_str(req->status));
2724 ep->stats.abort_neg_adv++;
2725 mutex_lock(&dev->rdev.stats.lock);
2726 dev->rdev.stats.neg_adv++;
2727 mutex_unlock(&dev->rdev.stats.lock);
2728 goto deref_ep;
2729 }
2730 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
2731 ep->com.state);
2732 set_bit(PEER_ABORT, &ep->com.history);
2733
2734 /*
2735 * Wake up any threads in rdma_init() or rdma_fini().
2736 * However, this is not needed if com state is just
2737 * MPA_REQ_SENT
2738 */
2739 if (ep->com.state != MPA_REQ_SENT)
2740 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2741
2742 mutex_lock(&ep->com.mutex);
2743 switch (ep->com.state) {
2744 case CONNECTING:
2745 c4iw_put_ep(&ep->parent_ep->com);
2746 break;
2747 case MPA_REQ_WAIT:
2748 (void)stop_ep_timer(ep);
2749 break;
2750 case MPA_REQ_SENT:
2751 (void)stop_ep_timer(ep);
2752 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1))
2753 connect_reply_upcall(ep, -ECONNRESET);
2754 else {
2755 /*
2756 * we just don't send notification upwards because we
2757 * want to retry with mpa_v1 without upper layers even
2758 * knowing it.
2759 *
2760 * do some housekeeping so as to re-initiate the
2761 * connection
2762 */
2763 PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__,
2764 mpa_rev);
2765 ep->retry_with_mpa_v1 = 1;
2766 }
2767 break;
2768 case MPA_REP_SENT:
2769 break;
2770 case MPA_REQ_RCVD:
2771 break;
2772 case MORIBUND:
2773 case CLOSING:
2774 stop_ep_timer(ep);
2775 /*FALLTHROUGH*/
2776 case FPDU_MODE:
2777 if (ep->com.cm_id && ep->com.qp) {
2778 attrs.next_state = C4IW_QP_STATE_ERROR;
2779 ret = c4iw_modify_qp(ep->com.qp->rhp,
2780 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2781 &attrs, 1);
2782 if (ret)
2783 printk(KERN_ERR MOD
2784 "%s - qp <- error failed!\n",
2785 __func__);
2786 }
2787 peer_abort_upcall(ep);
2788 break;
2789 case ABORTING:
2790 break;
2791 case DEAD:
2792 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2793 mutex_unlock(&ep->com.mutex);
2794 goto deref_ep;
2795 default:
2796 BUG_ON(1);
2797 break;
2798 }
2799 dst_confirm(ep->dst);
2800 if (ep->com.state != ABORTING) {
2801 __state_set(&ep->com, DEAD);
2802 /* we don't release if we want to retry with mpa_v1 */
2803 if (!ep->retry_with_mpa_v1)
2804 release = 1;
2805 }
2806 mutex_unlock(&ep->com.mutex);
2807
2808 rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2809 if (WARN_ON(!rpl_skb)) {
2810 release = 1;
2811 goto out;
2812 }
2813
2814 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx);
2815
2816 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2817 out:
2818 if (release)
2819 release_ep_resources(ep);
2820 else if (ep->retry_with_mpa_v1) {
2821 if (ep->com.remote_addr.ss_family == AF_INET6) {
2822 struct sockaddr_in6 *sin6 =
2823 (struct sockaddr_in6 *)
2824 &ep->com.local_addr;
2825 cxgb4_clip_release(
2826 ep->com.dev->rdev.lldi.ports[0],
2827 (const u32 *)&sin6->sin6_addr.s6_addr,
2828 1);
2829 }
2830 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
2831 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
2832 dst_release(ep->dst);
2833 cxgb4_l2t_release(ep->l2t);
2834 c4iw_reconnect(ep);
2835 }
2836
2837 deref_ep:
2838 c4iw_put_ep(&ep->com);
2839 /* Dereferencing ep, referenced in peer_abort_intr() */
2840 c4iw_put_ep(&ep->com);
2841 return 0;
2842 }
2843
2844 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2845 {
2846 struct c4iw_ep *ep;
2847 struct c4iw_qp_attributes attrs;
2848 struct cpl_close_con_rpl *rpl = cplhdr(skb);
2849 int release = 0;
2850 unsigned int tid = GET_TID(rpl);
2851
2852 ep = get_ep_from_tid(dev, tid);
2853 if (!ep)
2854 return 0;
2855
2856 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2857 BUG_ON(!ep);
2858
2859 /* The cm_id may be null if we failed to connect */
2860 mutex_lock(&ep->com.mutex);
2861 set_bit(CLOSE_CON_RPL, &ep->com.history);
2862 switch (ep->com.state) {
2863 case CLOSING:
2864 __state_set(&ep->com, MORIBUND);
2865 break;
2866 case MORIBUND:
2867 (void)stop_ep_timer(ep);
2868 if ((ep->com.cm_id) && (ep->com.qp)) {
2869 attrs.next_state = C4IW_QP_STATE_IDLE;
2870 c4iw_modify_qp(ep->com.qp->rhp,
2871 ep->com.qp,
2872 C4IW_QP_ATTR_NEXT_STATE,
2873 &attrs, 1);
2874 }
2875 close_complete_upcall(ep, 0);
2876 __state_set(&ep->com, DEAD);
2877 release = 1;
2878 break;
2879 case ABORTING:
2880 case DEAD:
2881 break;
2882 default:
2883 BUG_ON(1);
2884 break;
2885 }
2886 mutex_unlock(&ep->com.mutex);
2887 if (release)
2888 release_ep_resources(ep);
2889 c4iw_put_ep(&ep->com);
2890 return 0;
2891 }
2892
2893 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
2894 {
2895 struct cpl_rdma_terminate *rpl = cplhdr(skb);
2896 unsigned int tid = GET_TID(rpl);
2897 struct c4iw_ep *ep;
2898 struct c4iw_qp_attributes attrs;
2899
2900 ep = get_ep_from_tid(dev, tid);
2901 BUG_ON(!ep);
2902
2903 if (ep && ep->com.qp) {
2904 printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid,
2905 ep->com.qp->wq.sq.qid);
2906 attrs.next_state = C4IW_QP_STATE_TERMINATE;
2907 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2908 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2909 } else
2910 printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid);
2911 c4iw_put_ep(&ep->com);
2912
2913 return 0;
2914 }
2915
2916 /*
2917 * Upcall from the adapter indicating data has been transmitted.
2918 * For us its just the single MPA request or reply. We can now free
2919 * the skb holding the mpa message.
2920 */
2921 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
2922 {
2923 struct c4iw_ep *ep;
2924 struct cpl_fw4_ack *hdr = cplhdr(skb);
2925 u8 credits = hdr->credits;
2926 unsigned int tid = GET_TID(hdr);
2927
2928
2929 ep = get_ep_from_tid(dev, tid);
2930 if (!ep)
2931 return 0;
2932 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
2933 if (credits == 0) {
2934 PDBG("%s 0 credit ack ep %p tid %u state %u\n",
2935 __func__, ep, ep->hwtid, state_read(&ep->com));
2936 goto out;
2937 }
2938
2939 dst_confirm(ep->dst);
2940 if (ep->mpa_skb) {
2941 PDBG("%s last streaming msg ack ep %p tid %u state %u "
2942 "initiator %u freeing skb\n", __func__, ep, ep->hwtid,
2943 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
2944 mutex_lock(&ep->com.mutex);
2945 kfree_skb(ep->mpa_skb);
2946 ep->mpa_skb = NULL;
2947 if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
2948 stop_ep_timer(ep);
2949 mutex_unlock(&ep->com.mutex);
2950 }
2951 out:
2952 c4iw_put_ep(&ep->com);
2953 return 0;
2954 }
2955
2956 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
2957 {
2958 int abort;
2959 struct c4iw_ep *ep = to_ep(cm_id);
2960
2961 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2962
2963 mutex_lock(&ep->com.mutex);
2964 if (ep->com.state != MPA_REQ_RCVD) {
2965 mutex_unlock(&ep->com.mutex);
2966 c4iw_put_ep(&ep->com);
2967 return -ECONNRESET;
2968 }
2969 set_bit(ULP_REJECT, &ep->com.history);
2970 if (mpa_rev == 0)
2971 abort = 1;
2972 else
2973 abort = send_mpa_reject(ep, pdata, pdata_len);
2974 mutex_unlock(&ep->com.mutex);
2975
2976 stop_ep_timer(ep);
2977 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
2978 c4iw_put_ep(&ep->com);
2979 return 0;
2980 }
2981
2982 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
2983 {
2984 int err;
2985 struct c4iw_qp_attributes attrs;
2986 enum c4iw_qp_attr_mask mask;
2987 struct c4iw_ep *ep = to_ep(cm_id);
2988 struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
2989 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
2990 int abort = 0;
2991
2992 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2993
2994 mutex_lock(&ep->com.mutex);
2995 if (ep->com.state != MPA_REQ_RCVD) {
2996 err = -ECONNRESET;
2997 goto err_out;
2998 }
2999
3000 BUG_ON(!qp);
3001
3002 set_bit(ULP_ACCEPT, &ep->com.history);
3003 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3004 (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3005 err = -EINVAL;
3006 goto err_abort;
3007 }
3008
3009 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3010 if (conn_param->ord > ep->ird) {
3011 if (RELAXED_IRD_NEGOTIATION) {
3012 conn_param->ord = ep->ird;
3013 } else {
3014 ep->ird = conn_param->ird;
3015 ep->ord = conn_param->ord;
3016 send_mpa_reject(ep, conn_param->private_data,
3017 conn_param->private_data_len);
3018 err = -ENOMEM;
3019 goto err_abort;
3020 }
3021 }
3022 if (conn_param->ird < ep->ord) {
3023 if (RELAXED_IRD_NEGOTIATION &&
3024 ep->ord <= h->rdev.lldi.max_ordird_qp) {
3025 conn_param->ird = ep->ord;
3026 } else {
3027 err = -ENOMEM;
3028 goto err_abort;
3029 }
3030 }
3031 }
3032 ep->ird = conn_param->ird;
3033 ep->ord = conn_param->ord;
3034
3035 if (ep->mpa_attr.version == 1) {
3036 if (peer2peer && ep->ird == 0)
3037 ep->ird = 1;
3038 } else {
3039 if (peer2peer &&
3040 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3041 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3042 ep->ird = 1;
3043 }
3044
3045 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
3046
3047 ep->com.cm_id = cm_id;
3048 ref_cm_id(&ep->com);
3049 ep->com.qp = qp;
3050 ref_qp(ep);
3051
3052 /* bind QP to EP and move to RTS */
3053 attrs.mpa_attr = ep->mpa_attr;
3054 attrs.max_ird = ep->ird;
3055 attrs.max_ord = ep->ord;
3056 attrs.llp_stream_handle = ep;
3057 attrs.next_state = C4IW_QP_STATE_RTS;
3058
3059 /* bind QP and TID with INIT_WR */
3060 mask = C4IW_QP_ATTR_NEXT_STATE |
3061 C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3062 C4IW_QP_ATTR_MPA_ATTR |
3063 C4IW_QP_ATTR_MAX_IRD |
3064 C4IW_QP_ATTR_MAX_ORD;
3065
3066 err = c4iw_modify_qp(ep->com.qp->rhp,
3067 ep->com.qp, mask, &attrs, 1);
3068 if (err)
3069 goto err_deref_cm_id;
3070
3071 set_bit(STOP_MPA_TIMER, &ep->com.flags);
3072 err = send_mpa_reply(ep, conn_param->private_data,
3073 conn_param->private_data_len);
3074 if (err)
3075 goto err_deref_cm_id;
3076
3077 __state_set(&ep->com, FPDU_MODE);
3078 established_upcall(ep);
3079 mutex_unlock(&ep->com.mutex);
3080 c4iw_put_ep(&ep->com);
3081 return 0;
3082 err_deref_cm_id:
3083 deref_cm_id(&ep->com);
3084 err_abort:
3085 abort = 1;
3086 err_out:
3087 mutex_unlock(&ep->com.mutex);
3088 if (abort)
3089 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3090 c4iw_put_ep(&ep->com);
3091 return err;
3092 }
3093
3094 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3095 {
3096 struct in_device *ind;
3097 int found = 0;
3098 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3099 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3100
3101 ind = in_dev_get(dev->rdev.lldi.ports[0]);
3102 if (!ind)
3103 return -EADDRNOTAVAIL;
3104 for_primary_ifa(ind) {
3105 laddr->sin_addr.s_addr = ifa->ifa_address;
3106 raddr->sin_addr.s_addr = ifa->ifa_address;
3107 found = 1;
3108 break;
3109 }
3110 endfor_ifa(ind);
3111 in_dev_put(ind);
3112 return found ? 0 : -EADDRNOTAVAIL;
3113 }
3114
3115 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3116 unsigned char banned_flags)
3117 {
3118 struct inet6_dev *idev;
3119 int err = -EADDRNOTAVAIL;
3120
3121 rcu_read_lock();
3122 idev = __in6_dev_get(dev);
3123 if (idev != NULL) {
3124 struct inet6_ifaddr *ifp;
3125
3126 read_lock_bh(&idev->lock);
3127 list_for_each_entry(ifp, &idev->addr_list, if_list) {
3128 if (ifp->scope == IFA_LINK &&
3129 !(ifp->flags & banned_flags)) {
3130 memcpy(addr, &ifp->addr, 16);
3131 err = 0;
3132 break;
3133 }
3134 }
3135 read_unlock_bh(&idev->lock);
3136 }
3137 rcu_read_unlock();
3138 return err;
3139 }
3140
3141 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3142 {
3143 struct in6_addr uninitialized_var(addr);
3144 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3145 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3146
3147 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3148 memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3149 memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3150 return 0;
3151 }
3152 return -EADDRNOTAVAIL;
3153 }
3154
3155 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3156 {
3157 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3158 struct c4iw_ep *ep;
3159 int err = 0;
3160 struct sockaddr_in *laddr;
3161 struct sockaddr_in *raddr;
3162 struct sockaddr_in6 *laddr6;
3163 struct sockaddr_in6 *raddr6;
3164 __u8 *ra;
3165 int iptype;
3166
3167 if ((conn_param->ord > cur_max_read_depth(dev)) ||
3168 (conn_param->ird > cur_max_read_depth(dev))) {
3169 err = -EINVAL;
3170 goto out;
3171 }
3172 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3173 if (!ep) {
3174 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3175 err = -ENOMEM;
3176 goto out;
3177 }
3178
3179 skb_queue_head_init(&ep->com.ep_skb_list);
3180 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3181 err = -ENOMEM;
3182 goto fail1;
3183 }
3184
3185 init_timer(&ep->timer);
3186 ep->plen = conn_param->private_data_len;
3187 if (ep->plen)
3188 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3189 conn_param->private_data, ep->plen);
3190 ep->ird = conn_param->ird;
3191 ep->ord = conn_param->ord;
3192
3193 if (peer2peer && ep->ord == 0)
3194 ep->ord = 1;
3195
3196 ep->com.cm_id = cm_id;
3197 ref_cm_id(&ep->com);
3198 ep->com.dev = dev;
3199 ep->com.qp = get_qhp(dev, conn_param->qpn);
3200 if (!ep->com.qp) {
3201 PDBG("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3202 err = -EINVAL;
3203 goto fail2;
3204 }
3205 ref_qp(ep);
3206 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
3207 ep->com.qp, cm_id);
3208
3209 /*
3210 * Allocate an active TID to initiate a TCP connection.
3211 */
3212 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3213 if (ep->atid == -1) {
3214 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
3215 err = -ENOMEM;
3216 goto fail2;
3217 }
3218 insert_handle(dev, &dev->atid_idr, ep, ep->atid);
3219
3220 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3221 sizeof(ep->com.local_addr));
3222 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3223 sizeof(ep->com.remote_addr));
3224
3225 laddr = (struct sockaddr_in *)&ep->com.local_addr;
3226 raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3227 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3228 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3229
3230 if (cm_id->m_remote_addr.ss_family == AF_INET) {
3231 iptype = 4;
3232 ra = (__u8 *)&raddr->sin_addr;
3233
3234 /*
3235 * Handle loopback requests to INADDR_ANY.
3236 */
3237 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3238 err = pick_local_ipaddrs(dev, cm_id);
3239 if (err)
3240 goto fail2;
3241 }
3242
3243 /* find a route */
3244 PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3245 __func__, &laddr->sin_addr, ntohs(laddr->sin_port),
3246 ra, ntohs(raddr->sin_port));
3247 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
3248 laddr->sin_addr.s_addr,
3249 raddr->sin_addr.s_addr,
3250 laddr->sin_port,
3251 raddr->sin_port, cm_id->tos);
3252 } else {
3253 iptype = 6;
3254 ra = (__u8 *)&raddr6->sin6_addr;
3255
3256 /*
3257 * Handle loopback requests to INADDR_ANY.
3258 */
3259 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3260 err = pick_local_ip6addrs(dev, cm_id);
3261 if (err)
3262 goto fail2;
3263 }
3264
3265 /* find a route */
3266 PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3267 __func__, laddr6->sin6_addr.s6_addr,
3268 ntohs(laddr6->sin6_port),
3269 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3270 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
3271 laddr6->sin6_addr.s6_addr,
3272 raddr6->sin6_addr.s6_addr,
3273 laddr6->sin6_port,
3274 raddr6->sin6_port, 0,
3275 raddr6->sin6_scope_id);
3276 }
3277 if (!ep->dst) {
3278 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
3279 err = -EHOSTUNREACH;
3280 goto fail3;
3281 }
3282
3283 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3284 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3285 if (err) {
3286 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
3287 goto fail4;
3288 }
3289
3290 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3291 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3292 ep->l2t->idx);
3293
3294 state_set(&ep->com, CONNECTING);
3295 ep->tos = cm_id->tos;
3296
3297 /* send connect request to rnic */
3298 err = send_connect(ep);
3299 if (!err)
3300 goto out;
3301
3302 cxgb4_l2t_release(ep->l2t);
3303 fail4:
3304 dst_release(ep->dst);
3305 fail3:
3306 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
3307 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3308 fail2:
3309 skb_queue_purge(&ep->com.ep_skb_list);
3310 deref_cm_id(&ep->com);
3311 fail1:
3312 c4iw_put_ep(&ep->com);
3313 out:
3314 return err;
3315 }
3316
3317 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3318 {
3319 int err;
3320 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3321 &ep->com.local_addr;
3322
3323 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3324 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3325 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3326 if (err)
3327 return err;
3328 }
3329 c4iw_init_wr_wait(&ep->com.wr_wait);
3330 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3331 ep->stid, &sin6->sin6_addr,
3332 sin6->sin6_port,
3333 ep->com.dev->rdev.lldi.rxq_ids[0]);
3334 if (!err)
3335 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3336 &ep->com.wr_wait,
3337 0, 0, __func__);
3338 else if (err > 0)
3339 err = net_xmit_errno(err);
3340 if (err) {
3341 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3342 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3343 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3344 err, ep->stid,
3345 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3346 }
3347 return err;
3348 }
3349
3350 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3351 {
3352 int err;
3353 struct sockaddr_in *sin = (struct sockaddr_in *)
3354 &ep->com.local_addr;
3355
3356 if (dev->rdev.lldi.enable_fw_ofld_conn) {
3357 do {
3358 err = cxgb4_create_server_filter(
3359 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3360 sin->sin_addr.s_addr, sin->sin_port, 0,
3361 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3362 if (err == -EBUSY) {
3363 if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3364 err = -EIO;
3365 break;
3366 }
3367 set_current_state(TASK_UNINTERRUPTIBLE);
3368 schedule_timeout(usecs_to_jiffies(100));
3369 }
3370 } while (err == -EBUSY);
3371 } else {
3372 c4iw_init_wr_wait(&ep->com.wr_wait);
3373 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3374 ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3375 0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3376 if (!err)
3377 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3378 &ep->com.wr_wait,
3379 0, 0, __func__);
3380 else if (err > 0)
3381 err = net_xmit_errno(err);
3382 }
3383 if (err)
3384 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3385 , err, ep->stid,
3386 &sin->sin_addr, ntohs(sin->sin_port));
3387 return err;
3388 }
3389
3390 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3391 {
3392 int err = 0;
3393 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3394 struct c4iw_listen_ep *ep;
3395
3396 might_sleep();
3397
3398 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3399 if (!ep) {
3400 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3401 err = -ENOMEM;
3402 goto fail1;
3403 }
3404 skb_queue_head_init(&ep->com.ep_skb_list);
3405 PDBG("%s ep %p\n", __func__, ep);
3406 ep->com.cm_id = cm_id;
3407 ref_cm_id(&ep->com);
3408 ep->com.dev = dev;
3409 ep->backlog = backlog;
3410 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3411 sizeof(ep->com.local_addr));
3412
3413 /*
3414 * Allocate a server TID.
3415 */
3416 if (dev->rdev.lldi.enable_fw_ofld_conn &&
3417 ep->com.local_addr.ss_family == AF_INET)
3418 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3419 cm_id->m_local_addr.ss_family, ep);
3420 else
3421 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3422 cm_id->m_local_addr.ss_family, ep);
3423
3424 if (ep->stid == -1) {
3425 printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__);
3426 err = -ENOMEM;
3427 goto fail2;
3428 }
3429 insert_handle(dev, &dev->stid_idr, ep, ep->stid);
3430
3431 memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3432 sizeof(ep->com.local_addr));
3433
3434 state_set(&ep->com, LISTEN);
3435 if (ep->com.local_addr.ss_family == AF_INET)
3436 err = create_server4(dev, ep);
3437 else
3438 err = create_server6(dev, ep);
3439 if (!err) {
3440 cm_id->provider_data = ep;
3441 goto out;
3442 }
3443
3444 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3445 ep->com.local_addr.ss_family);
3446 fail2:
3447 deref_cm_id(&ep->com);
3448 c4iw_put_ep(&ep->com);
3449 fail1:
3450 out:
3451 return err;
3452 }
3453
3454 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3455 {
3456 int err;
3457 struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3458
3459 PDBG("%s ep %p\n", __func__, ep);
3460
3461 might_sleep();
3462 state_set(&ep->com, DEAD);
3463 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3464 ep->com.local_addr.ss_family == AF_INET) {
3465 err = cxgb4_remove_server_filter(
3466 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3467 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3468 } else {
3469 struct sockaddr_in6 *sin6;
3470 c4iw_init_wr_wait(&ep->com.wr_wait);
3471 err = cxgb4_remove_server(
3472 ep->com.dev->rdev.lldi.ports[0], ep->stid,
3473 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3474 if (err)
3475 goto done;
3476 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait,
3477 0, 0, __func__);
3478 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3479 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3480 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3481 }
3482 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
3483 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3484 ep->com.local_addr.ss_family);
3485 done:
3486 deref_cm_id(&ep->com);
3487 c4iw_put_ep(&ep->com);
3488 return err;
3489 }
3490
3491 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3492 {
3493 int ret = 0;
3494 int close = 0;
3495 int fatal = 0;
3496 struct c4iw_rdev *rdev;
3497
3498 mutex_lock(&ep->com.mutex);
3499
3500 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
3501 states[ep->com.state], abrupt);
3502
3503 /*
3504 * Ref the ep here in case we have fatal errors causing the
3505 * ep to be released and freed.
3506 */
3507 c4iw_get_ep(&ep->com);
3508
3509 rdev = &ep->com.dev->rdev;
3510 if (c4iw_fatal_error(rdev)) {
3511 fatal = 1;
3512 close_complete_upcall(ep, -EIO);
3513 ep->com.state = DEAD;
3514 }
3515 switch (ep->com.state) {
3516 case MPA_REQ_WAIT:
3517 case MPA_REQ_SENT:
3518 case MPA_REQ_RCVD:
3519 case MPA_REP_SENT:
3520 case FPDU_MODE:
3521 case CONNECTING:
3522 close = 1;
3523 if (abrupt)
3524 ep->com.state = ABORTING;
3525 else {
3526 ep->com.state = CLOSING;
3527
3528 /*
3529 * if we close before we see the fw4_ack() then we fix
3530 * up the timer state since we're reusing it.
3531 */
3532 if (ep->mpa_skb &&
3533 test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3534 clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3535 stop_ep_timer(ep);
3536 }
3537 start_ep_timer(ep);
3538 }
3539 set_bit(CLOSE_SENT, &ep->com.flags);
3540 break;
3541 case CLOSING:
3542 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3543 close = 1;
3544 if (abrupt) {
3545 (void)stop_ep_timer(ep);
3546 ep->com.state = ABORTING;
3547 } else
3548 ep->com.state = MORIBUND;
3549 }
3550 break;
3551 case MORIBUND:
3552 case ABORTING:
3553 case DEAD:
3554 PDBG("%s ignoring disconnect ep %p state %u\n",
3555 __func__, ep, ep->com.state);
3556 break;
3557 default:
3558 BUG();
3559 break;
3560 }
3561
3562 if (close) {
3563 if (abrupt) {
3564 set_bit(EP_DISC_ABORT, &ep->com.history);
3565 close_complete_upcall(ep, -ECONNRESET);
3566 ret = send_abort(ep);
3567 } else {
3568 set_bit(EP_DISC_CLOSE, &ep->com.history);
3569 ret = send_halfclose(ep);
3570 }
3571 if (ret) {
3572 set_bit(EP_DISC_FAIL, &ep->com.history);
3573 if (!abrupt) {
3574 stop_ep_timer(ep);
3575 close_complete_upcall(ep, -EIO);
3576 }
3577 if (ep->com.qp) {
3578 struct c4iw_qp_attributes attrs;
3579
3580 attrs.next_state = C4IW_QP_STATE_ERROR;
3581 ret = c4iw_modify_qp(ep->com.qp->rhp,
3582 ep->com.qp,
3583 C4IW_QP_ATTR_NEXT_STATE,
3584 &attrs, 1);
3585 if (ret)
3586 pr_err(MOD
3587 "%s - qp <- error failed!\n",
3588 __func__);
3589 }
3590 fatal = 1;
3591 }
3592 }
3593 mutex_unlock(&ep->com.mutex);
3594 c4iw_put_ep(&ep->com);
3595 if (fatal)
3596 release_ep_resources(ep);
3597 return ret;
3598 }
3599
3600 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3601 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3602 {
3603 struct c4iw_ep *ep;
3604 int atid = be32_to_cpu(req->tid);
3605
3606 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3607 (__force u32) req->tid);
3608 if (!ep)
3609 return;
3610
3611 switch (req->retval) {
3612 case FW_ENOMEM:
3613 set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3614 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3615 send_fw_act_open_req(ep, atid);
3616 return;
3617 }
3618 case FW_EADDRINUSE:
3619 set_bit(ACT_RETRY_INUSE, &ep->com.history);
3620 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3621 send_fw_act_open_req(ep, atid);
3622 return;
3623 }
3624 break;
3625 default:
3626 pr_info("%s unexpected ofld conn wr retval %d\n",
3627 __func__, req->retval);
3628 break;
3629 }
3630 pr_err("active ofld_connect_wr failure %d atid %d\n",
3631 req->retval, atid);
3632 mutex_lock(&dev->rdev.stats.lock);
3633 dev->rdev.stats.act_ofld_conn_fails++;
3634 mutex_unlock(&dev->rdev.stats.lock);
3635 connect_reply_upcall(ep, status2errno(req->retval));
3636 state_set(&ep->com, DEAD);
3637 if (ep->com.remote_addr.ss_family == AF_INET6) {
3638 struct sockaddr_in6 *sin6 =
3639 (struct sockaddr_in6 *)&ep->com.local_addr;
3640 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3641 (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3642 }
3643 remove_handle(dev, &dev->atid_idr, atid);
3644 cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3645 dst_release(ep->dst);
3646 cxgb4_l2t_release(ep->l2t);
3647 c4iw_put_ep(&ep->com);
3648 }
3649
3650 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3651 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3652 {
3653 struct sk_buff *rpl_skb;
3654 struct cpl_pass_accept_req *cpl;
3655 int ret;
3656
3657 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3658 BUG_ON(!rpl_skb);
3659 if (req->retval) {
3660 PDBG("%s passive open failure %d\n", __func__, req->retval);
3661 mutex_lock(&dev->rdev.stats.lock);
3662 dev->rdev.stats.pas_ofld_conn_fails++;
3663 mutex_unlock(&dev->rdev.stats.lock);
3664 kfree_skb(rpl_skb);
3665 } else {
3666 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3667 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3668 (__force u32) htonl(
3669 (__force u32) req->tid)));
3670 ret = pass_accept_req(dev, rpl_skb);
3671 if (!ret)
3672 kfree_skb(rpl_skb);
3673 }
3674 return;
3675 }
3676
3677 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3678 {
3679 struct cpl_fw6_msg *rpl = cplhdr(skb);
3680 struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3681
3682 switch (rpl->type) {
3683 case FW6_TYPE_CQE:
3684 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3685 break;
3686 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3687 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3688 switch (req->t_state) {
3689 case TCP_SYN_SENT:
3690 active_ofld_conn_reply(dev, skb, req);
3691 break;
3692 case TCP_SYN_RECV:
3693 passive_ofld_conn_reply(dev, skb, req);
3694 break;
3695 default:
3696 pr_err("%s unexpected ofld conn wr state %d\n",
3697 __func__, req->t_state);
3698 break;
3699 }
3700 break;
3701 }
3702 return 0;
3703 }
3704
3705 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3706 {
3707 __be32 l2info;
3708 __be16 hdr_len, vlantag, len;
3709 u16 eth_hdr_len;
3710 int tcp_hdr_len, ip_hdr_len;
3711 u8 intf;
3712 struct cpl_rx_pkt *cpl = cplhdr(skb);
3713 struct cpl_pass_accept_req *req;
3714 struct tcp_options_received tmp_opt;
3715 struct c4iw_dev *dev;
3716 enum chip_type type;
3717
3718 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3719 /* Store values from cpl_rx_pkt in temporary location. */
3720 vlantag = cpl->vlan;
3721 len = cpl->len;
3722 l2info = cpl->l2info;
3723 hdr_len = cpl->hdr_len;
3724 intf = cpl->iff;
3725
3726 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3727
3728 /*
3729 * We need to parse the TCP options from SYN packet.
3730 * to generate cpl_pass_accept_req.
3731 */
3732 memset(&tmp_opt, 0, sizeof(tmp_opt));
3733 tcp_clear_options(&tmp_opt);
3734 tcp_parse_options(skb, &tmp_opt, 0, NULL);
3735
3736 req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req));
3737 memset(req, 0, sizeof(*req));
3738 req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3739 SYN_MAC_IDX_V(RX_MACIDX_G(
3740 be32_to_cpu(l2info))) |
3741 SYN_XACT_MATCH_F);
3742 type = dev->rdev.lldi.adapter_type;
3743 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3744 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3745 req->hdr_len =
3746 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3747 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3748 eth_hdr_len = is_t4(type) ?
3749 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3750 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3751 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3752 IP_HDR_LEN_V(ip_hdr_len) |
3753 ETH_HDR_LEN_V(eth_hdr_len));
3754 } else { /* T6 and later */
3755 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3756 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3757 T6_IP_HDR_LEN_V(ip_hdr_len) |
3758 T6_ETH_HDR_LEN_V(eth_hdr_len));
3759 }
3760 req->vlan = vlantag;
3761 req->len = len;
3762 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3763 PASS_OPEN_TOS_V(tos));
3764 req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3765 if (tmp_opt.wscale_ok)
3766 req->tcpopt.wsf = tmp_opt.snd_wscale;
3767 req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3768 if (tmp_opt.sack_ok)
3769 req->tcpopt.sack = 1;
3770 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3771 return;
3772 }
3773
3774 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3775 __be32 laddr, __be16 lport,
3776 __be32 raddr, __be16 rport,
3777 u32 rcv_isn, u32 filter, u16 window,
3778 u32 rss_qid, u8 port_id)
3779 {
3780 struct sk_buff *req_skb;
3781 struct fw_ofld_connection_wr *req;
3782 struct cpl_pass_accept_req *cpl = cplhdr(skb);
3783 int ret;
3784
3785 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
3786 req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req));
3787 memset(req, 0, sizeof(*req));
3788 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
3789 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
3790 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
3791 req->le.filter = (__force __be32) filter;
3792 req->le.lport = lport;
3793 req->le.pport = rport;
3794 req->le.u.ipv4.lip = laddr;
3795 req->le.u.ipv4.pip = raddr;
3796 req->tcb.rcv_nxt = htonl(rcv_isn + 1);
3797 req->tcb.rcv_adv = htons(window);
3798 req->tcb.t_state_to_astid =
3799 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
3800 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
3801 FW_OFLD_CONNECTION_WR_ASTID_V(
3802 PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
3803
3804 /*
3805 * We store the qid in opt2 which will be used by the firmware
3806 * to send us the wr response.
3807 */
3808 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
3809
3810 /*
3811 * We initialize the MSS index in TCB to 0xF.
3812 * So that when driver sends cpl_pass_accept_rpl
3813 * TCB picks up the correct value. If this was 0
3814 * TP will ignore any value > 0 for MSS index.
3815 */
3816 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
3817 req->cookie = (uintptr_t)skb;
3818
3819 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
3820 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
3821 if (ret < 0) {
3822 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
3823 ret);
3824 kfree_skb(skb);
3825 kfree_skb(req_skb);
3826 }
3827 }
3828
3829 /*
3830 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
3831 * messages when a filter is being used instead of server to
3832 * redirect a syn packet. When packets hit filter they are redirected
3833 * to the offload queue and driver tries to establish the connection
3834 * using firmware work request.
3835 */
3836 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
3837 {
3838 int stid;
3839 unsigned int filter;
3840 struct ethhdr *eh = NULL;
3841 struct vlan_ethhdr *vlan_eh = NULL;
3842 struct iphdr *iph;
3843 struct tcphdr *tcph;
3844 struct rss_header *rss = (void *)skb->data;
3845 struct cpl_rx_pkt *cpl = (void *)skb->data;
3846 struct cpl_pass_accept_req *req = (void *)(rss + 1);
3847 struct l2t_entry *e;
3848 struct dst_entry *dst;
3849 struct c4iw_ep *lep = NULL;
3850 u16 window;
3851 struct port_info *pi;
3852 struct net_device *pdev;
3853 u16 rss_qid, eth_hdr_len;
3854 int step;
3855 u32 tx_chan;
3856 struct neighbour *neigh;
3857
3858 /* Drop all non-SYN packets */
3859 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
3860 goto reject;
3861
3862 /*
3863 * Drop all packets which did not hit the filter.
3864 * Unlikely to happen.
3865 */
3866 if (!(rss->filter_hit && rss->filter_tid))
3867 goto reject;
3868
3869 /*
3870 * Calculate the server tid from filter hit index from cpl_rx_pkt.
3871 */
3872 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
3873
3874 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
3875 if (!lep) {
3876 PDBG("%s connect request on invalid stid %d\n", __func__, stid);
3877 goto reject;
3878 }
3879
3880 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
3881 case CHELSIO_T4:
3882 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3883 break;
3884 case CHELSIO_T5:
3885 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3886 break;
3887 case CHELSIO_T6:
3888 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3889 break;
3890 default:
3891 pr_err("T%d Chip is not supported\n",
3892 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
3893 goto reject;
3894 }
3895
3896 if (eth_hdr_len == ETH_HLEN) {
3897 eh = (struct ethhdr *)(req + 1);
3898 iph = (struct iphdr *)(eh + 1);
3899 } else {
3900 vlan_eh = (struct vlan_ethhdr *)(req + 1);
3901 iph = (struct iphdr *)(vlan_eh + 1);
3902 skb->vlan_tci = ntohs(cpl->vlan);
3903 }
3904
3905 if (iph->version != 0x4)
3906 goto reject;
3907
3908 tcph = (struct tcphdr *)(iph + 1);
3909 skb_set_network_header(skb, (void *)iph - (void *)rss);
3910 skb_set_transport_header(skb, (void *)tcph - (void *)rss);
3911 skb_get(skb);
3912
3913 PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__,
3914 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
3915 ntohs(tcph->source), iph->tos);
3916
3917 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
3918 iph->daddr, iph->saddr, tcph->dest,
3919 tcph->source, iph->tos);
3920 if (!dst) {
3921 pr_err("%s - failed to find dst entry!\n",
3922 __func__);
3923 goto reject;
3924 }
3925 neigh = dst_neigh_lookup_skb(dst, skb);
3926
3927 if (!neigh) {
3928 pr_err("%s - failed to allocate neigh!\n",
3929 __func__);
3930 goto free_dst;
3931 }
3932
3933 if (neigh->dev->flags & IFF_LOOPBACK) {
3934 pdev = ip_dev_find(&init_net, iph->daddr);
3935 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
3936 pdev, 0);
3937 pi = (struct port_info *)netdev_priv(pdev);
3938 tx_chan = cxgb4_port_chan(pdev);
3939 dev_put(pdev);
3940 } else {
3941 pdev = get_real_dev(neigh->dev);
3942 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
3943 pdev, 0);
3944 pi = (struct port_info *)netdev_priv(pdev);
3945 tx_chan = cxgb4_port_chan(pdev);
3946 }
3947 neigh_release(neigh);
3948 if (!e) {
3949 pr_err("%s - failed to allocate l2t entry!\n",
3950 __func__);
3951 goto free_dst;
3952 }
3953
3954 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
3955 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
3956 window = (__force u16) htons((__force u16)tcph->window);
3957
3958 /* Calcuate filter portion for LE region. */
3959 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
3960 dev->rdev.lldi.ports[0],
3961 e));
3962
3963 /*
3964 * Synthesize the cpl_pass_accept_req. We have everything except the
3965 * TID. Once firmware sends a reply with TID we update the TID field
3966 * in cpl and pass it through the regular cpl_pass_accept_req path.
3967 */
3968 build_cpl_pass_accept_req(skb, stid, iph->tos);
3969 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
3970 tcph->source, ntohl(tcph->seq), filter, window,
3971 rss_qid, pi->port_id);
3972 cxgb4_l2t_release(e);
3973 free_dst:
3974 dst_release(dst);
3975 reject:
3976 if (lep)
3977 c4iw_put_ep(&lep->com);
3978 return 0;
3979 }
3980
3981 /*
3982 * These are the real handlers that are called from a
3983 * work queue.
3984 */
3985 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
3986 [CPL_ACT_ESTABLISH] = act_establish,
3987 [CPL_ACT_OPEN_RPL] = act_open_rpl,
3988 [CPL_RX_DATA] = rx_data,
3989 [CPL_ABORT_RPL_RSS] = abort_rpl,
3990 [CPL_ABORT_RPL] = abort_rpl,
3991 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
3992 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
3993 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
3994 [CPL_PASS_ESTABLISH] = pass_establish,
3995 [CPL_PEER_CLOSE] = peer_close,
3996 [CPL_ABORT_REQ_RSS] = peer_abort,
3997 [CPL_CLOSE_CON_RPL] = close_con_rpl,
3998 [CPL_RDMA_TERMINATE] = terminate,
3999 [CPL_FW4_ACK] = fw4_ack,
4000 [CPL_FW6_MSG] = deferred_fw6_msg,
4001 [CPL_RX_PKT] = rx_pkt,
4002 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4003 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4004 };
4005
4006 static void process_timeout(struct c4iw_ep *ep)
4007 {
4008 struct c4iw_qp_attributes attrs;
4009 int abort = 1;
4010
4011 mutex_lock(&ep->com.mutex);
4012 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
4013 ep->com.state);
4014 set_bit(TIMEDOUT, &ep->com.history);
4015 switch (ep->com.state) {
4016 case MPA_REQ_SENT:
4017 connect_reply_upcall(ep, -ETIMEDOUT);
4018 break;
4019 case MPA_REQ_WAIT:
4020 case MPA_REQ_RCVD:
4021 case MPA_REP_SENT:
4022 case FPDU_MODE:
4023 break;
4024 case CLOSING:
4025 case MORIBUND:
4026 if (ep->com.cm_id && ep->com.qp) {
4027 attrs.next_state = C4IW_QP_STATE_ERROR;
4028 c4iw_modify_qp(ep->com.qp->rhp,
4029 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4030 &attrs, 1);
4031 }
4032 close_complete_upcall(ep, -ETIMEDOUT);
4033 break;
4034 case ABORTING:
4035 case DEAD:
4036
4037 /*
4038 * These states are expected if the ep timed out at the same
4039 * time as another thread was calling stop_ep_timer().
4040 * So we silently do nothing for these states.
4041 */
4042 abort = 0;
4043 break;
4044 default:
4045 WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4046 __func__, ep, ep->hwtid, ep->com.state);
4047 abort = 0;
4048 }
4049 mutex_unlock(&ep->com.mutex);
4050 if (abort)
4051 c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4052 c4iw_put_ep(&ep->com);
4053 }
4054
4055 static void process_timedout_eps(void)
4056 {
4057 struct c4iw_ep *ep;
4058
4059 spin_lock_irq(&timeout_lock);
4060 while (!list_empty(&timeout_list)) {
4061 struct list_head *tmp;
4062
4063 tmp = timeout_list.next;
4064 list_del(tmp);
4065 tmp->next = NULL;
4066 tmp->prev = NULL;
4067 spin_unlock_irq(&timeout_lock);
4068 ep = list_entry(tmp, struct c4iw_ep, entry);
4069 process_timeout(ep);
4070 spin_lock_irq(&timeout_lock);
4071 }
4072 spin_unlock_irq(&timeout_lock);
4073 }
4074
4075 static void process_work(struct work_struct *work)
4076 {
4077 struct sk_buff *skb = NULL;
4078 struct c4iw_dev *dev;
4079 struct cpl_act_establish *rpl;
4080 unsigned int opcode;
4081 int ret;
4082
4083 process_timedout_eps();
4084 while ((skb = skb_dequeue(&rxq))) {
4085 rpl = cplhdr(skb);
4086 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4087 opcode = rpl->ot.opcode;
4088
4089 BUG_ON(!work_handlers[opcode]);
4090 ret = work_handlers[opcode](dev, skb);
4091 if (!ret)
4092 kfree_skb(skb);
4093 process_timedout_eps();
4094 }
4095 }
4096
4097 static DECLARE_WORK(skb_work, process_work);
4098
4099 static void ep_timeout(unsigned long arg)
4100 {
4101 struct c4iw_ep *ep = (struct c4iw_ep *)arg;
4102 int kickit = 0;
4103
4104 spin_lock(&timeout_lock);
4105 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4106 /*
4107 * Only insert if it is not already on the list.
4108 */
4109 if (!ep->entry.next) {
4110 list_add_tail(&ep->entry, &timeout_list);
4111 kickit = 1;
4112 }
4113 }
4114 spin_unlock(&timeout_lock);
4115 if (kickit)
4116 queue_work(workq, &skb_work);
4117 }
4118
4119 /*
4120 * All the CM events are handled on a work queue to have a safe context.
4121 */
4122 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4123 {
4124
4125 /*
4126 * Save dev in the skb->cb area.
4127 */
4128 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4129
4130 /*
4131 * Queue the skb and schedule the worker thread.
4132 */
4133 skb_queue_tail(&rxq, skb);
4134 queue_work(workq, &skb_work);
4135 return 0;
4136 }
4137
4138 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4139 {
4140 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4141
4142 if (rpl->status != CPL_ERR_NONE) {
4143 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
4144 "for tid %u\n", rpl->status, GET_TID(rpl));
4145 }
4146 kfree_skb(skb);
4147 return 0;
4148 }
4149
4150 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4151 {
4152 struct cpl_fw6_msg *rpl = cplhdr(skb);
4153 struct c4iw_wr_wait *wr_waitp;
4154 int ret;
4155
4156 PDBG("%s type %u\n", __func__, rpl->type);
4157
4158 switch (rpl->type) {
4159 case FW6_TYPE_WR_RPL:
4160 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4161 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4162 PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
4163 if (wr_waitp)
4164 c4iw_wake_up(wr_waitp, ret ? -ret : 0);
4165 kfree_skb(skb);
4166 break;
4167 case FW6_TYPE_CQE:
4168 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4169 sched(dev, skb);
4170 break;
4171 default:
4172 printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__,
4173 rpl->type);
4174 kfree_skb(skb);
4175 break;
4176 }
4177 return 0;
4178 }
4179
4180 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4181 {
4182 struct cpl_abort_req_rss *req = cplhdr(skb);
4183 struct c4iw_ep *ep;
4184 unsigned int tid = GET_TID(req);
4185
4186 ep = get_ep_from_tid(dev, tid);
4187 /* This EP will be dereferenced in peer_abort() */
4188 if (!ep) {
4189 printk(KERN_WARNING MOD
4190 "Abort on non-existent endpoint, tid %d\n", tid);
4191 kfree_skb(skb);
4192 return 0;
4193 }
4194 if (cxgb_is_neg_adv(req->status)) {
4195 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
4196 __func__, ep->hwtid, req->status,
4197 neg_adv_str(req->status));
4198 goto out;
4199 }
4200 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
4201 ep->com.state);
4202
4203 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
4204 out:
4205 sched(dev, skb);
4206 return 0;
4207 }
4208
4209 /*
4210 * Most upcalls from the T4 Core go to sched() to
4211 * schedule the processing on a work queue.
4212 */
4213 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4214 [CPL_ACT_ESTABLISH] = sched,
4215 [CPL_ACT_OPEN_RPL] = sched,
4216 [CPL_RX_DATA] = sched,
4217 [CPL_ABORT_RPL_RSS] = sched,
4218 [CPL_ABORT_RPL] = sched,
4219 [CPL_PASS_OPEN_RPL] = sched,
4220 [CPL_CLOSE_LISTSRV_RPL] = sched,
4221 [CPL_PASS_ACCEPT_REQ] = sched,
4222 [CPL_PASS_ESTABLISH] = sched,
4223 [CPL_PEER_CLOSE] = sched,
4224 [CPL_CLOSE_CON_RPL] = sched,
4225 [CPL_ABORT_REQ_RSS] = peer_abort_intr,
4226 [CPL_RDMA_TERMINATE] = sched,
4227 [CPL_FW4_ACK] = sched,
4228 [CPL_SET_TCB_RPL] = set_tcb_rpl,
4229 [CPL_FW6_MSG] = fw6_msg,
4230 [CPL_RX_PKT] = sched
4231 };
4232
4233 int __init c4iw_cm_init(void)
4234 {
4235 spin_lock_init(&timeout_lock);
4236 skb_queue_head_init(&rxq);
4237
4238 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM);
4239 if (!workq)
4240 return -ENOMEM;
4241
4242 return 0;
4243 }
4244
4245 void c4iw_cm_term(void)
4246 {
4247 WARN_ON(!list_empty(&timeout_list));
4248 flush_workqueue(workq);
4249 destroy_workqueue(workq);
4250 }