Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ieee1394 / sbp2.c
1 /*
2 * sbp2.c - SBP-2 protocol driver for IEEE-1394
3 *
4 * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5 * jamesg@filanet.com (JSG)
6 *
7 * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 */
23
24 /*
25 * Brief Description:
26 *
27 * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28 * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29 * driver. It also registers as a SCSI lower-level driver in order to accept
30 * SCSI commands for transport using SBP-2.
31 *
32 * You may access any attached SBP-2 (usually storage devices) as regular
33 * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
34 *
35 * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36 * specification and for where to purchase the official standard.
37 *
38 * TODO:
39 * - look into possible improvements of the SCSI error handlers
40 * - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41 * - handle Logical_Unit_Number.ordered
42 * - handle src == 1 in status blocks
43 * - reimplement the DMA mapping in absence of physical DMA so that
44 * bus_to_virt is no longer required
45 * - debug the handling of absent physical DMA
46 * - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47 * (this is easy but depends on the previous two TODO items)
48 * - make the parameter serialize_io configurable per device
49 * - move all requests to fetch agent registers into non-atomic context,
50 * replace all usages of sbp2util_node_write_no_wait by true transactions
51 * Grep for inline FIXME comments below.
52 */
53
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/sched.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/stat.h>
70 #include <linux/string.h>
71 #include <linux/stringify.h>
72 #include <linux/types.h>
73 #include <linux/wait.h>
74 #include <linux/workqueue.h>
75 #include <linux/scatterlist.h>
76
77 #include <asm/byteorder.h>
78 #include <asm/errno.h>
79 #include <asm/param.h>
80 #include <asm/system.h>
81 #include <asm/types.h>
82
83 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
84 #include <asm/io.h> /* for bus_to_virt */
85 #endif
86
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_dbg.h>
90 #include <scsi/scsi_device.h>
91 #include <scsi/scsi_host.h>
92
93 #include "csr1212.h"
94 #include "highlevel.h"
95 #include "hosts.h"
96 #include "ieee1394.h"
97 #include "ieee1394_core.h"
98 #include "ieee1394_hotplug.h"
99 #include "ieee1394_transactions.h"
100 #include "ieee1394_types.h"
101 #include "nodemgr.h"
102 #include "sbp2.h"
103
104 /*
105 * Module load parameter definitions
106 */
107
108 /*
109 * Change max_speed on module load if you have a bad IEEE-1394
110 * controller that has trouble running 2KB packets at 400mb.
111 *
112 * NOTE: On certain OHCI parts I have seen short packets on async transmit
113 * (probably due to PCI latency/throughput issues with the part). You can
114 * bump down the speed if you are running into problems.
115 */
116 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
117 module_param_named(max_speed, sbp2_max_speed, int, 0644);
118 MODULE_PARM_DESC(max_speed, "Force max speed "
119 "(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
120
121 /*
122 * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
123 * This is and always has been buggy in multiple subtle ways. See above TODOs.
124 */
125 static int sbp2_serialize_io = 1;
126 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
127 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
128 "(default = Y, faster but buggy = N)");
129
130 /*
131 * Adjust max_sectors if you'd like to influence how many sectors each SCSI
132 * command can transfer at most. Please note that some older SBP-2 bridge
133 * chips are broken for transfers greater or equal to 128KB, therefore
134 * max_sectors used to be a safe 255 sectors for many years. We now have a
135 * default of 0 here which means that we let the SCSI stack choose a limit.
136 *
137 * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
138 * module parameter or in the sbp2_workarounds_table[], will override the
139 * value of max_sectors. We should use sbp2_workarounds_table[] to cover any
140 * bridge chip which becomes known to need the 255 sectors limit.
141 */
142 static int sbp2_max_sectors;
143 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
144 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
145 "(default = 0 = use SCSI stack's default)");
146
147 /*
148 * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
149 * do an exclusive login, as it's generally unsafe to have two hosts
150 * talking to a single sbp2 device at the same time (filesystem coherency,
151 * etc.). If you're running an sbp2 device that supports multiple logins,
152 * and you're either running read-only filesystems or some sort of special
153 * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
154 * File System, or Lustre, then set exclusive_login to zero.
155 *
156 * So far only bridges from Oxford Semiconductor are known to support
157 * concurrent logins. Depending on firmware, four or two concurrent logins
158 * are possible on OXFW911 and newer Oxsemi bridges.
159 */
160 static int sbp2_exclusive_login = 1;
161 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
162 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
163 "(default = Y, use N for concurrent initiators)");
164
165 /*
166 * If any of the following workarounds is required for your device to work,
167 * please submit the kernel messages logged by sbp2 to the linux1394-devel
168 * mailing list.
169 *
170 * - 128kB max transfer
171 * Limit transfer size. Necessary for some old bridges.
172 *
173 * - 36 byte inquiry
174 * When scsi_mod probes the device, let the inquiry command look like that
175 * from MS Windows.
176 *
177 * - skip mode page 8
178 * Suppress sending of mode_sense for mode page 8 if the device pretends to
179 * support the SCSI Primary Block commands instead of Reduced Block Commands.
180 *
181 * - fix capacity
182 * Tell sd_mod to correct the last sector number reported by read_capacity.
183 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
184 * Don't use this with devices which don't have this bug.
185 *
186 * - delay inquiry
187 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
188 *
189 * - power condition
190 * Set the power condition field in the START STOP UNIT commands sent by
191 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
192 * Some disks need this to spin down or to resume properly.
193 *
194 * - override internal blacklist
195 * Instead of adding to the built-in blacklist, use only the workarounds
196 * specified in the module load parameter.
197 * Useful if a blacklist entry interfered with a non-broken device.
198 */
199 static int sbp2_default_workarounds;
200 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
201 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
202 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
203 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
204 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
205 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
206 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
207 ", set power condition in start stop unit = "
208 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
209 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
210 ", or a combination)");
211
212 /*
213 * This influences the format of the sysfs attribute
214 * /sys/bus/scsi/devices/.../ieee1394_id.
215 *
216 * The default format is like in older kernels: %016Lx:%d:%d
217 * It contains the target's EUI-64, a number given to the logical unit by
218 * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
219 *
220 * The long format is: %016Lx:%06x:%04x
221 * It contains the target's EUI-64, the unit directory's directory_ID as per
222 * IEEE 1212 clause 7.7.19, and the LUN. This format comes closest to the
223 * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
224 * Architecture Model) rev.2 to 4 annex A. Therefore and because it is
225 * independent of the implementation of the ieee1394 nodemgr, the longer format
226 * is recommended for future use.
227 */
228 static int sbp2_long_sysfs_ieee1394_id;
229 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
230 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
231 "(default = backwards-compatible = N, SAM-conforming = Y)");
232
233
234 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
235 #define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
236
237 /*
238 * Globals
239 */
240 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
241 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
242 void (*)(struct scsi_cmnd *));
243 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
244 static int sbp2_start_device(struct sbp2_lu *);
245 static void sbp2_remove_device(struct sbp2_lu *);
246 static int sbp2_login_device(struct sbp2_lu *);
247 static int sbp2_reconnect_device(struct sbp2_lu *);
248 static int sbp2_logout_device(struct sbp2_lu *);
249 static void sbp2_host_reset(struct hpsb_host *);
250 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
251 u64, size_t, u16);
252 static int sbp2_agent_reset(struct sbp2_lu *, int);
253 static void sbp2_parse_unit_directory(struct sbp2_lu *,
254 struct unit_directory *);
255 static int sbp2_set_busy_timeout(struct sbp2_lu *);
256 static int sbp2_max_speed_and_size(struct sbp2_lu *);
257
258
259 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
260
261 static DEFINE_RWLOCK(sbp2_hi_logical_units_lock);
262
263 static struct hpsb_highlevel sbp2_highlevel = {
264 .name = SBP2_DEVICE_NAME,
265 .host_reset = sbp2_host_reset,
266 };
267
268 static struct hpsb_address_ops sbp2_ops = {
269 .write = sbp2_handle_status_write
270 };
271
272 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
273 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
274 u64, size_t, u16);
275 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
276 size_t, u16);
277
278 static struct hpsb_address_ops sbp2_physdma_ops = {
279 .read = sbp2_handle_physdma_read,
280 .write = sbp2_handle_physdma_write,
281 };
282 #endif
283
284
285 /*
286 * Interface to driver core and IEEE 1394 core
287 */
288 static struct ieee1394_device_id sbp2_id_table[] = {
289 {
290 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
291 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
292 .version = SBP2_SW_VERSION_ENTRY & 0xffffff},
293 {}
294 };
295 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
296
297 static int sbp2_probe(struct device *);
298 static int sbp2_remove(struct device *);
299 static int sbp2_update(struct unit_directory *);
300
301 static struct hpsb_protocol_driver sbp2_driver = {
302 .name = SBP2_DEVICE_NAME,
303 .id_table = sbp2_id_table,
304 .update = sbp2_update,
305 .driver = {
306 .probe = sbp2_probe,
307 .remove = sbp2_remove,
308 },
309 };
310
311
312 /*
313 * Interface to SCSI core
314 */
315 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
316 void (*)(struct scsi_cmnd *));
317 static int sbp2scsi_abort(struct scsi_cmnd *);
318 static int sbp2scsi_reset(struct scsi_cmnd *);
319 static int sbp2scsi_slave_alloc(struct scsi_device *);
320 static int sbp2scsi_slave_configure(struct scsi_device *);
321 static void sbp2scsi_slave_destroy(struct scsi_device *);
322 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
323 struct device_attribute *, char *);
324
325 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
326
327 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
328 &dev_attr_ieee1394_id,
329 NULL
330 };
331
332 static struct scsi_host_template sbp2_shost_template = {
333 .module = THIS_MODULE,
334 .name = "SBP-2 IEEE-1394",
335 .proc_name = SBP2_DEVICE_NAME,
336 .queuecommand = sbp2scsi_queuecommand,
337 .eh_abort_handler = sbp2scsi_abort,
338 .eh_device_reset_handler = sbp2scsi_reset,
339 .slave_alloc = sbp2scsi_slave_alloc,
340 .slave_configure = sbp2scsi_slave_configure,
341 .slave_destroy = sbp2scsi_slave_destroy,
342 .this_id = -1,
343 .sg_tablesize = SG_ALL,
344 .use_clustering = ENABLE_CLUSTERING,
345 .cmd_per_lun = SBP2_MAX_CMDS,
346 .can_queue = SBP2_MAX_CMDS,
347 .sdev_attrs = sbp2_sysfs_sdev_attrs,
348 };
349
350 /* for match-all entries in sbp2_workarounds_table */
351 #define SBP2_ROM_VALUE_WILDCARD 0x1000000
352
353 /*
354 * List of devices with known bugs.
355 *
356 * The firmware_revision field, masked with 0xffff00, is the best indicator
357 * for the type of bridge chip of a device. It yields a few false positives
358 * but this did not break correctly behaving devices so far.
359 */
360 static const struct {
361 u32 firmware_revision;
362 u32 model_id;
363 unsigned workarounds;
364 } sbp2_workarounds_table[] = {
365 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
366 .firmware_revision = 0x002800,
367 .model_id = 0x001010,
368 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
369 SBP2_WORKAROUND_MODE_SENSE_8 |
370 SBP2_WORKAROUND_POWER_CONDITION,
371 },
372 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
373 .firmware_revision = 0x002800,
374 .model_id = 0x000000,
375 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
376 SBP2_WORKAROUND_POWER_CONDITION,
377 },
378 /* Initio bridges, actually only needed for some older ones */ {
379 .firmware_revision = 0x000200,
380 .model_id = SBP2_ROM_VALUE_WILDCARD,
381 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
382 },
383 /* PL-3507 bridge with Prolific firmware */ {
384 .firmware_revision = 0x012800,
385 .model_id = SBP2_ROM_VALUE_WILDCARD,
386 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
387 },
388 /* Symbios bridge */ {
389 .firmware_revision = 0xa0b800,
390 .model_id = SBP2_ROM_VALUE_WILDCARD,
391 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
392 },
393 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
394 .firmware_revision = 0x002600,
395 .model_id = SBP2_ROM_VALUE_WILDCARD,
396 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
397 },
398 /* iPod 4th generation */ {
399 .firmware_revision = 0x0a2700,
400 .model_id = 0x000021,
401 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
402 },
403 /* iPod mini */ {
404 .firmware_revision = 0x0a2700,
405 .model_id = 0x000022,
406 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
407 },
408 /* iPod mini */ {
409 .firmware_revision = 0x0a2700,
410 .model_id = 0x000023,
411 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
412 },
413 /* iPod Photo */ {
414 .firmware_revision = 0x0a2700,
415 .model_id = 0x00007e,
416 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
417 }
418 };
419
420 /**************************************
421 * General utility functions
422 **************************************/
423
424 #ifndef __BIG_ENDIAN
425 /*
426 * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
427 */
428 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
429 {
430 u32 *temp = buffer;
431
432 for (length = (length >> 2); length--; )
433 temp[length] = be32_to_cpu(temp[length]);
434 }
435
436 /*
437 * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
438 */
439 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
440 {
441 u32 *temp = buffer;
442
443 for (length = (length >> 2); length--; )
444 temp[length] = cpu_to_be32(temp[length]);
445 }
446 #else /* BIG_ENDIAN */
447 /* Why waste the cpu cycles? */
448 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
449 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
450 #endif
451
452 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
453
454 /*
455 * Waits for completion of an SBP-2 access request.
456 * Returns nonzero if timed out or prematurely interrupted.
457 */
458 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
459 {
460 long leftover;
461
462 leftover = wait_event_interruptible_timeout(
463 sbp2_access_wq, lu->access_complete, timeout);
464 lu->access_complete = 0;
465 return leftover <= 0;
466 }
467
468 static void sbp2_free_packet(void *packet)
469 {
470 hpsb_free_tlabel(packet);
471 hpsb_free_packet(packet);
472 }
473
474 /*
475 * This is much like hpsb_node_write(), except it ignores the response
476 * subaction and returns immediately. Can be used from atomic context.
477 */
478 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
479 quadlet_t *buf, size_t len)
480 {
481 struct hpsb_packet *packet;
482
483 packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
484 if (!packet)
485 return -ENOMEM;
486
487 hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
488 hpsb_node_fill_packet(ne, packet);
489 if (hpsb_send_packet(packet) < 0) {
490 sbp2_free_packet(packet);
491 return -EIO;
492 }
493 return 0;
494 }
495
496 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
497 quadlet_t *data, size_t len)
498 {
499 /* There is a small window after a bus reset within which the node
500 * entry's generation is current but the reconnect wasn't completed. */
501 if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
502 return;
503
504 if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
505 data, len))
506 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
507
508 /* Now accept new SCSI commands, unless a bus reset happended during
509 * hpsb_node_write. */
510 if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
511 scsi_unblock_requests(lu->shost);
512 }
513
514 static void sbp2util_write_orb_pointer(struct work_struct *work)
515 {
516 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
517 quadlet_t data[2];
518
519 data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
520 data[1] = lu->last_orb_dma;
521 sbp2util_cpu_to_be32_buffer(data, 8);
522 sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
523 }
524
525 static void sbp2util_write_doorbell(struct work_struct *work)
526 {
527 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
528
529 sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
530 }
531
532 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
533 {
534 struct sbp2_command_info *cmd;
535 struct device *dmadev = lu->hi->host->device.parent;
536 int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
537
538 for (i = 0; i < orbs; i++) {
539 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
540 if (!cmd)
541 goto failed_alloc;
542
543 cmd->command_orb_dma =
544 dma_map_single(dmadev, &cmd->command_orb,
545 sizeof(struct sbp2_command_orb),
546 DMA_TO_DEVICE);
547 if (dma_mapping_error(dmadev, cmd->command_orb_dma))
548 goto failed_orb;
549
550 cmd->sge_dma =
551 dma_map_single(dmadev, &cmd->scatter_gather_element,
552 sizeof(cmd->scatter_gather_element),
553 DMA_TO_DEVICE);
554 if (dma_mapping_error(dmadev, cmd->sge_dma))
555 goto failed_sge;
556
557 INIT_LIST_HEAD(&cmd->list);
558 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
559 }
560 return 0;
561
562 failed_sge:
563 dma_unmap_single(dmadev, cmd->command_orb_dma,
564 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
565 failed_orb:
566 kfree(cmd);
567 failed_alloc:
568 return -ENOMEM;
569 }
570
571 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
572 struct hpsb_host *host)
573 {
574 struct list_head *lh, *next;
575 struct sbp2_command_info *cmd;
576 unsigned long flags;
577
578 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
579 if (!list_empty(&lu->cmd_orb_completed))
580 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
581 cmd = list_entry(lh, struct sbp2_command_info, list);
582 dma_unmap_single(host->device.parent,
583 cmd->command_orb_dma,
584 sizeof(struct sbp2_command_orb),
585 DMA_TO_DEVICE);
586 dma_unmap_single(host->device.parent, cmd->sge_dma,
587 sizeof(cmd->scatter_gather_element),
588 DMA_TO_DEVICE);
589 kfree(cmd);
590 }
591 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
592 return;
593 }
594
595 /*
596 * Finds the sbp2_command for a given outstanding command ORB.
597 * Only looks at the in-use list.
598 */
599 static struct sbp2_command_info *sbp2util_find_command_for_orb(
600 struct sbp2_lu *lu, dma_addr_t orb)
601 {
602 struct sbp2_command_info *cmd;
603 unsigned long flags;
604
605 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
606 if (!list_empty(&lu->cmd_orb_inuse))
607 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
608 if (cmd->command_orb_dma == orb) {
609 spin_unlock_irqrestore(
610 &lu->cmd_orb_lock, flags);
611 return cmd;
612 }
613 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
614 return NULL;
615 }
616
617 /*
618 * Finds the sbp2_command for a given outstanding SCpnt.
619 * Only looks at the in-use list.
620 * Must be called with lu->cmd_orb_lock held.
621 */
622 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
623 struct sbp2_lu *lu, void *SCpnt)
624 {
625 struct sbp2_command_info *cmd;
626
627 if (!list_empty(&lu->cmd_orb_inuse))
628 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
629 if (cmd->Current_SCpnt == SCpnt)
630 return cmd;
631 return NULL;
632 }
633
634 static struct sbp2_command_info *sbp2util_allocate_command_orb(
635 struct sbp2_lu *lu,
636 struct scsi_cmnd *Current_SCpnt,
637 void (*Current_done)(struct scsi_cmnd *))
638 {
639 struct list_head *lh;
640 struct sbp2_command_info *cmd = NULL;
641 unsigned long flags;
642
643 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
644 if (!list_empty(&lu->cmd_orb_completed)) {
645 lh = lu->cmd_orb_completed.next;
646 list_del(lh);
647 cmd = list_entry(lh, struct sbp2_command_info, list);
648 cmd->Current_done = Current_done;
649 cmd->Current_SCpnt = Current_SCpnt;
650 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
651 } else
652 SBP2_ERR("%s: no orbs available", __func__);
653 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
654 return cmd;
655 }
656
657 /*
658 * Unmaps the DMAs of a command and moves the command to the completed ORB list.
659 * Must be called with lu->cmd_orb_lock held.
660 */
661 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
662 struct sbp2_command_info *cmd)
663 {
664 if (scsi_sg_count(cmd->Current_SCpnt))
665 dma_unmap_sg(lu->ud->ne->host->device.parent,
666 scsi_sglist(cmd->Current_SCpnt),
667 scsi_sg_count(cmd->Current_SCpnt),
668 cmd->Current_SCpnt->sc_data_direction);
669 list_move_tail(&cmd->list, &lu->cmd_orb_completed);
670 }
671
672 /*
673 * Is lu valid? Is the 1394 node still present?
674 */
675 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
676 {
677 return lu && lu->ne && !lu->ne->in_limbo;
678 }
679
680 /*********************************************
681 * IEEE-1394 core driver stack related section
682 *********************************************/
683
684 static int sbp2_probe(struct device *dev)
685 {
686 struct unit_directory *ud;
687 struct sbp2_lu *lu;
688
689 ud = container_of(dev, struct unit_directory, device);
690
691 /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
692 * instead. */
693 if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
694 return -ENODEV;
695
696 lu = sbp2_alloc_device(ud);
697 if (!lu)
698 return -ENOMEM;
699
700 sbp2_parse_unit_directory(lu, ud);
701 return sbp2_start_device(lu);
702 }
703
704 static int sbp2_remove(struct device *dev)
705 {
706 struct unit_directory *ud;
707 struct sbp2_lu *lu;
708 struct scsi_device *sdev;
709
710 ud = container_of(dev, struct unit_directory, device);
711 lu = ud->device.driver_data;
712 if (!lu)
713 return 0;
714
715 if (lu->shost) {
716 /* Get rid of enqueued commands if there is no chance to
717 * send them. */
718 if (!sbp2util_node_is_available(lu))
719 sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
720 /* scsi_remove_device() may trigger shutdown functions of SCSI
721 * highlevel drivers which would deadlock if blocked. */
722 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
723 scsi_unblock_requests(lu->shost);
724 }
725 sdev = lu->sdev;
726 if (sdev) {
727 lu->sdev = NULL;
728 scsi_remove_device(sdev);
729 }
730
731 sbp2_logout_device(lu);
732 sbp2_remove_device(lu);
733
734 return 0;
735 }
736
737 static int sbp2_update(struct unit_directory *ud)
738 {
739 struct sbp2_lu *lu = ud->device.driver_data;
740
741 if (sbp2_reconnect_device(lu) != 0) {
742 /*
743 * Reconnect failed. If another bus reset happened,
744 * let nodemgr proceed and call sbp2_update again later
745 * (or sbp2_remove if this node went away).
746 */
747 if (!hpsb_node_entry_valid(lu->ne))
748 return 0;
749 /*
750 * Or the target rejected the reconnect because we weren't
751 * fast enough. Try a regular login, but first log out
752 * just in case of any weirdness.
753 */
754 sbp2_logout_device(lu);
755
756 if (sbp2_login_device(lu) != 0) {
757 if (!hpsb_node_entry_valid(lu->ne))
758 return 0;
759
760 /* Maybe another initiator won the login. */
761 SBP2_ERR("Failed to reconnect to sbp2 device!");
762 return -EBUSY;
763 }
764 }
765
766 sbp2_set_busy_timeout(lu);
767 sbp2_agent_reset(lu, 1);
768 sbp2_max_speed_and_size(lu);
769
770 /* Complete any pending commands with busy (so they get retried)
771 * and remove them from our queue. */
772 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
773
774 /* Accept new commands unless there was another bus reset in the
775 * meantime. */
776 if (hpsb_node_entry_valid(lu->ne)) {
777 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
778 scsi_unblock_requests(lu->shost);
779 }
780 return 0;
781 }
782
783 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
784 {
785 struct sbp2_fwhost_info *hi;
786 struct Scsi_Host *shost = NULL;
787 struct sbp2_lu *lu = NULL;
788 unsigned long flags;
789
790 lu = kzalloc(sizeof(*lu), GFP_KERNEL);
791 if (!lu) {
792 SBP2_ERR("failed to create lu");
793 goto failed_alloc;
794 }
795
796 lu->ne = ud->ne;
797 lu->ud = ud;
798 lu->speed_code = IEEE1394_SPEED_100;
799 lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
800 lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
801 INIT_LIST_HEAD(&lu->cmd_orb_inuse);
802 INIT_LIST_HEAD(&lu->cmd_orb_completed);
803 INIT_LIST_HEAD(&lu->lu_list);
804 spin_lock_init(&lu->cmd_orb_lock);
805 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
806 INIT_WORK(&lu->protocol_work, NULL);
807
808 ud->device.driver_data = lu;
809
810 hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
811 if (!hi) {
812 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
813 sizeof(*hi));
814 if (!hi) {
815 SBP2_ERR("failed to allocate hostinfo");
816 goto failed_alloc;
817 }
818 hi->host = ud->ne->host;
819 INIT_LIST_HEAD(&hi->logical_units);
820
821 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
822 /* Handle data movement if physical dma is not
823 * enabled or not supported on host controller */
824 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
825 &sbp2_physdma_ops,
826 0x0ULL, 0xfffffffcULL)) {
827 SBP2_ERR("failed to register lower 4GB address range");
828 goto failed_alloc;
829 }
830 #endif
831 }
832
833 if (dma_get_max_seg_size(hi->host->device.parent) > SBP2_MAX_SEG_SIZE)
834 BUG_ON(dma_set_max_seg_size(hi->host->device.parent,
835 SBP2_MAX_SEG_SIZE));
836
837 /* Prevent unloading of the 1394 host */
838 if (!try_module_get(hi->host->driver->owner)) {
839 SBP2_ERR("failed to get a reference on 1394 host driver");
840 goto failed_alloc;
841 }
842
843 lu->hi = hi;
844
845 write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
846 list_add_tail(&lu->lu_list, &hi->logical_units);
847 write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
848
849 /* Register the status FIFO address range. We could use the same FIFO
850 * for targets at different nodes. However we need different FIFOs per
851 * target in order to support multi-unit devices.
852 * The FIFO is located out of the local host controller's physical range
853 * but, if possible, within the posted write area. Status writes will
854 * then be performed as unified transactions. This slightly reduces
855 * bandwidth usage, and some Prolific based devices seem to require it.
856 */
857 lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
858 &sbp2_highlevel, ud->ne->host, &sbp2_ops,
859 sizeof(struct sbp2_status_block), sizeof(quadlet_t),
860 ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
861 if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
862 SBP2_ERR("failed to allocate status FIFO address range");
863 goto failed_alloc;
864 }
865
866 shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
867 if (!shost) {
868 SBP2_ERR("failed to register scsi host");
869 goto failed_alloc;
870 }
871
872 shost->hostdata[0] = (unsigned long)lu;
873
874 if (!scsi_add_host(shost, &ud->device)) {
875 lu->shost = shost;
876 return lu;
877 }
878
879 SBP2_ERR("failed to add scsi host");
880 scsi_host_put(shost);
881
882 failed_alloc:
883 sbp2_remove_device(lu);
884 return NULL;
885 }
886
887 static void sbp2_host_reset(struct hpsb_host *host)
888 {
889 struct sbp2_fwhost_info *hi;
890 struct sbp2_lu *lu;
891 unsigned long flags;
892
893 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
894 if (!hi)
895 return;
896
897 read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
898
899 list_for_each_entry(lu, &hi->logical_units, lu_list)
900 if (atomic_cmpxchg(&lu->state,
901 SBP2LU_STATE_RUNNING, SBP2LU_STATE_IN_RESET)
902 == SBP2LU_STATE_RUNNING)
903 scsi_block_requests(lu->shost);
904
905 read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
906 }
907
908 static int sbp2_start_device(struct sbp2_lu *lu)
909 {
910 struct sbp2_fwhost_info *hi = lu->hi;
911 int error;
912
913 lu->login_response = dma_alloc_coherent(hi->host->device.parent,
914 sizeof(struct sbp2_login_response),
915 &lu->login_response_dma, GFP_KERNEL);
916 if (!lu->login_response)
917 goto alloc_fail;
918
919 lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
920 sizeof(struct sbp2_query_logins_orb),
921 &lu->query_logins_orb_dma, GFP_KERNEL);
922 if (!lu->query_logins_orb)
923 goto alloc_fail;
924
925 lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
926 sizeof(struct sbp2_query_logins_response),
927 &lu->query_logins_response_dma, GFP_KERNEL);
928 if (!lu->query_logins_response)
929 goto alloc_fail;
930
931 lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
932 sizeof(struct sbp2_reconnect_orb),
933 &lu->reconnect_orb_dma, GFP_KERNEL);
934 if (!lu->reconnect_orb)
935 goto alloc_fail;
936
937 lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
938 sizeof(struct sbp2_logout_orb),
939 &lu->logout_orb_dma, GFP_KERNEL);
940 if (!lu->logout_orb)
941 goto alloc_fail;
942
943 lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
944 sizeof(struct sbp2_login_orb),
945 &lu->login_orb_dma, GFP_KERNEL);
946 if (!lu->login_orb)
947 goto alloc_fail;
948
949 if (sbp2util_create_command_orb_pool(lu))
950 goto alloc_fail;
951
952 /* Wait a second before trying to log in. Previously logged in
953 * initiators need a chance to reconnect. */
954 if (msleep_interruptible(1000)) {
955 sbp2_remove_device(lu);
956 return -EINTR;
957 }
958
959 if (sbp2_login_device(lu)) {
960 sbp2_remove_device(lu);
961 return -EBUSY;
962 }
963
964 sbp2_set_busy_timeout(lu);
965 sbp2_agent_reset(lu, 1);
966 sbp2_max_speed_and_size(lu);
967
968 if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
969 ssleep(SBP2_INQUIRY_DELAY);
970
971 error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
972 if (error) {
973 SBP2_ERR("scsi_add_device failed");
974 sbp2_logout_device(lu);
975 sbp2_remove_device(lu);
976 return error;
977 }
978
979 return 0;
980
981 alloc_fail:
982 SBP2_ERR("Could not allocate memory for lu");
983 sbp2_remove_device(lu);
984 return -ENOMEM;
985 }
986
987 static void sbp2_remove_device(struct sbp2_lu *lu)
988 {
989 struct sbp2_fwhost_info *hi;
990 unsigned long flags;
991
992 if (!lu)
993 return;
994 hi = lu->hi;
995 if (!hi)
996 goto no_hi;
997
998 if (lu->shost) {
999 scsi_remove_host(lu->shost);
1000 scsi_host_put(lu->shost);
1001 }
1002 flush_scheduled_work();
1003 sbp2util_remove_command_orb_pool(lu, hi->host);
1004
1005 write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1006 list_del(&lu->lu_list);
1007 write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1008
1009 if (lu->login_response)
1010 dma_free_coherent(hi->host->device.parent,
1011 sizeof(struct sbp2_login_response),
1012 lu->login_response,
1013 lu->login_response_dma);
1014 if (lu->login_orb)
1015 dma_free_coherent(hi->host->device.parent,
1016 sizeof(struct sbp2_login_orb),
1017 lu->login_orb,
1018 lu->login_orb_dma);
1019 if (lu->reconnect_orb)
1020 dma_free_coherent(hi->host->device.parent,
1021 sizeof(struct sbp2_reconnect_orb),
1022 lu->reconnect_orb,
1023 lu->reconnect_orb_dma);
1024 if (lu->logout_orb)
1025 dma_free_coherent(hi->host->device.parent,
1026 sizeof(struct sbp2_logout_orb),
1027 lu->logout_orb,
1028 lu->logout_orb_dma);
1029 if (lu->query_logins_orb)
1030 dma_free_coherent(hi->host->device.parent,
1031 sizeof(struct sbp2_query_logins_orb),
1032 lu->query_logins_orb,
1033 lu->query_logins_orb_dma);
1034 if (lu->query_logins_response)
1035 dma_free_coherent(hi->host->device.parent,
1036 sizeof(struct sbp2_query_logins_response),
1037 lu->query_logins_response,
1038 lu->query_logins_response_dma);
1039
1040 if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
1041 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
1042 lu->status_fifo_addr);
1043
1044 lu->ud->device.driver_data = NULL;
1045
1046 module_put(hi->host->driver->owner);
1047 no_hi:
1048 kfree(lu);
1049 }
1050
1051 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
1052 /*
1053 * Deal with write requests on adapters which do not support physical DMA or
1054 * have it switched off.
1055 */
1056 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
1057 int destid, quadlet_t *data, u64 addr,
1058 size_t length, u16 flags)
1059 {
1060 memcpy(bus_to_virt((u32) addr), data, length);
1061 return RCODE_COMPLETE;
1062 }
1063
1064 /*
1065 * Deal with read requests on adapters which do not support physical DMA or
1066 * have it switched off.
1067 */
1068 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
1069 quadlet_t *data, u64 addr, size_t length,
1070 u16 flags)
1071 {
1072 memcpy(data, bus_to_virt((u32) addr), length);
1073 return RCODE_COMPLETE;
1074 }
1075 #endif
1076
1077 /**************************************
1078 * SBP-2 protocol related section
1079 **************************************/
1080
1081 static int sbp2_query_logins(struct sbp2_lu *lu)
1082 {
1083 struct sbp2_fwhost_info *hi = lu->hi;
1084 quadlet_t data[2];
1085 int max_logins;
1086 int active_logins;
1087
1088 lu->query_logins_orb->reserved1 = 0x0;
1089 lu->query_logins_orb->reserved2 = 0x0;
1090
1091 lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1092 lu->query_logins_orb->query_response_hi =
1093 ORB_SET_NODE_ID(hi->host->node_id);
1094 lu->query_logins_orb->lun_misc =
1095 ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1096 lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1097 lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1098
1099 lu->query_logins_orb->reserved_resp_length =
1100 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1101 sizeof(struct sbp2_query_logins_response));
1102
1103 lu->query_logins_orb->status_fifo_hi =
1104 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1105 lu->query_logins_orb->status_fifo_lo =
1106 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1107
1108 sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1109 sizeof(struct sbp2_query_logins_orb));
1110
1111 memset(lu->query_logins_response, 0,
1112 sizeof(struct sbp2_query_logins_response));
1113
1114 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1115 data[1] = lu->query_logins_orb_dma;
1116 sbp2util_cpu_to_be32_buffer(data, 8);
1117
1118 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1119
1120 if (sbp2util_access_timeout(lu, 2*HZ)) {
1121 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1122 return -EIO;
1123 }
1124
1125 if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1126 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1127 return -EIO;
1128 }
1129
1130 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1131 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1132 return -EIO;
1133 }
1134
1135 sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1136 sizeof(struct sbp2_query_logins_response));
1137
1138 max_logins = RESPONSE_GET_MAX_LOGINS(
1139 lu->query_logins_response->length_max_logins);
1140 SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1141
1142 active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1143 lu->query_logins_response->length_max_logins);
1144 SBP2_INFO("Number of active logins: %d", active_logins);
1145
1146 if (active_logins >= max_logins) {
1147 return -EIO;
1148 }
1149
1150 return 0;
1151 }
1152
1153 static int sbp2_login_device(struct sbp2_lu *lu)
1154 {
1155 struct sbp2_fwhost_info *hi = lu->hi;
1156 quadlet_t data[2];
1157
1158 if (!lu->login_orb)
1159 return -EIO;
1160
1161 if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1162 SBP2_INFO("Device does not support any more concurrent logins");
1163 return -EIO;
1164 }
1165
1166 /* assume no password */
1167 lu->login_orb->password_hi = 0;
1168 lu->login_orb->password_lo = 0;
1169
1170 lu->login_orb->login_response_lo = lu->login_response_dma;
1171 lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1172 lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1173
1174 /* one second reconnect time */
1175 lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1176 lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1177 lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1178 lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1179
1180 lu->login_orb->passwd_resp_lengths =
1181 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1182
1183 lu->login_orb->status_fifo_hi =
1184 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1185 lu->login_orb->status_fifo_lo =
1186 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1187
1188 sbp2util_cpu_to_be32_buffer(lu->login_orb,
1189 sizeof(struct sbp2_login_orb));
1190
1191 memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1192
1193 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1194 data[1] = lu->login_orb_dma;
1195 sbp2util_cpu_to_be32_buffer(data, 8);
1196
1197 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1198
1199 /* wait up to 20 seconds for login status */
1200 if (sbp2util_access_timeout(lu, 20*HZ)) {
1201 SBP2_ERR("Error logging into SBP-2 device - timed out");
1202 return -EIO;
1203 }
1204
1205 /* make sure that the returned status matches the login ORB */
1206 if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1207 SBP2_ERR("Error logging into SBP-2 device - timed out");
1208 return -EIO;
1209 }
1210
1211 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1212 SBP2_ERR("Error logging into SBP-2 device - failed");
1213 return -EIO;
1214 }
1215
1216 sbp2util_cpu_to_be32_buffer(lu->login_response,
1217 sizeof(struct sbp2_login_response));
1218 lu->command_block_agent_addr =
1219 ((u64)lu->login_response->command_block_agent_hi) << 32;
1220 lu->command_block_agent_addr |=
1221 ((u64)lu->login_response->command_block_agent_lo);
1222 lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1223
1224 SBP2_INFO("Logged into SBP-2 device");
1225 return 0;
1226 }
1227
1228 static int sbp2_logout_device(struct sbp2_lu *lu)
1229 {
1230 struct sbp2_fwhost_info *hi = lu->hi;
1231 quadlet_t data[2];
1232 int error;
1233
1234 lu->logout_orb->reserved1 = 0x0;
1235 lu->logout_orb->reserved2 = 0x0;
1236 lu->logout_orb->reserved3 = 0x0;
1237 lu->logout_orb->reserved4 = 0x0;
1238
1239 lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1240 lu->logout_orb->login_ID_misc |=
1241 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1242 lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1243
1244 lu->logout_orb->reserved5 = 0x0;
1245 lu->logout_orb->status_fifo_hi =
1246 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1247 lu->logout_orb->status_fifo_lo =
1248 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1249
1250 sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1251 sizeof(struct sbp2_logout_orb));
1252
1253 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1254 data[1] = lu->logout_orb_dma;
1255 sbp2util_cpu_to_be32_buffer(data, 8);
1256
1257 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1258 if (error)
1259 return error;
1260
1261 /* wait up to 1 second for the device to complete logout */
1262 if (sbp2util_access_timeout(lu, HZ))
1263 return -EIO;
1264
1265 SBP2_INFO("Logged out of SBP-2 device");
1266 return 0;
1267 }
1268
1269 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1270 {
1271 struct sbp2_fwhost_info *hi = lu->hi;
1272 quadlet_t data[2];
1273 int error;
1274
1275 lu->reconnect_orb->reserved1 = 0x0;
1276 lu->reconnect_orb->reserved2 = 0x0;
1277 lu->reconnect_orb->reserved3 = 0x0;
1278 lu->reconnect_orb->reserved4 = 0x0;
1279
1280 lu->reconnect_orb->login_ID_misc =
1281 ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1282 lu->reconnect_orb->login_ID_misc |=
1283 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1284 lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1285
1286 lu->reconnect_orb->reserved5 = 0x0;
1287 lu->reconnect_orb->status_fifo_hi =
1288 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1289 lu->reconnect_orb->status_fifo_lo =
1290 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1291
1292 sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1293 sizeof(struct sbp2_reconnect_orb));
1294
1295 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1296 data[1] = lu->reconnect_orb_dma;
1297 sbp2util_cpu_to_be32_buffer(data, 8);
1298
1299 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1300 if (error)
1301 return error;
1302
1303 /* wait up to 1 second for reconnect status */
1304 if (sbp2util_access_timeout(lu, HZ)) {
1305 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1306 return -EIO;
1307 }
1308
1309 /* make sure that the returned status matches the reconnect ORB */
1310 if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1311 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1312 return -EIO;
1313 }
1314
1315 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1316 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1317 return -EIO;
1318 }
1319
1320 SBP2_INFO("Reconnected to SBP-2 device");
1321 return 0;
1322 }
1323
1324 /*
1325 * Set the target node's Single Phase Retry limit. Affects the target's retry
1326 * behaviour if our node is too busy to accept requests.
1327 */
1328 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1329 {
1330 quadlet_t data;
1331
1332 data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1333 if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1334 SBP2_ERR("%s error", __func__);
1335 return 0;
1336 }
1337
1338 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1339 struct unit_directory *ud)
1340 {
1341 struct csr1212_keyval *kv;
1342 struct csr1212_dentry *dentry;
1343 u64 management_agent_addr;
1344 u32 unit_characteristics, firmware_revision;
1345 unsigned workarounds;
1346 int i;
1347
1348 management_agent_addr = 0;
1349 unit_characteristics = 0;
1350 firmware_revision = 0;
1351
1352 csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1353 switch (kv->key.id) {
1354 case CSR1212_KV_ID_DEPENDENT_INFO:
1355 if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1356 management_agent_addr =
1357 CSR1212_REGISTER_SPACE_BASE +
1358 (kv->value.csr_offset << 2);
1359
1360 else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1361 lu->lun = ORB_SET_LUN(kv->value.immediate);
1362 break;
1363
1364 case SBP2_UNIT_CHARACTERISTICS_KEY:
1365 /* FIXME: This is ignored so far.
1366 * See SBP-2 clause 7.4.8. */
1367 unit_characteristics = kv->value.immediate;
1368 break;
1369
1370 case SBP2_FIRMWARE_REVISION_KEY:
1371 firmware_revision = kv->value.immediate;
1372 break;
1373
1374 default:
1375 /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1376 * Its "ordered" bit has consequences for command ORB
1377 * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1378 break;
1379 }
1380 }
1381
1382 workarounds = sbp2_default_workarounds;
1383
1384 if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1385 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1386 if (sbp2_workarounds_table[i].firmware_revision !=
1387 SBP2_ROM_VALUE_WILDCARD &&
1388 sbp2_workarounds_table[i].firmware_revision !=
1389 (firmware_revision & 0xffff00))
1390 continue;
1391 if (sbp2_workarounds_table[i].model_id !=
1392 SBP2_ROM_VALUE_WILDCARD &&
1393 sbp2_workarounds_table[i].model_id != ud->model_id)
1394 continue;
1395 workarounds |= sbp2_workarounds_table[i].workarounds;
1396 break;
1397 }
1398
1399 if (workarounds)
1400 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1401 "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1402 " model_id 0x%06x)",
1403 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1404 workarounds, firmware_revision,
1405 ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1406 ud->model_id);
1407
1408 /* We would need one SCSI host template for each target to adjust
1409 * max_sectors on the fly, therefore warn only. */
1410 if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1411 (sbp2_max_sectors * 512) > (128 * 1024))
1412 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1413 "max transfer size. WARNING: Current max_sectors "
1414 "setting is larger than 128KB (%d sectors)",
1415 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1416 sbp2_max_sectors);
1417
1418 /* If this is a logical unit directory entry, process the parent
1419 * to get the values. */
1420 if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1421 struct unit_directory *parent_ud = container_of(
1422 ud->device.parent, struct unit_directory, device);
1423 sbp2_parse_unit_directory(lu, parent_ud);
1424 } else {
1425 lu->management_agent_addr = management_agent_addr;
1426 lu->workarounds = workarounds;
1427 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1428 lu->lun = ORB_SET_LUN(ud->lun);
1429 }
1430 }
1431
1432 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1433
1434 /*
1435 * This function is called in order to determine the max speed and packet
1436 * size we can use in our ORBs. Note, that we (the driver and host) only
1437 * initiate the transaction. The SBP-2 device actually transfers the data
1438 * (by reading from the DMA area we tell it). This means that the SBP-2
1439 * device decides the actual maximum data it can transfer. We just tell it
1440 * the speed that it needs to use, and the max_rec the host supports, and
1441 * it takes care of the rest.
1442 */
1443 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1444 {
1445 struct sbp2_fwhost_info *hi = lu->hi;
1446 u8 payload;
1447
1448 lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1449
1450 if (lu->speed_code > sbp2_max_speed) {
1451 lu->speed_code = sbp2_max_speed;
1452 SBP2_INFO("Reducing speed to %s",
1453 hpsb_speedto_str[sbp2_max_speed]);
1454 }
1455
1456 /* Payload size is the lesser of what our speed supports and what
1457 * our host supports. */
1458 payload = min(sbp2_speedto_max_payload[lu->speed_code],
1459 (u8) (hi->host->csr.max_rec - 1));
1460
1461 /* If physical DMA is off, work around limitation in ohci1394:
1462 * packet size must not exceed PAGE_SIZE */
1463 if (lu->ne->host->low_addr_space < (1ULL << 32))
1464 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1465 payload)
1466 payload--;
1467
1468 SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1469 NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1470 hpsb_speedto_str[lu->speed_code],
1471 SBP2_PAYLOAD_TO_BYTES(payload));
1472
1473 lu->max_payload_size = payload;
1474 return 0;
1475 }
1476
1477 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1478 {
1479 quadlet_t data;
1480 u64 addr;
1481 int retval;
1482 unsigned long flags;
1483
1484 /* flush lu->protocol_work */
1485 if (wait)
1486 flush_scheduled_work();
1487
1488 data = ntohl(SBP2_AGENT_RESET_DATA);
1489 addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1490
1491 if (wait)
1492 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1493 else
1494 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1495
1496 if (retval < 0) {
1497 SBP2_ERR("hpsb_node_write failed.\n");
1498 return -EIO;
1499 }
1500
1501 /* make sure that the ORB_POINTER is written on next command */
1502 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1503 lu->last_orb = NULL;
1504 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1505
1506 return 0;
1507 }
1508
1509 static int sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1510 struct sbp2_fwhost_info *hi,
1511 struct sbp2_command_info *cmd,
1512 unsigned int sg_count,
1513 struct scatterlist *sg,
1514 u32 orb_direction,
1515 enum dma_data_direction dma_dir)
1516 {
1517 struct device *dmadev = hi->host->device.parent;
1518 struct sbp2_unrestricted_page_table *pt;
1519 int i, n;
1520
1521 n = dma_map_sg(dmadev, sg, sg_count, dma_dir);
1522 if (n == 0)
1523 return -ENOMEM;
1524
1525 orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1526 orb->misc |= ORB_SET_DIRECTION(orb_direction);
1527
1528 /* special case if only one element (and less than 64KB in size) */
1529 if (n == 1) {
1530 orb->misc |= ORB_SET_DATA_SIZE(sg_dma_len(sg));
1531 orb->data_descriptor_lo = sg_dma_address(sg);
1532 } else {
1533 pt = &cmd->scatter_gather_element[0];
1534
1535 dma_sync_single_for_cpu(dmadev, cmd->sge_dma,
1536 sizeof(cmd->scatter_gather_element),
1537 DMA_TO_DEVICE);
1538
1539 for_each_sg(sg, sg, n, i) {
1540 pt[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1541 pt[i].low = cpu_to_be32(sg_dma_address(sg));
1542 }
1543
1544 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1) |
1545 ORB_SET_DATA_SIZE(n);
1546 orb->data_descriptor_lo = cmd->sge_dma;
1547
1548 dma_sync_single_for_device(dmadev, cmd->sge_dma,
1549 sizeof(cmd->scatter_gather_element),
1550 DMA_TO_DEVICE);
1551 }
1552 return 0;
1553 }
1554
1555 static int sbp2_create_command_orb(struct sbp2_lu *lu,
1556 struct sbp2_command_info *cmd,
1557 struct scsi_cmnd *SCpnt)
1558 {
1559 struct device *dmadev = lu->hi->host->device.parent;
1560 struct sbp2_command_orb *orb = &cmd->command_orb;
1561 unsigned int scsi_request_bufflen = scsi_bufflen(SCpnt);
1562 enum dma_data_direction dma_dir = SCpnt->sc_data_direction;
1563 u32 orb_direction;
1564 int ret;
1565
1566 dma_sync_single_for_cpu(dmadev, cmd->command_orb_dma,
1567 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1568 /*
1569 * Set-up our command ORB.
1570 *
1571 * NOTE: We're doing unrestricted page tables (s/g), as this is
1572 * best performance (at least with the devices I have). This means
1573 * that data_size becomes the number of s/g elements, and
1574 * page_size should be zero (for unrestricted).
1575 */
1576 orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1577 orb->next_ORB_lo = 0x0;
1578 orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1579 orb->misc |= ORB_SET_SPEED(lu->speed_code);
1580 orb->misc |= ORB_SET_NOTIFY(1);
1581
1582 if (dma_dir == DMA_NONE)
1583 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1584 else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1585 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1586 else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1587 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1588 else {
1589 SBP2_INFO("Falling back to DMA_NONE");
1590 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1591 }
1592
1593 /* set up our page table stuff */
1594 if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1595 orb->data_descriptor_hi = 0x0;
1596 orb->data_descriptor_lo = 0x0;
1597 orb->misc |= ORB_SET_DIRECTION(1);
1598 ret = 0;
1599 } else {
1600 ret = sbp2_prep_command_orb_sg(orb, lu->hi, cmd,
1601 scsi_sg_count(SCpnt),
1602 scsi_sglist(SCpnt),
1603 orb_direction, dma_dir);
1604 }
1605 sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1606
1607 memset(orb->cdb, 0, sizeof(orb->cdb));
1608 memcpy(orb->cdb, SCpnt->cmnd, SCpnt->cmd_len);
1609
1610 dma_sync_single_for_device(dmadev, cmd->command_orb_dma,
1611 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1612 return ret;
1613 }
1614
1615 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1616 struct sbp2_command_info *cmd)
1617 {
1618 struct sbp2_fwhost_info *hi = lu->hi;
1619 struct sbp2_command_orb *last_orb;
1620 dma_addr_t last_orb_dma;
1621 u64 addr = lu->command_block_agent_addr;
1622 quadlet_t data[2];
1623 size_t length;
1624 unsigned long flags;
1625
1626 /* check to see if there are any previous orbs to use */
1627 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1628 last_orb = lu->last_orb;
1629 last_orb_dma = lu->last_orb_dma;
1630 if (!last_orb) {
1631 /*
1632 * last_orb == NULL means: We know that the target's fetch agent
1633 * is not active right now.
1634 */
1635 addr += SBP2_ORB_POINTER_OFFSET;
1636 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1637 data[1] = cmd->command_orb_dma;
1638 sbp2util_cpu_to_be32_buffer(data, 8);
1639 length = 8;
1640 } else {
1641 /*
1642 * last_orb != NULL means: We know that the target's fetch agent
1643 * is (very probably) not dead or in reset state right now.
1644 * We have an ORB already sent that we can append a new one to.
1645 * The target's fetch agent may or may not have read this
1646 * previous ORB yet.
1647 */
1648 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1649 sizeof(struct sbp2_command_orb),
1650 DMA_TO_DEVICE);
1651 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1652 wmb();
1653 /* Tells hardware that this pointer is valid */
1654 last_orb->next_ORB_hi = 0;
1655 dma_sync_single_for_device(hi->host->device.parent,
1656 last_orb_dma,
1657 sizeof(struct sbp2_command_orb),
1658 DMA_TO_DEVICE);
1659 addr += SBP2_DOORBELL_OFFSET;
1660 data[0] = 0;
1661 length = 4;
1662 }
1663 lu->last_orb = &cmd->command_orb;
1664 lu->last_orb_dma = cmd->command_orb_dma;
1665 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1666
1667 if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1668 /*
1669 * sbp2util_node_write_no_wait failed. We certainly ran out
1670 * of transaction labels, perhaps just because there were no
1671 * context switches which gave khpsbpkt a chance to collect
1672 * free tlabels. Try again in non-atomic context. If necessary,
1673 * the workqueue job will sleep to guaranteedly get a tlabel.
1674 * We do not accept new commands until the job is over.
1675 */
1676 scsi_block_requests(lu->shost);
1677 PREPARE_WORK(&lu->protocol_work,
1678 last_orb ? sbp2util_write_doorbell:
1679 sbp2util_write_orb_pointer);
1680 schedule_work(&lu->protocol_work);
1681 }
1682 }
1683
1684 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1685 void (*done)(struct scsi_cmnd *))
1686 {
1687 struct sbp2_command_info *cmd;
1688
1689 cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1690 if (!cmd)
1691 return -EIO;
1692
1693 if (sbp2_create_command_orb(lu, cmd, SCpnt))
1694 return -ENOMEM;
1695
1696 sbp2_link_orb_command(lu, cmd);
1697 return 0;
1698 }
1699
1700 /*
1701 * Translates SBP-2 status into SCSI sense data for check conditions
1702 */
1703 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1704 unchar *sense_data)
1705 {
1706 /* OK, it's pretty ugly... ;-) */
1707 sense_data[0] = 0x70;
1708 sense_data[1] = 0x0;
1709 sense_data[2] = sbp2_status[9];
1710 sense_data[3] = sbp2_status[12];
1711 sense_data[4] = sbp2_status[13];
1712 sense_data[5] = sbp2_status[14];
1713 sense_data[6] = sbp2_status[15];
1714 sense_data[7] = 10;
1715 sense_data[8] = sbp2_status[16];
1716 sense_data[9] = sbp2_status[17];
1717 sense_data[10] = sbp2_status[18];
1718 sense_data[11] = sbp2_status[19];
1719 sense_data[12] = sbp2_status[10];
1720 sense_data[13] = sbp2_status[11];
1721 sense_data[14] = sbp2_status[20];
1722 sense_data[15] = sbp2_status[21];
1723
1724 return sbp2_status[8] & 0x3f;
1725 }
1726
1727 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1728 int destid, quadlet_t *data, u64 addr,
1729 size_t length, u16 fl)
1730 {
1731 struct sbp2_fwhost_info *hi;
1732 struct sbp2_lu *lu = NULL, *lu_tmp;
1733 struct scsi_cmnd *SCpnt = NULL;
1734 struct sbp2_status_block *sb;
1735 u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1736 struct sbp2_command_info *cmd;
1737 unsigned long flags;
1738
1739 if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1740 SBP2_ERR("Wrong size of status block");
1741 return RCODE_ADDRESS_ERROR;
1742 }
1743 if (unlikely(!host)) {
1744 SBP2_ERR("host is NULL - this is bad!");
1745 return RCODE_ADDRESS_ERROR;
1746 }
1747 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1748 if (unlikely(!hi)) {
1749 SBP2_ERR("host info is NULL - this is bad!");
1750 return RCODE_ADDRESS_ERROR;
1751 }
1752
1753 /* Find the unit which wrote the status. */
1754 read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1755 list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1756 if (lu_tmp->ne->nodeid == nodeid &&
1757 lu_tmp->status_fifo_addr == addr) {
1758 lu = lu_tmp;
1759 break;
1760 }
1761 }
1762 read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1763
1764 if (unlikely(!lu)) {
1765 SBP2_ERR("lu is NULL - device is gone?");
1766 return RCODE_ADDRESS_ERROR;
1767 }
1768
1769 /* Put response into lu status fifo buffer. The first two bytes
1770 * come in big endian bit order. Often the target writes only a
1771 * truncated status block, minimally the first two quadlets. The rest
1772 * is implied to be zeros. */
1773 sb = &lu->status_block;
1774 memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1775 memcpy(sb, data, length);
1776 sbp2util_be32_to_cpu_buffer(sb, 8);
1777
1778 /* Ignore unsolicited status. Handle command ORB status. */
1779 if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1780 cmd = NULL;
1781 else
1782 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1783 if (cmd) {
1784 /* Grab SCSI command pointers and check status. */
1785 /*
1786 * FIXME: If the src field in the status is 1, the ORB DMA must
1787 * not be reused until status for a subsequent ORB is received.
1788 */
1789 SCpnt = cmd->Current_SCpnt;
1790 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1791 sbp2util_mark_command_completed(lu, cmd);
1792 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1793
1794 if (SCpnt) {
1795 u32 h = sb->ORB_offset_hi_misc;
1796 u32 r = STATUS_GET_RESP(h);
1797
1798 if (r != RESP_STATUS_REQUEST_COMPLETE) {
1799 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1800 r, STATUS_GET_SBP_STATUS(h));
1801 scsi_status =
1802 r == RESP_STATUS_TRANSPORT_FAILURE ?
1803 SBP2_SCSI_STATUS_BUSY :
1804 SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1805 }
1806
1807 if (STATUS_GET_LEN(h) > 1)
1808 scsi_status = sbp2_status_to_sense_data(
1809 (unchar *)sb, SCpnt->sense_buffer);
1810
1811 if (STATUS_TEST_DEAD(h))
1812 sbp2_agent_reset(lu, 0);
1813 }
1814
1815 /* Check here to see if there are no commands in-use. If there
1816 * are none, we know that the fetch agent left the active state
1817 * _and_ that we did not reactivate it yet. Therefore clear
1818 * last_orb so that next time we write directly to the
1819 * ORB_POINTER register. That way the fetch agent does not need
1820 * to refetch the next_ORB. */
1821 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1822 if (list_empty(&lu->cmd_orb_inuse))
1823 lu->last_orb = NULL;
1824 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1825
1826 } else {
1827 /* It's probably status after a management request. */
1828 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1829 (sb->ORB_offset_lo == lu->login_orb_dma) ||
1830 (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1831 (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1832 lu->access_complete = 1;
1833 wake_up_interruptible(&sbp2_access_wq);
1834 }
1835 }
1836
1837 if (SCpnt)
1838 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1839 cmd->Current_done);
1840 return RCODE_COMPLETE;
1841 }
1842
1843 /**************************************
1844 * SCSI interface related section
1845 **************************************/
1846
1847 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1848 void (*done)(struct scsi_cmnd *))
1849 {
1850 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1851 struct sbp2_fwhost_info *hi;
1852 int result = DID_NO_CONNECT << 16;
1853
1854 if (unlikely(!sbp2util_node_is_available(lu)))
1855 goto done;
1856
1857 hi = lu->hi;
1858
1859 if (unlikely(!hi)) {
1860 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1861 goto done;
1862 }
1863
1864 /* Multiple units are currently represented to the SCSI core as separate
1865 * targets, not as one target with multiple LUs. Therefore return
1866 * selection time-out to any IO directed at non-zero LUNs. */
1867 if (unlikely(SCpnt->device->lun))
1868 goto done;
1869
1870 if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1871 SBP2_ERR("Bus reset in progress - rejecting command");
1872 result = DID_BUS_BUSY << 16;
1873 goto done;
1874 }
1875
1876 /* Bidirectional commands are not yet implemented,
1877 * and unknown transfer direction not handled. */
1878 if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1879 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1880 result = DID_ERROR << 16;
1881 goto done;
1882 }
1883
1884 if (sbp2_send_command(lu, SCpnt, done)) {
1885 SBP2_ERR("Error sending SCSI command");
1886 sbp2scsi_complete_command(lu,
1887 SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1888 SCpnt, done);
1889 }
1890 return 0;
1891
1892 done:
1893 SCpnt->result = result;
1894 done(SCpnt);
1895 return 0;
1896 }
1897
1898 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1899 {
1900 struct list_head *lh;
1901 struct sbp2_command_info *cmd;
1902 unsigned long flags;
1903
1904 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1905 while (!list_empty(&lu->cmd_orb_inuse)) {
1906 lh = lu->cmd_orb_inuse.next;
1907 cmd = list_entry(lh, struct sbp2_command_info, list);
1908 sbp2util_mark_command_completed(lu, cmd);
1909 if (cmd->Current_SCpnt) {
1910 cmd->Current_SCpnt->result = status << 16;
1911 cmd->Current_done(cmd->Current_SCpnt);
1912 }
1913 }
1914 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1915
1916 return;
1917 }
1918
1919 /*
1920 * Complete a regular SCSI command. Can be called in atomic context.
1921 */
1922 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1923 struct scsi_cmnd *SCpnt,
1924 void (*done)(struct scsi_cmnd *))
1925 {
1926 if (!SCpnt) {
1927 SBP2_ERR("SCpnt is NULL");
1928 return;
1929 }
1930
1931 switch (scsi_status) {
1932 case SBP2_SCSI_STATUS_GOOD:
1933 SCpnt->result = DID_OK << 16;
1934 break;
1935
1936 case SBP2_SCSI_STATUS_BUSY:
1937 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1938 SCpnt->result = DID_BUS_BUSY << 16;
1939 break;
1940
1941 case SBP2_SCSI_STATUS_CHECK_CONDITION:
1942 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1943 break;
1944
1945 case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1946 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1947 SCpnt->result = DID_NO_CONNECT << 16;
1948 scsi_print_command(SCpnt);
1949 break;
1950
1951 case SBP2_SCSI_STATUS_CONDITION_MET:
1952 case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1953 case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1954 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1955 SCpnt->result = DID_ERROR << 16;
1956 scsi_print_command(SCpnt);
1957 break;
1958
1959 default:
1960 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1961 SCpnt->result = DID_ERROR << 16;
1962 }
1963
1964 /* If a bus reset is in progress and there was an error, complete
1965 * the command as busy so that it will get retried. */
1966 if (!hpsb_node_entry_valid(lu->ne)
1967 && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1968 SBP2_ERR("Completing command with busy (bus reset)");
1969 SCpnt->result = DID_BUS_BUSY << 16;
1970 }
1971
1972 /* Tell the SCSI stack that we're done with this command. */
1973 done(SCpnt);
1974 }
1975
1976 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1977 {
1978 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1979
1980 if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0)
1981 return -ENODEV;
1982
1983 lu->sdev = sdev;
1984 sdev->allow_restart = 1;
1985
1986 /* SBP-2 requires quadlet alignment of the data buffers. */
1987 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1988
1989 if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1990 sdev->inquiry_len = 36;
1991 return 0;
1992 }
1993
1994 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
1995 {
1996 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1997
1998 sdev->use_10_for_rw = 1;
1999
2000 if (sbp2_exclusive_login)
2001 sdev->manage_start_stop = 1;
2002 if (sdev->type == TYPE_ROM)
2003 sdev->use_10_for_ms = 1;
2004 if (sdev->type == TYPE_DISK &&
2005 lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2006 sdev->skip_ms_page_8 = 1;
2007 if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2008 sdev->fix_capacity = 1;
2009 if (lu->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
2010 sdev->start_stop_pwr_cond = 1;
2011 if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
2012 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
2013
2014 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
2015 return 0;
2016 }
2017
2018 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2019 {
2020 ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2021 return;
2022 }
2023
2024 /*
2025 * Called by scsi stack when something has really gone wrong.
2026 * Usually called when a command has timed-out for some reason.
2027 */
2028 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2029 {
2030 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2031 struct sbp2_command_info *cmd;
2032 unsigned long flags;
2033
2034 SBP2_INFO("aborting sbp2 command");
2035 scsi_print_command(SCpnt);
2036
2037 if (sbp2util_node_is_available(lu)) {
2038 sbp2_agent_reset(lu, 1);
2039
2040 /* Return a matching command structure to the free pool. */
2041 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2042 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2043 if (cmd) {
2044 sbp2util_mark_command_completed(lu, cmd);
2045 if (cmd->Current_SCpnt) {
2046 cmd->Current_SCpnt->result = DID_ABORT << 16;
2047 cmd->Current_done(cmd->Current_SCpnt);
2048 }
2049 }
2050 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2051
2052 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2053 }
2054
2055 return SUCCESS;
2056 }
2057
2058 /*
2059 * Called by scsi stack when something has really gone wrong.
2060 */
2061 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2062 {
2063 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2064
2065 SBP2_INFO("reset requested");
2066
2067 if (sbp2util_node_is_available(lu)) {
2068 SBP2_INFO("generating sbp2 fetch agent reset");
2069 sbp2_agent_reset(lu, 1);
2070 }
2071
2072 return SUCCESS;
2073 }
2074
2075 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2076 struct device_attribute *attr,
2077 char *buf)
2078 {
2079 struct scsi_device *sdev;
2080 struct sbp2_lu *lu;
2081
2082 if (!(sdev = to_scsi_device(dev)))
2083 return 0;
2084
2085 if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2086 return 0;
2087
2088 if (sbp2_long_sysfs_ieee1394_id)
2089 return sprintf(buf, "%016Lx:%06x:%04x\n",
2090 (unsigned long long)lu->ne->guid,
2091 lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2092 else
2093 return sprintf(buf, "%016Lx:%d:%d\n",
2094 (unsigned long long)lu->ne->guid,
2095 lu->ud->id, ORB_SET_LUN(lu->lun));
2096 }
2097
2098 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2099 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2100 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2101 MODULE_LICENSE("GPL");
2102
2103 static int sbp2_module_init(void)
2104 {
2105 int ret;
2106
2107 if (sbp2_serialize_io) {
2108 sbp2_shost_template.can_queue = 1;
2109 sbp2_shost_template.cmd_per_lun = 1;
2110 }
2111
2112 sbp2_shost_template.max_sectors = sbp2_max_sectors;
2113
2114 hpsb_register_highlevel(&sbp2_highlevel);
2115 ret = hpsb_register_protocol(&sbp2_driver);
2116 if (ret) {
2117 SBP2_ERR("Failed to register protocol");
2118 hpsb_unregister_highlevel(&sbp2_highlevel);
2119 return ret;
2120 }
2121 return 0;
2122 }
2123
2124 static void __exit sbp2_module_exit(void)
2125 {
2126 hpsb_unregister_protocol(&sbp2_driver);
2127 hpsb_unregister_highlevel(&sbp2_highlevel);
2128 }
2129
2130 module_init(sbp2_module_init);
2131 module_exit(sbp2_module_exit);