Merge with /pub/scm/linux/kernel/git/torvalds/linux-2.6.git
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ieee1394 / ohci1394.c
1 /*
2 * ohci1394.c - driver for OHCI 1394 boards
3 * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4 * Gord Peters <GordPeters@smarttech.com>
5 * 2001 Ben Collins <bcollins@debian.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 /*
23 * Things known to be working:
24 * . Async Request Transmit
25 * . Async Response Receive
26 * . Async Request Receive
27 * . Async Response Transmit
28 * . Iso Receive
29 * . DMA mmap for iso receive
30 * . Config ROM generation
31 *
32 * Things implemented, but still in test phase:
33 * . Iso Transmit
34 * . Async Stream Packets Transmit (Receive done via Iso interface)
35 *
36 * Things not implemented:
37 * . DMA error recovery
38 *
39 * Known bugs:
40 * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41 * added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
42 */
43
44 /*
45 * Acknowledgments:
46 *
47 * Adam J Richter <adam@yggdrasil.com>
48 * . Use of pci_class to find device
49 *
50 * Emilie Chung <emilie.chung@axis.com>
51 * . Tip on Async Request Filter
52 *
53 * Pascal Drolet <pascal.drolet@informission.ca>
54 * . Various tips for optimization and functionnalities
55 *
56 * Robert Ficklin <rficklin@westengineering.com>
57 * . Loop in irq_handler
58 *
59 * James Goodwin <jamesg@Filanet.com>
60 * . Various tips on initialization, self-id reception, etc.
61 *
62 * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63 * . Apple PowerBook detection
64 *
65 * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66 * . Reset the board properly before leaving + misc cleanups
67 *
68 * Leon van Stuivenberg <leonvs@iae.nl>
69 * . Bug fixes
70 *
71 * Ben Collins <bcollins@debian.org>
72 * . Working big-endian support
73 * . Updated to 2.4.x module scheme (PCI aswell)
74 * . Config ROM generation
75 *
76 * Manfred Weihs <weihs@ict.tuwien.ac.at>
77 * . Reworked code for initiating bus resets
78 * (long, short, with or without hold-off)
79 *
80 * Nandu Santhi <contactnandu@users.sourceforge.net>
81 * . Added support for nVidia nForce2 onboard Firewire chipset
82 *
83 */
84
85 #include <linux/config.h>
86 #include <linux/kernel.h>
87 #include <linux/list.h>
88 #include <linux/slab.h>
89 #include <linux/interrupt.h>
90 #include <linux/wait.h>
91 #include <linux/errno.h>
92 #include <linux/module.h>
93 #include <linux/moduleparam.h>
94 #include <linux/pci.h>
95 #include <linux/fs.h>
96 #include <linux/poll.h>
97 #include <asm/byteorder.h>
98 #include <asm/atomic.h>
99 #include <asm/uaccess.h>
100 #include <linux/delay.h>
101 #include <linux/spinlock.h>
102
103 #include <asm/pgtable.h>
104 #include <asm/page.h>
105 #include <asm/irq.h>
106 #include <linux/sched.h>
107 #include <linux/types.h>
108 #include <linux/vmalloc.h>
109 #include <linux/init.h>
110
111 #ifdef CONFIG_PPC_PMAC
112 #include <asm/machdep.h>
113 #include <asm/pmac_feature.h>
114 #include <asm/prom.h>
115 #include <asm/pci-bridge.h>
116 #endif
117
118 #include "csr1212.h"
119 #include "ieee1394.h"
120 #include "ieee1394_types.h"
121 #include "hosts.h"
122 #include "dma.h"
123 #include "iso.h"
124 #include "ieee1394_core.h"
125 #include "highlevel.h"
126 #include "ohci1394.h"
127
128 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
129 #define OHCI1394_DEBUG
130 #endif
131
132 #ifdef DBGMSG
133 #undef DBGMSG
134 #endif
135
136 #ifdef OHCI1394_DEBUG
137 #define DBGMSG(fmt, args...) \
138 printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
139 #else
140 #define DBGMSG(fmt, args...)
141 #endif
142
143 #ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
144 #define OHCI_DMA_ALLOC(fmt, args...) \
145 HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
146 ++global_outstanding_dmas, ## args)
147 #define OHCI_DMA_FREE(fmt, args...) \
148 HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
149 --global_outstanding_dmas, ## args)
150 static int global_outstanding_dmas = 0;
151 #else
152 #define OHCI_DMA_ALLOC(fmt, args...)
153 #define OHCI_DMA_FREE(fmt, args...)
154 #endif
155
156 /* print general (card independent) information */
157 #define PRINT_G(level, fmt, args...) \
158 printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
159
160 /* print card specific information */
161 #define PRINT(level, fmt, args...) \
162 printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
163
164 /* Module Parameters */
165 static int phys_dma = 1;
166 module_param(phys_dma, int, 0444);
167 MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
168
169 static void dma_trm_tasklet(unsigned long data);
170 static void dma_trm_reset(struct dma_trm_ctx *d);
171
172 static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
173 enum context_type type, int ctx, int num_desc,
174 int buf_size, int split_buf_size, int context_base);
175 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
176 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
177
178 static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
179 enum context_type type, int ctx, int num_desc,
180 int context_base);
181
182 static void ohci1394_pci_remove(struct pci_dev *pdev);
183
184 #ifndef __LITTLE_ENDIAN
185 static unsigned hdr_sizes[] =
186 {
187 3, /* TCODE_WRITEQ */
188 4, /* TCODE_WRITEB */
189 3, /* TCODE_WRITE_RESPONSE */
190 0, /* ??? */
191 3, /* TCODE_READQ */
192 4, /* TCODE_READB */
193 3, /* TCODE_READQ_RESPONSE */
194 4, /* TCODE_READB_RESPONSE */
195 1, /* TCODE_CYCLE_START (???) */
196 4, /* TCODE_LOCK_REQUEST */
197 2, /* TCODE_ISO_DATA */
198 4, /* TCODE_LOCK_RESPONSE */
199 };
200
201 /* Swap headers */
202 static inline void packet_swab(quadlet_t *data, int tcode)
203 {
204 size_t size = hdr_sizes[tcode];
205
206 if (tcode > TCODE_LOCK_RESPONSE || hdr_sizes[tcode] == 0)
207 return;
208
209 while (size--)
210 data[size] = swab32(data[size]);
211 }
212 #else
213 /* Don't waste cycles on same sex byte swaps */
214 #define packet_swab(w,x)
215 #endif /* !LITTLE_ENDIAN */
216
217 /***********************************
218 * IEEE-1394 functionality section *
219 ***********************************/
220
221 static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
222 {
223 int i;
224 unsigned long flags;
225 quadlet_t r;
226
227 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
228
229 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
230
231 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
232 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
233 break;
234
235 mdelay(1);
236 }
237
238 r = reg_read(ohci, OHCI1394_PhyControl);
239
240 if (i >= OHCI_LOOP_COUNT)
241 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
242 r, r & 0x80000000, i);
243
244 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
245
246 return (r & 0x00ff0000) >> 16;
247 }
248
249 static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
250 {
251 int i;
252 unsigned long flags;
253 u32 r = 0;
254
255 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
256
257 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
258
259 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
260 r = reg_read(ohci, OHCI1394_PhyControl);
261 if (!(r & 0x00004000))
262 break;
263
264 mdelay(1);
265 }
266
267 if (i == OHCI_LOOP_COUNT)
268 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
269 r, r & 0x00004000, i);
270
271 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
272
273 return;
274 }
275
276 /* Or's our value into the current value */
277 static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
278 {
279 u8 old;
280
281 old = get_phy_reg (ohci, addr);
282 old |= data;
283 set_phy_reg (ohci, addr, old);
284
285 return;
286 }
287
288 static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
289 int phyid, int isroot)
290 {
291 quadlet_t *q = ohci->selfid_buf_cpu;
292 quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
293 size_t size;
294 quadlet_t q0, q1;
295
296 /* Check status of self-id reception */
297
298 if (ohci->selfid_swap)
299 q0 = le32_to_cpu(q[0]);
300 else
301 q0 = q[0];
302
303 if ((self_id_count & 0x80000000) ||
304 ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
305 PRINT(KERN_ERR,
306 "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
307 self_id_count, q0, ohci->self_id_errors);
308
309 /* Tip by James Goodwin <jamesg@Filanet.com>:
310 * We had an error, generate another bus reset in response. */
311 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
312 set_phy_reg_mask (ohci, 1, 0x40);
313 ohci->self_id_errors++;
314 } else {
315 PRINT(KERN_ERR,
316 "Too many errors on SelfID error reception, giving up!");
317 }
318 return;
319 }
320
321 /* SelfID Ok, reset error counter. */
322 ohci->self_id_errors = 0;
323
324 size = ((self_id_count & 0x00001FFC) >> 2) - 1;
325 q++;
326
327 while (size > 0) {
328 if (ohci->selfid_swap) {
329 q0 = le32_to_cpu(q[0]);
330 q1 = le32_to_cpu(q[1]);
331 } else {
332 q0 = q[0];
333 q1 = q[1];
334 }
335
336 if (q0 == ~q1) {
337 DBGMSG ("SelfID packet 0x%x received", q0);
338 hpsb_selfid_received(host, cpu_to_be32(q0));
339 if (((q0 & 0x3f000000) >> 24) == phyid)
340 DBGMSG ("SelfID for this node is 0x%08x", q0);
341 } else {
342 PRINT(KERN_ERR,
343 "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
344 }
345 q += 2;
346 size -= 2;
347 }
348
349 DBGMSG("SelfID complete");
350
351 return;
352 }
353
354 static void ohci_soft_reset(struct ti_ohci *ohci) {
355 int i;
356
357 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
358
359 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
360 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
361 break;
362 mdelay(1);
363 }
364 DBGMSG ("Soft reset finished");
365 }
366
367
368 /* Generate the dma receive prgs and start the context */
369 static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
370 {
371 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
372 int i;
373
374 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
375
376 for (i=0; i<d->num_desc; i++) {
377 u32 c;
378
379 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
380 if (generate_irq)
381 c |= DMA_CTL_IRQ;
382
383 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
384
385 /* End of descriptor list? */
386 if (i + 1 < d->num_desc) {
387 d->prg_cpu[i]->branchAddress =
388 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
389 } else {
390 d->prg_cpu[i]->branchAddress =
391 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
392 }
393
394 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
395 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
396 }
397
398 d->buf_ind = 0;
399 d->buf_offset = 0;
400
401 if (d->type == DMA_CTX_ISO) {
402 /* Clear contextControl */
403 reg_write(ohci, d->ctrlClear, 0xffffffff);
404
405 /* Set bufferFill, isochHeader, multichannel for IR context */
406 reg_write(ohci, d->ctrlSet, 0xd0000000);
407
408 /* Set the context match register to match on all tags */
409 reg_write(ohci, d->ctxtMatch, 0xf0000000);
410
411 /* Clear the multi channel mask high and low registers */
412 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
413 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
414
415 /* Set up isoRecvIntMask to generate interrupts */
416 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
417 }
418
419 /* Tell the controller where the first AR program is */
420 reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
421
422 /* Run context */
423 reg_write(ohci, d->ctrlSet, 0x00008000);
424
425 DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
426 }
427
428 /* Initialize the dma transmit context */
429 static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
430 {
431 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
432
433 /* Stop the context */
434 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
435
436 d->prg_ind = 0;
437 d->sent_ind = 0;
438 d->free_prgs = d->num_desc;
439 d->branchAddrPtr = NULL;
440 INIT_LIST_HEAD(&d->fifo_list);
441 INIT_LIST_HEAD(&d->pending_list);
442
443 if (d->type == DMA_CTX_ISO) {
444 /* enable interrupts */
445 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
446 }
447
448 DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
449 }
450
451 /* Count the number of available iso contexts */
452 static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
453 {
454 int i,ctx=0;
455 u32 tmp;
456
457 reg_write(ohci, reg, 0xffffffff);
458 tmp = reg_read(ohci, reg);
459
460 DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
461
462 /* Count the number of contexts */
463 for (i=0; i<32; i++) {
464 if (tmp & 1) ctx++;
465 tmp >>= 1;
466 }
467 return ctx;
468 }
469
470 /* Global initialization */
471 static void ohci_initialize(struct ti_ohci *ohci)
472 {
473 char irq_buf[16];
474 quadlet_t buf;
475 int num_ports, i;
476
477 spin_lock_init(&ohci->phy_reg_lock);
478
479 /* Put some defaults to these undefined bus options */
480 buf = reg_read(ohci, OHCI1394_BusOptions);
481 buf |= 0x60000000; /* Enable CMC and ISC */
482 if (hpsb_disable_irm)
483 buf &= ~0x80000000;
484 else
485 buf |= 0x80000000; /* Enable IRMC */
486 buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
487 buf &= ~0x18000000; /* Disable PMC and BMC */
488 reg_write(ohci, OHCI1394_BusOptions, buf);
489
490 /* Set the bus number */
491 reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
492
493 /* Enable posted writes */
494 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
495
496 /* Clear link control register */
497 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
498
499 /* Enable cycle timer and cycle master and set the IRM
500 * contender bit in our self ID packets if appropriate. */
501 reg_write(ohci, OHCI1394_LinkControlSet,
502 OHCI1394_LinkControl_CycleTimerEnable |
503 OHCI1394_LinkControl_CycleMaster);
504 i = get_phy_reg(ohci, 4) | PHY_04_LCTRL;
505 if (hpsb_disable_irm)
506 i &= ~PHY_04_CONTENDER;
507 else
508 i |= PHY_04_CONTENDER;
509 set_phy_reg(ohci, 4, i);
510
511 /* Set up self-id dma buffer */
512 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
513
514 /* enable self-id and phys */
515 reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
516 OHCI1394_LinkControl_RcvPhyPkt);
517
518 /* Set the Config ROM mapping register */
519 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
520
521 /* Now get our max packet size */
522 ohci->max_packet_size =
523 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
524
525 /* Don't accept phy packets into AR request context */
526 reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
527
528 /* Clear the interrupt mask */
529 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
530 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
531
532 /* Clear the interrupt mask */
533 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
534 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
535
536 /* Initialize AR dma */
537 initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
538 initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
539
540 /* Initialize AT dma */
541 initialize_dma_trm_ctx(&ohci->at_req_context);
542 initialize_dma_trm_ctx(&ohci->at_resp_context);
543
544 /* Initialize IR Legacy DMA channel mask */
545 ohci->ir_legacy_channels = 0;
546
547 /* Accept AR requests from all nodes */
548 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
549
550 /* Set the address range of the physical response unit.
551 * Most controllers do not implement it as a writable register though.
552 * They will keep a hardwired offset of 0x00010000 and show 0x0 as
553 * register content.
554 * To actually enable physical responses is the job of our interrupt
555 * handler which programs the physical request filter. */
556 reg_write(ohci, OHCI1394_PhyUpperBound,
557 OHCI1394_PHYS_UPPER_BOUND_PROGRAMMED >> 16);
558
559 DBGMSG("physUpperBoundOffset=%08x",
560 reg_read(ohci, OHCI1394_PhyUpperBound));
561
562 /* Specify AT retries */
563 reg_write(ohci, OHCI1394_ATRetries,
564 OHCI1394_MAX_AT_REQ_RETRIES |
565 (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
566 (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
567
568 /* We don't want hardware swapping */
569 reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
570
571 /* Enable interrupts */
572 reg_write(ohci, OHCI1394_IntMaskSet,
573 OHCI1394_unrecoverableError |
574 OHCI1394_masterIntEnable |
575 OHCI1394_busReset |
576 OHCI1394_selfIDComplete |
577 OHCI1394_RSPkt |
578 OHCI1394_RQPkt |
579 OHCI1394_respTxComplete |
580 OHCI1394_reqTxComplete |
581 OHCI1394_isochRx |
582 OHCI1394_isochTx |
583 OHCI1394_postedWriteErr |
584 OHCI1394_cycleTooLong |
585 OHCI1394_cycleInconsistent);
586
587 /* Enable link */
588 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
589
590 buf = reg_read(ohci, OHCI1394_Version);
591 sprintf (irq_buf, "%d", ohci->dev->irq);
592 PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%s] "
593 "MMIO=[%lx-%lx] Max Packet=[%d] IR/IT contexts=[%d/%d]",
594 ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
595 ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), irq_buf,
596 pci_resource_start(ohci->dev, 0),
597 pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
598 ohci->max_packet_size,
599 ohci->nb_iso_rcv_ctx, ohci->nb_iso_xmit_ctx);
600
601 /* Check all of our ports to make sure that if anything is
602 * connected, we enable that port. */
603 num_ports = get_phy_reg(ohci, 2) & 0xf;
604 for (i = 0; i < num_ports; i++) {
605 unsigned int status;
606
607 set_phy_reg(ohci, 7, i);
608 status = get_phy_reg(ohci, 8);
609
610 if (status & 0x20)
611 set_phy_reg(ohci, 8, status & ~1);
612 }
613
614 /* Serial EEPROM Sanity check. */
615 if ((ohci->max_packet_size < 512) ||
616 (ohci->max_packet_size > 4096)) {
617 /* Serial EEPROM contents are suspect, set a sane max packet
618 * size and print the raw contents for bug reports if verbose
619 * debug is enabled. */
620 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
621 int i;
622 #endif
623
624 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
625 "attempting to setting max_packet_size to 512 bytes");
626 reg_write(ohci, OHCI1394_BusOptions,
627 (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
628 ohci->max_packet_size = 512;
629 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
630 PRINT(KERN_DEBUG, " EEPROM Present: %d",
631 (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
632 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
633
634 for (i = 0;
635 ((i < 1000) &&
636 (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
637 udelay(10);
638
639 for (i = 0; i < 0x20; i++) {
640 reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
641 PRINT(KERN_DEBUG, " EEPROM %02x: %02x", i,
642 (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
643 }
644 #endif
645 }
646 }
647
648 /*
649 * Insert a packet in the DMA fifo and generate the DMA prg
650 * FIXME: rewrite the program in order to accept packets crossing
651 * page boundaries.
652 * check also that a single dma descriptor doesn't cross a
653 * page boundary.
654 */
655 static void insert_packet(struct ti_ohci *ohci,
656 struct dma_trm_ctx *d, struct hpsb_packet *packet)
657 {
658 u32 cycleTimer;
659 int idx = d->prg_ind;
660
661 DBGMSG("Inserting packet for node " NODE_BUS_FMT
662 ", tlabel=%d, tcode=0x%x, speed=%d",
663 NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
664 packet->tcode, packet->speed_code);
665
666 d->prg_cpu[idx]->begin.address = 0;
667 d->prg_cpu[idx]->begin.branchAddress = 0;
668
669 if (d->type == DMA_CTX_ASYNC_RESP) {
670 /*
671 * For response packets, we need to put a timeout value in
672 * the 16 lower bits of the status... let's try 1 sec timeout
673 */
674 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
675 d->prg_cpu[idx]->begin.status = cpu_to_le32(
676 (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
677 ((cycleTimer&0x01fff000)>>12));
678
679 DBGMSG("cycleTimer: %08x timeStamp: %08x",
680 cycleTimer, d->prg_cpu[idx]->begin.status);
681 } else
682 d->prg_cpu[idx]->begin.status = 0;
683
684 if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
685
686 if (packet->type == hpsb_raw) {
687 d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
688 d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
689 d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
690 } else {
691 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
692 (packet->header[0] & 0xFFFF);
693
694 if (packet->tcode == TCODE_ISO_DATA) {
695 /* Sending an async stream packet */
696 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
697 } else {
698 /* Sending a normal async request or response */
699 d->prg_cpu[idx]->data[1] =
700 (packet->header[1] & 0xFFFF) |
701 (packet->header[0] & 0xFFFF0000);
702 d->prg_cpu[idx]->data[2] = packet->header[2];
703 d->prg_cpu[idx]->data[3] = packet->header[3];
704 }
705 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
706 }
707
708 if (packet->data_size) { /* block transmit */
709 if (packet->tcode == TCODE_STREAM_DATA){
710 d->prg_cpu[idx]->begin.control =
711 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
712 DMA_CTL_IMMEDIATE | 0x8);
713 } else {
714 d->prg_cpu[idx]->begin.control =
715 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
716 DMA_CTL_IMMEDIATE | 0x10);
717 }
718 d->prg_cpu[idx]->end.control =
719 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
720 DMA_CTL_IRQ |
721 DMA_CTL_BRANCH |
722 packet->data_size);
723 /*
724 * Check that the packet data buffer
725 * does not cross a page boundary.
726 *
727 * XXX Fix this some day. eth1394 seems to trigger
728 * it, but ignoring it doesn't seem to cause a
729 * problem.
730 */
731 #if 0
732 if (cross_bound((unsigned long)packet->data,
733 packet->data_size)>0) {
734 /* FIXME: do something about it */
735 PRINT(KERN_ERR,
736 "%s: packet data addr: %p size %Zd bytes "
737 "cross page boundary", __FUNCTION__,
738 packet->data, packet->data_size);
739 }
740 #endif
741 d->prg_cpu[idx]->end.address = cpu_to_le32(
742 pci_map_single(ohci->dev, packet->data,
743 packet->data_size,
744 PCI_DMA_TODEVICE));
745 OHCI_DMA_ALLOC("single, block transmit packet");
746
747 d->prg_cpu[idx]->end.branchAddress = 0;
748 d->prg_cpu[idx]->end.status = 0;
749 if (d->branchAddrPtr)
750 *(d->branchAddrPtr) =
751 cpu_to_le32(d->prg_bus[idx] | 0x3);
752 d->branchAddrPtr =
753 &(d->prg_cpu[idx]->end.branchAddress);
754 } else { /* quadlet transmit */
755 if (packet->type == hpsb_raw)
756 d->prg_cpu[idx]->begin.control =
757 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
758 DMA_CTL_IMMEDIATE |
759 DMA_CTL_IRQ |
760 DMA_CTL_BRANCH |
761 (packet->header_size + 4));
762 else
763 d->prg_cpu[idx]->begin.control =
764 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
765 DMA_CTL_IMMEDIATE |
766 DMA_CTL_IRQ |
767 DMA_CTL_BRANCH |
768 packet->header_size);
769
770 if (d->branchAddrPtr)
771 *(d->branchAddrPtr) =
772 cpu_to_le32(d->prg_bus[idx] | 0x2);
773 d->branchAddrPtr =
774 &(d->prg_cpu[idx]->begin.branchAddress);
775 }
776
777 } else { /* iso packet */
778 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
779 (packet->header[0] & 0xFFFF);
780 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
781 packet_swab(d->prg_cpu[idx]->data, packet->tcode);
782
783 d->prg_cpu[idx]->begin.control =
784 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
785 DMA_CTL_IMMEDIATE | 0x8);
786 d->prg_cpu[idx]->end.control =
787 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
788 DMA_CTL_UPDATE |
789 DMA_CTL_IRQ |
790 DMA_CTL_BRANCH |
791 packet->data_size);
792 d->prg_cpu[idx]->end.address = cpu_to_le32(
793 pci_map_single(ohci->dev, packet->data,
794 packet->data_size, PCI_DMA_TODEVICE));
795 OHCI_DMA_ALLOC("single, iso transmit packet");
796
797 d->prg_cpu[idx]->end.branchAddress = 0;
798 d->prg_cpu[idx]->end.status = 0;
799 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
800 " begin=%08x %08x %08x %08x\n"
801 " %08x %08x %08x %08x\n"
802 " end =%08x %08x %08x %08x",
803 d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
804 d->prg_cpu[idx]->begin.control,
805 d->prg_cpu[idx]->begin.address,
806 d->prg_cpu[idx]->begin.branchAddress,
807 d->prg_cpu[idx]->begin.status,
808 d->prg_cpu[idx]->data[0],
809 d->prg_cpu[idx]->data[1],
810 d->prg_cpu[idx]->data[2],
811 d->prg_cpu[idx]->data[3],
812 d->prg_cpu[idx]->end.control,
813 d->prg_cpu[idx]->end.address,
814 d->prg_cpu[idx]->end.branchAddress,
815 d->prg_cpu[idx]->end.status);
816 if (d->branchAddrPtr)
817 *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
818 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
819 }
820 d->free_prgs--;
821
822 /* queue the packet in the appropriate context queue */
823 list_add_tail(&packet->driver_list, &d->fifo_list);
824 d->prg_ind = (d->prg_ind + 1) % d->num_desc;
825 }
826
827 /*
828 * This function fills the FIFO with the (eventual) pending packets
829 * and runs or wakes up the DMA prg if necessary.
830 *
831 * The function MUST be called with the d->lock held.
832 */
833 static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
834 {
835 struct hpsb_packet *packet, *ptmp;
836 int idx = d->prg_ind;
837 int z = 0;
838
839 /* insert the packets into the dma fifo */
840 list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
841 if (!d->free_prgs)
842 break;
843
844 /* For the first packet only */
845 if (!z)
846 z = (packet->data_size) ? 3 : 2;
847
848 /* Insert the packet */
849 list_del_init(&packet->driver_list);
850 insert_packet(ohci, d, packet);
851 }
852
853 /* Nothing must have been done, either no free_prgs or no packets */
854 if (z == 0)
855 return;
856
857 /* Is the context running ? (should be unless it is
858 the first packet to be sent in this context) */
859 if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
860 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
861
862 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
863 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
864
865 /* Check that the node id is valid, and not 63 */
866 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
867 PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
868 else
869 reg_write(ohci, d->ctrlSet, 0x8000);
870 } else {
871 /* Wake up the dma context if necessary */
872 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
873 DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
874
875 /* do this always, to avoid race condition */
876 reg_write(ohci, d->ctrlSet, 0x1000);
877 }
878
879 return;
880 }
881
882 /* Transmission of an async or iso packet */
883 static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
884 {
885 struct ti_ohci *ohci = host->hostdata;
886 struct dma_trm_ctx *d;
887 unsigned long flags;
888
889 if (packet->data_size > ohci->max_packet_size) {
890 PRINT(KERN_ERR,
891 "Transmit packet size %Zd is too big",
892 packet->data_size);
893 return -EOVERFLOW;
894 }
895
896 /* Decide whether we have an iso, a request, or a response packet */
897 if (packet->type == hpsb_raw)
898 d = &ohci->at_req_context;
899 else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
900 /* The legacy IT DMA context is initialized on first
901 * use. However, the alloc cannot be run from
902 * interrupt context, so we bail out if that is the
903 * case. I don't see anyone sending ISO packets from
904 * interrupt context anyway... */
905
906 if (ohci->it_legacy_context.ohci == NULL) {
907 if (in_interrupt()) {
908 PRINT(KERN_ERR,
909 "legacy IT context cannot be initialized during interrupt");
910 return -EINVAL;
911 }
912
913 if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
914 DMA_CTX_ISO, 0, IT_NUM_DESC,
915 OHCI1394_IsoXmitContextBase) < 0) {
916 PRINT(KERN_ERR,
917 "error initializing legacy IT context");
918 return -ENOMEM;
919 }
920
921 initialize_dma_trm_ctx(&ohci->it_legacy_context);
922 }
923
924 d = &ohci->it_legacy_context;
925 } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
926 d = &ohci->at_resp_context;
927 else
928 d = &ohci->at_req_context;
929
930 spin_lock_irqsave(&d->lock,flags);
931
932 list_add_tail(&packet->driver_list, &d->pending_list);
933
934 dma_trm_flush(ohci, d);
935
936 spin_unlock_irqrestore(&d->lock,flags);
937
938 return 0;
939 }
940
941 static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
942 {
943 struct ti_ohci *ohci = host->hostdata;
944 int retval = 0;
945 unsigned long flags;
946 int phy_reg;
947
948 switch (cmd) {
949 case RESET_BUS:
950 switch (arg) {
951 case SHORT_RESET:
952 phy_reg = get_phy_reg(ohci, 5);
953 phy_reg |= 0x40;
954 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
955 break;
956 case LONG_RESET:
957 phy_reg = get_phy_reg(ohci, 1);
958 phy_reg |= 0x40;
959 set_phy_reg(ohci, 1, phy_reg); /* set IBR */
960 break;
961 case SHORT_RESET_NO_FORCE_ROOT:
962 phy_reg = get_phy_reg(ohci, 1);
963 if (phy_reg & 0x80) {
964 phy_reg &= ~0x80;
965 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
966 }
967
968 phy_reg = get_phy_reg(ohci, 5);
969 phy_reg |= 0x40;
970 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
971 break;
972 case LONG_RESET_NO_FORCE_ROOT:
973 phy_reg = get_phy_reg(ohci, 1);
974 phy_reg &= ~0x80;
975 phy_reg |= 0x40;
976 set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
977 break;
978 case SHORT_RESET_FORCE_ROOT:
979 phy_reg = get_phy_reg(ohci, 1);
980 if (!(phy_reg & 0x80)) {
981 phy_reg |= 0x80;
982 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
983 }
984
985 phy_reg = get_phy_reg(ohci, 5);
986 phy_reg |= 0x40;
987 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
988 break;
989 case LONG_RESET_FORCE_ROOT:
990 phy_reg = get_phy_reg(ohci, 1);
991 phy_reg |= 0xc0;
992 set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
993 break;
994 default:
995 retval = -1;
996 }
997 break;
998
999 case GET_CYCLE_COUNTER:
1000 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1001 break;
1002
1003 case SET_CYCLE_COUNTER:
1004 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
1005 break;
1006
1007 case SET_BUS_ID:
1008 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1009 break;
1010
1011 case ACT_CYCLE_MASTER:
1012 if (arg) {
1013 /* check if we are root and other nodes are present */
1014 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1015 if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1016 /*
1017 * enable cycleTimer, cycleMaster
1018 */
1019 DBGMSG("Cycle master enabled");
1020 reg_write(ohci, OHCI1394_LinkControlSet,
1021 OHCI1394_LinkControl_CycleTimerEnable |
1022 OHCI1394_LinkControl_CycleMaster);
1023 }
1024 } else {
1025 /* disable cycleTimer, cycleMaster, cycleSource */
1026 reg_write(ohci, OHCI1394_LinkControlClear,
1027 OHCI1394_LinkControl_CycleTimerEnable |
1028 OHCI1394_LinkControl_CycleMaster |
1029 OHCI1394_LinkControl_CycleSource);
1030 }
1031 break;
1032
1033 case CANCEL_REQUESTS:
1034 DBGMSG("Cancel request received");
1035 dma_trm_reset(&ohci->at_req_context);
1036 dma_trm_reset(&ohci->at_resp_context);
1037 break;
1038
1039 case ISO_LISTEN_CHANNEL:
1040 {
1041 u64 mask;
1042 struct dma_rcv_ctx *d = &ohci->ir_legacy_context;
1043 int ir_legacy_active;
1044
1045 if (arg<0 || arg>63) {
1046 PRINT(KERN_ERR,
1047 "%s: IS0 listen channel %d is out of range",
1048 __FUNCTION__, arg);
1049 return -EFAULT;
1050 }
1051
1052 mask = (u64)0x1<<arg;
1053
1054 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1055
1056 if (ohci->ISO_channel_usage & mask) {
1057 PRINT(KERN_ERR,
1058 "%s: IS0 listen channel %d is already used",
1059 __FUNCTION__, arg);
1060 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1061 return -EFAULT;
1062 }
1063
1064 ir_legacy_active = ohci->ir_legacy_channels;
1065
1066 ohci->ISO_channel_usage |= mask;
1067 ohci->ir_legacy_channels |= mask;
1068
1069 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1070
1071 if (!ir_legacy_active) {
1072 if (ohci1394_register_iso_tasklet(ohci,
1073 &ohci->ir_legacy_tasklet) < 0) {
1074 PRINT(KERN_ERR, "No IR DMA context available");
1075 return -EBUSY;
1076 }
1077
1078 /* the IR context can be assigned to any DMA context
1079 * by ohci1394_register_iso_tasklet */
1080 d->ctx = ohci->ir_legacy_tasklet.context;
1081 d->ctrlSet = OHCI1394_IsoRcvContextControlSet +
1082 32*d->ctx;
1083 d->ctrlClear = OHCI1394_IsoRcvContextControlClear +
1084 32*d->ctx;
1085 d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
1086 d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
1087
1088 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1089
1090 if (printk_ratelimit())
1091 DBGMSG("IR legacy activated");
1092 }
1093
1094 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1095
1096 if (arg>31)
1097 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1098 1<<(arg-32));
1099 else
1100 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1101 1<<arg);
1102
1103 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1104 DBGMSG("Listening enabled on channel %d", arg);
1105 break;
1106 }
1107 case ISO_UNLISTEN_CHANNEL:
1108 {
1109 u64 mask;
1110
1111 if (arg<0 || arg>63) {
1112 PRINT(KERN_ERR,
1113 "%s: IS0 unlisten channel %d is out of range",
1114 __FUNCTION__, arg);
1115 return -EFAULT;
1116 }
1117
1118 mask = (u64)0x1<<arg;
1119
1120 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1121
1122 if (!(ohci->ISO_channel_usage & mask)) {
1123 PRINT(KERN_ERR,
1124 "%s: IS0 unlisten channel %d is not used",
1125 __FUNCTION__, arg);
1126 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1127 return -EFAULT;
1128 }
1129
1130 ohci->ISO_channel_usage &= ~mask;
1131 ohci->ir_legacy_channels &= ~mask;
1132
1133 if (arg>31)
1134 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1135 1<<(arg-32));
1136 else
1137 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1138 1<<arg);
1139
1140 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1141 DBGMSG("Listening disabled on channel %d", arg);
1142
1143 if (ohci->ir_legacy_channels == 0) {
1144 stop_dma_rcv_ctx(&ohci->ir_legacy_context);
1145 DBGMSG("ISO legacy receive context stopped");
1146 }
1147
1148 break;
1149 }
1150 default:
1151 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1152 cmd);
1153 break;
1154 }
1155 return retval;
1156 }
1157
1158 /***********************************
1159 * rawiso ISO reception *
1160 ***********************************/
1161
1162 /*
1163 We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1164 buffer is split into "blocks" (regions described by one DMA
1165 descriptor). Each block must be one page or less in size, and
1166 must not cross a page boundary.
1167
1168 There is one little wrinkle with buffer-fill mode: a packet that
1169 starts in the final block may wrap around into the first block. But
1170 the user API expects all packets to be contiguous. Our solution is
1171 to keep the very last page of the DMA buffer in reserve - if a
1172 packet spans the gap, we copy its tail into this page.
1173 */
1174
1175 struct ohci_iso_recv {
1176 struct ti_ohci *ohci;
1177
1178 struct ohci1394_iso_tasklet task;
1179 int task_active;
1180
1181 enum { BUFFER_FILL_MODE = 0,
1182 PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1183
1184 /* memory and PCI mapping for the DMA descriptors */
1185 struct dma_prog_region prog;
1186 struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1187
1188 /* how many DMA blocks fit in the buffer */
1189 unsigned int nblocks;
1190
1191 /* stride of DMA blocks */
1192 unsigned int buf_stride;
1193
1194 /* number of blocks to batch between interrupts */
1195 int block_irq_interval;
1196
1197 /* block that DMA will finish next */
1198 int block_dma;
1199
1200 /* (buffer-fill only) block that the reader will release next */
1201 int block_reader;
1202
1203 /* (buffer-fill only) bytes of buffer the reader has released,
1204 less than one block */
1205 int released_bytes;
1206
1207 /* (buffer-fill only) buffer offset at which the next packet will appear */
1208 int dma_offset;
1209
1210 /* OHCI DMA context control registers */
1211 u32 ContextControlSet;
1212 u32 ContextControlClear;
1213 u32 CommandPtr;
1214 u32 ContextMatch;
1215 };
1216
1217 static void ohci_iso_recv_task(unsigned long data);
1218 static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1219 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1220 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1221 static void ohci_iso_recv_program(struct hpsb_iso *iso);
1222
1223 static int ohci_iso_recv_init(struct hpsb_iso *iso)
1224 {
1225 struct ti_ohci *ohci = iso->host->hostdata;
1226 struct ohci_iso_recv *recv;
1227 int ctx;
1228 int ret = -ENOMEM;
1229
1230 recv = kmalloc(sizeof(*recv), SLAB_KERNEL);
1231 if (!recv)
1232 return -ENOMEM;
1233
1234 iso->hostdata = recv;
1235 recv->ohci = ohci;
1236 recv->task_active = 0;
1237 dma_prog_region_init(&recv->prog);
1238 recv->block = NULL;
1239
1240 /* use buffer-fill mode, unless irq_interval is 1
1241 (note: multichannel requires buffer-fill) */
1242
1243 if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1244 iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1245 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1246 } else {
1247 recv->dma_mode = BUFFER_FILL_MODE;
1248 }
1249
1250 /* set nblocks, buf_stride, block_irq_interval */
1251
1252 if (recv->dma_mode == BUFFER_FILL_MODE) {
1253 recv->buf_stride = PAGE_SIZE;
1254
1255 /* one block per page of data in the DMA buffer, minus the final guard page */
1256 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1257 if (recv->nblocks < 3) {
1258 DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1259 goto err;
1260 }
1261
1262 /* iso->irq_interval is in packets - translate that to blocks */
1263 if (iso->irq_interval == 1)
1264 recv->block_irq_interval = 1;
1265 else
1266 recv->block_irq_interval = iso->irq_interval *
1267 ((recv->nblocks+1)/iso->buf_packets);
1268 if (recv->block_irq_interval*4 > recv->nblocks)
1269 recv->block_irq_interval = recv->nblocks/4;
1270 if (recv->block_irq_interval < 1)
1271 recv->block_irq_interval = 1;
1272
1273 } else {
1274 int max_packet_size;
1275
1276 recv->nblocks = iso->buf_packets;
1277 recv->block_irq_interval = iso->irq_interval;
1278 if (recv->block_irq_interval * 4 > iso->buf_packets)
1279 recv->block_irq_interval = iso->buf_packets / 4;
1280 if (recv->block_irq_interval < 1)
1281 recv->block_irq_interval = 1;
1282
1283 /* choose a buffer stride */
1284 /* must be a power of 2, and <= PAGE_SIZE */
1285
1286 max_packet_size = iso->buf_size / iso->buf_packets;
1287
1288 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1289 recv->buf_stride *= 2);
1290
1291 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1292 recv->buf_stride > PAGE_SIZE) {
1293 /* this shouldn't happen, but anyway... */
1294 DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1295 goto err;
1296 }
1297 }
1298
1299 recv->block_reader = 0;
1300 recv->released_bytes = 0;
1301 recv->block_dma = 0;
1302 recv->dma_offset = 0;
1303
1304 /* size of DMA program = one descriptor per block */
1305 if (dma_prog_region_alloc(&recv->prog,
1306 sizeof(struct dma_cmd) * recv->nblocks,
1307 recv->ohci->dev))
1308 goto err;
1309
1310 recv->block = (struct dma_cmd*) recv->prog.kvirt;
1311
1312 ohci1394_init_iso_tasklet(&recv->task,
1313 iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1314 OHCI_ISO_RECEIVE,
1315 ohci_iso_recv_task, (unsigned long) iso);
1316
1317 if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0) {
1318 ret = -EBUSY;
1319 goto err;
1320 }
1321
1322 recv->task_active = 1;
1323
1324 /* recv context registers are spaced 32 bytes apart */
1325 ctx = recv->task.context;
1326 recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1327 recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1328 recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1329 recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1330
1331 if (iso->channel == -1) {
1332 /* clear multi-channel selection mask */
1333 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1334 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1335 }
1336
1337 /* write the DMA program */
1338 ohci_iso_recv_program(iso);
1339
1340 DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1341 " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1342 recv->dma_mode == BUFFER_FILL_MODE ?
1343 "buffer-fill" : "packet-per-buffer",
1344 iso->buf_size/PAGE_SIZE, iso->buf_size,
1345 recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1346
1347 return 0;
1348
1349 err:
1350 ohci_iso_recv_shutdown(iso);
1351 return ret;
1352 }
1353
1354 static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1355 {
1356 struct ohci_iso_recv *recv = iso->hostdata;
1357
1358 /* disable interrupts */
1359 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1360
1361 /* halt DMA */
1362 ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1363 }
1364
1365 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1366 {
1367 struct ohci_iso_recv *recv = iso->hostdata;
1368
1369 if (recv->task_active) {
1370 ohci_iso_recv_stop(iso);
1371 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1372 recv->task_active = 0;
1373 }
1374
1375 dma_prog_region_free(&recv->prog);
1376 kfree(recv);
1377 iso->hostdata = NULL;
1378 }
1379
1380 /* set up a "gapped" ring buffer DMA program */
1381 static void ohci_iso_recv_program(struct hpsb_iso *iso)
1382 {
1383 struct ohci_iso_recv *recv = iso->hostdata;
1384 int blk;
1385
1386 /* address of 'branch' field in previous DMA descriptor */
1387 u32 *prev_branch = NULL;
1388
1389 for (blk = 0; blk < recv->nblocks; blk++) {
1390 u32 control;
1391
1392 /* the DMA descriptor */
1393 struct dma_cmd *cmd = &recv->block[blk];
1394
1395 /* offset of the DMA descriptor relative to the DMA prog buffer */
1396 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1397
1398 /* offset of this packet's data within the DMA buffer */
1399 unsigned long buf_offset = blk * recv->buf_stride;
1400
1401 if (recv->dma_mode == BUFFER_FILL_MODE) {
1402 control = 2 << 28; /* INPUT_MORE */
1403 } else {
1404 control = 3 << 28; /* INPUT_LAST */
1405 }
1406
1407 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1408
1409 /* interrupt on last block, and at intervals */
1410 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1411 control |= 3 << 20; /* want interrupt */
1412 }
1413
1414 control |= 3 << 18; /* enable branch to address */
1415 control |= recv->buf_stride;
1416
1417 cmd->control = cpu_to_le32(control);
1418 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1419 cmd->branchAddress = 0; /* filled in on next loop */
1420 cmd->status = cpu_to_le32(recv->buf_stride);
1421
1422 /* link the previous descriptor to this one */
1423 if (prev_branch) {
1424 *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1425 }
1426
1427 prev_branch = &cmd->branchAddress;
1428 }
1429
1430 /* the final descriptor's branch address and Z should be left at 0 */
1431 }
1432
1433 /* listen or unlisten to a specific channel (multi-channel mode only) */
1434 static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1435 {
1436 struct ohci_iso_recv *recv = iso->hostdata;
1437 int reg, i;
1438
1439 if (channel < 32) {
1440 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1441 i = channel;
1442 } else {
1443 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1444 i = channel - 32;
1445 }
1446
1447 reg_write(recv->ohci, reg, (1 << i));
1448
1449 /* issue a dummy read to force all PCI writes to be posted immediately */
1450 mb();
1451 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1452 }
1453
1454 static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1455 {
1456 struct ohci_iso_recv *recv = iso->hostdata;
1457 int i;
1458
1459 for (i = 0; i < 64; i++) {
1460 if (mask & (1ULL << i)) {
1461 if (i < 32)
1462 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1463 else
1464 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1465 } else {
1466 if (i < 32)
1467 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1468 else
1469 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1470 }
1471 }
1472
1473 /* issue a dummy read to force all PCI writes to be posted immediately */
1474 mb();
1475 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1476 }
1477
1478 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1479 {
1480 struct ohci_iso_recv *recv = iso->hostdata;
1481 struct ti_ohci *ohci = recv->ohci;
1482 u32 command, contextMatch;
1483
1484 reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1485 wmb();
1486
1487 /* always keep ISO headers */
1488 command = (1 << 30);
1489
1490 if (recv->dma_mode == BUFFER_FILL_MODE)
1491 command |= (1 << 31);
1492
1493 reg_write(recv->ohci, recv->ContextControlSet, command);
1494
1495 /* match on specified tags */
1496 contextMatch = tag_mask << 28;
1497
1498 if (iso->channel == -1) {
1499 /* enable multichannel reception */
1500 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1501 } else {
1502 /* listen on channel */
1503 contextMatch |= iso->channel;
1504 }
1505
1506 if (cycle != -1) {
1507 u32 seconds;
1508
1509 /* enable cycleMatch */
1510 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1511
1512 /* set starting cycle */
1513 cycle &= 0x1FFF;
1514
1515 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1516 just snarf them from the current time */
1517 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1518
1519 /* advance one second to give some extra time for DMA to start */
1520 seconds += 1;
1521
1522 cycle |= (seconds & 3) << 13;
1523
1524 contextMatch |= cycle << 12;
1525 }
1526
1527 if (sync != -1) {
1528 /* set sync flag on first DMA descriptor */
1529 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1530 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1531
1532 /* match sync field */
1533 contextMatch |= (sync&0xf)<<8;
1534 }
1535
1536 reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1537
1538 /* address of first descriptor block */
1539 command = dma_prog_region_offset_to_bus(&recv->prog,
1540 recv->block_dma * sizeof(struct dma_cmd));
1541 command |= 1; /* Z=1 */
1542
1543 reg_write(recv->ohci, recv->CommandPtr, command);
1544
1545 /* enable interrupts */
1546 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1547
1548 wmb();
1549
1550 /* run */
1551 reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1552
1553 /* issue a dummy read of the cycle timer register to force
1554 all PCI writes to be posted immediately */
1555 mb();
1556 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1557
1558 /* check RUN */
1559 if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1560 PRINT(KERN_ERR,
1561 "Error starting IR DMA (ContextControl 0x%08x)\n",
1562 reg_read(recv->ohci, recv->ContextControlSet));
1563 return -1;
1564 }
1565
1566 return 0;
1567 }
1568
1569 static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1570 {
1571 /* re-use the DMA descriptor for the block */
1572 /* by linking the previous descriptor to it */
1573
1574 int next_i = block;
1575 int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1576
1577 struct dma_cmd *next = &recv->block[next_i];
1578 struct dma_cmd *prev = &recv->block[prev_i];
1579
1580 /* ignore out-of-range requests */
1581 if ((block < 0) || (block > recv->nblocks))
1582 return;
1583
1584 /* 'next' becomes the new end of the DMA chain,
1585 so disable branch and enable interrupt */
1586 next->branchAddress = 0;
1587 next->control |= cpu_to_le32(3 << 20);
1588 next->status = cpu_to_le32(recv->buf_stride);
1589
1590 /* link prev to next */
1591 prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1592 sizeof(struct dma_cmd) * next_i)
1593 | 1); /* Z=1 */
1594
1595 /* disable interrupt on previous DMA descriptor, except at intervals */
1596 if ((prev_i % recv->block_irq_interval) == 0) {
1597 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1598 } else {
1599 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1600 }
1601 wmb();
1602
1603 /* wake up DMA in case it fell asleep */
1604 reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1605 }
1606
1607 static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1608 struct hpsb_iso_packet_info *info)
1609 {
1610 /* release the memory where the packet was */
1611 recv->released_bytes += info->total_len;
1612
1613 /* have we released enough memory for one block? */
1614 while (recv->released_bytes > recv->buf_stride) {
1615 ohci_iso_recv_release_block(recv, recv->block_reader);
1616 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1617 recv->released_bytes -= recv->buf_stride;
1618 }
1619 }
1620
1621 static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1622 {
1623 struct ohci_iso_recv *recv = iso->hostdata;
1624 if (recv->dma_mode == BUFFER_FILL_MODE) {
1625 ohci_iso_recv_bufferfill_release(recv, info);
1626 } else {
1627 ohci_iso_recv_release_block(recv, info - iso->infos);
1628 }
1629 }
1630
1631 /* parse all packets from blocks that have been fully received */
1632 static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1633 {
1634 int wake = 0;
1635 int runaway = 0;
1636 struct ti_ohci *ohci = recv->ohci;
1637
1638 while (1) {
1639 /* we expect the next parsable packet to begin at recv->dma_offset */
1640 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1641
1642 unsigned int offset;
1643 unsigned short len, cycle, total_len;
1644 unsigned char channel, tag, sy;
1645
1646 unsigned char *p = iso->data_buf.kvirt;
1647
1648 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1649
1650 /* don't loop indefinitely */
1651 if (runaway++ > 100000) {
1652 atomic_inc(&iso->overflows);
1653 PRINT(KERN_ERR,
1654 "IR DMA error - Runaway during buffer parsing!\n");
1655 break;
1656 }
1657
1658 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1659 if (this_block == recv->block_dma)
1660 break;
1661
1662 wake = 1;
1663
1664 /* parse data length, tag, channel, and sy */
1665
1666 /* note: we keep our own local copies of 'len' and 'offset'
1667 so the user can't mess with them by poking in the mmap area */
1668
1669 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1670
1671 if (len > 4096) {
1672 PRINT(KERN_ERR,
1673 "IR DMA error - bogus 'len' value %u\n", len);
1674 }
1675
1676 channel = p[recv->dma_offset+1] & 0x3F;
1677 tag = p[recv->dma_offset+1] >> 6;
1678 sy = p[recv->dma_offset+0] & 0xF;
1679
1680 /* advance to data payload */
1681 recv->dma_offset += 4;
1682
1683 /* check for wrap-around */
1684 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1685 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1686 }
1687
1688 /* dma_offset now points to the first byte of the data payload */
1689 offset = recv->dma_offset;
1690
1691 /* advance to xferStatus/timeStamp */
1692 recv->dma_offset += len;
1693
1694 total_len = len + 8; /* 8 bytes header+trailer in OHCI packet */
1695 /* payload is padded to 4 bytes */
1696 if (len % 4) {
1697 recv->dma_offset += 4 - (len%4);
1698 total_len += 4 - (len%4);
1699 }
1700
1701 /* check for wrap-around */
1702 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1703 /* uh oh, the packet data wraps from the last
1704 to the first DMA block - make the packet
1705 contiguous by copying its "tail" into the
1706 guard page */
1707
1708 int guard_off = recv->buf_stride*recv->nblocks;
1709 int tail_len = len - (guard_off - offset);
1710
1711 if (tail_len > 0 && tail_len < recv->buf_stride) {
1712 memcpy(iso->data_buf.kvirt + guard_off,
1713 iso->data_buf.kvirt,
1714 tail_len);
1715 }
1716
1717 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1718 }
1719
1720 /* parse timestamp */
1721 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1722 cycle &= 0x1FFF;
1723
1724 /* advance to next packet */
1725 recv->dma_offset += 4;
1726
1727 /* check for wrap-around */
1728 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1729 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1730 }
1731
1732 hpsb_iso_packet_received(iso, offset, len, total_len, cycle, channel, tag, sy);
1733 }
1734
1735 if (wake)
1736 hpsb_iso_wake(iso);
1737 }
1738
1739 static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1740 {
1741 int loop;
1742 struct ti_ohci *ohci = recv->ohci;
1743
1744 /* loop over all blocks */
1745 for (loop = 0; loop < recv->nblocks; loop++) {
1746
1747 /* check block_dma to see if it's done */
1748 struct dma_cmd *im = &recv->block[recv->block_dma];
1749
1750 /* check the DMA descriptor for new writes to xferStatus */
1751 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1752
1753 /* rescount is the number of bytes *remaining to be written* in the block */
1754 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1755
1756 unsigned char event = xferstatus & 0x1F;
1757
1758 if (!event) {
1759 /* nothing has happened to this block yet */
1760 break;
1761 }
1762
1763 if (event != 0x11) {
1764 atomic_inc(&iso->overflows);
1765 PRINT(KERN_ERR,
1766 "IR DMA error - OHCI error code 0x%02x\n", event);
1767 }
1768
1769 if (rescount != 0) {
1770 /* the card is still writing to this block;
1771 we can't touch it until it's done */
1772 break;
1773 }
1774
1775 /* OK, the block is finished... */
1776
1777 /* sync our view of the block */
1778 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1779
1780 /* reset the DMA descriptor */
1781 im->status = recv->buf_stride;
1782
1783 /* advance block_dma */
1784 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1785
1786 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1787 atomic_inc(&iso->overflows);
1788 DBGMSG("ISO reception overflow - "
1789 "ran out of DMA blocks");
1790 }
1791 }
1792
1793 /* parse any packets that have arrived */
1794 ohci_iso_recv_bufferfill_parse(iso, recv);
1795 }
1796
1797 static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1798 {
1799 int count;
1800 int wake = 0;
1801 struct ti_ohci *ohci = recv->ohci;
1802
1803 /* loop over the entire buffer */
1804 for (count = 0; count < recv->nblocks; count++) {
1805 u32 packet_len = 0;
1806
1807 /* pointer to the DMA descriptor */
1808 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1809
1810 /* check the DMA descriptor for new writes to xferStatus */
1811 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1812 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1813
1814 unsigned char event = xferstatus & 0x1F;
1815
1816 if (!event) {
1817 /* this packet hasn't come in yet; we are done for now */
1818 goto out;
1819 }
1820
1821 if (event == 0x11) {
1822 /* packet received successfully! */
1823
1824 /* rescount is the number of bytes *remaining* in the packet buffer,
1825 after the packet was written */
1826 packet_len = recv->buf_stride - rescount;
1827
1828 } else if (event == 0x02) {
1829 PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1830 } else if (event) {
1831 PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1832 }
1833
1834 /* sync our view of the buffer */
1835 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1836
1837 /* record the per-packet info */
1838 {
1839 /* iso header is 8 bytes ahead of the data payload */
1840 unsigned char *hdr;
1841
1842 unsigned int offset;
1843 unsigned short cycle;
1844 unsigned char channel, tag, sy;
1845
1846 offset = iso->pkt_dma * recv->buf_stride;
1847 hdr = iso->data_buf.kvirt + offset;
1848
1849 /* skip iso header */
1850 offset += 8;
1851 packet_len -= 8;
1852
1853 cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1854 channel = hdr[5] & 0x3F;
1855 tag = hdr[5] >> 6;
1856 sy = hdr[4] & 0xF;
1857
1858 hpsb_iso_packet_received(iso, offset, packet_len,
1859 recv->buf_stride, cycle, channel, tag, sy);
1860 }
1861
1862 /* reset the DMA descriptor */
1863 il->status = recv->buf_stride;
1864
1865 wake = 1;
1866 recv->block_dma = iso->pkt_dma;
1867 }
1868
1869 out:
1870 if (wake)
1871 hpsb_iso_wake(iso);
1872 }
1873
1874 static void ohci_iso_recv_task(unsigned long data)
1875 {
1876 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1877 struct ohci_iso_recv *recv = iso->hostdata;
1878
1879 if (recv->dma_mode == BUFFER_FILL_MODE)
1880 ohci_iso_recv_bufferfill_task(iso, recv);
1881 else
1882 ohci_iso_recv_packetperbuf_task(iso, recv);
1883 }
1884
1885 /***********************************
1886 * rawiso ISO transmission *
1887 ***********************************/
1888
1889 struct ohci_iso_xmit {
1890 struct ti_ohci *ohci;
1891 struct dma_prog_region prog;
1892 struct ohci1394_iso_tasklet task;
1893 int task_active;
1894
1895 u32 ContextControlSet;
1896 u32 ContextControlClear;
1897 u32 CommandPtr;
1898 };
1899
1900 /* transmission DMA program:
1901 one OUTPUT_MORE_IMMEDIATE for the IT header
1902 one OUTPUT_LAST for the buffer data */
1903
1904 struct iso_xmit_cmd {
1905 struct dma_cmd output_more_immediate;
1906 u8 iso_hdr[8];
1907 u32 unused[2];
1908 struct dma_cmd output_last;
1909 };
1910
1911 static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1912 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1913 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1914 static void ohci_iso_xmit_task(unsigned long data);
1915
1916 static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1917 {
1918 struct ohci_iso_xmit *xmit;
1919 unsigned int prog_size;
1920 int ctx;
1921 int ret = -ENOMEM;
1922
1923 xmit = kmalloc(sizeof(*xmit), SLAB_KERNEL);
1924 if (!xmit)
1925 return -ENOMEM;
1926
1927 iso->hostdata = xmit;
1928 xmit->ohci = iso->host->hostdata;
1929 xmit->task_active = 0;
1930
1931 dma_prog_region_init(&xmit->prog);
1932
1933 prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1934
1935 if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1936 goto err;
1937
1938 ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1939 ohci_iso_xmit_task, (unsigned long) iso);
1940
1941 if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0) {
1942 ret = -EBUSY;
1943 goto err;
1944 }
1945
1946 xmit->task_active = 1;
1947
1948 /* xmit context registers are spaced 16 bytes apart */
1949 ctx = xmit->task.context;
1950 xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1951 xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1952 xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1953
1954 return 0;
1955
1956 err:
1957 ohci_iso_xmit_shutdown(iso);
1958 return ret;
1959 }
1960
1961 static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1962 {
1963 struct ohci_iso_xmit *xmit = iso->hostdata;
1964 struct ti_ohci *ohci = xmit->ohci;
1965
1966 /* disable interrupts */
1967 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1968
1969 /* halt DMA */
1970 if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1971 /* XXX the DMA context will lock up if you try to send too much data! */
1972 PRINT(KERN_ERR,
1973 "you probably exceeded the OHCI card's bandwidth limit - "
1974 "reload the module and reduce xmit bandwidth");
1975 }
1976 }
1977
1978 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1979 {
1980 struct ohci_iso_xmit *xmit = iso->hostdata;
1981
1982 if (xmit->task_active) {
1983 ohci_iso_xmit_stop(iso);
1984 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1985 xmit->task_active = 0;
1986 }
1987
1988 dma_prog_region_free(&xmit->prog);
1989 kfree(xmit);
1990 iso->hostdata = NULL;
1991 }
1992
1993 static void ohci_iso_xmit_task(unsigned long data)
1994 {
1995 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1996 struct ohci_iso_xmit *xmit = iso->hostdata;
1997 struct ti_ohci *ohci = xmit->ohci;
1998 int wake = 0;
1999 int count;
2000
2001 /* check the whole buffer if necessary, starting at pkt_dma */
2002 for (count = 0; count < iso->buf_packets; count++) {
2003 int cycle;
2004
2005 /* DMA descriptor */
2006 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
2007
2008 /* check for new writes to xferStatus */
2009 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
2010 u8 event = xferstatus & 0x1F;
2011
2012 if (!event) {
2013 /* packet hasn't been sent yet; we are done for now */
2014 break;
2015 }
2016
2017 if (event != 0x11)
2018 PRINT(KERN_ERR,
2019 "IT DMA error - OHCI error code 0x%02x\n", event);
2020
2021 /* at least one packet went out, so wake up the writer */
2022 wake = 1;
2023
2024 /* parse cycle */
2025 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
2026
2027 /* tell the subsystem the packet has gone out */
2028 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
2029
2030 /* reset the DMA descriptor for next time */
2031 cmd->output_last.status = 0;
2032 }
2033
2034 if (wake)
2035 hpsb_iso_wake(iso);
2036 }
2037
2038 static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
2039 {
2040 struct ohci_iso_xmit *xmit = iso->hostdata;
2041 struct ti_ohci *ohci = xmit->ohci;
2042
2043 int next_i, prev_i;
2044 struct iso_xmit_cmd *next, *prev;
2045
2046 unsigned int offset;
2047 unsigned short len;
2048 unsigned char tag, sy;
2049
2050 /* check that the packet doesn't cross a page boundary
2051 (we could allow this if we added OUTPUT_MORE descriptor support) */
2052 if (cross_bound(info->offset, info->len)) {
2053 PRINT(KERN_ERR,
2054 "rawiso xmit: packet %u crosses a page boundary",
2055 iso->first_packet);
2056 return -EINVAL;
2057 }
2058
2059 offset = info->offset;
2060 len = info->len;
2061 tag = info->tag;
2062 sy = info->sy;
2063
2064 /* sync up the card's view of the buffer */
2065 dma_region_sync_for_device(&iso->data_buf, offset, len);
2066
2067 /* append first_packet to the DMA chain */
2068 /* by linking the previous descriptor to it */
2069 /* (next will become the new end of the DMA chain) */
2070
2071 next_i = iso->first_packet;
2072 prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2073
2074 next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2075 prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2076
2077 /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2078 memset(next, 0, sizeof(struct iso_xmit_cmd));
2079 next->output_more_immediate.control = cpu_to_le32(0x02000008);
2080
2081 /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2082
2083 /* tcode = 0xA, and sy */
2084 next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2085
2086 /* tag and channel number */
2087 next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2088
2089 /* transmission speed */
2090 next->iso_hdr[2] = iso->speed & 0x7;
2091
2092 /* payload size */
2093 next->iso_hdr[6] = len & 0xFF;
2094 next->iso_hdr[7] = len >> 8;
2095
2096 /* set up the OUTPUT_LAST */
2097 next->output_last.control = cpu_to_le32(1 << 28);
2098 next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2099 next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2100 next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2101 next->output_last.control |= cpu_to_le32(len);
2102
2103 /* payload bus address */
2104 next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2105
2106 /* leave branchAddress at zero for now */
2107
2108 /* re-write the previous DMA descriptor to chain to this one */
2109
2110 /* set prev branch address to point to next (Z=3) */
2111 prev->output_last.branchAddress = cpu_to_le32(
2112 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2113
2114 /* disable interrupt, unless required by the IRQ interval */
2115 if (prev_i % iso->irq_interval) {
2116 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2117 } else {
2118 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2119 }
2120
2121 wmb();
2122
2123 /* wake DMA in case it is sleeping */
2124 reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2125
2126 /* issue a dummy read of the cycle timer to force all PCI
2127 writes to be posted immediately */
2128 mb();
2129 reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2130
2131 return 0;
2132 }
2133
2134 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2135 {
2136 struct ohci_iso_xmit *xmit = iso->hostdata;
2137 struct ti_ohci *ohci = xmit->ohci;
2138
2139 /* clear out the control register */
2140 reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2141 wmb();
2142
2143 /* address and length of first descriptor block (Z=3) */
2144 reg_write(xmit->ohci, xmit->CommandPtr,
2145 dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2146
2147 /* cycle match */
2148 if (cycle != -1) {
2149 u32 start = cycle & 0x1FFF;
2150
2151 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2152 just snarf them from the current time */
2153 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2154
2155 /* advance one second to give some extra time for DMA to start */
2156 seconds += 1;
2157
2158 start |= (seconds & 3) << 13;
2159
2160 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2161 }
2162
2163 /* enable interrupts */
2164 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2165
2166 /* run */
2167 reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2168 mb();
2169
2170 /* wait 100 usec to give the card time to go active */
2171 udelay(100);
2172
2173 /* check the RUN bit */
2174 if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2175 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2176 reg_read(xmit->ohci, xmit->ContextControlSet));
2177 return -1;
2178 }
2179
2180 return 0;
2181 }
2182
2183 static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2184 {
2185
2186 switch(cmd) {
2187 case XMIT_INIT:
2188 return ohci_iso_xmit_init(iso);
2189 case XMIT_START:
2190 return ohci_iso_xmit_start(iso, arg);
2191 case XMIT_STOP:
2192 ohci_iso_xmit_stop(iso);
2193 return 0;
2194 case XMIT_QUEUE:
2195 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2196 case XMIT_SHUTDOWN:
2197 ohci_iso_xmit_shutdown(iso);
2198 return 0;
2199
2200 case RECV_INIT:
2201 return ohci_iso_recv_init(iso);
2202 case RECV_START: {
2203 int *args = (int*) arg;
2204 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2205 }
2206 case RECV_STOP:
2207 ohci_iso_recv_stop(iso);
2208 return 0;
2209 case RECV_RELEASE:
2210 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2211 return 0;
2212 case RECV_FLUSH:
2213 ohci_iso_recv_task((unsigned long) iso);
2214 return 0;
2215 case RECV_SHUTDOWN:
2216 ohci_iso_recv_shutdown(iso);
2217 return 0;
2218 case RECV_LISTEN_CHANNEL:
2219 ohci_iso_recv_change_channel(iso, arg, 1);
2220 return 0;
2221 case RECV_UNLISTEN_CHANNEL:
2222 ohci_iso_recv_change_channel(iso, arg, 0);
2223 return 0;
2224 case RECV_SET_CHANNEL_MASK:
2225 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2226 return 0;
2227
2228 default:
2229 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2230 cmd);
2231 break;
2232 }
2233 return -EINVAL;
2234 }
2235
2236 /***************************************
2237 * IEEE-1394 functionality section END *
2238 ***************************************/
2239
2240
2241 /********************************************************
2242 * Global stuff (interrupt handler, init/shutdown code) *
2243 ********************************************************/
2244
2245 static void dma_trm_reset(struct dma_trm_ctx *d)
2246 {
2247 unsigned long flags;
2248 LIST_HEAD(packet_list);
2249 struct ti_ohci *ohci = d->ohci;
2250 struct hpsb_packet *packet, *ptmp;
2251
2252 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2253
2254 /* Lock the context, reset it and release it. Move the packets
2255 * that were pending in the context to packet_list and free
2256 * them after releasing the lock. */
2257
2258 spin_lock_irqsave(&d->lock, flags);
2259
2260 list_splice(&d->fifo_list, &packet_list);
2261 list_splice(&d->pending_list, &packet_list);
2262 INIT_LIST_HEAD(&d->fifo_list);
2263 INIT_LIST_HEAD(&d->pending_list);
2264
2265 d->branchAddrPtr = NULL;
2266 d->sent_ind = d->prg_ind;
2267 d->free_prgs = d->num_desc;
2268
2269 spin_unlock_irqrestore(&d->lock, flags);
2270
2271 if (list_empty(&packet_list))
2272 return;
2273
2274 PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2275
2276 /* Now process subsystem callbacks for the packets from this
2277 * context. */
2278 list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2279 list_del_init(&packet->driver_list);
2280 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2281 }
2282 }
2283
2284 static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2285 quadlet_t rx_event,
2286 quadlet_t tx_event)
2287 {
2288 struct ohci1394_iso_tasklet *t;
2289 unsigned long mask;
2290 unsigned long flags;
2291
2292 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
2293
2294 list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2295 mask = 1 << t->context;
2296
2297 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2298 tasklet_schedule(&t->tasklet);
2299 else if (rx_event & mask)
2300 tasklet_schedule(&t->tasklet);
2301 }
2302
2303 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
2304 }
2305
2306 static irqreturn_t ohci_irq_handler(int irq, void *dev_id,
2307 struct pt_regs *regs_are_unused)
2308 {
2309 quadlet_t event, node_id;
2310 struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2311 struct hpsb_host *host = ohci->host;
2312 int phyid = -1, isroot = 0;
2313 unsigned long flags;
2314
2315 /* Read and clear the interrupt event register. Don't clear
2316 * the busReset event, though. This is done when we get the
2317 * selfIDComplete interrupt. */
2318 spin_lock_irqsave(&ohci->event_lock, flags);
2319 event = reg_read(ohci, OHCI1394_IntEventClear);
2320 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2321 spin_unlock_irqrestore(&ohci->event_lock, flags);
2322
2323 if (!event)
2324 return IRQ_NONE;
2325
2326 /* If event is ~(u32)0 cardbus card was ejected. In this case
2327 * we just return, and clean up in the ohci1394_pci_remove
2328 * function. */
2329 if (event == ~(u32) 0) {
2330 DBGMSG("Device removed.");
2331 return IRQ_NONE;
2332 }
2333
2334 DBGMSG("IntEvent: %08x", event);
2335
2336 if (event & OHCI1394_unrecoverableError) {
2337 int ctx;
2338 PRINT(KERN_ERR, "Unrecoverable error!");
2339
2340 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2341 PRINT(KERN_ERR, "Async Req Tx Context died: "
2342 "ctrl[%08x] cmdptr[%08x]",
2343 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2344 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2345
2346 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2347 PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2348 "ctrl[%08x] cmdptr[%08x]",
2349 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2350 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2351
2352 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2353 PRINT(KERN_ERR, "Async Req Rcv Context died: "
2354 "ctrl[%08x] cmdptr[%08x]",
2355 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2356 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2357
2358 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2359 PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2360 "ctrl[%08x] cmdptr[%08x]",
2361 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2362 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2363
2364 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2365 if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2366 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2367 "ctrl[%08x] cmdptr[%08x]", ctx,
2368 reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2369 reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2370 }
2371
2372 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2373 if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2374 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2375 "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2376 reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2377 reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2378 reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2379 }
2380
2381 event &= ~OHCI1394_unrecoverableError;
2382 }
2383 if (event & OHCI1394_postedWriteErr) {
2384 PRINT(KERN_ERR, "physical posted write error");
2385 /* no recovery strategy yet, had to involve protocol drivers */
2386 }
2387 if (event & OHCI1394_cycleTooLong) {
2388 if(printk_ratelimit())
2389 PRINT(KERN_WARNING, "isochronous cycle too long");
2390 else
2391 DBGMSG("OHCI1394_cycleTooLong");
2392 reg_write(ohci, OHCI1394_LinkControlSet,
2393 OHCI1394_LinkControl_CycleMaster);
2394 event &= ~OHCI1394_cycleTooLong;
2395 }
2396 if (event & OHCI1394_cycleInconsistent) {
2397 /* We subscribe to the cycleInconsistent event only to
2398 * clear the corresponding event bit... otherwise,
2399 * isochronous cycleMatch DMA won't work. */
2400 DBGMSG("OHCI1394_cycleInconsistent");
2401 event &= ~OHCI1394_cycleInconsistent;
2402 }
2403 if (event & OHCI1394_busReset) {
2404 /* The busReset event bit can't be cleared during the
2405 * selfID phase, so we disable busReset interrupts, to
2406 * avoid burying the cpu in interrupt requests. */
2407 spin_lock_irqsave(&ohci->event_lock, flags);
2408 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2409
2410 if (ohci->check_busreset) {
2411 int loop_count = 0;
2412
2413 udelay(10);
2414
2415 while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2416 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2417
2418 spin_unlock_irqrestore(&ohci->event_lock, flags);
2419 udelay(10);
2420 spin_lock_irqsave(&ohci->event_lock, flags);
2421
2422 /* The loop counter check is to prevent the driver
2423 * from remaining in this state forever. For the
2424 * initial bus reset, the loop continues for ever
2425 * and the system hangs, until some device is plugged-in
2426 * or out manually into a port! The forced reset seems
2427 * to solve this problem. This mainly effects nForce2. */
2428 if (loop_count > 10000) {
2429 ohci_devctl(host, RESET_BUS, LONG_RESET);
2430 DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2431 loop_count = 0;
2432 }
2433
2434 loop_count++;
2435 }
2436 }
2437 spin_unlock_irqrestore(&ohci->event_lock, flags);
2438 if (!host->in_bus_reset) {
2439 DBGMSG("irq_handler: Bus reset requested");
2440
2441 /* Subsystem call */
2442 hpsb_bus_reset(ohci->host);
2443 }
2444 event &= ~OHCI1394_busReset;
2445 }
2446 if (event & OHCI1394_reqTxComplete) {
2447 struct dma_trm_ctx *d = &ohci->at_req_context;
2448 DBGMSG("Got reqTxComplete interrupt "
2449 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2450 if (reg_read(ohci, d->ctrlSet) & 0x800)
2451 ohci1394_stop_context(ohci, d->ctrlClear,
2452 "reqTxComplete");
2453 else
2454 dma_trm_tasklet((unsigned long)d);
2455 //tasklet_schedule(&d->task);
2456 event &= ~OHCI1394_reqTxComplete;
2457 }
2458 if (event & OHCI1394_respTxComplete) {
2459 struct dma_trm_ctx *d = &ohci->at_resp_context;
2460 DBGMSG("Got respTxComplete interrupt "
2461 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2462 if (reg_read(ohci, d->ctrlSet) & 0x800)
2463 ohci1394_stop_context(ohci, d->ctrlClear,
2464 "respTxComplete");
2465 else
2466 tasklet_schedule(&d->task);
2467 event &= ~OHCI1394_respTxComplete;
2468 }
2469 if (event & OHCI1394_RQPkt) {
2470 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2471 DBGMSG("Got RQPkt interrupt status=0x%08X",
2472 reg_read(ohci, d->ctrlSet));
2473 if (reg_read(ohci, d->ctrlSet) & 0x800)
2474 ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2475 else
2476 tasklet_schedule(&d->task);
2477 event &= ~OHCI1394_RQPkt;
2478 }
2479 if (event & OHCI1394_RSPkt) {
2480 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2481 DBGMSG("Got RSPkt interrupt status=0x%08X",
2482 reg_read(ohci, d->ctrlSet));
2483 if (reg_read(ohci, d->ctrlSet) & 0x800)
2484 ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2485 else
2486 tasklet_schedule(&d->task);
2487 event &= ~OHCI1394_RSPkt;
2488 }
2489 if (event & OHCI1394_isochRx) {
2490 quadlet_t rx_event;
2491
2492 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2493 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2494 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2495 event &= ~OHCI1394_isochRx;
2496 }
2497 if (event & OHCI1394_isochTx) {
2498 quadlet_t tx_event;
2499
2500 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2501 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2502 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2503 event &= ~OHCI1394_isochTx;
2504 }
2505 if (event & OHCI1394_selfIDComplete) {
2506 if (host->in_bus_reset) {
2507 node_id = reg_read(ohci, OHCI1394_NodeID);
2508
2509 if (!(node_id & 0x80000000)) {
2510 PRINT(KERN_ERR,
2511 "SelfID received, but NodeID invalid "
2512 "(probably new bus reset occurred): %08X",
2513 node_id);
2514 goto selfid_not_valid;
2515 }
2516
2517 phyid = node_id & 0x0000003f;
2518 isroot = (node_id & 0x40000000) != 0;
2519
2520 DBGMSG("SelfID interrupt received "
2521 "(phyid %d, %s)", phyid,
2522 (isroot ? "root" : "not root"));
2523
2524 handle_selfid(ohci, host, phyid, isroot);
2525
2526 /* Clear the bus reset event and re-enable the
2527 * busReset interrupt. */
2528 spin_lock_irqsave(&ohci->event_lock, flags);
2529 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2530 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2531 spin_unlock_irqrestore(&ohci->event_lock, flags);
2532
2533 /* Turn on phys dma reception.
2534 *
2535 * TODO: Enable some sort of filtering management.
2536 */
2537 if (phys_dma) {
2538 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
2539 0xffffffff);
2540 reg_write(ohci, OHCI1394_PhyReqFilterLoSet,
2541 0xffffffff);
2542 }
2543
2544 DBGMSG("PhyReqFilter=%08x%08x",
2545 reg_read(ohci, OHCI1394_PhyReqFilterHiSet),
2546 reg_read(ohci, OHCI1394_PhyReqFilterLoSet));
2547
2548 hpsb_selfid_complete(host, phyid, isroot);
2549 } else
2550 PRINT(KERN_ERR,
2551 "SelfID received outside of bus reset sequence");
2552
2553 selfid_not_valid:
2554 event &= ~OHCI1394_selfIDComplete;
2555 }
2556
2557 /* Make sure we handle everything, just in case we accidentally
2558 * enabled an interrupt that we didn't write a handler for. */
2559 if (event)
2560 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2561 event);
2562
2563 return IRQ_HANDLED;
2564 }
2565
2566 /* Put the buffer back into the dma context */
2567 static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2568 {
2569 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2570 DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2571
2572 d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2573 d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2574 idx = (idx + d->num_desc - 1 ) % d->num_desc;
2575 d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2576
2577 /* To avoid a race, ensure 1394 interface hardware sees the inserted
2578 * context program descriptors before it sees the wakeup bit set. */
2579 wmb();
2580
2581 /* wake up the dma context if necessary */
2582 if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2583 PRINT(KERN_INFO,
2584 "Waking dma ctx=%d ... processing is probably too slow",
2585 d->ctx);
2586 }
2587
2588 /* do this always, to avoid race condition */
2589 reg_write(ohci, d->ctrlSet, 0x1000);
2590 }
2591
2592 #define cond_le32_to_cpu(data, noswap) \
2593 (noswap ? data : le32_to_cpu(data))
2594
2595 static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2596 -1, 0, -1, 0, -1, -1, 16, -1};
2597
2598 /*
2599 * Determine the length of a packet in the buffer
2600 * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2601 */
2602 static __inline__ int packet_length(struct dma_rcv_ctx *d, int idx, quadlet_t *buf_ptr,
2603 int offset, unsigned char tcode, int noswap)
2604 {
2605 int length = -1;
2606
2607 if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2608 length = TCODE_SIZE[tcode];
2609 if (length == 0) {
2610 if (offset + 12 >= d->buf_size) {
2611 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2612 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2613 } else {
2614 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2615 }
2616 length += 20;
2617 }
2618 } else if (d->type == DMA_CTX_ISO) {
2619 /* Assumption: buffer fill mode with header/trailer */
2620 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2621 }
2622
2623 if (length > 0 && length % 4)
2624 length += 4 - (length % 4);
2625
2626 return length;
2627 }
2628
2629 /* Tasklet that processes dma receive buffers */
2630 static void dma_rcv_tasklet (unsigned long data)
2631 {
2632 struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2633 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2634 unsigned int split_left, idx, offset, rescount;
2635 unsigned char tcode;
2636 int length, bytes_left, ack;
2637 unsigned long flags;
2638 quadlet_t *buf_ptr;
2639 char *split_ptr;
2640 char msg[256];
2641
2642 spin_lock_irqsave(&d->lock, flags);
2643
2644 idx = d->buf_ind;
2645 offset = d->buf_offset;
2646 buf_ptr = d->buf_cpu[idx] + offset/4;
2647
2648 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2649 bytes_left = d->buf_size - rescount - offset;
2650
2651 while (bytes_left > 0) {
2652 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2653
2654 /* packet_length() will return < 4 for an error */
2655 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2656
2657 if (length < 4) { /* something is wrong */
2658 sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2659 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2660 d->ctx, length);
2661 ohci1394_stop_context(ohci, d->ctrlClear, msg);
2662 spin_unlock_irqrestore(&d->lock, flags);
2663 return;
2664 }
2665
2666 /* The first case is where we have a packet that crosses
2667 * over more than one descriptor. The next case is where
2668 * it's all in the first descriptor. */
2669 if ((offset + length) > d->buf_size) {
2670 DBGMSG("Split packet rcv'd");
2671 if (length > d->split_buf_size) {
2672 ohci1394_stop_context(ohci, d->ctrlClear,
2673 "Split packet size exceeded");
2674 d->buf_ind = idx;
2675 d->buf_offset = offset;
2676 spin_unlock_irqrestore(&d->lock, flags);
2677 return;
2678 }
2679
2680 if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2681 == d->buf_size) {
2682 /* Other part of packet not written yet.
2683 * this should never happen I think
2684 * anyway we'll get it on the next call. */
2685 PRINT(KERN_INFO,
2686 "Got only half a packet!");
2687 d->buf_ind = idx;
2688 d->buf_offset = offset;
2689 spin_unlock_irqrestore(&d->lock, flags);
2690 return;
2691 }
2692
2693 split_left = length;
2694 split_ptr = (char *)d->spb;
2695 memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2696 split_left -= d->buf_size-offset;
2697 split_ptr += d->buf_size-offset;
2698 insert_dma_buffer(d, idx);
2699 idx = (idx+1) % d->num_desc;
2700 buf_ptr = d->buf_cpu[idx];
2701 offset=0;
2702
2703 while (split_left >= d->buf_size) {
2704 memcpy(split_ptr,buf_ptr,d->buf_size);
2705 split_ptr += d->buf_size;
2706 split_left -= d->buf_size;
2707 insert_dma_buffer(d, idx);
2708 idx = (idx+1) % d->num_desc;
2709 buf_ptr = d->buf_cpu[idx];
2710 }
2711
2712 if (split_left > 0) {
2713 memcpy(split_ptr, buf_ptr, split_left);
2714 offset = split_left;
2715 buf_ptr += offset/4;
2716 }
2717 } else {
2718 DBGMSG("Single packet rcv'd");
2719 memcpy(d->spb, buf_ptr, length);
2720 offset += length;
2721 buf_ptr += length/4;
2722 if (offset==d->buf_size) {
2723 insert_dma_buffer(d, idx);
2724 idx = (idx+1) % d->num_desc;
2725 buf_ptr = d->buf_cpu[idx];
2726 offset=0;
2727 }
2728 }
2729
2730 /* We get one phy packet to the async descriptor for each
2731 * bus reset. We always ignore it. */
2732 if (tcode != OHCI1394_TCODE_PHY) {
2733 if (!ohci->no_swap_incoming)
2734 packet_swab(d->spb, tcode);
2735 DBGMSG("Packet received from node"
2736 " %d ack=0x%02X spd=%d tcode=0x%X"
2737 " length=%d ctx=%d tlabel=%d",
2738 (d->spb[1]>>16)&0x3f,
2739 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2740 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2741 tcode, length, d->ctx,
2742 (cond_le32_to_cpu(d->spb[0], ohci->no_swap_incoming)>>10)&0x3f);
2743
2744 ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2745 == 0x11) ? 1 : 0;
2746
2747 hpsb_packet_received(ohci->host, d->spb,
2748 length-4, ack);
2749 }
2750 #ifdef OHCI1394_DEBUG
2751 else
2752 PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2753 d->ctx);
2754 #endif
2755
2756 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2757
2758 bytes_left = d->buf_size - rescount - offset;
2759
2760 }
2761
2762 d->buf_ind = idx;
2763 d->buf_offset = offset;
2764
2765 spin_unlock_irqrestore(&d->lock, flags);
2766 }
2767
2768 /* Bottom half that processes sent packets */
2769 static void dma_trm_tasklet (unsigned long data)
2770 {
2771 struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2772 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2773 struct hpsb_packet *packet, *ptmp;
2774 unsigned long flags;
2775 u32 status, ack;
2776 size_t datasize;
2777
2778 spin_lock_irqsave(&d->lock, flags);
2779
2780 list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2781 datasize = packet->data_size;
2782 if (datasize && packet->type != hpsb_raw)
2783 status = le32_to_cpu(
2784 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2785 else
2786 status = le32_to_cpu(
2787 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2788
2789 if (status == 0)
2790 /* this packet hasn't been sent yet*/
2791 break;
2792
2793 #ifdef OHCI1394_DEBUG
2794 if (datasize)
2795 if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2796 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2797 "ack=0x%X spd=%d dataLength=%d ctx=%d",
2798 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2799 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2800 status&0x1f, (status>>5)&0x3,
2801 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2802 d->ctx);
2803 else
2804 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2805 "%d ack=0x%X spd=%d dataLength=%d ctx=%d",
2806 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2807 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2808 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2809 status&0x1f, (status>>5)&0x3,
2810 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2811 d->ctx);
2812 else
2813 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2814 "%d ack=0x%X spd=%d data=0x%08X ctx=%d",
2815 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2816 >>16)&0x3f,
2817 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2818 >>4)&0xf,
2819 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2820 >>10)&0x3f,
2821 status&0x1f, (status>>5)&0x3,
2822 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2823 d->ctx);
2824 #endif
2825
2826 if (status & 0x10) {
2827 ack = status & 0xf;
2828 } else {
2829 switch (status & 0x1f) {
2830 case EVT_NO_STATUS: /* that should never happen */
2831 case EVT_RESERVED_A: /* that should never happen */
2832 case EVT_LONG_PACKET: /* that should never happen */
2833 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2834 ack = ACKX_SEND_ERROR;
2835 break;
2836 case EVT_MISSING_ACK:
2837 ack = ACKX_TIMEOUT;
2838 break;
2839 case EVT_UNDERRUN:
2840 ack = ACKX_SEND_ERROR;
2841 break;
2842 case EVT_OVERRUN: /* that should never happen */
2843 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2844 ack = ACKX_SEND_ERROR;
2845 break;
2846 case EVT_DESCRIPTOR_READ:
2847 case EVT_DATA_READ:
2848 case EVT_DATA_WRITE:
2849 ack = ACKX_SEND_ERROR;
2850 break;
2851 case EVT_BUS_RESET: /* that should never happen */
2852 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2853 ack = ACKX_SEND_ERROR;
2854 break;
2855 case EVT_TIMEOUT:
2856 ack = ACKX_TIMEOUT;
2857 break;
2858 case EVT_TCODE_ERR:
2859 ack = ACKX_SEND_ERROR;
2860 break;
2861 case EVT_RESERVED_B: /* that should never happen */
2862 case EVT_RESERVED_C: /* that should never happen */
2863 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2864 ack = ACKX_SEND_ERROR;
2865 break;
2866 case EVT_UNKNOWN:
2867 case EVT_FLUSHED:
2868 ack = ACKX_SEND_ERROR;
2869 break;
2870 default:
2871 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2872 ack = ACKX_SEND_ERROR;
2873 BUG();
2874 }
2875 }
2876
2877 list_del_init(&packet->driver_list);
2878 hpsb_packet_sent(ohci->host, packet, ack);
2879
2880 if (datasize) {
2881 pci_unmap_single(ohci->dev,
2882 cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2883 datasize, PCI_DMA_TODEVICE);
2884 OHCI_DMA_FREE("single Xmit data packet");
2885 }
2886
2887 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2888 d->free_prgs++;
2889 }
2890
2891 dma_trm_flush(ohci, d);
2892
2893 spin_unlock_irqrestore(&d->lock, flags);
2894 }
2895
2896 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2897 {
2898 if (d->ctrlClear) {
2899 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2900
2901 if (d->type == DMA_CTX_ISO) {
2902 /* disable interrupts */
2903 reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2904 ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2905 } else {
2906 tasklet_kill(&d->task);
2907 }
2908 }
2909 }
2910
2911
2912 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2913 {
2914 int i;
2915 struct ti_ohci *ohci = d->ohci;
2916
2917 if (ohci == NULL)
2918 return;
2919
2920 DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2921
2922 if (d->buf_cpu) {
2923 for (i=0; i<d->num_desc; i++)
2924 if (d->buf_cpu[i] && d->buf_bus[i]) {
2925 pci_free_consistent(
2926 ohci->dev, d->buf_size,
2927 d->buf_cpu[i], d->buf_bus[i]);
2928 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2929 }
2930 kfree(d->buf_cpu);
2931 kfree(d->buf_bus);
2932 }
2933 if (d->prg_cpu) {
2934 for (i=0; i<d->num_desc; i++)
2935 if (d->prg_cpu[i] && d->prg_bus[i]) {
2936 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2937 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2938 }
2939 pci_pool_destroy(d->prg_pool);
2940 OHCI_DMA_FREE("dma_rcv prg pool");
2941 kfree(d->prg_cpu);
2942 kfree(d->prg_bus);
2943 }
2944 kfree(d->spb);
2945
2946 /* Mark this context as freed. */
2947 d->ohci = NULL;
2948 }
2949
2950 static int
2951 alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2952 enum context_type type, int ctx, int num_desc,
2953 int buf_size, int split_buf_size, int context_base)
2954 {
2955 int i, len;
2956 static int num_allocs;
2957 static char pool_name[20];
2958
2959 d->ohci = ohci;
2960 d->type = type;
2961 d->ctx = ctx;
2962
2963 d->num_desc = num_desc;
2964 d->buf_size = buf_size;
2965 d->split_buf_size = split_buf_size;
2966
2967 d->ctrlSet = 0;
2968 d->ctrlClear = 0;
2969 d->cmdPtr = 0;
2970
2971 d->buf_cpu = kzalloc(d->num_desc * sizeof(*d->buf_cpu), GFP_ATOMIC);
2972 d->buf_bus = kzalloc(d->num_desc * sizeof(*d->buf_bus), GFP_ATOMIC);
2973
2974 if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2975 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2976 free_dma_rcv_ctx(d);
2977 return -ENOMEM;
2978 }
2979
2980 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_ATOMIC);
2981 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_ATOMIC);
2982
2983 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2984 PRINT(KERN_ERR, "Failed to allocate dma prg");
2985 free_dma_rcv_ctx(d);
2986 return -ENOMEM;
2987 }
2988
2989 d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2990
2991 if (d->spb == NULL) {
2992 PRINT(KERN_ERR, "Failed to allocate split buffer");
2993 free_dma_rcv_ctx(d);
2994 return -ENOMEM;
2995 }
2996
2997 len = sprintf(pool_name, "ohci1394_rcv_prg");
2998 sprintf(pool_name+len, "%d", num_allocs);
2999 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3000 sizeof(struct dma_cmd), 4, 0);
3001 if(d->prg_pool == NULL)
3002 {
3003 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3004 free_dma_rcv_ctx(d);
3005 return -ENOMEM;
3006 }
3007 num_allocs++;
3008
3009 OHCI_DMA_ALLOC("dma_rcv prg pool");
3010
3011 for (i=0; i<d->num_desc; i++) {
3012 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
3013 d->buf_size,
3014 d->buf_bus+i);
3015 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
3016
3017 if (d->buf_cpu[i] != NULL) {
3018 memset(d->buf_cpu[i], 0, d->buf_size);
3019 } else {
3020 PRINT(KERN_ERR,
3021 "Failed to allocate dma buffer");
3022 free_dma_rcv_ctx(d);
3023 return -ENOMEM;
3024 }
3025
3026 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3027 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
3028
3029 if (d->prg_cpu[i] != NULL) {
3030 memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
3031 } else {
3032 PRINT(KERN_ERR,
3033 "Failed to allocate dma prg");
3034 free_dma_rcv_ctx(d);
3035 return -ENOMEM;
3036 }
3037 }
3038
3039 spin_lock_init(&d->lock);
3040
3041 if (type == DMA_CTX_ISO) {
3042 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3043 OHCI_ISO_MULTICHANNEL_RECEIVE,
3044 dma_rcv_tasklet, (unsigned long) d);
3045 } else {
3046 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3047 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3048 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3049
3050 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3051 }
3052
3053 return 0;
3054 }
3055
3056 static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3057 {
3058 int i;
3059 struct ti_ohci *ohci = d->ohci;
3060
3061 if (ohci == NULL)
3062 return;
3063
3064 DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3065
3066 if (d->prg_cpu) {
3067 for (i=0; i<d->num_desc; i++)
3068 if (d->prg_cpu[i] && d->prg_bus[i]) {
3069 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3070 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3071 }
3072 pci_pool_destroy(d->prg_pool);
3073 OHCI_DMA_FREE("dma_trm prg pool");
3074 kfree(d->prg_cpu);
3075 kfree(d->prg_bus);
3076 }
3077
3078 /* Mark this context as freed. */
3079 d->ohci = NULL;
3080 }
3081
3082 static int
3083 alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3084 enum context_type type, int ctx, int num_desc,
3085 int context_base)
3086 {
3087 int i, len;
3088 static char pool_name[20];
3089 static int num_allocs=0;
3090
3091 d->ohci = ohci;
3092 d->type = type;
3093 d->ctx = ctx;
3094 d->num_desc = num_desc;
3095 d->ctrlSet = 0;
3096 d->ctrlClear = 0;
3097 d->cmdPtr = 0;
3098
3099 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_KERNEL);
3100 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_KERNEL);
3101
3102 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3103 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3104 free_dma_trm_ctx(d);
3105 return -ENOMEM;
3106 }
3107
3108 len = sprintf(pool_name, "ohci1394_trm_prg");
3109 sprintf(pool_name+len, "%d", num_allocs);
3110 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3111 sizeof(struct at_dma_prg), 4, 0);
3112 if (d->prg_pool == NULL) {
3113 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3114 free_dma_trm_ctx(d);
3115 return -ENOMEM;
3116 }
3117 num_allocs++;
3118
3119 OHCI_DMA_ALLOC("dma_rcv prg pool");
3120
3121 for (i = 0; i < d->num_desc; i++) {
3122 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3123 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3124
3125 if (d->prg_cpu[i] != NULL) {
3126 memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3127 } else {
3128 PRINT(KERN_ERR,
3129 "Failed to allocate at dma prg");
3130 free_dma_trm_ctx(d);
3131 return -ENOMEM;
3132 }
3133 }
3134
3135 spin_lock_init(&d->lock);
3136
3137 /* initialize tasklet */
3138 if (type == DMA_CTX_ISO) {
3139 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3140 dma_trm_tasklet, (unsigned long) d);
3141 if (ohci1394_register_iso_tasklet(ohci,
3142 &ohci->it_legacy_tasklet) < 0) {
3143 PRINT(KERN_ERR, "No IT DMA context available");
3144 free_dma_trm_ctx(d);
3145 return -EBUSY;
3146 }
3147
3148 /* IT can be assigned to any context by register_iso_tasklet */
3149 d->ctx = ohci->it_legacy_tasklet.context;
3150 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3151 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3152 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3153 } else {
3154 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3155 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3156 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3157 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3158 }
3159
3160 return 0;
3161 }
3162
3163 static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3164 {
3165 struct ti_ohci *ohci = host->hostdata;
3166
3167 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3168 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3169
3170 memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3171 }
3172
3173
3174 static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3175 quadlet_t data, quadlet_t compare)
3176 {
3177 struct ti_ohci *ohci = host->hostdata;
3178 int i;
3179
3180 reg_write(ohci, OHCI1394_CSRData, data);
3181 reg_write(ohci, OHCI1394_CSRCompareData, compare);
3182 reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3183
3184 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3185 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3186 break;
3187
3188 mdelay(1);
3189 }
3190
3191 return reg_read(ohci, OHCI1394_CSRData);
3192 }
3193
3194 static struct hpsb_host_driver ohci1394_driver = {
3195 .owner = THIS_MODULE,
3196 .name = OHCI1394_DRIVER_NAME,
3197 .set_hw_config_rom = ohci_set_hw_config_rom,
3198 .transmit_packet = ohci_transmit,
3199 .devctl = ohci_devctl,
3200 .isoctl = ohci_isoctl,
3201 .hw_csr_reg = ohci_hw_csr_reg,
3202 };
3203
3204 /***********************************
3205 * PCI Driver Interface functions *
3206 ***********************************/
3207
3208 #define FAIL(err, fmt, args...) \
3209 do { \
3210 PRINT_G(KERN_ERR, fmt , ## args); \
3211 ohci1394_pci_remove(dev); \
3212 return err; \
3213 } while (0)
3214
3215 static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3216 const struct pci_device_id *ent)
3217 {
3218 struct hpsb_host *host;
3219 struct ti_ohci *ohci; /* shortcut to currently handled device */
3220 unsigned long ohci_base;
3221
3222 if (pci_enable_device(dev))
3223 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3224 pci_set_master(dev);
3225
3226 host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3227 if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3228
3229 ohci = host->hostdata;
3230 ohci->dev = dev;
3231 ohci->host = host;
3232 ohci->init_state = OHCI_INIT_ALLOC_HOST;
3233 host->pdev = dev;
3234 pci_set_drvdata(dev, ohci);
3235
3236 /* We don't want hardware swapping */
3237 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3238
3239 /* Some oddball Apple controllers do not order the selfid
3240 * properly, so we make up for it here. */
3241 #ifndef __LITTLE_ENDIAN
3242 /* XXX: Need a better way to check this. I'm wondering if we can
3243 * read the values of the OHCI1394_PCI_HCI_Control and the
3244 * noByteSwapData registers to see if they were not cleared to
3245 * zero. Should this work? Obviously it's not defined what these
3246 * registers will read when they aren't supported. Bleh! */
3247 if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3248 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3249 ohci->no_swap_incoming = 1;
3250 ohci->selfid_swap = 0;
3251 } else
3252 ohci->selfid_swap = 1;
3253 #endif
3254
3255
3256 #ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3257 #define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3258 #endif
3259
3260 /* These chipsets require a bit of extra care when checking after
3261 * a busreset. */
3262 if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3263 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3264 (dev->vendor == PCI_VENDOR_ID_NVIDIA &&
3265 dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3266 ohci->check_busreset = 1;
3267
3268 /* We hardwire the MMIO length, since some CardBus adaptors
3269 * fail to report the right length. Anyway, the ohci spec
3270 * clearly says it's 2kb, so this shouldn't be a problem. */
3271 ohci_base = pci_resource_start(dev, 0);
3272 if (pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE)
3273 PRINT(KERN_WARNING, "PCI resource length of %lx too small!",
3274 pci_resource_len(dev, 0));
3275
3276 /* Seems PCMCIA handles this internally. Not sure why. Seems
3277 * pretty bogus to force a driver to special case this. */
3278 #ifndef PCMCIA
3279 if (!request_mem_region (ohci_base, OHCI1394_REGISTER_SIZE, OHCI1394_DRIVER_NAME))
3280 FAIL(-ENOMEM, "MMIO resource (0x%lx - 0x%lx) unavailable",
3281 ohci_base, ohci_base + OHCI1394_REGISTER_SIZE);
3282 #endif
3283 ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3284
3285 ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3286 if (ohci->registers == NULL)
3287 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3288 ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3289 DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3290
3291 /* csr_config rom allocation */
3292 ohci->csr_config_rom_cpu =
3293 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3294 &ohci->csr_config_rom_bus);
3295 OHCI_DMA_ALLOC("consistent csr_config_rom");
3296 if (ohci->csr_config_rom_cpu == NULL)
3297 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3298 ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3299
3300 /* self-id dma buffer allocation */
3301 ohci->selfid_buf_cpu =
3302 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3303 &ohci->selfid_buf_bus);
3304 OHCI_DMA_ALLOC("consistent selfid_buf");
3305
3306 if (ohci->selfid_buf_cpu == NULL)
3307 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3308 ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3309
3310 if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3311 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3312 "8Kb boundary... may cause problems on some CXD3222 chip",
3313 ohci->selfid_buf_cpu);
3314
3315 /* No self-id errors at startup */
3316 ohci->self_id_errors = 0;
3317
3318 ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3319 /* AR DMA request context allocation */
3320 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3321 DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3322 AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3323 OHCI1394_AsReqRcvContextBase) < 0)
3324 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3325
3326 /* AR DMA response context allocation */
3327 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3328 DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3329 AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3330 OHCI1394_AsRspRcvContextBase) < 0)
3331 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3332
3333 /* AT DMA request context */
3334 if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3335 DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3336 OHCI1394_AsReqTrContextBase) < 0)
3337 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3338
3339 /* AT DMA response context */
3340 if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3341 DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3342 OHCI1394_AsRspTrContextBase) < 0)
3343 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3344
3345 /* Start off with a soft reset, to clear everything to a sane
3346 * state. */
3347 ohci_soft_reset(ohci);
3348
3349 /* Now enable LPS, which we need in order to start accessing
3350 * most of the registers. In fact, on some cards (ALI M5251),
3351 * accessing registers in the SClk domain without LPS enabled
3352 * will lock up the machine. Wait 50msec to make sure we have
3353 * full link enabled. */
3354 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3355
3356 /* Disable and clear interrupts */
3357 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3358 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3359
3360 mdelay(50);
3361
3362 /* Determine the number of available IR and IT contexts. */
3363 ohci->nb_iso_rcv_ctx =
3364 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
3365 ohci->nb_iso_xmit_ctx =
3366 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
3367
3368 /* Set the usage bits for non-existent contexts so they can't
3369 * be allocated */
3370 ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3371 ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3372
3373 INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3374 spin_lock_init(&ohci->iso_tasklet_list_lock);
3375 ohci->ISO_channel_usage = 0;
3376 spin_lock_init(&ohci->IR_channel_lock);
3377
3378 /* Allocate the IR DMA context right here so we don't have
3379 * to do it in interrupt path - note that this doesn't
3380 * waste much memory and avoids the jugglery required to
3381 * allocate it in IRQ path. */
3382 if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3383 DMA_CTX_ISO, 0, IR_NUM_DESC,
3384 IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3385 OHCI1394_IsoRcvContextBase) < 0) {
3386 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3387 }
3388
3389 /* We hopefully don't have to pre-allocate IT DMA like we did
3390 * for IR DMA above. Allocate it on-demand and mark inactive. */
3391 ohci->it_legacy_context.ohci = NULL;
3392 spin_lock_init(&ohci->event_lock);
3393
3394 /*
3395 * interrupts are disabled, all right, but... due to SA_SHIRQ we
3396 * might get called anyway. We'll see no event, of course, but
3397 * we need to get to that "no event", so enough should be initialized
3398 * by that point.
3399 */
3400 if (request_irq(dev->irq, ohci_irq_handler, SA_SHIRQ,
3401 OHCI1394_DRIVER_NAME, ohci))
3402 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3403
3404 ohci->init_state = OHCI_INIT_HAVE_IRQ;
3405 ohci_initialize(ohci);
3406
3407 /* Set certain csr values */
3408 host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3409 host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3410 host->csr.cyc_clk_acc = 100; /* how do we determine clk accuracy? */
3411 host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3412 host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3413
3414 if (phys_dma) {
3415 host->low_addr_space =
3416 (u64) reg_read(ohci, OHCI1394_PhyUpperBound) << 16;
3417 if (!host->low_addr_space)
3418 host->low_addr_space = OHCI1394_PHYS_UPPER_BOUND_FIXED;
3419 }
3420 host->middle_addr_space = OHCI1394_MIDDLE_ADDRESS_SPACE;
3421
3422 /* Tell the highlevel this host is ready */
3423 if (hpsb_add_host(host))
3424 FAIL(-ENOMEM, "Failed to register host with highlevel");
3425
3426 ohci->init_state = OHCI_INIT_DONE;
3427
3428 return 0;
3429 #undef FAIL
3430 }
3431
3432 static void ohci1394_pci_remove(struct pci_dev *pdev)
3433 {
3434 struct ti_ohci *ohci;
3435 struct device *dev;
3436
3437 ohci = pci_get_drvdata(pdev);
3438 if (!ohci)
3439 return;
3440
3441 dev = get_device(&ohci->host->device);
3442
3443 switch (ohci->init_state) {
3444 case OHCI_INIT_DONE:
3445 hpsb_remove_host(ohci->host);
3446
3447 /* Clear out BUS Options */
3448 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3449 reg_write(ohci, OHCI1394_BusOptions,
3450 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3451 0x00ff0000);
3452 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3453
3454 case OHCI_INIT_HAVE_IRQ:
3455 /* Clear interrupt registers */
3456 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3457 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3458 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3459 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3460 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3461 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3462
3463 /* Disable IRM Contender */
3464 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3465
3466 /* Clear link control register */
3467 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3468
3469 /* Let all other nodes know to ignore us */
3470 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3471
3472 /* Soft reset before we start - this disables
3473 * interrupts and clears linkEnable and LPS. */
3474 ohci_soft_reset(ohci);
3475 free_irq(ohci->dev->irq, ohci);
3476
3477 case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3478 /* The ohci_soft_reset() stops all DMA contexts, so we
3479 * dont need to do this. */
3480 free_dma_rcv_ctx(&ohci->ar_req_context);
3481 free_dma_rcv_ctx(&ohci->ar_resp_context);
3482 free_dma_trm_ctx(&ohci->at_req_context);
3483 free_dma_trm_ctx(&ohci->at_resp_context);
3484 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3485 free_dma_trm_ctx(&ohci->it_legacy_context);
3486
3487 case OHCI_INIT_HAVE_SELFID_BUFFER:
3488 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3489 ohci->selfid_buf_cpu,
3490 ohci->selfid_buf_bus);
3491 OHCI_DMA_FREE("consistent selfid_buf");
3492
3493 case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3494 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3495 ohci->csr_config_rom_cpu,
3496 ohci->csr_config_rom_bus);
3497 OHCI_DMA_FREE("consistent csr_config_rom");
3498
3499 case OHCI_INIT_HAVE_IOMAPPING:
3500 iounmap(ohci->registers);
3501
3502 case OHCI_INIT_HAVE_MEM_REGION:
3503 #ifndef PCMCIA
3504 release_mem_region(pci_resource_start(ohci->dev, 0),
3505 OHCI1394_REGISTER_SIZE);
3506 #endif
3507
3508 #ifdef CONFIG_PPC_PMAC
3509 /* On UniNorth, power down the cable and turn off the chip
3510 * clock when the module is removed to save power on
3511 * laptops. Turning it back ON is done by the arch code when
3512 * pci_enable_device() is called */
3513 {
3514 struct device_node* of_node;
3515
3516 of_node = pci_device_to_OF_node(ohci->dev);
3517 if (of_node) {
3518 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3519 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, of_node, 0, 0);
3520 }
3521 }
3522 #endif /* CONFIG_PPC_PMAC */
3523
3524 case OHCI_INIT_ALLOC_HOST:
3525 pci_set_drvdata(ohci->dev, NULL);
3526 }
3527
3528 if (dev)
3529 put_device(dev);
3530 }
3531
3532
3533 static int ohci1394_pci_resume (struct pci_dev *pdev)
3534 {
3535 #ifdef CONFIG_PPC_PMAC
3536 if (machine_is(powermac)) {
3537 struct device_node *of_node;
3538
3539 /* Re-enable 1394 */
3540 of_node = pci_device_to_OF_node (pdev);
3541 if (of_node)
3542 pmac_call_feature (PMAC_FTR_1394_ENABLE, of_node, 0, 1);
3543 }
3544 #endif /* CONFIG_PPC_PMAC */
3545
3546 pci_restore_state(pdev);
3547 pci_enable_device(pdev);
3548
3549 return 0;
3550 }
3551
3552
3553 static int ohci1394_pci_suspend (struct pci_dev *pdev, pm_message_t state)
3554 {
3555 #ifdef CONFIG_PPC_PMAC
3556 if (machine_is(powermac)) {
3557 struct device_node *of_node;
3558
3559 /* Disable 1394 */
3560 of_node = pci_device_to_OF_node (pdev);
3561 if (of_node)
3562 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3563 }
3564 #endif
3565
3566 pci_save_state(pdev);
3567
3568 return 0;
3569 }
3570
3571
3572 #define PCI_CLASS_FIREWIRE_OHCI ((PCI_CLASS_SERIAL_FIREWIRE << 8) | 0x10)
3573
3574 static struct pci_device_id ohci1394_pci_tbl[] = {
3575 {
3576 .class = PCI_CLASS_FIREWIRE_OHCI,
3577 .class_mask = PCI_ANY_ID,
3578 .vendor = PCI_ANY_ID,
3579 .device = PCI_ANY_ID,
3580 .subvendor = PCI_ANY_ID,
3581 .subdevice = PCI_ANY_ID,
3582 },
3583 { 0, },
3584 };
3585
3586 MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3587
3588 static struct pci_driver ohci1394_pci_driver = {
3589 .name = OHCI1394_DRIVER_NAME,
3590 .id_table = ohci1394_pci_tbl,
3591 .probe = ohci1394_pci_probe,
3592 .remove = ohci1394_pci_remove,
3593 .resume = ohci1394_pci_resume,
3594 .suspend = ohci1394_pci_suspend,
3595 };
3596
3597 /***********************************
3598 * OHCI1394 Video Interface *
3599 ***********************************/
3600
3601 /* essentially the only purpose of this code is to allow another
3602 module to hook into ohci's interrupt handler */
3603
3604 int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3605 {
3606 int i=0;
3607
3608 /* stop the channel program if it's still running */
3609 reg_write(ohci, reg, 0x8000);
3610
3611 /* Wait until it effectively stops */
3612 while (reg_read(ohci, reg) & 0x400) {
3613 i++;
3614 if (i>5000) {
3615 PRINT(KERN_ERR,
3616 "Runaway loop while stopping context: %s...", msg ? msg : "");
3617 return 1;
3618 }
3619
3620 mb();
3621 udelay(10);
3622 }
3623 if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3624 return 0;
3625 }
3626
3627 void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3628 void (*func)(unsigned long), unsigned long data)
3629 {
3630 tasklet_init(&tasklet->tasklet, func, data);
3631 tasklet->type = type;
3632 /* We init the tasklet->link field, so we can list_del() it
3633 * without worrying whether it was added to the list or not. */
3634 INIT_LIST_HEAD(&tasklet->link);
3635 }
3636
3637 int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3638 struct ohci1394_iso_tasklet *tasklet)
3639 {
3640 unsigned long flags, *usage;
3641 int n, i, r = -EBUSY;
3642
3643 if (tasklet->type == OHCI_ISO_TRANSMIT) {
3644 n = ohci->nb_iso_xmit_ctx;
3645 usage = &ohci->it_ctx_usage;
3646 }
3647 else {
3648 n = ohci->nb_iso_rcv_ctx;
3649 usage = &ohci->ir_ctx_usage;
3650
3651 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3652 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3653 if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3654 return r;
3655 }
3656 }
3657 }
3658
3659 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3660
3661 for (i = 0; i < n; i++)
3662 if (!test_and_set_bit(i, usage)) {
3663 tasklet->context = i;
3664 list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3665 r = 0;
3666 break;
3667 }
3668
3669 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3670
3671 return r;
3672 }
3673
3674 void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3675 struct ohci1394_iso_tasklet *tasklet)
3676 {
3677 unsigned long flags;
3678
3679 tasklet_kill(&tasklet->tasklet);
3680
3681 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3682
3683 if (tasklet->type == OHCI_ISO_TRANSMIT)
3684 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3685 else {
3686 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3687
3688 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3689 clear_bit(0, &ohci->ir_multichannel_used);
3690 }
3691 }
3692
3693 list_del(&tasklet->link);
3694
3695 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3696 }
3697
3698 EXPORT_SYMBOL(ohci1394_stop_context);
3699 EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3700 EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3701 EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3702
3703 /***********************************
3704 * General module initialization *
3705 ***********************************/
3706
3707 MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3708 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3709 MODULE_LICENSE("GPL");
3710
3711 static void __exit ohci1394_cleanup (void)
3712 {
3713 pci_unregister_driver(&ohci1394_pci_driver);
3714 }
3715
3716 static int __init ohci1394_init(void)
3717 {
3718 return pci_register_driver(&ohci1394_pci_driver);
3719 }
3720
3721 module_init(ohci1394_init);
3722 module_exit(ohci1394_cleanup);