Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ieee1394 / ohci1394.c
1 /*
2 * ohci1394.c - driver for OHCI 1394 boards
3 * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4 * Gord Peters <GordPeters@smarttech.com>
5 * 2001 Ben Collins <bcollins@debian.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 /*
23 * Things known to be working:
24 * . Async Request Transmit
25 * . Async Response Receive
26 * . Async Request Receive
27 * . Async Response Transmit
28 * . Iso Receive
29 * . DMA mmap for iso receive
30 * . Config ROM generation
31 *
32 * Things implemented, but still in test phase:
33 * . Iso Transmit
34 * . Async Stream Packets Transmit (Receive done via Iso interface)
35 *
36 * Things not implemented:
37 * . DMA error recovery
38 *
39 * Known bugs:
40 * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41 * added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
42 */
43
44 /*
45 * Acknowledgments:
46 *
47 * Adam J Richter <adam@yggdrasil.com>
48 * . Use of pci_class to find device
49 *
50 * Emilie Chung <emilie.chung@axis.com>
51 * . Tip on Async Request Filter
52 *
53 * Pascal Drolet <pascal.drolet@informission.ca>
54 * . Various tips for optimization and functionnalities
55 *
56 * Robert Ficklin <rficklin@westengineering.com>
57 * . Loop in irq_handler
58 *
59 * James Goodwin <jamesg@Filanet.com>
60 * . Various tips on initialization, self-id reception, etc.
61 *
62 * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63 * . Apple PowerBook detection
64 *
65 * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66 * . Reset the board properly before leaving + misc cleanups
67 *
68 * Leon van Stuivenberg <leonvs@iae.nl>
69 * . Bug fixes
70 *
71 * Ben Collins <bcollins@debian.org>
72 * . Working big-endian support
73 * . Updated to 2.4.x module scheme (PCI aswell)
74 * . Config ROM generation
75 *
76 * Manfred Weihs <weihs@ict.tuwien.ac.at>
77 * . Reworked code for initiating bus resets
78 * (long, short, with or without hold-off)
79 *
80 * Nandu Santhi <contactnandu@users.sourceforge.net>
81 * . Added support for nVidia nForce2 onboard Firewire chipset
82 *
83 */
84
85 #include <linux/kernel.h>
86 #include <linux/list.h>
87 #include <linux/slab.h>
88 #include <linux/interrupt.h>
89 #include <linux/wait.h>
90 #include <linux/errno.h>
91 #include <linux/module.h>
92 #include <linux/moduleparam.h>
93 #include <linux/pci.h>
94 #include <linux/fs.h>
95 #include <linux/poll.h>
96 #include <asm/byteorder.h>
97 #include <asm/atomic.h>
98 #include <asm/uaccess.h>
99 #include <linux/delay.h>
100 #include <linux/spinlock.h>
101
102 #include <asm/pgtable.h>
103 #include <asm/page.h>
104 #include <asm/irq.h>
105 #include <linux/sched.h>
106 #include <linux/types.h>
107 #include <linux/vmalloc.h>
108 #include <linux/init.h>
109
110 #ifdef CONFIG_PPC_PMAC
111 #include <asm/machdep.h>
112 #include <asm/pmac_feature.h>
113 #include <asm/prom.h>
114 #include <asm/pci-bridge.h>
115 #endif
116
117 #include "csr1212.h"
118 #include "ieee1394.h"
119 #include "ieee1394_types.h"
120 #include "hosts.h"
121 #include "dma.h"
122 #include "iso.h"
123 #include "ieee1394_core.h"
124 #include "highlevel.h"
125 #include "ohci1394.h"
126
127 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
128 #define OHCI1394_DEBUG
129 #endif
130
131 #ifdef DBGMSG
132 #undef DBGMSG
133 #endif
134
135 #ifdef OHCI1394_DEBUG
136 #define DBGMSG(fmt, args...) \
137 printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
138 #else
139 #define DBGMSG(fmt, args...) do {} while (0)
140 #endif
141
142 #ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
143 #define OHCI_DMA_ALLOC(fmt, args...) \
144 HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
145 ++global_outstanding_dmas, ## args)
146 #define OHCI_DMA_FREE(fmt, args...) \
147 HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
148 --global_outstanding_dmas, ## args)
149 static int global_outstanding_dmas = 0;
150 #else
151 #define OHCI_DMA_ALLOC(fmt, args...) do {} while (0)
152 #define OHCI_DMA_FREE(fmt, args...) do {} while (0)
153 #endif
154
155 /* print general (card independent) information */
156 #define PRINT_G(level, fmt, args...) \
157 printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
158
159 /* print card specific information */
160 #define PRINT(level, fmt, args...) \
161 printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
162
163 /* Module Parameters */
164 static int phys_dma = 1;
165 module_param(phys_dma, int, 0444);
166 MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
167
168 static void dma_trm_tasklet(unsigned long data);
169 static void dma_trm_reset(struct dma_trm_ctx *d);
170
171 static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
172 enum context_type type, int ctx, int num_desc,
173 int buf_size, int split_buf_size, int context_base);
174 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
175 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
176
177 static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
178 enum context_type type, int ctx, int num_desc,
179 int context_base);
180
181 static void ohci1394_pci_remove(struct pci_dev *pdev);
182
183 #ifndef __LITTLE_ENDIAN
184 const static size_t hdr_sizes[] = {
185 3, /* TCODE_WRITEQ */
186 4, /* TCODE_WRITEB */
187 3, /* TCODE_WRITE_RESPONSE */
188 0, /* reserved */
189 3, /* TCODE_READQ */
190 4, /* TCODE_READB */
191 3, /* TCODE_READQ_RESPONSE */
192 4, /* TCODE_READB_RESPONSE */
193 1, /* TCODE_CYCLE_START */
194 4, /* TCODE_LOCK_REQUEST */
195 2, /* TCODE_ISO_DATA */
196 4, /* TCODE_LOCK_RESPONSE */
197 /* rest is reserved or link-internal */
198 };
199
200 static inline void header_le32_to_cpu(quadlet_t *data, unsigned char tcode)
201 {
202 size_t size;
203
204 if (unlikely(tcode >= ARRAY_SIZE(hdr_sizes)))
205 return;
206
207 size = hdr_sizes[tcode];
208 while (size--)
209 data[size] = le32_to_cpu(data[size]);
210 }
211 #else
212 #define header_le32_to_cpu(w,x) do {} while (0)
213 #endif /* !LITTLE_ENDIAN */
214
215 /***********************************
216 * IEEE-1394 functionality section *
217 ***********************************/
218
219 static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
220 {
221 int i;
222 unsigned long flags;
223 quadlet_t r;
224
225 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
226
227 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
228
229 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
230 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
231 break;
232
233 mdelay(1);
234 }
235
236 r = reg_read(ohci, OHCI1394_PhyControl);
237
238 if (i >= OHCI_LOOP_COUNT)
239 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
240 r, r & 0x80000000, i);
241
242 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
243
244 return (r & 0x00ff0000) >> 16;
245 }
246
247 static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
248 {
249 int i;
250 unsigned long flags;
251 u32 r = 0;
252
253 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
254
255 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
256
257 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
258 r = reg_read(ohci, OHCI1394_PhyControl);
259 if (!(r & 0x00004000))
260 break;
261
262 mdelay(1);
263 }
264
265 if (i == OHCI_LOOP_COUNT)
266 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
267 r, r & 0x00004000, i);
268
269 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
270
271 return;
272 }
273
274 /* Or's our value into the current value */
275 static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
276 {
277 u8 old;
278
279 old = get_phy_reg (ohci, addr);
280 old |= data;
281 set_phy_reg (ohci, addr, old);
282
283 return;
284 }
285
286 static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
287 int phyid, int isroot)
288 {
289 quadlet_t *q = ohci->selfid_buf_cpu;
290 quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
291 size_t size;
292 quadlet_t q0, q1;
293
294 /* Check status of self-id reception */
295
296 if (ohci->selfid_swap)
297 q0 = le32_to_cpu(q[0]);
298 else
299 q0 = q[0];
300
301 if ((self_id_count & 0x80000000) ||
302 ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
303 PRINT(KERN_ERR,
304 "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
305 self_id_count, q0, ohci->self_id_errors);
306
307 /* Tip by James Goodwin <jamesg@Filanet.com>:
308 * We had an error, generate another bus reset in response. */
309 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
310 set_phy_reg_mask (ohci, 1, 0x40);
311 ohci->self_id_errors++;
312 } else {
313 PRINT(KERN_ERR,
314 "Too many errors on SelfID error reception, giving up!");
315 }
316 return;
317 }
318
319 /* SelfID Ok, reset error counter. */
320 ohci->self_id_errors = 0;
321
322 size = ((self_id_count & 0x00001FFC) >> 2) - 1;
323 q++;
324
325 while (size > 0) {
326 if (ohci->selfid_swap) {
327 q0 = le32_to_cpu(q[0]);
328 q1 = le32_to_cpu(q[1]);
329 } else {
330 q0 = q[0];
331 q1 = q[1];
332 }
333
334 if (q0 == ~q1) {
335 DBGMSG ("SelfID packet 0x%x received", q0);
336 hpsb_selfid_received(host, cpu_to_be32(q0));
337 if (((q0 & 0x3f000000) >> 24) == phyid)
338 DBGMSG ("SelfID for this node is 0x%08x", q0);
339 } else {
340 PRINT(KERN_ERR,
341 "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
342 }
343 q += 2;
344 size -= 2;
345 }
346
347 DBGMSG("SelfID complete");
348
349 return;
350 }
351
352 static void ohci_soft_reset(struct ti_ohci *ohci) {
353 int i;
354
355 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
356
357 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
358 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
359 break;
360 mdelay(1);
361 }
362 DBGMSG ("Soft reset finished");
363 }
364
365
366 /* Generate the dma receive prgs and start the context */
367 static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
368 {
369 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
370 int i;
371
372 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
373
374 for (i=0; i<d->num_desc; i++) {
375 u32 c;
376
377 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
378 if (generate_irq)
379 c |= DMA_CTL_IRQ;
380
381 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
382
383 /* End of descriptor list? */
384 if (i + 1 < d->num_desc) {
385 d->prg_cpu[i]->branchAddress =
386 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
387 } else {
388 d->prg_cpu[i]->branchAddress =
389 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
390 }
391
392 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
393 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
394 }
395
396 d->buf_ind = 0;
397 d->buf_offset = 0;
398
399 if (d->type == DMA_CTX_ISO) {
400 /* Clear contextControl */
401 reg_write(ohci, d->ctrlClear, 0xffffffff);
402
403 /* Set bufferFill, isochHeader, multichannel for IR context */
404 reg_write(ohci, d->ctrlSet, 0xd0000000);
405
406 /* Set the context match register to match on all tags */
407 reg_write(ohci, d->ctxtMatch, 0xf0000000);
408
409 /* Clear the multi channel mask high and low registers */
410 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
411 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
412
413 /* Set up isoRecvIntMask to generate interrupts */
414 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
415 }
416
417 /* Tell the controller where the first AR program is */
418 reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
419
420 /* Run context */
421 reg_write(ohci, d->ctrlSet, 0x00008000);
422
423 DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
424 }
425
426 /* Initialize the dma transmit context */
427 static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
428 {
429 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
430
431 /* Stop the context */
432 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
433
434 d->prg_ind = 0;
435 d->sent_ind = 0;
436 d->free_prgs = d->num_desc;
437 d->branchAddrPtr = NULL;
438 INIT_LIST_HEAD(&d->fifo_list);
439 INIT_LIST_HEAD(&d->pending_list);
440
441 if (d->type == DMA_CTX_ISO) {
442 /* enable interrupts */
443 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
444 }
445
446 DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
447 }
448
449 /* Count the number of available iso contexts */
450 static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
451 {
452 int i,ctx=0;
453 u32 tmp;
454
455 reg_write(ohci, reg, 0xffffffff);
456 tmp = reg_read(ohci, reg);
457
458 DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
459
460 /* Count the number of contexts */
461 for (i=0; i<32; i++) {
462 if (tmp & 1) ctx++;
463 tmp >>= 1;
464 }
465 return ctx;
466 }
467
468 /* Global initialization */
469 static void ohci_initialize(struct ti_ohci *ohci)
470 {
471 char irq_buf[16];
472 quadlet_t buf;
473 int num_ports, i;
474
475 spin_lock_init(&ohci->phy_reg_lock);
476
477 /* Put some defaults to these undefined bus options */
478 buf = reg_read(ohci, OHCI1394_BusOptions);
479 buf |= 0x60000000; /* Enable CMC and ISC */
480 if (hpsb_disable_irm)
481 buf &= ~0x80000000;
482 else
483 buf |= 0x80000000; /* Enable IRMC */
484 buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
485 buf &= ~0x18000000; /* Disable PMC and BMC */
486 reg_write(ohci, OHCI1394_BusOptions, buf);
487
488 /* Set the bus number */
489 reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
490
491 /* Enable posted writes */
492 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
493
494 /* Clear link control register */
495 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
496
497 /* Enable cycle timer and cycle master and set the IRM
498 * contender bit in our self ID packets if appropriate. */
499 reg_write(ohci, OHCI1394_LinkControlSet,
500 OHCI1394_LinkControl_CycleTimerEnable |
501 OHCI1394_LinkControl_CycleMaster);
502 i = get_phy_reg(ohci, 4) | PHY_04_LCTRL;
503 if (hpsb_disable_irm)
504 i &= ~PHY_04_CONTENDER;
505 else
506 i |= PHY_04_CONTENDER;
507 set_phy_reg(ohci, 4, i);
508
509 /* Set up self-id dma buffer */
510 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
511
512 /* enable self-id and phys */
513 reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
514 OHCI1394_LinkControl_RcvPhyPkt);
515
516 /* Set the Config ROM mapping register */
517 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
518
519 /* Now get our max packet size */
520 ohci->max_packet_size =
521 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
522
523 /* Don't accept phy packets into AR request context */
524 reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
525
526 /* Clear the interrupt mask */
527 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
528 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
529
530 /* Clear the interrupt mask */
531 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
532 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
533
534 /* Initialize AR dma */
535 initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
536 initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
537
538 /* Initialize AT dma */
539 initialize_dma_trm_ctx(&ohci->at_req_context);
540 initialize_dma_trm_ctx(&ohci->at_resp_context);
541
542 /* Initialize IR Legacy DMA channel mask */
543 ohci->ir_legacy_channels = 0;
544
545 /* Accept AR requests from all nodes */
546 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
547
548 /* Set the address range of the physical response unit.
549 * Most controllers do not implement it as a writable register though.
550 * They will keep a hardwired offset of 0x00010000 and show 0x0 as
551 * register content.
552 * To actually enable physical responses is the job of our interrupt
553 * handler which programs the physical request filter. */
554 reg_write(ohci, OHCI1394_PhyUpperBound,
555 OHCI1394_PHYS_UPPER_BOUND_PROGRAMMED >> 16);
556
557 DBGMSG("physUpperBoundOffset=%08x",
558 reg_read(ohci, OHCI1394_PhyUpperBound));
559
560 /* Specify AT retries */
561 reg_write(ohci, OHCI1394_ATRetries,
562 OHCI1394_MAX_AT_REQ_RETRIES |
563 (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
564 (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
565
566 /* We don't want hardware swapping */
567 reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
568
569 /* Enable interrupts */
570 reg_write(ohci, OHCI1394_IntMaskSet,
571 OHCI1394_unrecoverableError |
572 OHCI1394_masterIntEnable |
573 OHCI1394_busReset |
574 OHCI1394_selfIDComplete |
575 OHCI1394_RSPkt |
576 OHCI1394_RQPkt |
577 OHCI1394_respTxComplete |
578 OHCI1394_reqTxComplete |
579 OHCI1394_isochRx |
580 OHCI1394_isochTx |
581 OHCI1394_postedWriteErr |
582 OHCI1394_cycleTooLong |
583 OHCI1394_cycleInconsistent);
584
585 /* Enable link */
586 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
587
588 buf = reg_read(ohci, OHCI1394_Version);
589 sprintf (irq_buf, "%d", ohci->dev->irq);
590 PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%s] "
591 "MMIO=[%llx-%llx] Max Packet=[%d] IR/IT contexts=[%d/%d]",
592 ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
593 ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), irq_buf,
594 (unsigned long long)pci_resource_start(ohci->dev, 0),
595 (unsigned long long)pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
596 ohci->max_packet_size,
597 ohci->nb_iso_rcv_ctx, ohci->nb_iso_xmit_ctx);
598
599 /* Check all of our ports to make sure that if anything is
600 * connected, we enable that port. */
601 num_ports = get_phy_reg(ohci, 2) & 0xf;
602 for (i = 0; i < num_ports; i++) {
603 unsigned int status;
604
605 set_phy_reg(ohci, 7, i);
606 status = get_phy_reg(ohci, 8);
607
608 if (status & 0x20)
609 set_phy_reg(ohci, 8, status & ~1);
610 }
611
612 /* Serial EEPROM Sanity check. */
613 if ((ohci->max_packet_size < 512) ||
614 (ohci->max_packet_size > 4096)) {
615 /* Serial EEPROM contents are suspect, set a sane max packet
616 * size and print the raw contents for bug reports if verbose
617 * debug is enabled. */
618 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
619 int i;
620 #endif
621
622 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
623 "attempting to setting max_packet_size to 512 bytes");
624 reg_write(ohci, OHCI1394_BusOptions,
625 (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
626 ohci->max_packet_size = 512;
627 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
628 PRINT(KERN_DEBUG, " EEPROM Present: %d",
629 (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
630 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
631
632 for (i = 0;
633 ((i < 1000) &&
634 (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
635 udelay(10);
636
637 for (i = 0; i < 0x20; i++) {
638 reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
639 PRINT(KERN_DEBUG, " EEPROM %02x: %02x", i,
640 (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
641 }
642 #endif
643 }
644 }
645
646 /*
647 * Insert a packet in the DMA fifo and generate the DMA prg
648 * FIXME: rewrite the program in order to accept packets crossing
649 * page boundaries.
650 * check also that a single dma descriptor doesn't cross a
651 * page boundary.
652 */
653 static void insert_packet(struct ti_ohci *ohci,
654 struct dma_trm_ctx *d, struct hpsb_packet *packet)
655 {
656 u32 cycleTimer;
657 int idx = d->prg_ind;
658
659 DBGMSG("Inserting packet for node " NODE_BUS_FMT
660 ", tlabel=%d, tcode=0x%x, speed=%d",
661 NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
662 packet->tcode, packet->speed_code);
663
664 d->prg_cpu[idx]->begin.address = 0;
665 d->prg_cpu[idx]->begin.branchAddress = 0;
666
667 if (d->type == DMA_CTX_ASYNC_RESP) {
668 /*
669 * For response packets, we need to put a timeout value in
670 * the 16 lower bits of the status... let's try 1 sec timeout
671 */
672 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
673 d->prg_cpu[idx]->begin.status = cpu_to_le32(
674 (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
675 ((cycleTimer&0x01fff000)>>12));
676
677 DBGMSG("cycleTimer: %08x timeStamp: %08x",
678 cycleTimer, d->prg_cpu[idx]->begin.status);
679 } else
680 d->prg_cpu[idx]->begin.status = 0;
681
682 if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
683
684 if (packet->type == hpsb_raw) {
685 d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
686 d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
687 d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
688 } else {
689 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
690 (packet->header[0] & 0xFFFF);
691
692 if (packet->tcode == TCODE_ISO_DATA) {
693 /* Sending an async stream packet */
694 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
695 } else {
696 /* Sending a normal async request or response */
697 d->prg_cpu[idx]->data[1] =
698 (packet->header[1] & 0xFFFF) |
699 (packet->header[0] & 0xFFFF0000);
700 d->prg_cpu[idx]->data[2] = packet->header[2];
701 d->prg_cpu[idx]->data[3] = packet->header[3];
702 }
703 header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
704 }
705
706 if (packet->data_size) { /* block transmit */
707 if (packet->tcode == TCODE_STREAM_DATA){
708 d->prg_cpu[idx]->begin.control =
709 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
710 DMA_CTL_IMMEDIATE | 0x8);
711 } else {
712 d->prg_cpu[idx]->begin.control =
713 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
714 DMA_CTL_IMMEDIATE | 0x10);
715 }
716 d->prg_cpu[idx]->end.control =
717 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
718 DMA_CTL_IRQ |
719 DMA_CTL_BRANCH |
720 packet->data_size);
721 /*
722 * Check that the packet data buffer
723 * does not cross a page boundary.
724 *
725 * XXX Fix this some day. eth1394 seems to trigger
726 * it, but ignoring it doesn't seem to cause a
727 * problem.
728 */
729 #if 0
730 if (cross_bound((unsigned long)packet->data,
731 packet->data_size)>0) {
732 /* FIXME: do something about it */
733 PRINT(KERN_ERR,
734 "%s: packet data addr: %p size %Zd bytes "
735 "cross page boundary", __FUNCTION__,
736 packet->data, packet->data_size);
737 }
738 #endif
739 d->prg_cpu[idx]->end.address = cpu_to_le32(
740 pci_map_single(ohci->dev, packet->data,
741 packet->data_size,
742 PCI_DMA_TODEVICE));
743 OHCI_DMA_ALLOC("single, block transmit packet");
744
745 d->prg_cpu[idx]->end.branchAddress = 0;
746 d->prg_cpu[idx]->end.status = 0;
747 if (d->branchAddrPtr)
748 *(d->branchAddrPtr) =
749 cpu_to_le32(d->prg_bus[idx] | 0x3);
750 d->branchAddrPtr =
751 &(d->prg_cpu[idx]->end.branchAddress);
752 } else { /* quadlet transmit */
753 if (packet->type == hpsb_raw)
754 d->prg_cpu[idx]->begin.control =
755 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
756 DMA_CTL_IMMEDIATE |
757 DMA_CTL_IRQ |
758 DMA_CTL_BRANCH |
759 (packet->header_size + 4));
760 else
761 d->prg_cpu[idx]->begin.control =
762 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
763 DMA_CTL_IMMEDIATE |
764 DMA_CTL_IRQ |
765 DMA_CTL_BRANCH |
766 packet->header_size);
767
768 if (d->branchAddrPtr)
769 *(d->branchAddrPtr) =
770 cpu_to_le32(d->prg_bus[idx] | 0x2);
771 d->branchAddrPtr =
772 &(d->prg_cpu[idx]->begin.branchAddress);
773 }
774
775 } else { /* iso packet */
776 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
777 (packet->header[0] & 0xFFFF);
778 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
779 header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
780
781 d->prg_cpu[idx]->begin.control =
782 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
783 DMA_CTL_IMMEDIATE | 0x8);
784 d->prg_cpu[idx]->end.control =
785 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
786 DMA_CTL_UPDATE |
787 DMA_CTL_IRQ |
788 DMA_CTL_BRANCH |
789 packet->data_size);
790 d->prg_cpu[idx]->end.address = cpu_to_le32(
791 pci_map_single(ohci->dev, packet->data,
792 packet->data_size, PCI_DMA_TODEVICE));
793 OHCI_DMA_ALLOC("single, iso transmit packet");
794
795 d->prg_cpu[idx]->end.branchAddress = 0;
796 d->prg_cpu[idx]->end.status = 0;
797 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
798 " begin=%08x %08x %08x %08x\n"
799 " %08x %08x %08x %08x\n"
800 " end =%08x %08x %08x %08x",
801 d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
802 d->prg_cpu[idx]->begin.control,
803 d->prg_cpu[idx]->begin.address,
804 d->prg_cpu[idx]->begin.branchAddress,
805 d->prg_cpu[idx]->begin.status,
806 d->prg_cpu[idx]->data[0],
807 d->prg_cpu[idx]->data[1],
808 d->prg_cpu[idx]->data[2],
809 d->prg_cpu[idx]->data[3],
810 d->prg_cpu[idx]->end.control,
811 d->prg_cpu[idx]->end.address,
812 d->prg_cpu[idx]->end.branchAddress,
813 d->prg_cpu[idx]->end.status);
814 if (d->branchAddrPtr)
815 *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
816 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
817 }
818 d->free_prgs--;
819
820 /* queue the packet in the appropriate context queue */
821 list_add_tail(&packet->driver_list, &d->fifo_list);
822 d->prg_ind = (d->prg_ind + 1) % d->num_desc;
823 }
824
825 /*
826 * This function fills the FIFO with the (eventual) pending packets
827 * and runs or wakes up the DMA prg if necessary.
828 *
829 * The function MUST be called with the d->lock held.
830 */
831 static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
832 {
833 struct hpsb_packet *packet, *ptmp;
834 int idx = d->prg_ind;
835 int z = 0;
836
837 /* insert the packets into the dma fifo */
838 list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
839 if (!d->free_prgs)
840 break;
841
842 /* For the first packet only */
843 if (!z)
844 z = (packet->data_size) ? 3 : 2;
845
846 /* Insert the packet */
847 list_del_init(&packet->driver_list);
848 insert_packet(ohci, d, packet);
849 }
850
851 /* Nothing must have been done, either no free_prgs or no packets */
852 if (z == 0)
853 return;
854
855 /* Is the context running ? (should be unless it is
856 the first packet to be sent in this context) */
857 if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
858 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
859
860 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
861 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
862
863 /* Check that the node id is valid, and not 63 */
864 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
865 PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
866 else
867 reg_write(ohci, d->ctrlSet, 0x8000);
868 } else {
869 /* Wake up the dma context if necessary */
870 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
871 DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
872
873 /* do this always, to avoid race condition */
874 reg_write(ohci, d->ctrlSet, 0x1000);
875 }
876
877 return;
878 }
879
880 /* Transmission of an async or iso packet */
881 static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
882 {
883 struct ti_ohci *ohci = host->hostdata;
884 struct dma_trm_ctx *d;
885 unsigned long flags;
886
887 if (packet->data_size > ohci->max_packet_size) {
888 PRINT(KERN_ERR,
889 "Transmit packet size %Zd is too big",
890 packet->data_size);
891 return -EOVERFLOW;
892 }
893
894 /* Decide whether we have an iso, a request, or a response packet */
895 if (packet->type == hpsb_raw)
896 d = &ohci->at_req_context;
897 else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
898 /* The legacy IT DMA context is initialized on first
899 * use. However, the alloc cannot be run from
900 * interrupt context, so we bail out if that is the
901 * case. I don't see anyone sending ISO packets from
902 * interrupt context anyway... */
903
904 if (ohci->it_legacy_context.ohci == NULL) {
905 if (in_interrupt()) {
906 PRINT(KERN_ERR,
907 "legacy IT context cannot be initialized during interrupt");
908 return -EINVAL;
909 }
910
911 if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
912 DMA_CTX_ISO, 0, IT_NUM_DESC,
913 OHCI1394_IsoXmitContextBase) < 0) {
914 PRINT(KERN_ERR,
915 "error initializing legacy IT context");
916 return -ENOMEM;
917 }
918
919 initialize_dma_trm_ctx(&ohci->it_legacy_context);
920 }
921
922 d = &ohci->it_legacy_context;
923 } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
924 d = &ohci->at_resp_context;
925 else
926 d = &ohci->at_req_context;
927
928 spin_lock_irqsave(&d->lock,flags);
929
930 list_add_tail(&packet->driver_list, &d->pending_list);
931
932 dma_trm_flush(ohci, d);
933
934 spin_unlock_irqrestore(&d->lock,flags);
935
936 return 0;
937 }
938
939 static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
940 {
941 struct ti_ohci *ohci = host->hostdata;
942 int retval = 0;
943 unsigned long flags;
944 int phy_reg;
945
946 switch (cmd) {
947 case RESET_BUS:
948 switch (arg) {
949 case SHORT_RESET:
950 phy_reg = get_phy_reg(ohci, 5);
951 phy_reg |= 0x40;
952 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
953 break;
954 case LONG_RESET:
955 phy_reg = get_phy_reg(ohci, 1);
956 phy_reg |= 0x40;
957 set_phy_reg(ohci, 1, phy_reg); /* set IBR */
958 break;
959 case SHORT_RESET_NO_FORCE_ROOT:
960 phy_reg = get_phy_reg(ohci, 1);
961 if (phy_reg & 0x80) {
962 phy_reg &= ~0x80;
963 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
964 }
965
966 phy_reg = get_phy_reg(ohci, 5);
967 phy_reg |= 0x40;
968 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
969 break;
970 case LONG_RESET_NO_FORCE_ROOT:
971 phy_reg = get_phy_reg(ohci, 1);
972 phy_reg &= ~0x80;
973 phy_reg |= 0x40;
974 set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
975 break;
976 case SHORT_RESET_FORCE_ROOT:
977 phy_reg = get_phy_reg(ohci, 1);
978 if (!(phy_reg & 0x80)) {
979 phy_reg |= 0x80;
980 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
981 }
982
983 phy_reg = get_phy_reg(ohci, 5);
984 phy_reg |= 0x40;
985 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
986 break;
987 case LONG_RESET_FORCE_ROOT:
988 phy_reg = get_phy_reg(ohci, 1);
989 phy_reg |= 0xc0;
990 set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
991 break;
992 default:
993 retval = -1;
994 }
995 break;
996
997 case GET_CYCLE_COUNTER:
998 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
999 break;
1000
1001 case SET_CYCLE_COUNTER:
1002 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
1003 break;
1004
1005 case SET_BUS_ID:
1006 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1007 break;
1008
1009 case ACT_CYCLE_MASTER:
1010 if (arg) {
1011 /* check if we are root and other nodes are present */
1012 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1013 if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1014 /*
1015 * enable cycleTimer, cycleMaster
1016 */
1017 DBGMSG("Cycle master enabled");
1018 reg_write(ohci, OHCI1394_LinkControlSet,
1019 OHCI1394_LinkControl_CycleTimerEnable |
1020 OHCI1394_LinkControl_CycleMaster);
1021 }
1022 } else {
1023 /* disable cycleTimer, cycleMaster, cycleSource */
1024 reg_write(ohci, OHCI1394_LinkControlClear,
1025 OHCI1394_LinkControl_CycleTimerEnable |
1026 OHCI1394_LinkControl_CycleMaster |
1027 OHCI1394_LinkControl_CycleSource);
1028 }
1029 break;
1030
1031 case CANCEL_REQUESTS:
1032 DBGMSG("Cancel request received");
1033 dma_trm_reset(&ohci->at_req_context);
1034 dma_trm_reset(&ohci->at_resp_context);
1035 break;
1036
1037 case ISO_LISTEN_CHANNEL:
1038 {
1039 u64 mask;
1040 struct dma_rcv_ctx *d = &ohci->ir_legacy_context;
1041 int ir_legacy_active;
1042
1043 if (arg<0 || arg>63) {
1044 PRINT(KERN_ERR,
1045 "%s: IS0 listen channel %d is out of range",
1046 __FUNCTION__, arg);
1047 return -EFAULT;
1048 }
1049
1050 mask = (u64)0x1<<arg;
1051
1052 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1053
1054 if (ohci->ISO_channel_usage & mask) {
1055 PRINT(KERN_ERR,
1056 "%s: IS0 listen channel %d is already used",
1057 __FUNCTION__, arg);
1058 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1059 return -EFAULT;
1060 }
1061
1062 ir_legacy_active = ohci->ir_legacy_channels;
1063
1064 ohci->ISO_channel_usage |= mask;
1065 ohci->ir_legacy_channels |= mask;
1066
1067 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1068
1069 if (!ir_legacy_active) {
1070 if (ohci1394_register_iso_tasklet(ohci,
1071 &ohci->ir_legacy_tasklet) < 0) {
1072 PRINT(KERN_ERR, "No IR DMA context available");
1073 return -EBUSY;
1074 }
1075
1076 /* the IR context can be assigned to any DMA context
1077 * by ohci1394_register_iso_tasklet */
1078 d->ctx = ohci->ir_legacy_tasklet.context;
1079 d->ctrlSet = OHCI1394_IsoRcvContextControlSet +
1080 32*d->ctx;
1081 d->ctrlClear = OHCI1394_IsoRcvContextControlClear +
1082 32*d->ctx;
1083 d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
1084 d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
1085
1086 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1087
1088 if (printk_ratelimit())
1089 DBGMSG("IR legacy activated");
1090 }
1091
1092 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1093
1094 if (arg>31)
1095 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1096 1<<(arg-32));
1097 else
1098 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1099 1<<arg);
1100
1101 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1102 DBGMSG("Listening enabled on channel %d", arg);
1103 break;
1104 }
1105 case ISO_UNLISTEN_CHANNEL:
1106 {
1107 u64 mask;
1108
1109 if (arg<0 || arg>63) {
1110 PRINT(KERN_ERR,
1111 "%s: IS0 unlisten channel %d is out of range",
1112 __FUNCTION__, arg);
1113 return -EFAULT;
1114 }
1115
1116 mask = (u64)0x1<<arg;
1117
1118 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1119
1120 if (!(ohci->ISO_channel_usage & mask)) {
1121 PRINT(KERN_ERR,
1122 "%s: IS0 unlisten channel %d is not used",
1123 __FUNCTION__, arg);
1124 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1125 return -EFAULT;
1126 }
1127
1128 ohci->ISO_channel_usage &= ~mask;
1129 ohci->ir_legacy_channels &= ~mask;
1130
1131 if (arg>31)
1132 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1133 1<<(arg-32));
1134 else
1135 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1136 1<<arg);
1137
1138 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1139 DBGMSG("Listening disabled on channel %d", arg);
1140
1141 if (ohci->ir_legacy_channels == 0) {
1142 stop_dma_rcv_ctx(&ohci->ir_legacy_context);
1143 DBGMSG("ISO legacy receive context stopped");
1144 }
1145
1146 break;
1147 }
1148 default:
1149 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1150 cmd);
1151 break;
1152 }
1153 return retval;
1154 }
1155
1156 /***********************************
1157 * rawiso ISO reception *
1158 ***********************************/
1159
1160 /*
1161 We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1162 buffer is split into "blocks" (regions described by one DMA
1163 descriptor). Each block must be one page or less in size, and
1164 must not cross a page boundary.
1165
1166 There is one little wrinkle with buffer-fill mode: a packet that
1167 starts in the final block may wrap around into the first block. But
1168 the user API expects all packets to be contiguous. Our solution is
1169 to keep the very last page of the DMA buffer in reserve - if a
1170 packet spans the gap, we copy its tail into this page.
1171 */
1172
1173 struct ohci_iso_recv {
1174 struct ti_ohci *ohci;
1175
1176 struct ohci1394_iso_tasklet task;
1177 int task_active;
1178
1179 enum { BUFFER_FILL_MODE = 0,
1180 PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1181
1182 /* memory and PCI mapping for the DMA descriptors */
1183 struct dma_prog_region prog;
1184 struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1185
1186 /* how many DMA blocks fit in the buffer */
1187 unsigned int nblocks;
1188
1189 /* stride of DMA blocks */
1190 unsigned int buf_stride;
1191
1192 /* number of blocks to batch between interrupts */
1193 int block_irq_interval;
1194
1195 /* block that DMA will finish next */
1196 int block_dma;
1197
1198 /* (buffer-fill only) block that the reader will release next */
1199 int block_reader;
1200
1201 /* (buffer-fill only) bytes of buffer the reader has released,
1202 less than one block */
1203 int released_bytes;
1204
1205 /* (buffer-fill only) buffer offset at which the next packet will appear */
1206 int dma_offset;
1207
1208 /* OHCI DMA context control registers */
1209 u32 ContextControlSet;
1210 u32 ContextControlClear;
1211 u32 CommandPtr;
1212 u32 ContextMatch;
1213 };
1214
1215 static void ohci_iso_recv_task(unsigned long data);
1216 static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1217 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1218 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1219 static void ohci_iso_recv_program(struct hpsb_iso *iso);
1220
1221 static int ohci_iso_recv_init(struct hpsb_iso *iso)
1222 {
1223 struct ti_ohci *ohci = iso->host->hostdata;
1224 struct ohci_iso_recv *recv;
1225 int ctx;
1226 int ret = -ENOMEM;
1227
1228 recv = kmalloc(sizeof(*recv), SLAB_KERNEL);
1229 if (!recv)
1230 return -ENOMEM;
1231
1232 iso->hostdata = recv;
1233 recv->ohci = ohci;
1234 recv->task_active = 0;
1235 dma_prog_region_init(&recv->prog);
1236 recv->block = NULL;
1237
1238 /* use buffer-fill mode, unless irq_interval is 1
1239 (note: multichannel requires buffer-fill) */
1240
1241 if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1242 iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1243 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1244 } else {
1245 recv->dma_mode = BUFFER_FILL_MODE;
1246 }
1247
1248 /* set nblocks, buf_stride, block_irq_interval */
1249
1250 if (recv->dma_mode == BUFFER_FILL_MODE) {
1251 recv->buf_stride = PAGE_SIZE;
1252
1253 /* one block per page of data in the DMA buffer, minus the final guard page */
1254 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1255 if (recv->nblocks < 3) {
1256 DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1257 goto err;
1258 }
1259
1260 /* iso->irq_interval is in packets - translate that to blocks */
1261 if (iso->irq_interval == 1)
1262 recv->block_irq_interval = 1;
1263 else
1264 recv->block_irq_interval = iso->irq_interval *
1265 ((recv->nblocks+1)/iso->buf_packets);
1266 if (recv->block_irq_interval*4 > recv->nblocks)
1267 recv->block_irq_interval = recv->nblocks/4;
1268 if (recv->block_irq_interval < 1)
1269 recv->block_irq_interval = 1;
1270
1271 } else {
1272 int max_packet_size;
1273
1274 recv->nblocks = iso->buf_packets;
1275 recv->block_irq_interval = iso->irq_interval;
1276 if (recv->block_irq_interval * 4 > iso->buf_packets)
1277 recv->block_irq_interval = iso->buf_packets / 4;
1278 if (recv->block_irq_interval < 1)
1279 recv->block_irq_interval = 1;
1280
1281 /* choose a buffer stride */
1282 /* must be a power of 2, and <= PAGE_SIZE */
1283
1284 max_packet_size = iso->buf_size / iso->buf_packets;
1285
1286 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1287 recv->buf_stride *= 2);
1288
1289 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1290 recv->buf_stride > PAGE_SIZE) {
1291 /* this shouldn't happen, but anyway... */
1292 DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1293 goto err;
1294 }
1295 }
1296
1297 recv->block_reader = 0;
1298 recv->released_bytes = 0;
1299 recv->block_dma = 0;
1300 recv->dma_offset = 0;
1301
1302 /* size of DMA program = one descriptor per block */
1303 if (dma_prog_region_alloc(&recv->prog,
1304 sizeof(struct dma_cmd) * recv->nblocks,
1305 recv->ohci->dev))
1306 goto err;
1307
1308 recv->block = (struct dma_cmd*) recv->prog.kvirt;
1309
1310 ohci1394_init_iso_tasklet(&recv->task,
1311 iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1312 OHCI_ISO_RECEIVE,
1313 ohci_iso_recv_task, (unsigned long) iso);
1314
1315 if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0) {
1316 ret = -EBUSY;
1317 goto err;
1318 }
1319
1320 recv->task_active = 1;
1321
1322 /* recv context registers are spaced 32 bytes apart */
1323 ctx = recv->task.context;
1324 recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1325 recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1326 recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1327 recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1328
1329 if (iso->channel == -1) {
1330 /* clear multi-channel selection mask */
1331 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1332 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1333 }
1334
1335 /* write the DMA program */
1336 ohci_iso_recv_program(iso);
1337
1338 DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1339 " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1340 recv->dma_mode == BUFFER_FILL_MODE ?
1341 "buffer-fill" : "packet-per-buffer",
1342 iso->buf_size/PAGE_SIZE, iso->buf_size,
1343 recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1344
1345 return 0;
1346
1347 err:
1348 ohci_iso_recv_shutdown(iso);
1349 return ret;
1350 }
1351
1352 static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1353 {
1354 struct ohci_iso_recv *recv = iso->hostdata;
1355
1356 /* disable interrupts */
1357 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1358
1359 /* halt DMA */
1360 ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1361 }
1362
1363 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1364 {
1365 struct ohci_iso_recv *recv = iso->hostdata;
1366
1367 if (recv->task_active) {
1368 ohci_iso_recv_stop(iso);
1369 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1370 recv->task_active = 0;
1371 }
1372
1373 dma_prog_region_free(&recv->prog);
1374 kfree(recv);
1375 iso->hostdata = NULL;
1376 }
1377
1378 /* set up a "gapped" ring buffer DMA program */
1379 static void ohci_iso_recv_program(struct hpsb_iso *iso)
1380 {
1381 struct ohci_iso_recv *recv = iso->hostdata;
1382 int blk;
1383
1384 /* address of 'branch' field in previous DMA descriptor */
1385 u32 *prev_branch = NULL;
1386
1387 for (blk = 0; blk < recv->nblocks; blk++) {
1388 u32 control;
1389
1390 /* the DMA descriptor */
1391 struct dma_cmd *cmd = &recv->block[blk];
1392
1393 /* offset of the DMA descriptor relative to the DMA prog buffer */
1394 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1395
1396 /* offset of this packet's data within the DMA buffer */
1397 unsigned long buf_offset = blk * recv->buf_stride;
1398
1399 if (recv->dma_mode == BUFFER_FILL_MODE) {
1400 control = 2 << 28; /* INPUT_MORE */
1401 } else {
1402 control = 3 << 28; /* INPUT_LAST */
1403 }
1404
1405 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1406
1407 /* interrupt on last block, and at intervals */
1408 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1409 control |= 3 << 20; /* want interrupt */
1410 }
1411
1412 control |= 3 << 18; /* enable branch to address */
1413 control |= recv->buf_stride;
1414
1415 cmd->control = cpu_to_le32(control);
1416 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1417 cmd->branchAddress = 0; /* filled in on next loop */
1418 cmd->status = cpu_to_le32(recv->buf_stride);
1419
1420 /* link the previous descriptor to this one */
1421 if (prev_branch) {
1422 *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1423 }
1424
1425 prev_branch = &cmd->branchAddress;
1426 }
1427
1428 /* the final descriptor's branch address and Z should be left at 0 */
1429 }
1430
1431 /* listen or unlisten to a specific channel (multi-channel mode only) */
1432 static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1433 {
1434 struct ohci_iso_recv *recv = iso->hostdata;
1435 int reg, i;
1436
1437 if (channel < 32) {
1438 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1439 i = channel;
1440 } else {
1441 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1442 i = channel - 32;
1443 }
1444
1445 reg_write(recv->ohci, reg, (1 << i));
1446
1447 /* issue a dummy read to force all PCI writes to be posted immediately */
1448 mb();
1449 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1450 }
1451
1452 static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1453 {
1454 struct ohci_iso_recv *recv = iso->hostdata;
1455 int i;
1456
1457 for (i = 0; i < 64; i++) {
1458 if (mask & (1ULL << i)) {
1459 if (i < 32)
1460 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1461 else
1462 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1463 } else {
1464 if (i < 32)
1465 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1466 else
1467 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1468 }
1469 }
1470
1471 /* issue a dummy read to force all PCI writes to be posted immediately */
1472 mb();
1473 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1474 }
1475
1476 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1477 {
1478 struct ohci_iso_recv *recv = iso->hostdata;
1479 struct ti_ohci *ohci = recv->ohci;
1480 u32 command, contextMatch;
1481
1482 reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1483 wmb();
1484
1485 /* always keep ISO headers */
1486 command = (1 << 30);
1487
1488 if (recv->dma_mode == BUFFER_FILL_MODE)
1489 command |= (1 << 31);
1490
1491 reg_write(recv->ohci, recv->ContextControlSet, command);
1492
1493 /* match on specified tags */
1494 contextMatch = tag_mask << 28;
1495
1496 if (iso->channel == -1) {
1497 /* enable multichannel reception */
1498 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1499 } else {
1500 /* listen on channel */
1501 contextMatch |= iso->channel;
1502 }
1503
1504 if (cycle != -1) {
1505 u32 seconds;
1506
1507 /* enable cycleMatch */
1508 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1509
1510 /* set starting cycle */
1511 cycle &= 0x1FFF;
1512
1513 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1514 just snarf them from the current time */
1515 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1516
1517 /* advance one second to give some extra time for DMA to start */
1518 seconds += 1;
1519
1520 cycle |= (seconds & 3) << 13;
1521
1522 contextMatch |= cycle << 12;
1523 }
1524
1525 if (sync != -1) {
1526 /* set sync flag on first DMA descriptor */
1527 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1528 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1529
1530 /* match sync field */
1531 contextMatch |= (sync&0xf)<<8;
1532 }
1533
1534 reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1535
1536 /* address of first descriptor block */
1537 command = dma_prog_region_offset_to_bus(&recv->prog,
1538 recv->block_dma * sizeof(struct dma_cmd));
1539 command |= 1; /* Z=1 */
1540
1541 reg_write(recv->ohci, recv->CommandPtr, command);
1542
1543 /* enable interrupts */
1544 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1545
1546 wmb();
1547
1548 /* run */
1549 reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1550
1551 /* issue a dummy read of the cycle timer register to force
1552 all PCI writes to be posted immediately */
1553 mb();
1554 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1555
1556 /* check RUN */
1557 if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1558 PRINT(KERN_ERR,
1559 "Error starting IR DMA (ContextControl 0x%08x)\n",
1560 reg_read(recv->ohci, recv->ContextControlSet));
1561 return -1;
1562 }
1563
1564 return 0;
1565 }
1566
1567 static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1568 {
1569 /* re-use the DMA descriptor for the block */
1570 /* by linking the previous descriptor to it */
1571
1572 int next_i = block;
1573 int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1574
1575 struct dma_cmd *next = &recv->block[next_i];
1576 struct dma_cmd *prev = &recv->block[prev_i];
1577
1578 /* ignore out-of-range requests */
1579 if ((block < 0) || (block > recv->nblocks))
1580 return;
1581
1582 /* 'next' becomes the new end of the DMA chain,
1583 so disable branch and enable interrupt */
1584 next->branchAddress = 0;
1585 next->control |= cpu_to_le32(3 << 20);
1586 next->status = cpu_to_le32(recv->buf_stride);
1587
1588 /* link prev to next */
1589 prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1590 sizeof(struct dma_cmd) * next_i)
1591 | 1); /* Z=1 */
1592
1593 /* disable interrupt on previous DMA descriptor, except at intervals */
1594 if ((prev_i % recv->block_irq_interval) == 0) {
1595 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1596 } else {
1597 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1598 }
1599 wmb();
1600
1601 /* wake up DMA in case it fell asleep */
1602 reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1603 }
1604
1605 static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1606 struct hpsb_iso_packet_info *info)
1607 {
1608 /* release the memory where the packet was */
1609 recv->released_bytes += info->total_len;
1610
1611 /* have we released enough memory for one block? */
1612 while (recv->released_bytes > recv->buf_stride) {
1613 ohci_iso_recv_release_block(recv, recv->block_reader);
1614 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1615 recv->released_bytes -= recv->buf_stride;
1616 }
1617 }
1618
1619 static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1620 {
1621 struct ohci_iso_recv *recv = iso->hostdata;
1622 if (recv->dma_mode == BUFFER_FILL_MODE) {
1623 ohci_iso_recv_bufferfill_release(recv, info);
1624 } else {
1625 ohci_iso_recv_release_block(recv, info - iso->infos);
1626 }
1627 }
1628
1629 /* parse all packets from blocks that have been fully received */
1630 static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1631 {
1632 int wake = 0;
1633 int runaway = 0;
1634 struct ti_ohci *ohci = recv->ohci;
1635
1636 while (1) {
1637 /* we expect the next parsable packet to begin at recv->dma_offset */
1638 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1639
1640 unsigned int offset;
1641 unsigned short len, cycle, total_len;
1642 unsigned char channel, tag, sy;
1643
1644 unsigned char *p = iso->data_buf.kvirt;
1645
1646 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1647
1648 /* don't loop indefinitely */
1649 if (runaway++ > 100000) {
1650 atomic_inc(&iso->overflows);
1651 PRINT(KERN_ERR,
1652 "IR DMA error - Runaway during buffer parsing!\n");
1653 break;
1654 }
1655
1656 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1657 if (this_block == recv->block_dma)
1658 break;
1659
1660 wake = 1;
1661
1662 /* parse data length, tag, channel, and sy */
1663
1664 /* note: we keep our own local copies of 'len' and 'offset'
1665 so the user can't mess with them by poking in the mmap area */
1666
1667 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1668
1669 if (len > 4096) {
1670 PRINT(KERN_ERR,
1671 "IR DMA error - bogus 'len' value %u\n", len);
1672 }
1673
1674 channel = p[recv->dma_offset+1] & 0x3F;
1675 tag = p[recv->dma_offset+1] >> 6;
1676 sy = p[recv->dma_offset+0] & 0xF;
1677
1678 /* advance to data payload */
1679 recv->dma_offset += 4;
1680
1681 /* check for wrap-around */
1682 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1683 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1684 }
1685
1686 /* dma_offset now points to the first byte of the data payload */
1687 offset = recv->dma_offset;
1688
1689 /* advance to xferStatus/timeStamp */
1690 recv->dma_offset += len;
1691
1692 total_len = len + 8; /* 8 bytes header+trailer in OHCI packet */
1693 /* payload is padded to 4 bytes */
1694 if (len % 4) {
1695 recv->dma_offset += 4 - (len%4);
1696 total_len += 4 - (len%4);
1697 }
1698
1699 /* check for wrap-around */
1700 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1701 /* uh oh, the packet data wraps from the last
1702 to the first DMA block - make the packet
1703 contiguous by copying its "tail" into the
1704 guard page */
1705
1706 int guard_off = recv->buf_stride*recv->nblocks;
1707 int tail_len = len - (guard_off - offset);
1708
1709 if (tail_len > 0 && tail_len < recv->buf_stride) {
1710 memcpy(iso->data_buf.kvirt + guard_off,
1711 iso->data_buf.kvirt,
1712 tail_len);
1713 }
1714
1715 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1716 }
1717
1718 /* parse timestamp */
1719 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1720 cycle &= 0x1FFF;
1721
1722 /* advance to next packet */
1723 recv->dma_offset += 4;
1724
1725 /* check for wrap-around */
1726 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1727 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1728 }
1729
1730 hpsb_iso_packet_received(iso, offset, len, total_len, cycle, channel, tag, sy);
1731 }
1732
1733 if (wake)
1734 hpsb_iso_wake(iso);
1735 }
1736
1737 static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1738 {
1739 int loop;
1740 struct ti_ohci *ohci = recv->ohci;
1741
1742 /* loop over all blocks */
1743 for (loop = 0; loop < recv->nblocks; loop++) {
1744
1745 /* check block_dma to see if it's done */
1746 struct dma_cmd *im = &recv->block[recv->block_dma];
1747
1748 /* check the DMA descriptor for new writes to xferStatus */
1749 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1750
1751 /* rescount is the number of bytes *remaining to be written* in the block */
1752 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1753
1754 unsigned char event = xferstatus & 0x1F;
1755
1756 if (!event) {
1757 /* nothing has happened to this block yet */
1758 break;
1759 }
1760
1761 if (event != 0x11) {
1762 atomic_inc(&iso->overflows);
1763 PRINT(KERN_ERR,
1764 "IR DMA error - OHCI error code 0x%02x\n", event);
1765 }
1766
1767 if (rescount != 0) {
1768 /* the card is still writing to this block;
1769 we can't touch it until it's done */
1770 break;
1771 }
1772
1773 /* OK, the block is finished... */
1774
1775 /* sync our view of the block */
1776 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1777
1778 /* reset the DMA descriptor */
1779 im->status = recv->buf_stride;
1780
1781 /* advance block_dma */
1782 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1783
1784 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1785 atomic_inc(&iso->overflows);
1786 DBGMSG("ISO reception overflow - "
1787 "ran out of DMA blocks");
1788 }
1789 }
1790
1791 /* parse any packets that have arrived */
1792 ohci_iso_recv_bufferfill_parse(iso, recv);
1793 }
1794
1795 static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1796 {
1797 int count;
1798 int wake = 0;
1799 struct ti_ohci *ohci = recv->ohci;
1800
1801 /* loop over the entire buffer */
1802 for (count = 0; count < recv->nblocks; count++) {
1803 u32 packet_len = 0;
1804
1805 /* pointer to the DMA descriptor */
1806 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1807
1808 /* check the DMA descriptor for new writes to xferStatus */
1809 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1810 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1811
1812 unsigned char event = xferstatus & 0x1F;
1813
1814 if (!event) {
1815 /* this packet hasn't come in yet; we are done for now */
1816 goto out;
1817 }
1818
1819 if (event == 0x11) {
1820 /* packet received successfully! */
1821
1822 /* rescount is the number of bytes *remaining* in the packet buffer,
1823 after the packet was written */
1824 packet_len = recv->buf_stride - rescount;
1825
1826 } else if (event == 0x02) {
1827 PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1828 } else if (event) {
1829 PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1830 }
1831
1832 /* sync our view of the buffer */
1833 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1834
1835 /* record the per-packet info */
1836 {
1837 /* iso header is 8 bytes ahead of the data payload */
1838 unsigned char *hdr;
1839
1840 unsigned int offset;
1841 unsigned short cycle;
1842 unsigned char channel, tag, sy;
1843
1844 offset = iso->pkt_dma * recv->buf_stride;
1845 hdr = iso->data_buf.kvirt + offset;
1846
1847 /* skip iso header */
1848 offset += 8;
1849 packet_len -= 8;
1850
1851 cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1852 channel = hdr[5] & 0x3F;
1853 tag = hdr[5] >> 6;
1854 sy = hdr[4] & 0xF;
1855
1856 hpsb_iso_packet_received(iso, offset, packet_len,
1857 recv->buf_stride, cycle, channel, tag, sy);
1858 }
1859
1860 /* reset the DMA descriptor */
1861 il->status = recv->buf_stride;
1862
1863 wake = 1;
1864 recv->block_dma = iso->pkt_dma;
1865 }
1866
1867 out:
1868 if (wake)
1869 hpsb_iso_wake(iso);
1870 }
1871
1872 static void ohci_iso_recv_task(unsigned long data)
1873 {
1874 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1875 struct ohci_iso_recv *recv = iso->hostdata;
1876
1877 if (recv->dma_mode == BUFFER_FILL_MODE)
1878 ohci_iso_recv_bufferfill_task(iso, recv);
1879 else
1880 ohci_iso_recv_packetperbuf_task(iso, recv);
1881 }
1882
1883 /***********************************
1884 * rawiso ISO transmission *
1885 ***********************************/
1886
1887 struct ohci_iso_xmit {
1888 struct ti_ohci *ohci;
1889 struct dma_prog_region prog;
1890 struct ohci1394_iso_tasklet task;
1891 int task_active;
1892
1893 u32 ContextControlSet;
1894 u32 ContextControlClear;
1895 u32 CommandPtr;
1896 };
1897
1898 /* transmission DMA program:
1899 one OUTPUT_MORE_IMMEDIATE for the IT header
1900 one OUTPUT_LAST for the buffer data */
1901
1902 struct iso_xmit_cmd {
1903 struct dma_cmd output_more_immediate;
1904 u8 iso_hdr[8];
1905 u32 unused[2];
1906 struct dma_cmd output_last;
1907 };
1908
1909 static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1910 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1911 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1912 static void ohci_iso_xmit_task(unsigned long data);
1913
1914 static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1915 {
1916 struct ohci_iso_xmit *xmit;
1917 unsigned int prog_size;
1918 int ctx;
1919 int ret = -ENOMEM;
1920
1921 xmit = kmalloc(sizeof(*xmit), SLAB_KERNEL);
1922 if (!xmit)
1923 return -ENOMEM;
1924
1925 iso->hostdata = xmit;
1926 xmit->ohci = iso->host->hostdata;
1927 xmit->task_active = 0;
1928
1929 dma_prog_region_init(&xmit->prog);
1930
1931 prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1932
1933 if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1934 goto err;
1935
1936 ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1937 ohci_iso_xmit_task, (unsigned long) iso);
1938
1939 if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0) {
1940 ret = -EBUSY;
1941 goto err;
1942 }
1943
1944 xmit->task_active = 1;
1945
1946 /* xmit context registers are spaced 16 bytes apart */
1947 ctx = xmit->task.context;
1948 xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1949 xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1950 xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1951
1952 return 0;
1953
1954 err:
1955 ohci_iso_xmit_shutdown(iso);
1956 return ret;
1957 }
1958
1959 static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1960 {
1961 struct ohci_iso_xmit *xmit = iso->hostdata;
1962 struct ti_ohci *ohci = xmit->ohci;
1963
1964 /* disable interrupts */
1965 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1966
1967 /* halt DMA */
1968 if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1969 /* XXX the DMA context will lock up if you try to send too much data! */
1970 PRINT(KERN_ERR,
1971 "you probably exceeded the OHCI card's bandwidth limit - "
1972 "reload the module and reduce xmit bandwidth");
1973 }
1974 }
1975
1976 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1977 {
1978 struct ohci_iso_xmit *xmit = iso->hostdata;
1979
1980 if (xmit->task_active) {
1981 ohci_iso_xmit_stop(iso);
1982 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1983 xmit->task_active = 0;
1984 }
1985
1986 dma_prog_region_free(&xmit->prog);
1987 kfree(xmit);
1988 iso->hostdata = NULL;
1989 }
1990
1991 static void ohci_iso_xmit_task(unsigned long data)
1992 {
1993 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1994 struct ohci_iso_xmit *xmit = iso->hostdata;
1995 struct ti_ohci *ohci = xmit->ohci;
1996 int wake = 0;
1997 int count;
1998
1999 /* check the whole buffer if necessary, starting at pkt_dma */
2000 for (count = 0; count < iso->buf_packets; count++) {
2001 int cycle;
2002
2003 /* DMA descriptor */
2004 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
2005
2006 /* check for new writes to xferStatus */
2007 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
2008 u8 event = xferstatus & 0x1F;
2009
2010 if (!event) {
2011 /* packet hasn't been sent yet; we are done for now */
2012 break;
2013 }
2014
2015 if (event != 0x11)
2016 PRINT(KERN_ERR,
2017 "IT DMA error - OHCI error code 0x%02x\n", event);
2018
2019 /* at least one packet went out, so wake up the writer */
2020 wake = 1;
2021
2022 /* parse cycle */
2023 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
2024
2025 /* tell the subsystem the packet has gone out */
2026 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
2027
2028 /* reset the DMA descriptor for next time */
2029 cmd->output_last.status = 0;
2030 }
2031
2032 if (wake)
2033 hpsb_iso_wake(iso);
2034 }
2035
2036 static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
2037 {
2038 struct ohci_iso_xmit *xmit = iso->hostdata;
2039 struct ti_ohci *ohci = xmit->ohci;
2040
2041 int next_i, prev_i;
2042 struct iso_xmit_cmd *next, *prev;
2043
2044 unsigned int offset;
2045 unsigned short len;
2046 unsigned char tag, sy;
2047
2048 /* check that the packet doesn't cross a page boundary
2049 (we could allow this if we added OUTPUT_MORE descriptor support) */
2050 if (cross_bound(info->offset, info->len)) {
2051 PRINT(KERN_ERR,
2052 "rawiso xmit: packet %u crosses a page boundary",
2053 iso->first_packet);
2054 return -EINVAL;
2055 }
2056
2057 offset = info->offset;
2058 len = info->len;
2059 tag = info->tag;
2060 sy = info->sy;
2061
2062 /* sync up the card's view of the buffer */
2063 dma_region_sync_for_device(&iso->data_buf, offset, len);
2064
2065 /* append first_packet to the DMA chain */
2066 /* by linking the previous descriptor to it */
2067 /* (next will become the new end of the DMA chain) */
2068
2069 next_i = iso->first_packet;
2070 prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2071
2072 next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2073 prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2074
2075 /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2076 memset(next, 0, sizeof(struct iso_xmit_cmd));
2077 next->output_more_immediate.control = cpu_to_le32(0x02000008);
2078
2079 /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2080
2081 /* tcode = 0xA, and sy */
2082 next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2083
2084 /* tag and channel number */
2085 next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2086
2087 /* transmission speed */
2088 next->iso_hdr[2] = iso->speed & 0x7;
2089
2090 /* payload size */
2091 next->iso_hdr[6] = len & 0xFF;
2092 next->iso_hdr[7] = len >> 8;
2093
2094 /* set up the OUTPUT_LAST */
2095 next->output_last.control = cpu_to_le32(1 << 28);
2096 next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2097 next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2098 next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2099 next->output_last.control |= cpu_to_le32(len);
2100
2101 /* payload bus address */
2102 next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2103
2104 /* leave branchAddress at zero for now */
2105
2106 /* re-write the previous DMA descriptor to chain to this one */
2107
2108 /* set prev branch address to point to next (Z=3) */
2109 prev->output_last.branchAddress = cpu_to_le32(
2110 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2111
2112 /* disable interrupt, unless required by the IRQ interval */
2113 if (prev_i % iso->irq_interval) {
2114 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2115 } else {
2116 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2117 }
2118
2119 wmb();
2120
2121 /* wake DMA in case it is sleeping */
2122 reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2123
2124 /* issue a dummy read of the cycle timer to force all PCI
2125 writes to be posted immediately */
2126 mb();
2127 reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2128
2129 return 0;
2130 }
2131
2132 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2133 {
2134 struct ohci_iso_xmit *xmit = iso->hostdata;
2135 struct ti_ohci *ohci = xmit->ohci;
2136
2137 /* clear out the control register */
2138 reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2139 wmb();
2140
2141 /* address and length of first descriptor block (Z=3) */
2142 reg_write(xmit->ohci, xmit->CommandPtr,
2143 dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2144
2145 /* cycle match */
2146 if (cycle != -1) {
2147 u32 start = cycle & 0x1FFF;
2148
2149 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2150 just snarf them from the current time */
2151 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2152
2153 /* advance one second to give some extra time for DMA to start */
2154 seconds += 1;
2155
2156 start |= (seconds & 3) << 13;
2157
2158 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2159 }
2160
2161 /* enable interrupts */
2162 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2163
2164 /* run */
2165 reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2166 mb();
2167
2168 /* wait 100 usec to give the card time to go active */
2169 udelay(100);
2170
2171 /* check the RUN bit */
2172 if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2173 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2174 reg_read(xmit->ohci, xmit->ContextControlSet));
2175 return -1;
2176 }
2177
2178 return 0;
2179 }
2180
2181 static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2182 {
2183
2184 switch(cmd) {
2185 case XMIT_INIT:
2186 return ohci_iso_xmit_init(iso);
2187 case XMIT_START:
2188 return ohci_iso_xmit_start(iso, arg);
2189 case XMIT_STOP:
2190 ohci_iso_xmit_stop(iso);
2191 return 0;
2192 case XMIT_QUEUE:
2193 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2194 case XMIT_SHUTDOWN:
2195 ohci_iso_xmit_shutdown(iso);
2196 return 0;
2197
2198 case RECV_INIT:
2199 return ohci_iso_recv_init(iso);
2200 case RECV_START: {
2201 int *args = (int*) arg;
2202 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2203 }
2204 case RECV_STOP:
2205 ohci_iso_recv_stop(iso);
2206 return 0;
2207 case RECV_RELEASE:
2208 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2209 return 0;
2210 case RECV_FLUSH:
2211 ohci_iso_recv_task((unsigned long) iso);
2212 return 0;
2213 case RECV_SHUTDOWN:
2214 ohci_iso_recv_shutdown(iso);
2215 return 0;
2216 case RECV_LISTEN_CHANNEL:
2217 ohci_iso_recv_change_channel(iso, arg, 1);
2218 return 0;
2219 case RECV_UNLISTEN_CHANNEL:
2220 ohci_iso_recv_change_channel(iso, arg, 0);
2221 return 0;
2222 case RECV_SET_CHANNEL_MASK:
2223 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2224 return 0;
2225
2226 default:
2227 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2228 cmd);
2229 break;
2230 }
2231 return -EINVAL;
2232 }
2233
2234 /***************************************
2235 * IEEE-1394 functionality section END *
2236 ***************************************/
2237
2238
2239 /********************************************************
2240 * Global stuff (interrupt handler, init/shutdown code) *
2241 ********************************************************/
2242
2243 static void dma_trm_reset(struct dma_trm_ctx *d)
2244 {
2245 unsigned long flags;
2246 LIST_HEAD(packet_list);
2247 struct ti_ohci *ohci = d->ohci;
2248 struct hpsb_packet *packet, *ptmp;
2249
2250 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2251
2252 /* Lock the context, reset it and release it. Move the packets
2253 * that were pending in the context to packet_list and free
2254 * them after releasing the lock. */
2255
2256 spin_lock_irqsave(&d->lock, flags);
2257
2258 list_splice(&d->fifo_list, &packet_list);
2259 list_splice(&d->pending_list, &packet_list);
2260 INIT_LIST_HEAD(&d->fifo_list);
2261 INIT_LIST_HEAD(&d->pending_list);
2262
2263 d->branchAddrPtr = NULL;
2264 d->sent_ind = d->prg_ind;
2265 d->free_prgs = d->num_desc;
2266
2267 spin_unlock_irqrestore(&d->lock, flags);
2268
2269 if (list_empty(&packet_list))
2270 return;
2271
2272 PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2273
2274 /* Now process subsystem callbacks for the packets from this
2275 * context. */
2276 list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2277 list_del_init(&packet->driver_list);
2278 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2279 }
2280 }
2281
2282 static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2283 quadlet_t rx_event,
2284 quadlet_t tx_event)
2285 {
2286 struct ohci1394_iso_tasklet *t;
2287 unsigned long mask;
2288 unsigned long flags;
2289
2290 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
2291
2292 list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2293 mask = 1 << t->context;
2294
2295 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2296 tasklet_schedule(&t->tasklet);
2297 else if (rx_event & mask)
2298 tasklet_schedule(&t->tasklet);
2299 }
2300
2301 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
2302 }
2303
2304 static irqreturn_t ohci_irq_handler(int irq, void *dev_id,
2305 struct pt_regs *regs_are_unused)
2306 {
2307 quadlet_t event, node_id;
2308 struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2309 struct hpsb_host *host = ohci->host;
2310 int phyid = -1, isroot = 0;
2311 unsigned long flags;
2312
2313 /* Read and clear the interrupt event register. Don't clear
2314 * the busReset event, though. This is done when we get the
2315 * selfIDComplete interrupt. */
2316 spin_lock_irqsave(&ohci->event_lock, flags);
2317 event = reg_read(ohci, OHCI1394_IntEventClear);
2318 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2319 spin_unlock_irqrestore(&ohci->event_lock, flags);
2320
2321 if (!event)
2322 return IRQ_NONE;
2323
2324 /* If event is ~(u32)0 cardbus card was ejected. In this case
2325 * we just return, and clean up in the ohci1394_pci_remove
2326 * function. */
2327 if (event == ~(u32) 0) {
2328 DBGMSG("Device removed.");
2329 return IRQ_NONE;
2330 }
2331
2332 DBGMSG("IntEvent: %08x", event);
2333
2334 if (event & OHCI1394_unrecoverableError) {
2335 int ctx;
2336 PRINT(KERN_ERR, "Unrecoverable error!");
2337
2338 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2339 PRINT(KERN_ERR, "Async Req Tx Context died: "
2340 "ctrl[%08x] cmdptr[%08x]",
2341 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2342 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2343
2344 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2345 PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2346 "ctrl[%08x] cmdptr[%08x]",
2347 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2348 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2349
2350 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2351 PRINT(KERN_ERR, "Async Req Rcv Context died: "
2352 "ctrl[%08x] cmdptr[%08x]",
2353 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2354 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2355
2356 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2357 PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2358 "ctrl[%08x] cmdptr[%08x]",
2359 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2360 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2361
2362 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2363 if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2364 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2365 "ctrl[%08x] cmdptr[%08x]", ctx,
2366 reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2367 reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2368 }
2369
2370 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2371 if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2372 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2373 "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2374 reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2375 reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2376 reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2377 }
2378
2379 event &= ~OHCI1394_unrecoverableError;
2380 }
2381 if (event & OHCI1394_postedWriteErr) {
2382 PRINT(KERN_ERR, "physical posted write error");
2383 /* no recovery strategy yet, had to involve protocol drivers */
2384 }
2385 if (event & OHCI1394_cycleTooLong) {
2386 if(printk_ratelimit())
2387 PRINT(KERN_WARNING, "isochronous cycle too long");
2388 else
2389 DBGMSG("OHCI1394_cycleTooLong");
2390 reg_write(ohci, OHCI1394_LinkControlSet,
2391 OHCI1394_LinkControl_CycleMaster);
2392 event &= ~OHCI1394_cycleTooLong;
2393 }
2394 if (event & OHCI1394_cycleInconsistent) {
2395 /* We subscribe to the cycleInconsistent event only to
2396 * clear the corresponding event bit... otherwise,
2397 * isochronous cycleMatch DMA won't work. */
2398 DBGMSG("OHCI1394_cycleInconsistent");
2399 event &= ~OHCI1394_cycleInconsistent;
2400 }
2401 if (event & OHCI1394_busReset) {
2402 /* The busReset event bit can't be cleared during the
2403 * selfID phase, so we disable busReset interrupts, to
2404 * avoid burying the cpu in interrupt requests. */
2405 spin_lock_irqsave(&ohci->event_lock, flags);
2406 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2407
2408 if (ohci->check_busreset) {
2409 int loop_count = 0;
2410
2411 udelay(10);
2412
2413 while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2414 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2415
2416 spin_unlock_irqrestore(&ohci->event_lock, flags);
2417 udelay(10);
2418 spin_lock_irqsave(&ohci->event_lock, flags);
2419
2420 /* The loop counter check is to prevent the driver
2421 * from remaining in this state forever. For the
2422 * initial bus reset, the loop continues for ever
2423 * and the system hangs, until some device is plugged-in
2424 * or out manually into a port! The forced reset seems
2425 * to solve this problem. This mainly effects nForce2. */
2426 if (loop_count > 10000) {
2427 ohci_devctl(host, RESET_BUS, LONG_RESET);
2428 DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2429 loop_count = 0;
2430 }
2431
2432 loop_count++;
2433 }
2434 }
2435 spin_unlock_irqrestore(&ohci->event_lock, flags);
2436 if (!host->in_bus_reset) {
2437 DBGMSG("irq_handler: Bus reset requested");
2438
2439 /* Subsystem call */
2440 hpsb_bus_reset(ohci->host);
2441 }
2442 event &= ~OHCI1394_busReset;
2443 }
2444 if (event & OHCI1394_reqTxComplete) {
2445 struct dma_trm_ctx *d = &ohci->at_req_context;
2446 DBGMSG("Got reqTxComplete interrupt "
2447 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2448 if (reg_read(ohci, d->ctrlSet) & 0x800)
2449 ohci1394_stop_context(ohci, d->ctrlClear,
2450 "reqTxComplete");
2451 else
2452 dma_trm_tasklet((unsigned long)d);
2453 //tasklet_schedule(&d->task);
2454 event &= ~OHCI1394_reqTxComplete;
2455 }
2456 if (event & OHCI1394_respTxComplete) {
2457 struct dma_trm_ctx *d = &ohci->at_resp_context;
2458 DBGMSG("Got respTxComplete interrupt "
2459 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2460 if (reg_read(ohci, d->ctrlSet) & 0x800)
2461 ohci1394_stop_context(ohci, d->ctrlClear,
2462 "respTxComplete");
2463 else
2464 tasklet_schedule(&d->task);
2465 event &= ~OHCI1394_respTxComplete;
2466 }
2467 if (event & OHCI1394_RQPkt) {
2468 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2469 DBGMSG("Got RQPkt interrupt status=0x%08X",
2470 reg_read(ohci, d->ctrlSet));
2471 if (reg_read(ohci, d->ctrlSet) & 0x800)
2472 ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2473 else
2474 tasklet_schedule(&d->task);
2475 event &= ~OHCI1394_RQPkt;
2476 }
2477 if (event & OHCI1394_RSPkt) {
2478 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2479 DBGMSG("Got RSPkt interrupt status=0x%08X",
2480 reg_read(ohci, d->ctrlSet));
2481 if (reg_read(ohci, d->ctrlSet) & 0x800)
2482 ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2483 else
2484 tasklet_schedule(&d->task);
2485 event &= ~OHCI1394_RSPkt;
2486 }
2487 if (event & OHCI1394_isochRx) {
2488 quadlet_t rx_event;
2489
2490 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2491 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2492 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2493 event &= ~OHCI1394_isochRx;
2494 }
2495 if (event & OHCI1394_isochTx) {
2496 quadlet_t tx_event;
2497
2498 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2499 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2500 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2501 event &= ~OHCI1394_isochTx;
2502 }
2503 if (event & OHCI1394_selfIDComplete) {
2504 if (host->in_bus_reset) {
2505 node_id = reg_read(ohci, OHCI1394_NodeID);
2506
2507 if (!(node_id & 0x80000000)) {
2508 PRINT(KERN_ERR,
2509 "SelfID received, but NodeID invalid "
2510 "(probably new bus reset occurred): %08X",
2511 node_id);
2512 goto selfid_not_valid;
2513 }
2514
2515 phyid = node_id & 0x0000003f;
2516 isroot = (node_id & 0x40000000) != 0;
2517
2518 DBGMSG("SelfID interrupt received "
2519 "(phyid %d, %s)", phyid,
2520 (isroot ? "root" : "not root"));
2521
2522 handle_selfid(ohci, host, phyid, isroot);
2523
2524 /* Clear the bus reset event and re-enable the
2525 * busReset interrupt. */
2526 spin_lock_irqsave(&ohci->event_lock, flags);
2527 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2528 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2529 spin_unlock_irqrestore(&ohci->event_lock, flags);
2530
2531 /* Turn on phys dma reception.
2532 *
2533 * TODO: Enable some sort of filtering management.
2534 */
2535 if (phys_dma) {
2536 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
2537 0xffffffff);
2538 reg_write(ohci, OHCI1394_PhyReqFilterLoSet,
2539 0xffffffff);
2540 }
2541
2542 DBGMSG("PhyReqFilter=%08x%08x",
2543 reg_read(ohci, OHCI1394_PhyReqFilterHiSet),
2544 reg_read(ohci, OHCI1394_PhyReqFilterLoSet));
2545
2546 hpsb_selfid_complete(host, phyid, isroot);
2547 } else
2548 PRINT(KERN_ERR,
2549 "SelfID received outside of bus reset sequence");
2550
2551 selfid_not_valid:
2552 event &= ~OHCI1394_selfIDComplete;
2553 }
2554
2555 /* Make sure we handle everything, just in case we accidentally
2556 * enabled an interrupt that we didn't write a handler for. */
2557 if (event)
2558 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2559 event);
2560
2561 return IRQ_HANDLED;
2562 }
2563
2564 /* Put the buffer back into the dma context */
2565 static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2566 {
2567 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2568 DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2569
2570 d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2571 d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2572 idx = (idx + d->num_desc - 1 ) % d->num_desc;
2573 d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2574
2575 /* To avoid a race, ensure 1394 interface hardware sees the inserted
2576 * context program descriptors before it sees the wakeup bit set. */
2577 wmb();
2578
2579 /* wake up the dma context if necessary */
2580 if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2581 PRINT(KERN_INFO,
2582 "Waking dma ctx=%d ... processing is probably too slow",
2583 d->ctx);
2584 }
2585
2586 /* do this always, to avoid race condition */
2587 reg_write(ohci, d->ctrlSet, 0x1000);
2588 }
2589
2590 #define cond_le32_to_cpu(data, noswap) \
2591 (noswap ? data : le32_to_cpu(data))
2592
2593 static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2594 -1, 0, -1, 0, -1, -1, 16, -1};
2595
2596 /*
2597 * Determine the length of a packet in the buffer
2598 * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2599 */
2600 static inline int packet_length(struct dma_rcv_ctx *d, int idx,
2601 quadlet_t *buf_ptr, int offset,
2602 unsigned char tcode, int noswap)
2603 {
2604 int length = -1;
2605
2606 if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2607 length = TCODE_SIZE[tcode];
2608 if (length == 0) {
2609 if (offset + 12 >= d->buf_size) {
2610 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2611 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2612 } else {
2613 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2614 }
2615 length += 20;
2616 }
2617 } else if (d->type == DMA_CTX_ISO) {
2618 /* Assumption: buffer fill mode with header/trailer */
2619 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2620 }
2621
2622 if (length > 0 && length % 4)
2623 length += 4 - (length % 4);
2624
2625 return length;
2626 }
2627
2628 /* Tasklet that processes dma receive buffers */
2629 static void dma_rcv_tasklet (unsigned long data)
2630 {
2631 struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2632 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2633 unsigned int split_left, idx, offset, rescount;
2634 unsigned char tcode;
2635 int length, bytes_left, ack;
2636 unsigned long flags;
2637 quadlet_t *buf_ptr;
2638 char *split_ptr;
2639 char msg[256];
2640
2641 spin_lock_irqsave(&d->lock, flags);
2642
2643 idx = d->buf_ind;
2644 offset = d->buf_offset;
2645 buf_ptr = d->buf_cpu[idx] + offset/4;
2646
2647 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2648 bytes_left = d->buf_size - rescount - offset;
2649
2650 while (bytes_left > 0) {
2651 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2652
2653 /* packet_length() will return < 4 for an error */
2654 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2655
2656 if (length < 4) { /* something is wrong */
2657 sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2658 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2659 d->ctx, length);
2660 ohci1394_stop_context(ohci, d->ctrlClear, msg);
2661 spin_unlock_irqrestore(&d->lock, flags);
2662 return;
2663 }
2664
2665 /* The first case is where we have a packet that crosses
2666 * over more than one descriptor. The next case is where
2667 * it's all in the first descriptor. */
2668 if ((offset + length) > d->buf_size) {
2669 DBGMSG("Split packet rcv'd");
2670 if (length > d->split_buf_size) {
2671 ohci1394_stop_context(ohci, d->ctrlClear,
2672 "Split packet size exceeded");
2673 d->buf_ind = idx;
2674 d->buf_offset = offset;
2675 spin_unlock_irqrestore(&d->lock, flags);
2676 return;
2677 }
2678
2679 if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2680 == d->buf_size) {
2681 /* Other part of packet not written yet.
2682 * this should never happen I think
2683 * anyway we'll get it on the next call. */
2684 PRINT(KERN_INFO,
2685 "Got only half a packet!");
2686 d->buf_ind = idx;
2687 d->buf_offset = offset;
2688 spin_unlock_irqrestore(&d->lock, flags);
2689 return;
2690 }
2691
2692 split_left = length;
2693 split_ptr = (char *)d->spb;
2694 memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2695 split_left -= d->buf_size-offset;
2696 split_ptr += d->buf_size-offset;
2697 insert_dma_buffer(d, idx);
2698 idx = (idx+1) % d->num_desc;
2699 buf_ptr = d->buf_cpu[idx];
2700 offset=0;
2701
2702 while (split_left >= d->buf_size) {
2703 memcpy(split_ptr,buf_ptr,d->buf_size);
2704 split_ptr += d->buf_size;
2705 split_left -= d->buf_size;
2706 insert_dma_buffer(d, idx);
2707 idx = (idx+1) % d->num_desc;
2708 buf_ptr = d->buf_cpu[idx];
2709 }
2710
2711 if (split_left > 0) {
2712 memcpy(split_ptr, buf_ptr, split_left);
2713 offset = split_left;
2714 buf_ptr += offset/4;
2715 }
2716 } else {
2717 DBGMSG("Single packet rcv'd");
2718 memcpy(d->spb, buf_ptr, length);
2719 offset += length;
2720 buf_ptr += length/4;
2721 if (offset==d->buf_size) {
2722 insert_dma_buffer(d, idx);
2723 idx = (idx+1) % d->num_desc;
2724 buf_ptr = d->buf_cpu[idx];
2725 offset=0;
2726 }
2727 }
2728
2729 /* We get one phy packet to the async descriptor for each
2730 * bus reset. We always ignore it. */
2731 if (tcode != OHCI1394_TCODE_PHY) {
2732 if (!ohci->no_swap_incoming)
2733 header_le32_to_cpu(d->spb, tcode);
2734 DBGMSG("Packet received from node"
2735 " %d ack=0x%02X spd=%d tcode=0x%X"
2736 " length=%d ctx=%d tlabel=%d",
2737 (d->spb[1]>>16)&0x3f,
2738 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2739 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2740 tcode, length, d->ctx,
2741 (d->spb[0]>>10)&0x3f);
2742
2743 ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2744 == 0x11) ? 1 : 0;
2745
2746 hpsb_packet_received(ohci->host, d->spb,
2747 length-4, ack);
2748 }
2749 #ifdef OHCI1394_DEBUG
2750 else
2751 PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2752 d->ctx);
2753 #endif
2754
2755 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2756
2757 bytes_left = d->buf_size - rescount - offset;
2758
2759 }
2760
2761 d->buf_ind = idx;
2762 d->buf_offset = offset;
2763
2764 spin_unlock_irqrestore(&d->lock, flags);
2765 }
2766
2767 /* Bottom half that processes sent packets */
2768 static void dma_trm_tasklet (unsigned long data)
2769 {
2770 struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2771 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2772 struct hpsb_packet *packet, *ptmp;
2773 unsigned long flags;
2774 u32 status, ack;
2775 size_t datasize;
2776
2777 spin_lock_irqsave(&d->lock, flags);
2778
2779 list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2780 datasize = packet->data_size;
2781 if (datasize && packet->type != hpsb_raw)
2782 status = le32_to_cpu(
2783 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2784 else
2785 status = le32_to_cpu(
2786 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2787
2788 if (status == 0)
2789 /* this packet hasn't been sent yet*/
2790 break;
2791
2792 #ifdef OHCI1394_DEBUG
2793 if (datasize)
2794 if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2795 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2796 "ack=0x%X spd=%d dataLength=%d ctx=%d",
2797 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2798 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2799 status&0x1f, (status>>5)&0x3,
2800 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2801 d->ctx);
2802 else
2803 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2804 "%d ack=0x%X spd=%d dataLength=%d ctx=%d",
2805 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2806 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2807 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2808 status&0x1f, (status>>5)&0x3,
2809 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2810 d->ctx);
2811 else
2812 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2813 "%d ack=0x%X spd=%d data=0x%08X ctx=%d",
2814 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2815 >>16)&0x3f,
2816 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2817 >>4)&0xf,
2818 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2819 >>10)&0x3f,
2820 status&0x1f, (status>>5)&0x3,
2821 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2822 d->ctx);
2823 #endif
2824
2825 if (status & 0x10) {
2826 ack = status & 0xf;
2827 } else {
2828 switch (status & 0x1f) {
2829 case EVT_NO_STATUS: /* that should never happen */
2830 case EVT_RESERVED_A: /* that should never happen */
2831 case EVT_LONG_PACKET: /* that should never happen */
2832 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2833 ack = ACKX_SEND_ERROR;
2834 break;
2835 case EVT_MISSING_ACK:
2836 ack = ACKX_TIMEOUT;
2837 break;
2838 case EVT_UNDERRUN:
2839 ack = ACKX_SEND_ERROR;
2840 break;
2841 case EVT_OVERRUN: /* that should never happen */
2842 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2843 ack = ACKX_SEND_ERROR;
2844 break;
2845 case EVT_DESCRIPTOR_READ:
2846 case EVT_DATA_READ:
2847 case EVT_DATA_WRITE:
2848 ack = ACKX_SEND_ERROR;
2849 break;
2850 case EVT_BUS_RESET: /* that should never happen */
2851 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2852 ack = ACKX_SEND_ERROR;
2853 break;
2854 case EVT_TIMEOUT:
2855 ack = ACKX_TIMEOUT;
2856 break;
2857 case EVT_TCODE_ERR:
2858 ack = ACKX_SEND_ERROR;
2859 break;
2860 case EVT_RESERVED_B: /* that should never happen */
2861 case EVT_RESERVED_C: /* that should never happen */
2862 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2863 ack = ACKX_SEND_ERROR;
2864 break;
2865 case EVT_UNKNOWN:
2866 case EVT_FLUSHED:
2867 ack = ACKX_SEND_ERROR;
2868 break;
2869 default:
2870 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2871 ack = ACKX_SEND_ERROR;
2872 BUG();
2873 }
2874 }
2875
2876 list_del_init(&packet->driver_list);
2877 hpsb_packet_sent(ohci->host, packet, ack);
2878
2879 if (datasize) {
2880 pci_unmap_single(ohci->dev,
2881 cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2882 datasize, PCI_DMA_TODEVICE);
2883 OHCI_DMA_FREE("single Xmit data packet");
2884 }
2885
2886 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2887 d->free_prgs++;
2888 }
2889
2890 dma_trm_flush(ohci, d);
2891
2892 spin_unlock_irqrestore(&d->lock, flags);
2893 }
2894
2895 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2896 {
2897 if (d->ctrlClear) {
2898 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2899
2900 if (d->type == DMA_CTX_ISO) {
2901 /* disable interrupts */
2902 reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2903 ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2904 } else {
2905 tasklet_kill(&d->task);
2906 }
2907 }
2908 }
2909
2910
2911 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2912 {
2913 int i;
2914 struct ti_ohci *ohci = d->ohci;
2915
2916 if (ohci == NULL)
2917 return;
2918
2919 DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2920
2921 if (d->buf_cpu) {
2922 for (i=0; i<d->num_desc; i++)
2923 if (d->buf_cpu[i] && d->buf_bus[i]) {
2924 pci_free_consistent(
2925 ohci->dev, d->buf_size,
2926 d->buf_cpu[i], d->buf_bus[i]);
2927 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2928 }
2929 kfree(d->buf_cpu);
2930 kfree(d->buf_bus);
2931 }
2932 if (d->prg_cpu) {
2933 for (i=0; i<d->num_desc; i++)
2934 if (d->prg_cpu[i] && d->prg_bus[i]) {
2935 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2936 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2937 }
2938 pci_pool_destroy(d->prg_pool);
2939 OHCI_DMA_FREE("dma_rcv prg pool");
2940 kfree(d->prg_cpu);
2941 kfree(d->prg_bus);
2942 }
2943 kfree(d->spb);
2944
2945 /* Mark this context as freed. */
2946 d->ohci = NULL;
2947 }
2948
2949 static int
2950 alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2951 enum context_type type, int ctx, int num_desc,
2952 int buf_size, int split_buf_size, int context_base)
2953 {
2954 int i, len;
2955 static int num_allocs;
2956 static char pool_name[20];
2957
2958 d->ohci = ohci;
2959 d->type = type;
2960 d->ctx = ctx;
2961
2962 d->num_desc = num_desc;
2963 d->buf_size = buf_size;
2964 d->split_buf_size = split_buf_size;
2965
2966 d->ctrlSet = 0;
2967 d->ctrlClear = 0;
2968 d->cmdPtr = 0;
2969
2970 d->buf_cpu = kzalloc(d->num_desc * sizeof(*d->buf_cpu), GFP_ATOMIC);
2971 d->buf_bus = kzalloc(d->num_desc * sizeof(*d->buf_bus), GFP_ATOMIC);
2972
2973 if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2974 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2975 free_dma_rcv_ctx(d);
2976 return -ENOMEM;
2977 }
2978
2979 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_ATOMIC);
2980 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_ATOMIC);
2981
2982 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2983 PRINT(KERN_ERR, "Failed to allocate dma prg");
2984 free_dma_rcv_ctx(d);
2985 return -ENOMEM;
2986 }
2987
2988 d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2989
2990 if (d->spb == NULL) {
2991 PRINT(KERN_ERR, "Failed to allocate split buffer");
2992 free_dma_rcv_ctx(d);
2993 return -ENOMEM;
2994 }
2995
2996 len = sprintf(pool_name, "ohci1394_rcv_prg");
2997 sprintf(pool_name+len, "%d", num_allocs);
2998 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
2999 sizeof(struct dma_cmd), 4, 0);
3000 if(d->prg_pool == NULL)
3001 {
3002 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3003 free_dma_rcv_ctx(d);
3004 return -ENOMEM;
3005 }
3006 num_allocs++;
3007
3008 OHCI_DMA_ALLOC("dma_rcv prg pool");
3009
3010 for (i=0; i<d->num_desc; i++) {
3011 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
3012 d->buf_size,
3013 d->buf_bus+i);
3014 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
3015
3016 if (d->buf_cpu[i] != NULL) {
3017 memset(d->buf_cpu[i], 0, d->buf_size);
3018 } else {
3019 PRINT(KERN_ERR,
3020 "Failed to allocate dma buffer");
3021 free_dma_rcv_ctx(d);
3022 return -ENOMEM;
3023 }
3024
3025 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3026 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
3027
3028 if (d->prg_cpu[i] != NULL) {
3029 memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
3030 } else {
3031 PRINT(KERN_ERR,
3032 "Failed to allocate dma prg");
3033 free_dma_rcv_ctx(d);
3034 return -ENOMEM;
3035 }
3036 }
3037
3038 spin_lock_init(&d->lock);
3039
3040 if (type == DMA_CTX_ISO) {
3041 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3042 OHCI_ISO_MULTICHANNEL_RECEIVE,
3043 dma_rcv_tasklet, (unsigned long) d);
3044 } else {
3045 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3046 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3047 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3048
3049 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3050 }
3051
3052 return 0;
3053 }
3054
3055 static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3056 {
3057 int i;
3058 struct ti_ohci *ohci = d->ohci;
3059
3060 if (ohci == NULL)
3061 return;
3062
3063 DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3064
3065 if (d->prg_cpu) {
3066 for (i=0; i<d->num_desc; i++)
3067 if (d->prg_cpu[i] && d->prg_bus[i]) {
3068 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3069 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3070 }
3071 pci_pool_destroy(d->prg_pool);
3072 OHCI_DMA_FREE("dma_trm prg pool");
3073 kfree(d->prg_cpu);
3074 kfree(d->prg_bus);
3075 }
3076
3077 /* Mark this context as freed. */
3078 d->ohci = NULL;
3079 }
3080
3081 static int
3082 alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3083 enum context_type type, int ctx, int num_desc,
3084 int context_base)
3085 {
3086 int i, len;
3087 static char pool_name[20];
3088 static int num_allocs=0;
3089
3090 d->ohci = ohci;
3091 d->type = type;
3092 d->ctx = ctx;
3093 d->num_desc = num_desc;
3094 d->ctrlSet = 0;
3095 d->ctrlClear = 0;
3096 d->cmdPtr = 0;
3097
3098 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_KERNEL);
3099 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_KERNEL);
3100
3101 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3102 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3103 free_dma_trm_ctx(d);
3104 return -ENOMEM;
3105 }
3106
3107 len = sprintf(pool_name, "ohci1394_trm_prg");
3108 sprintf(pool_name+len, "%d", num_allocs);
3109 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3110 sizeof(struct at_dma_prg), 4, 0);
3111 if (d->prg_pool == NULL) {
3112 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3113 free_dma_trm_ctx(d);
3114 return -ENOMEM;
3115 }
3116 num_allocs++;
3117
3118 OHCI_DMA_ALLOC("dma_rcv prg pool");
3119
3120 for (i = 0; i < d->num_desc; i++) {
3121 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, SLAB_KERNEL, d->prg_bus+i);
3122 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3123
3124 if (d->prg_cpu[i] != NULL) {
3125 memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3126 } else {
3127 PRINT(KERN_ERR,
3128 "Failed to allocate at dma prg");
3129 free_dma_trm_ctx(d);
3130 return -ENOMEM;
3131 }
3132 }
3133
3134 spin_lock_init(&d->lock);
3135
3136 /* initialize tasklet */
3137 if (type == DMA_CTX_ISO) {
3138 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3139 dma_trm_tasklet, (unsigned long) d);
3140 if (ohci1394_register_iso_tasklet(ohci,
3141 &ohci->it_legacy_tasklet) < 0) {
3142 PRINT(KERN_ERR, "No IT DMA context available");
3143 free_dma_trm_ctx(d);
3144 return -EBUSY;
3145 }
3146
3147 /* IT can be assigned to any context by register_iso_tasklet */
3148 d->ctx = ohci->it_legacy_tasklet.context;
3149 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3150 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3151 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3152 } else {
3153 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3154 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3155 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3156 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3157 }
3158
3159 return 0;
3160 }
3161
3162 static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3163 {
3164 struct ti_ohci *ohci = host->hostdata;
3165
3166 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3167 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3168
3169 memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3170 }
3171
3172
3173 static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3174 quadlet_t data, quadlet_t compare)
3175 {
3176 struct ti_ohci *ohci = host->hostdata;
3177 int i;
3178
3179 reg_write(ohci, OHCI1394_CSRData, data);
3180 reg_write(ohci, OHCI1394_CSRCompareData, compare);
3181 reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3182
3183 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3184 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3185 break;
3186
3187 mdelay(1);
3188 }
3189
3190 return reg_read(ohci, OHCI1394_CSRData);
3191 }
3192
3193 static struct hpsb_host_driver ohci1394_driver = {
3194 .owner = THIS_MODULE,
3195 .name = OHCI1394_DRIVER_NAME,
3196 .set_hw_config_rom = ohci_set_hw_config_rom,
3197 .transmit_packet = ohci_transmit,
3198 .devctl = ohci_devctl,
3199 .isoctl = ohci_isoctl,
3200 .hw_csr_reg = ohci_hw_csr_reg,
3201 };
3202
3203 /***********************************
3204 * PCI Driver Interface functions *
3205 ***********************************/
3206
3207 #define FAIL(err, fmt, args...) \
3208 do { \
3209 PRINT_G(KERN_ERR, fmt , ## args); \
3210 ohci1394_pci_remove(dev); \
3211 return err; \
3212 } while (0)
3213
3214 static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3215 const struct pci_device_id *ent)
3216 {
3217 struct hpsb_host *host;
3218 struct ti_ohci *ohci; /* shortcut to currently handled device */
3219 resource_size_t ohci_base;
3220
3221 if (pci_enable_device(dev))
3222 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3223 pci_set_master(dev);
3224
3225 host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3226 if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3227
3228 ohci = host->hostdata;
3229 ohci->dev = dev;
3230 ohci->host = host;
3231 ohci->init_state = OHCI_INIT_ALLOC_HOST;
3232 host->pdev = dev;
3233 pci_set_drvdata(dev, ohci);
3234
3235 /* We don't want hardware swapping */
3236 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3237
3238 /* Some oddball Apple controllers do not order the selfid
3239 * properly, so we make up for it here. */
3240 #ifndef __LITTLE_ENDIAN
3241 /* XXX: Need a better way to check this. I'm wondering if we can
3242 * read the values of the OHCI1394_PCI_HCI_Control and the
3243 * noByteSwapData registers to see if they were not cleared to
3244 * zero. Should this work? Obviously it's not defined what these
3245 * registers will read when they aren't supported. Bleh! */
3246 if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3247 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3248 ohci->no_swap_incoming = 1;
3249 ohci->selfid_swap = 0;
3250 } else
3251 ohci->selfid_swap = 1;
3252 #endif
3253
3254
3255 #ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3256 #define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3257 #endif
3258
3259 /* These chipsets require a bit of extra care when checking after
3260 * a busreset. */
3261 if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3262 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3263 (dev->vendor == PCI_VENDOR_ID_NVIDIA &&
3264 dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3265 ohci->check_busreset = 1;
3266
3267 /* We hardwire the MMIO length, since some CardBus adaptors
3268 * fail to report the right length. Anyway, the ohci spec
3269 * clearly says it's 2kb, so this shouldn't be a problem. */
3270 ohci_base = pci_resource_start(dev, 0);
3271 if (pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE)
3272 PRINT(KERN_WARNING, "PCI resource length of 0x%llx too small!",
3273 (unsigned long long)pci_resource_len(dev, 0));
3274
3275 /* Seems PCMCIA handles this internally. Not sure why. Seems
3276 * pretty bogus to force a driver to special case this. */
3277 #ifndef PCMCIA
3278 if (!request_mem_region (ohci_base, OHCI1394_REGISTER_SIZE, OHCI1394_DRIVER_NAME))
3279 FAIL(-ENOMEM, "MMIO resource (0x%llx - 0x%llx) unavailable",
3280 (unsigned long long)ohci_base,
3281 (unsigned long long)ohci_base + OHCI1394_REGISTER_SIZE);
3282 #endif
3283 ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3284
3285 ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3286 if (ohci->registers == NULL)
3287 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3288 ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3289 DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3290
3291 /* csr_config rom allocation */
3292 ohci->csr_config_rom_cpu =
3293 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3294 &ohci->csr_config_rom_bus);
3295 OHCI_DMA_ALLOC("consistent csr_config_rom");
3296 if (ohci->csr_config_rom_cpu == NULL)
3297 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3298 ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3299
3300 /* self-id dma buffer allocation */
3301 ohci->selfid_buf_cpu =
3302 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3303 &ohci->selfid_buf_bus);
3304 OHCI_DMA_ALLOC("consistent selfid_buf");
3305
3306 if (ohci->selfid_buf_cpu == NULL)
3307 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3308 ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3309
3310 if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3311 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3312 "8Kb boundary... may cause problems on some CXD3222 chip",
3313 ohci->selfid_buf_cpu);
3314
3315 /* No self-id errors at startup */
3316 ohci->self_id_errors = 0;
3317
3318 ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3319 /* AR DMA request context allocation */
3320 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3321 DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3322 AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3323 OHCI1394_AsReqRcvContextBase) < 0)
3324 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3325
3326 /* AR DMA response context allocation */
3327 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3328 DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3329 AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3330 OHCI1394_AsRspRcvContextBase) < 0)
3331 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3332
3333 /* AT DMA request context */
3334 if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3335 DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3336 OHCI1394_AsReqTrContextBase) < 0)
3337 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3338
3339 /* AT DMA response context */
3340 if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3341 DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3342 OHCI1394_AsRspTrContextBase) < 0)
3343 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3344
3345 /* Start off with a soft reset, to clear everything to a sane
3346 * state. */
3347 ohci_soft_reset(ohci);
3348
3349 /* Now enable LPS, which we need in order to start accessing
3350 * most of the registers. In fact, on some cards (ALI M5251),
3351 * accessing registers in the SClk domain without LPS enabled
3352 * will lock up the machine. Wait 50msec to make sure we have
3353 * full link enabled. */
3354 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3355
3356 /* Disable and clear interrupts */
3357 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3358 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3359
3360 mdelay(50);
3361
3362 /* Determine the number of available IR and IT contexts. */
3363 ohci->nb_iso_rcv_ctx =
3364 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
3365 ohci->nb_iso_xmit_ctx =
3366 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
3367
3368 /* Set the usage bits for non-existent contexts so they can't
3369 * be allocated */
3370 ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3371 ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3372
3373 INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3374 spin_lock_init(&ohci->iso_tasklet_list_lock);
3375 ohci->ISO_channel_usage = 0;
3376 spin_lock_init(&ohci->IR_channel_lock);
3377
3378 /* Allocate the IR DMA context right here so we don't have
3379 * to do it in interrupt path - note that this doesn't
3380 * waste much memory and avoids the jugglery required to
3381 * allocate it in IRQ path. */
3382 if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3383 DMA_CTX_ISO, 0, IR_NUM_DESC,
3384 IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3385 OHCI1394_IsoRcvContextBase) < 0) {
3386 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3387 }
3388
3389 /* We hopefully don't have to pre-allocate IT DMA like we did
3390 * for IR DMA above. Allocate it on-demand and mark inactive. */
3391 ohci->it_legacy_context.ohci = NULL;
3392 spin_lock_init(&ohci->event_lock);
3393
3394 /*
3395 * interrupts are disabled, all right, but... due to IRQF_SHARED we
3396 * might get called anyway. We'll see no event, of course, but
3397 * we need to get to that "no event", so enough should be initialized
3398 * by that point.
3399 */
3400 if (request_irq(dev->irq, ohci_irq_handler, IRQF_SHARED,
3401 OHCI1394_DRIVER_NAME, ohci))
3402 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3403
3404 ohci->init_state = OHCI_INIT_HAVE_IRQ;
3405 ohci_initialize(ohci);
3406
3407 /* Set certain csr values */
3408 host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3409 host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3410 host->csr.cyc_clk_acc = 100; /* how do we determine clk accuracy? */
3411 host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3412 host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3413
3414 if (phys_dma) {
3415 host->low_addr_space =
3416 (u64) reg_read(ohci, OHCI1394_PhyUpperBound) << 16;
3417 if (!host->low_addr_space)
3418 host->low_addr_space = OHCI1394_PHYS_UPPER_BOUND_FIXED;
3419 }
3420 host->middle_addr_space = OHCI1394_MIDDLE_ADDRESS_SPACE;
3421
3422 /* Tell the highlevel this host is ready */
3423 if (hpsb_add_host(host))
3424 FAIL(-ENOMEM, "Failed to register host with highlevel");
3425
3426 ohci->init_state = OHCI_INIT_DONE;
3427
3428 return 0;
3429 #undef FAIL
3430 }
3431
3432 static void ohci1394_pci_remove(struct pci_dev *pdev)
3433 {
3434 struct ti_ohci *ohci;
3435 struct device *dev;
3436
3437 ohci = pci_get_drvdata(pdev);
3438 if (!ohci)
3439 return;
3440
3441 dev = get_device(&ohci->host->device);
3442
3443 switch (ohci->init_state) {
3444 case OHCI_INIT_DONE:
3445 hpsb_remove_host(ohci->host);
3446
3447 /* Clear out BUS Options */
3448 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3449 reg_write(ohci, OHCI1394_BusOptions,
3450 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3451 0x00ff0000);
3452 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3453
3454 case OHCI_INIT_HAVE_IRQ:
3455 /* Clear interrupt registers */
3456 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3457 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3458 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3459 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3460 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3461 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3462
3463 /* Disable IRM Contender */
3464 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3465
3466 /* Clear link control register */
3467 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3468
3469 /* Let all other nodes know to ignore us */
3470 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3471
3472 /* Soft reset before we start - this disables
3473 * interrupts and clears linkEnable and LPS. */
3474 ohci_soft_reset(ohci);
3475 free_irq(ohci->dev->irq, ohci);
3476
3477 case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3478 /* The ohci_soft_reset() stops all DMA contexts, so we
3479 * dont need to do this. */
3480 free_dma_rcv_ctx(&ohci->ar_req_context);
3481 free_dma_rcv_ctx(&ohci->ar_resp_context);
3482 free_dma_trm_ctx(&ohci->at_req_context);
3483 free_dma_trm_ctx(&ohci->at_resp_context);
3484 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3485 free_dma_trm_ctx(&ohci->it_legacy_context);
3486
3487 case OHCI_INIT_HAVE_SELFID_BUFFER:
3488 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3489 ohci->selfid_buf_cpu,
3490 ohci->selfid_buf_bus);
3491 OHCI_DMA_FREE("consistent selfid_buf");
3492
3493 case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3494 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3495 ohci->csr_config_rom_cpu,
3496 ohci->csr_config_rom_bus);
3497 OHCI_DMA_FREE("consistent csr_config_rom");
3498
3499 case OHCI_INIT_HAVE_IOMAPPING:
3500 iounmap(ohci->registers);
3501
3502 case OHCI_INIT_HAVE_MEM_REGION:
3503 #ifndef PCMCIA
3504 release_mem_region(pci_resource_start(ohci->dev, 0),
3505 OHCI1394_REGISTER_SIZE);
3506 #endif
3507
3508 #ifdef CONFIG_PPC_PMAC
3509 /* On UniNorth, power down the cable and turn off the chip
3510 * clock when the module is removed to save power on
3511 * laptops. Turning it back ON is done by the arch code when
3512 * pci_enable_device() is called */
3513 {
3514 struct device_node* of_node;
3515
3516 of_node = pci_device_to_OF_node(ohci->dev);
3517 if (of_node) {
3518 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3519 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, of_node, 0, 0);
3520 }
3521 }
3522 #endif /* CONFIG_PPC_PMAC */
3523
3524 case OHCI_INIT_ALLOC_HOST:
3525 pci_set_drvdata(ohci->dev, NULL);
3526 }
3527
3528 if (dev)
3529 put_device(dev);
3530 }
3531
3532 #ifdef CONFIG_PM
3533 static int ohci1394_pci_resume (struct pci_dev *pdev)
3534 {
3535 /* PowerMac resume code comes first */
3536 #ifdef CONFIG_PPC_PMAC
3537 if (machine_is(powermac)) {
3538 struct device_node *of_node;
3539
3540 /* Re-enable 1394 */
3541 of_node = pci_device_to_OF_node (pdev);
3542 if (of_node)
3543 pmac_call_feature (PMAC_FTR_1394_ENABLE, of_node, 0, 1);
3544 }
3545 #endif /* CONFIG_PPC_PMAC */
3546
3547 pci_set_power_state(pdev, PCI_D0);
3548 pci_restore_state(pdev);
3549 return pci_enable_device(pdev);
3550 }
3551
3552 static int ohci1394_pci_suspend (struct pci_dev *pdev, pm_message_t state)
3553 {
3554 int err;
3555
3556 err = pci_save_state(pdev);
3557 if (err)
3558 goto out;
3559 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
3560 if (err)
3561 goto out;
3562
3563 /* PowerMac suspend code comes last */
3564 #ifdef CONFIG_PPC_PMAC
3565 if (machine_is(powermac)) {
3566 struct device_node *of_node;
3567
3568 /* Disable 1394 */
3569 of_node = pci_device_to_OF_node (pdev);
3570 if (of_node)
3571 pmac_call_feature(PMAC_FTR_1394_ENABLE, of_node, 0, 0);
3572 }
3573 #endif /* CONFIG_PPC_PMAC */
3574 out:
3575 return err;
3576 }
3577 #endif /* CONFIG_PM */
3578
3579 #define PCI_CLASS_FIREWIRE_OHCI ((PCI_CLASS_SERIAL_FIREWIRE << 8) | 0x10)
3580
3581 static struct pci_device_id ohci1394_pci_tbl[] = {
3582 {
3583 .class = PCI_CLASS_FIREWIRE_OHCI,
3584 .class_mask = PCI_ANY_ID,
3585 .vendor = PCI_ANY_ID,
3586 .device = PCI_ANY_ID,
3587 .subvendor = PCI_ANY_ID,
3588 .subdevice = PCI_ANY_ID,
3589 },
3590 { 0, },
3591 };
3592
3593 MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3594
3595 static struct pci_driver ohci1394_pci_driver = {
3596 .name = OHCI1394_DRIVER_NAME,
3597 .id_table = ohci1394_pci_tbl,
3598 .probe = ohci1394_pci_probe,
3599 .remove = ohci1394_pci_remove,
3600 #ifdef CONFIG_PM
3601 .resume = ohci1394_pci_resume,
3602 .suspend = ohci1394_pci_suspend,
3603 #endif
3604 };
3605
3606 /***********************************
3607 * OHCI1394 Video Interface *
3608 ***********************************/
3609
3610 /* essentially the only purpose of this code is to allow another
3611 module to hook into ohci's interrupt handler */
3612
3613 int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3614 {
3615 int i=0;
3616
3617 /* stop the channel program if it's still running */
3618 reg_write(ohci, reg, 0x8000);
3619
3620 /* Wait until it effectively stops */
3621 while (reg_read(ohci, reg) & 0x400) {
3622 i++;
3623 if (i>5000) {
3624 PRINT(KERN_ERR,
3625 "Runaway loop while stopping context: %s...", msg ? msg : "");
3626 return 1;
3627 }
3628
3629 mb();
3630 udelay(10);
3631 }
3632 if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3633 return 0;
3634 }
3635
3636 void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3637 void (*func)(unsigned long), unsigned long data)
3638 {
3639 tasklet_init(&tasklet->tasklet, func, data);
3640 tasklet->type = type;
3641 /* We init the tasklet->link field, so we can list_del() it
3642 * without worrying whether it was added to the list or not. */
3643 INIT_LIST_HEAD(&tasklet->link);
3644 }
3645
3646 int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3647 struct ohci1394_iso_tasklet *tasklet)
3648 {
3649 unsigned long flags, *usage;
3650 int n, i, r = -EBUSY;
3651
3652 if (tasklet->type == OHCI_ISO_TRANSMIT) {
3653 n = ohci->nb_iso_xmit_ctx;
3654 usage = &ohci->it_ctx_usage;
3655 }
3656 else {
3657 n = ohci->nb_iso_rcv_ctx;
3658 usage = &ohci->ir_ctx_usage;
3659
3660 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3661 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3662 if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3663 return r;
3664 }
3665 }
3666 }
3667
3668 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3669
3670 for (i = 0; i < n; i++)
3671 if (!test_and_set_bit(i, usage)) {
3672 tasklet->context = i;
3673 list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3674 r = 0;
3675 break;
3676 }
3677
3678 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3679
3680 return r;
3681 }
3682
3683 void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3684 struct ohci1394_iso_tasklet *tasklet)
3685 {
3686 unsigned long flags;
3687
3688 tasklet_kill(&tasklet->tasklet);
3689
3690 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3691
3692 if (tasklet->type == OHCI_ISO_TRANSMIT)
3693 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3694 else {
3695 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3696
3697 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3698 clear_bit(0, &ohci->ir_multichannel_used);
3699 }
3700 }
3701
3702 list_del(&tasklet->link);
3703
3704 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3705 }
3706
3707 EXPORT_SYMBOL(ohci1394_stop_context);
3708 EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3709 EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3710 EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3711
3712 /***********************************
3713 * General module initialization *
3714 ***********************************/
3715
3716 MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3717 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3718 MODULE_LICENSE("GPL");
3719
3720 static void __exit ohci1394_cleanup (void)
3721 {
3722 pci_unregister_driver(&ohci1394_pci_driver);
3723 }
3724
3725 static int __init ohci1394_init(void)
3726 {
3727 return pci_register_driver(&ohci1394_pci_driver);
3728 }
3729
3730 /* Register before most other device drivers.
3731 * Useful for remote debugging via physical DMA, e.g. using firescope. */
3732 fs_initcall(ohci1394_init);
3733 module_exit(ohci1394_cleanup);