Pull throttle into release branch
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ieee1394 / ieee1394_transactions.c
1 /*
2 * IEEE 1394 for Linux
3 *
4 * Transaction support.
5 *
6 * Copyright (C) 1999 Andreas E. Bombe
7 *
8 * This code is licensed under the GPL. See the file COPYING in the root
9 * directory of the kernel sources for details.
10 */
11
12 #include <linux/bitops.h>
13 #include <linux/compiler.h>
14 #include <linux/hardirq.h>
15 #include <linux/spinlock.h>
16 #include <linux/string.h>
17 #include <linux/sched.h> /* because linux/wait.h is broken if CONFIG_SMP=n */
18 #include <linux/wait.h>
19
20 #include <asm/bug.h>
21 #include <asm/errno.h>
22 #include <asm/system.h>
23
24 #include "ieee1394.h"
25 #include "ieee1394_types.h"
26 #include "hosts.h"
27 #include "ieee1394_core.h"
28 #include "ieee1394_transactions.h"
29
30 #define PREP_ASYNC_HEAD_ADDRESS(tc) \
31 packet->tcode = tc; \
32 packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
33 | (1 << 8) | (tc << 4); \
34 packet->header[1] = (packet->host->node_id << 16) | (addr >> 32); \
35 packet->header[2] = addr & 0xffffffff
36
37 #ifndef HPSB_DEBUG_TLABELS
38 static
39 #endif
40 DEFINE_SPINLOCK(hpsb_tlabel_lock);
41
42 static DECLARE_WAIT_QUEUE_HEAD(tlabel_wq);
43
44 static void fill_async_readquad(struct hpsb_packet *packet, u64 addr)
45 {
46 PREP_ASYNC_HEAD_ADDRESS(TCODE_READQ);
47 packet->header_size = 12;
48 packet->data_size = 0;
49 packet->expect_response = 1;
50 }
51
52 static void fill_async_readblock(struct hpsb_packet *packet, u64 addr,
53 int length)
54 {
55 PREP_ASYNC_HEAD_ADDRESS(TCODE_READB);
56 packet->header[3] = length << 16;
57 packet->header_size = 16;
58 packet->data_size = 0;
59 packet->expect_response = 1;
60 }
61
62 static void fill_async_writequad(struct hpsb_packet *packet, u64 addr,
63 quadlet_t data)
64 {
65 PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEQ);
66 packet->header[3] = data;
67 packet->header_size = 16;
68 packet->data_size = 0;
69 packet->expect_response = 1;
70 }
71
72 static void fill_async_writeblock(struct hpsb_packet *packet, u64 addr,
73 int length)
74 {
75 PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEB);
76 packet->header[3] = length << 16;
77 packet->header_size = 16;
78 packet->expect_response = 1;
79 packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
80 }
81
82 static void fill_async_lock(struct hpsb_packet *packet, u64 addr, int extcode,
83 int length)
84 {
85 PREP_ASYNC_HEAD_ADDRESS(TCODE_LOCK_REQUEST);
86 packet->header[3] = (length << 16) | extcode;
87 packet->header_size = 16;
88 packet->data_size = length;
89 packet->expect_response = 1;
90 }
91
92 static void fill_phy_packet(struct hpsb_packet *packet, quadlet_t data)
93 {
94 packet->header[0] = data;
95 packet->header[1] = ~data;
96 packet->header_size = 8;
97 packet->data_size = 0;
98 packet->expect_response = 0;
99 packet->type = hpsb_raw; /* No CRC added */
100 packet->speed_code = IEEE1394_SPEED_100; /* Force speed to be 100Mbps */
101 }
102
103 static void fill_async_stream_packet(struct hpsb_packet *packet, int length,
104 int channel, int tag, int sync)
105 {
106 packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
107 | (TCODE_STREAM_DATA << 4) | sync;
108
109 packet->header_size = 4;
110 packet->data_size = length;
111 packet->type = hpsb_async;
112 packet->tcode = TCODE_ISO_DATA;
113 }
114
115 /* same as hpsb_get_tlabel, except that it returns immediately */
116 static int hpsb_get_tlabel_atomic(struct hpsb_packet *packet)
117 {
118 unsigned long flags, *tp;
119 u8 *next;
120 int tlabel, n = NODEID_TO_NODE(packet->node_id);
121
122 /* Broadcast transactions are complete once the request has been sent.
123 * Use the same transaction label for all broadcast transactions. */
124 if (unlikely(n == ALL_NODES)) {
125 packet->tlabel = 0;
126 return 0;
127 }
128 tp = packet->host->tl_pool[n].map;
129 next = &packet->host->next_tl[n];
130
131 spin_lock_irqsave(&hpsb_tlabel_lock, flags);
132 tlabel = find_next_zero_bit(tp, 64, *next);
133 if (tlabel > 63)
134 tlabel = find_first_zero_bit(tp, 64);
135 if (tlabel > 63) {
136 spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
137 return -EAGAIN;
138 }
139 __set_bit(tlabel, tp);
140 *next = (tlabel + 1) & 63;
141 spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
142
143 packet->tlabel = tlabel;
144 return 0;
145 }
146
147 /**
148 * hpsb_get_tlabel - allocate a transaction label
149 * @packet: the packet whose tlabel and tl_pool we set
150 *
151 * Every asynchronous transaction on the 1394 bus needs a transaction
152 * label to match the response to the request. This label has to be
153 * different from any other transaction label in an outstanding request to
154 * the same node to make matching possible without ambiguity.
155 *
156 * There are 64 different tlabels, so an allocated tlabel has to be freed
157 * with hpsb_free_tlabel() after the transaction is complete (unless it's
158 * reused again for the same target node).
159 *
160 * Return value: Zero on success, otherwise non-zero. A non-zero return
161 * generally means there are no available tlabels. If this is called out
162 * of interrupt or atomic context, then it will sleep until can return a
163 * tlabel or a signal is received.
164 */
165 int hpsb_get_tlabel(struct hpsb_packet *packet)
166 {
167 if (irqs_disabled() || in_atomic())
168 return hpsb_get_tlabel_atomic(packet);
169
170 /* NB: The macro wait_event_interruptible() is called with a condition
171 * argument with side effect. This is only possible because the side
172 * effect does not occur until the condition became true, and
173 * wait_event_interruptible() won't evaluate the condition again after
174 * that. */
175 return wait_event_interruptible(tlabel_wq,
176 !hpsb_get_tlabel_atomic(packet));
177 }
178
179 /**
180 * hpsb_free_tlabel - free an allocated transaction label
181 * @packet: packet whose tlabel and tl_pool needs to be cleared
182 *
183 * Frees the transaction label allocated with hpsb_get_tlabel(). The
184 * tlabel has to be freed after the transaction is complete (i.e. response
185 * was received for a split transaction or packet was sent for a unified
186 * transaction).
187 *
188 * A tlabel must not be freed twice.
189 */
190 void hpsb_free_tlabel(struct hpsb_packet *packet)
191 {
192 unsigned long flags, *tp;
193 int tlabel, n = NODEID_TO_NODE(packet->node_id);
194
195 if (unlikely(n == ALL_NODES))
196 return;
197 tp = packet->host->tl_pool[n].map;
198 tlabel = packet->tlabel;
199 BUG_ON(tlabel > 63 || tlabel < 0);
200
201 spin_lock_irqsave(&hpsb_tlabel_lock, flags);
202 BUG_ON(!__test_and_clear_bit(tlabel, tp));
203 spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
204
205 wake_up_interruptible(&tlabel_wq);
206 }
207
208 /**
209 * hpsb_packet_success - Make sense of the ack and reply codes
210 *
211 * Make sense of the ack and reply codes and return more convenient error codes:
212 * 0 = success. -%EBUSY = node is busy, try again. -%EAGAIN = error which can
213 * probably resolved by retry. -%EREMOTEIO = node suffers from an internal
214 * error. -%EACCES = this transaction is not allowed on requested address.
215 * -%EINVAL = invalid address at node.
216 */
217 int hpsb_packet_success(struct hpsb_packet *packet)
218 {
219 switch (packet->ack_code) {
220 case ACK_PENDING:
221 switch ((packet->header[1] >> 12) & 0xf) {
222 case RCODE_COMPLETE:
223 return 0;
224 case RCODE_CONFLICT_ERROR:
225 return -EAGAIN;
226 case RCODE_DATA_ERROR:
227 return -EREMOTEIO;
228 case RCODE_TYPE_ERROR:
229 return -EACCES;
230 case RCODE_ADDRESS_ERROR:
231 return -EINVAL;
232 default:
233 HPSB_ERR("received reserved rcode %d from node %d",
234 (packet->header[1] >> 12) & 0xf,
235 packet->node_id);
236 return -EAGAIN;
237 }
238 BUG();
239
240 case ACK_BUSY_X:
241 case ACK_BUSY_A:
242 case ACK_BUSY_B:
243 return -EBUSY;
244
245 case ACK_TYPE_ERROR:
246 return -EACCES;
247
248 case ACK_COMPLETE:
249 if (packet->tcode == TCODE_WRITEQ
250 || packet->tcode == TCODE_WRITEB) {
251 return 0;
252 } else {
253 HPSB_ERR("impossible ack_complete from node %d "
254 "(tcode %d)", packet->node_id, packet->tcode);
255 return -EAGAIN;
256 }
257
258 case ACK_DATA_ERROR:
259 if (packet->tcode == TCODE_WRITEB
260 || packet->tcode == TCODE_LOCK_REQUEST) {
261 return -EAGAIN;
262 } else {
263 HPSB_ERR("impossible ack_data_error from node %d "
264 "(tcode %d)", packet->node_id, packet->tcode);
265 return -EAGAIN;
266 }
267
268 case ACK_ADDRESS_ERROR:
269 return -EINVAL;
270
271 case ACK_TARDY:
272 case ACK_CONFLICT_ERROR:
273 case ACKX_NONE:
274 case ACKX_SEND_ERROR:
275 case ACKX_ABORTED:
276 case ACKX_TIMEOUT:
277 /* error while sending */
278 return -EAGAIN;
279
280 default:
281 HPSB_ERR("got invalid ack %d from node %d (tcode %d)",
282 packet->ack_code, packet->node_id, packet->tcode);
283 return -EAGAIN;
284 }
285 BUG();
286 }
287
288 struct hpsb_packet *hpsb_make_readpacket(struct hpsb_host *host, nodeid_t node,
289 u64 addr, size_t length)
290 {
291 struct hpsb_packet *packet;
292
293 if (length == 0)
294 return NULL;
295
296 packet = hpsb_alloc_packet(length);
297 if (!packet)
298 return NULL;
299
300 packet->host = host;
301 packet->node_id = node;
302
303 if (hpsb_get_tlabel(packet)) {
304 hpsb_free_packet(packet);
305 return NULL;
306 }
307
308 if (length == 4)
309 fill_async_readquad(packet, addr);
310 else
311 fill_async_readblock(packet, addr, length);
312
313 return packet;
314 }
315
316 struct hpsb_packet *hpsb_make_writepacket(struct hpsb_host *host, nodeid_t node,
317 u64 addr, quadlet_t * buffer,
318 size_t length)
319 {
320 struct hpsb_packet *packet;
321
322 if (length == 0)
323 return NULL;
324
325 packet = hpsb_alloc_packet(length);
326 if (!packet)
327 return NULL;
328
329 if (length % 4) { /* zero padding bytes */
330 packet->data[length >> 2] = 0;
331 }
332 packet->host = host;
333 packet->node_id = node;
334
335 if (hpsb_get_tlabel(packet)) {
336 hpsb_free_packet(packet);
337 return NULL;
338 }
339
340 if (length == 4) {
341 fill_async_writequad(packet, addr, buffer ? *buffer : 0);
342 } else {
343 fill_async_writeblock(packet, addr, length);
344 if (buffer)
345 memcpy(packet->data, buffer, length);
346 }
347
348 return packet;
349 }
350
351 struct hpsb_packet *hpsb_make_streampacket(struct hpsb_host *host, u8 * buffer,
352 int length, int channel, int tag,
353 int sync)
354 {
355 struct hpsb_packet *packet;
356
357 if (length == 0)
358 return NULL;
359
360 packet = hpsb_alloc_packet(length);
361 if (!packet)
362 return NULL;
363
364 if (length % 4) { /* zero padding bytes */
365 packet->data[length >> 2] = 0;
366 }
367 packet->host = host;
368
369 /* Because it is too difficult to determine all PHY speeds and link
370 * speeds here, we use S100... */
371 packet->speed_code = IEEE1394_SPEED_100;
372
373 /* ...and prevent hpsb_send_packet() from overriding it. */
374 packet->node_id = LOCAL_BUS | ALL_NODES;
375
376 if (hpsb_get_tlabel(packet)) {
377 hpsb_free_packet(packet);
378 return NULL;
379 }
380
381 fill_async_stream_packet(packet, length, channel, tag, sync);
382 if (buffer)
383 memcpy(packet->data, buffer, length);
384
385 return packet;
386 }
387
388 struct hpsb_packet *hpsb_make_lockpacket(struct hpsb_host *host, nodeid_t node,
389 u64 addr, int extcode,
390 quadlet_t * data, quadlet_t arg)
391 {
392 struct hpsb_packet *p;
393 u32 length;
394
395 p = hpsb_alloc_packet(8);
396 if (!p)
397 return NULL;
398
399 p->host = host;
400 p->node_id = node;
401 if (hpsb_get_tlabel(p)) {
402 hpsb_free_packet(p);
403 return NULL;
404 }
405
406 switch (extcode) {
407 case EXTCODE_FETCH_ADD:
408 case EXTCODE_LITTLE_ADD:
409 length = 4;
410 if (data)
411 p->data[0] = *data;
412 break;
413 default:
414 length = 8;
415 if (data) {
416 p->data[0] = arg;
417 p->data[1] = *data;
418 }
419 break;
420 }
421 fill_async_lock(p, addr, extcode, length);
422
423 return p;
424 }
425
426 struct hpsb_packet *hpsb_make_lock64packet(struct hpsb_host *host,
427 nodeid_t node, u64 addr, int extcode,
428 octlet_t * data, octlet_t arg)
429 {
430 struct hpsb_packet *p;
431 u32 length;
432
433 p = hpsb_alloc_packet(16);
434 if (!p)
435 return NULL;
436
437 p->host = host;
438 p->node_id = node;
439 if (hpsb_get_tlabel(p)) {
440 hpsb_free_packet(p);
441 return NULL;
442 }
443
444 switch (extcode) {
445 case EXTCODE_FETCH_ADD:
446 case EXTCODE_LITTLE_ADD:
447 length = 8;
448 if (data) {
449 p->data[0] = *data >> 32;
450 p->data[1] = *data & 0xffffffff;
451 }
452 break;
453 default:
454 length = 16;
455 if (data) {
456 p->data[0] = arg >> 32;
457 p->data[1] = arg & 0xffffffff;
458 p->data[2] = *data >> 32;
459 p->data[3] = *data & 0xffffffff;
460 }
461 break;
462 }
463 fill_async_lock(p, addr, extcode, length);
464
465 return p;
466 }
467
468 struct hpsb_packet *hpsb_make_phypacket(struct hpsb_host *host, quadlet_t data)
469 {
470 struct hpsb_packet *p;
471
472 p = hpsb_alloc_packet(0);
473 if (!p)
474 return NULL;
475
476 p->host = host;
477 fill_phy_packet(p, data);
478
479 return p;
480 }
481
482 /*
483 * FIXME - these functions should probably read from / write to user space to
484 * avoid in kernel buffers for user space callers
485 */
486
487 /**
488 * hpsb_read - generic read function
489 *
490 * Recognizes the local node ID and act accordingly. Automatically uses a
491 * quadlet read request if @length == 4 and and a block read request otherwise.
492 * It does not yet support lengths that are not a multiple of 4.
493 *
494 * You must explicitly specifiy the @generation for which the node ID is valid,
495 * to avoid sending packets to the wrong nodes when we race with a bus reset.
496 */
497 int hpsb_read(struct hpsb_host *host, nodeid_t node, unsigned int generation,
498 u64 addr, quadlet_t * buffer, size_t length)
499 {
500 struct hpsb_packet *packet;
501 int retval = 0;
502
503 if (length == 0)
504 return -EINVAL;
505
506 BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
507
508 packet = hpsb_make_readpacket(host, node, addr, length);
509
510 if (!packet) {
511 return -ENOMEM;
512 }
513
514 packet->generation = generation;
515 retval = hpsb_send_packet_and_wait(packet);
516 if (retval < 0)
517 goto hpsb_read_fail;
518
519 retval = hpsb_packet_success(packet);
520
521 if (retval == 0) {
522 if (length == 4) {
523 *buffer = packet->header[3];
524 } else {
525 memcpy(buffer, packet->data, length);
526 }
527 }
528
529 hpsb_read_fail:
530 hpsb_free_tlabel(packet);
531 hpsb_free_packet(packet);
532
533 return retval;
534 }
535
536 /**
537 * hpsb_write - generic write function
538 *
539 * Recognizes the local node ID and act accordingly. Automatically uses a
540 * quadlet write request if @length == 4 and and a block write request
541 * otherwise. It does not yet support lengths that are not a multiple of 4.
542 *
543 * You must explicitly specifiy the @generation for which the node ID is valid,
544 * to avoid sending packets to the wrong nodes when we race with a bus reset.
545 */
546 int hpsb_write(struct hpsb_host *host, nodeid_t node, unsigned int generation,
547 u64 addr, quadlet_t * buffer, size_t length)
548 {
549 struct hpsb_packet *packet;
550 int retval;
551
552 if (length == 0)
553 return -EINVAL;
554
555 BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
556
557 packet = hpsb_make_writepacket(host, node, addr, buffer, length);
558
559 if (!packet)
560 return -ENOMEM;
561
562 packet->generation = generation;
563 retval = hpsb_send_packet_and_wait(packet);
564 if (retval < 0)
565 goto hpsb_write_fail;
566
567 retval = hpsb_packet_success(packet);
568
569 hpsb_write_fail:
570 hpsb_free_tlabel(packet);
571 hpsb_free_packet(packet);
572
573 return retval;
574 }
575
576 #if 0
577
578 int hpsb_lock(struct hpsb_host *host, nodeid_t node, unsigned int generation,
579 u64 addr, int extcode, quadlet_t * data, quadlet_t arg)
580 {
581 struct hpsb_packet *packet;
582 int retval = 0;
583
584 BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
585
586 packet = hpsb_make_lockpacket(host, node, addr, extcode, data, arg);
587 if (!packet)
588 return -ENOMEM;
589
590 packet->generation = generation;
591 retval = hpsb_send_packet_and_wait(packet);
592 if (retval < 0)
593 goto hpsb_lock_fail;
594
595 retval = hpsb_packet_success(packet);
596
597 if (retval == 0) {
598 *data = packet->data[0];
599 }
600
601 hpsb_lock_fail:
602 hpsb_free_tlabel(packet);
603 hpsb_free_packet(packet);
604
605 return retval;
606 }
607
608 int hpsb_send_gasp(struct hpsb_host *host, int channel, unsigned int generation,
609 quadlet_t * buffer, size_t length, u32 specifier_id,
610 unsigned int version)
611 {
612 struct hpsb_packet *packet;
613 int retval = 0;
614 u16 specifier_id_hi = (specifier_id & 0x00ffff00) >> 8;
615 u8 specifier_id_lo = specifier_id & 0xff;
616
617 HPSB_VERBOSE("Send GASP: channel = %d, length = %Zd", channel, length);
618
619 length += 8;
620
621 packet = hpsb_make_streampacket(host, NULL, length, channel, 3, 0);
622 if (!packet)
623 return -ENOMEM;
624
625 packet->data[0] = cpu_to_be32((host->node_id << 16) | specifier_id_hi);
626 packet->data[1] =
627 cpu_to_be32((specifier_id_lo << 24) | (version & 0x00ffffff));
628
629 memcpy(&(packet->data[2]), buffer, length - 8);
630
631 packet->generation = generation;
632
633 packet->no_waiter = 1;
634
635 retval = hpsb_send_packet(packet);
636 if (retval < 0)
637 hpsb_free_packet(packet);
638
639 return retval;
640 }
641
642 #endif /* 0 */