Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ieee1394 / eth1394.c
1 /*
2 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3 *
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 * 2000 Bonin Franck <boninf@free.fr>
6 * 2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7 *
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 */
24
25 /*
26 * This driver intends to support RFC 2734, which describes a method for
27 * transporting IPv4 datagrams over IEEE-1394 serial busses.
28 *
29 * TODO:
30 * RFC 2734 related:
31 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32 *
33 * Non-RFC 2734 related:
34 * - Handle fragmented skb's coming from the networking layer.
35 * - Move generic GASP reception to core 1394 code
36 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37 * - Stability improvements
38 * - Performance enhancements
39 * - Consider garbage collecting old partial datagrams after X amount of time
40 */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <asm/uaccess.h>
62 #include <asm/delay.h>
63 #include <asm/unaligned.h>
64 #include <net/arp.h>
65
66 #include "config_roms.h"
67 #include "csr1212.h"
68 #include "eth1394.h"
69 #include "highlevel.h"
70 #include "ieee1394.h"
71 #include "ieee1394_core.h"
72 #include "ieee1394_hotplug.h"
73 #include "ieee1394_transactions.h"
74 #include "ieee1394_types.h"
75 #include "iso.h"
76 #include "nodemgr.h"
77
78 #define ETH1394_PRINT_G(level, fmt, args...) \
79 printk(level "%s: " fmt, driver_name, ## args)
80
81 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
82 printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
83
84 struct fragment_info {
85 struct list_head list;
86 int offset;
87 int len;
88 };
89
90 struct partial_datagram {
91 struct list_head list;
92 u16 dgl;
93 u16 dg_size;
94 __be16 ether_type;
95 struct sk_buff *skb;
96 char *pbuf;
97 struct list_head frag_info;
98 };
99
100 struct pdg_list {
101 struct list_head list; /* partial datagram list per node */
102 unsigned int sz; /* partial datagram list size per node */
103 spinlock_t lock; /* partial datagram lock */
104 };
105
106 struct eth1394_host_info {
107 struct hpsb_host *host;
108 struct net_device *dev;
109 };
110
111 struct eth1394_node_ref {
112 struct unit_directory *ud;
113 struct list_head list;
114 };
115
116 struct eth1394_node_info {
117 u16 maxpayload; /* max payload */
118 u8 sspd; /* max speed */
119 u64 fifo; /* FIFO address */
120 struct pdg_list pdg; /* partial RX datagram lists */
121 int dgl; /* outgoing datagram label */
122 };
123
124 static const char driver_name[] = "eth1394";
125
126 static struct kmem_cache *packet_task_cache;
127
128 static struct hpsb_highlevel eth1394_highlevel;
129
130 /* Use common.lf to determine header len */
131 static const int hdr_type_len[] = {
132 sizeof(struct eth1394_uf_hdr),
133 sizeof(struct eth1394_ff_hdr),
134 sizeof(struct eth1394_sf_hdr),
135 sizeof(struct eth1394_sf_hdr)
136 };
137
138 static const u16 eth1394_speedto_maxpayload[] = {
139 /* S100, S200, S400, S800, S1600, S3200 */
140 512, 1024, 2048, 4096, 4096, 4096
141 };
142
143 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
144 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
145 MODULE_LICENSE("GPL");
146
147 /*
148 * The max_partial_datagrams parameter is the maximum number of fragmented
149 * datagrams per node that eth1394 will keep in memory. Providing an upper
150 * bound allows us to limit the amount of memory that partial datagrams
151 * consume in the event that some partial datagrams are never completed.
152 */
153 static int max_partial_datagrams = 25;
154 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
155 MODULE_PARM_DESC(max_partial_datagrams,
156 "Maximum number of partially received fragmented datagrams "
157 "(default = 25).");
158
159
160 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
161 unsigned short type, const void *daddr,
162 const void *saddr, unsigned len);
163 static int ether1394_rebuild_header(struct sk_buff *skb);
164 static int ether1394_header_parse(const struct sk_buff *skb,
165 unsigned char *haddr);
166 static int ether1394_header_cache(const struct neighbour *neigh,
167 struct hh_cache *hh);
168 static void ether1394_header_cache_update(struct hh_cache *hh,
169 const struct net_device *dev,
170 const unsigned char *haddr);
171 static netdev_tx_t ether1394_tx(struct sk_buff *skb,
172 struct net_device *dev);
173 static void ether1394_iso(struct hpsb_iso *iso);
174
175 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
176 quadlet_t *data, u64 addr, size_t len, u16 flags);
177 static void ether1394_add_host(struct hpsb_host *host);
178 static void ether1394_remove_host(struct hpsb_host *host);
179 static void ether1394_host_reset(struct hpsb_host *host);
180
181 /* Function for incoming 1394 packets */
182 static const struct hpsb_address_ops addr_ops = {
183 .write = ether1394_write,
184 };
185
186 /* Ieee1394 highlevel driver functions */
187 static struct hpsb_highlevel eth1394_highlevel = {
188 .name = driver_name,
189 .add_host = ether1394_add_host,
190 .remove_host = ether1394_remove_host,
191 .host_reset = ether1394_host_reset,
192 };
193
194 static int ether1394_recv_init(struct eth1394_priv *priv)
195 {
196 unsigned int iso_buf_size;
197
198 /* FIXME: rawiso limits us to PAGE_SIZE */
199 iso_buf_size = min((unsigned int)PAGE_SIZE,
200 2 * (1U << (priv->host->csr.max_rec + 1)));
201
202 priv->iso = hpsb_iso_recv_init(priv->host,
203 ETHER1394_GASP_BUFFERS * iso_buf_size,
204 ETHER1394_GASP_BUFFERS,
205 priv->broadcast_channel,
206 HPSB_ISO_DMA_PACKET_PER_BUFFER,
207 1, ether1394_iso);
208 if (priv->iso == NULL) {
209 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
210 priv->bc_state = ETHER1394_BC_ERROR;
211 return -EAGAIN;
212 }
213
214 if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
215 priv->bc_state = ETHER1394_BC_STOPPED;
216 else
217 priv->bc_state = ETHER1394_BC_RUNNING;
218 return 0;
219 }
220
221 /* This is called after an "ifup" */
222 static int ether1394_open(struct net_device *dev)
223 {
224 struct eth1394_priv *priv = netdev_priv(dev);
225 int ret;
226
227 if (priv->bc_state == ETHER1394_BC_ERROR) {
228 ret = ether1394_recv_init(priv);
229 if (ret)
230 return ret;
231 }
232 netif_start_queue(dev);
233 return 0;
234 }
235
236 /* This is called after an "ifdown" */
237 static int ether1394_stop(struct net_device *dev)
238 {
239 /* flush priv->wake */
240 flush_scheduled_work();
241
242 netif_stop_queue(dev);
243 return 0;
244 }
245
246 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
247 * so that's what we do. Should we increment the stat counters too? */
248 static void ether1394_tx_timeout(struct net_device *dev)
249 {
250 struct hpsb_host *host =
251 ((struct eth1394_priv *)netdev_priv(dev))->host;
252
253 ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
254 ether1394_host_reset(host);
255 }
256
257 static inline int ether1394_max_mtu(struct hpsb_host* host)
258 {
259 return (1 << (host->csr.max_rec + 1))
260 - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
261 }
262
263 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
264 {
265 int max_mtu;
266
267 if (new_mtu < 68)
268 return -EINVAL;
269
270 max_mtu = ether1394_max_mtu(
271 ((struct eth1394_priv *)netdev_priv(dev))->host);
272 if (new_mtu > max_mtu) {
273 ETH1394_PRINT(KERN_INFO, dev->name,
274 "Local node constrains MTU to %d\n", max_mtu);
275 return -ERANGE;
276 }
277
278 dev->mtu = new_mtu;
279 return 0;
280 }
281
282 static void purge_partial_datagram(struct list_head *old)
283 {
284 struct partial_datagram *pd;
285 struct list_head *lh, *n;
286 struct fragment_info *fi;
287
288 pd = list_entry(old, struct partial_datagram, list);
289
290 list_for_each_safe(lh, n, &pd->frag_info) {
291 fi = list_entry(lh, struct fragment_info, list);
292 list_del(lh);
293 kfree(fi);
294 }
295 list_del(old);
296 kfree_skb(pd->skb);
297 kfree(pd);
298 }
299
300 /******************************************
301 * 1394 bus activity functions
302 ******************************************/
303
304 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
305 struct unit_directory *ud)
306 {
307 struct eth1394_node_ref *node;
308
309 list_for_each_entry(node, inl, list)
310 if (node->ud == ud)
311 return node;
312
313 return NULL;
314 }
315
316 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
317 u64 guid)
318 {
319 struct eth1394_node_ref *node;
320
321 list_for_each_entry(node, inl, list)
322 if (node->ud->ne->guid == guid)
323 return node;
324
325 return NULL;
326 }
327
328 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
329 nodeid_t nodeid)
330 {
331 struct eth1394_node_ref *node;
332
333 list_for_each_entry(node, inl, list)
334 if (node->ud->ne->nodeid == nodeid)
335 return node;
336
337 return NULL;
338 }
339
340 static int eth1394_new_node(struct eth1394_host_info *hi,
341 struct unit_directory *ud)
342 {
343 struct eth1394_priv *priv;
344 struct eth1394_node_ref *new_node;
345 struct eth1394_node_info *node_info;
346
347 new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
348 if (!new_node)
349 return -ENOMEM;
350
351 node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
352 if (!node_info) {
353 kfree(new_node);
354 return -ENOMEM;
355 }
356
357 spin_lock_init(&node_info->pdg.lock);
358 INIT_LIST_HEAD(&node_info->pdg.list);
359 node_info->pdg.sz = 0;
360 node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
361
362 dev_set_drvdata(&ud->device, node_info);
363 new_node->ud = ud;
364
365 priv = netdev_priv(hi->dev);
366 list_add_tail(&new_node->list, &priv->ip_node_list);
367 return 0;
368 }
369
370 static int eth1394_probe(struct device *dev)
371 {
372 struct unit_directory *ud;
373 struct eth1394_host_info *hi;
374
375 ud = container_of(dev, struct unit_directory, device);
376 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
377 if (!hi)
378 return -ENOENT;
379
380 return eth1394_new_node(hi, ud);
381 }
382
383 static int eth1394_remove(struct device *dev)
384 {
385 struct unit_directory *ud;
386 struct eth1394_host_info *hi;
387 struct eth1394_priv *priv;
388 struct eth1394_node_ref *old_node;
389 struct eth1394_node_info *node_info;
390 struct list_head *lh, *n;
391 unsigned long flags;
392
393 ud = container_of(dev, struct unit_directory, device);
394 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
395 if (!hi)
396 return -ENOENT;
397
398 priv = netdev_priv(hi->dev);
399
400 old_node = eth1394_find_node(&priv->ip_node_list, ud);
401 if (!old_node)
402 return 0;
403
404 list_del(&old_node->list);
405 kfree(old_node);
406
407 node_info = dev_get_drvdata(&ud->device);
408
409 spin_lock_irqsave(&node_info->pdg.lock, flags);
410 /* The partial datagram list should be empty, but we'll just
411 * make sure anyway... */
412 list_for_each_safe(lh, n, &node_info->pdg.list)
413 purge_partial_datagram(lh);
414 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
415
416 kfree(node_info);
417 dev_set_drvdata(&ud->device, NULL);
418 return 0;
419 }
420
421 static int eth1394_update(struct unit_directory *ud)
422 {
423 struct eth1394_host_info *hi;
424 struct eth1394_priv *priv;
425 struct eth1394_node_ref *node;
426
427 hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
428 if (!hi)
429 return -ENOENT;
430
431 priv = netdev_priv(hi->dev);
432 node = eth1394_find_node(&priv->ip_node_list, ud);
433 if (node)
434 return 0;
435
436 return eth1394_new_node(hi, ud);
437 }
438
439 static const struct ieee1394_device_id eth1394_id_table[] = {
440 {
441 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
442 IEEE1394_MATCH_VERSION),
443 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
444 .version = ETHER1394_GASP_VERSION,
445 },
446 {}
447 };
448
449 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
450
451 static struct hpsb_protocol_driver eth1394_proto_driver = {
452 .name = driver_name,
453 .id_table = eth1394_id_table,
454 .update = eth1394_update,
455 .driver = {
456 .probe = eth1394_probe,
457 .remove = eth1394_remove,
458 },
459 };
460
461 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
462 {
463 unsigned long flags;
464 int i;
465 struct eth1394_priv *priv = netdev_priv(dev);
466 struct hpsb_host *host = priv->host;
467 u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
468 int max_speed = IEEE1394_SPEED_MAX;
469
470 spin_lock_irqsave(&priv->lock, flags);
471
472 memset(priv->ud_list, 0, sizeof(priv->ud_list));
473 priv->bc_maxpayload = 512;
474
475 /* Determine speed limit */
476 /* FIXME: This is broken for nodes with link speed < PHY speed,
477 * and it is suboptimal for S200B...S800B hardware.
478 * The result of nodemgr's speed probe should be used somehow. */
479 for (i = 0; i < host->node_count; i++) {
480 /* take care of S100B...S400B PHY ports */
481 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
482 max_speed = IEEE1394_SPEED_100;
483 break;
484 }
485 if (max_speed > host->speed[i])
486 max_speed = host->speed[i];
487 }
488 priv->bc_sspd = max_speed;
489
490 if (set_mtu) {
491 /* Use the RFC 2734 default 1500 octets or the maximum payload
492 * as initial MTU */
493 dev->mtu = min(1500, ether1394_max_mtu(host));
494
495 /* Set our hardware address while we're at it */
496 memcpy(dev->dev_addr, &guid, sizeof(u64));
497 memset(dev->broadcast, 0xff, sizeof(u64));
498 }
499
500 spin_unlock_irqrestore(&priv->lock, flags);
501 }
502
503 static const struct header_ops ether1394_header_ops = {
504 .create = ether1394_header,
505 .rebuild = ether1394_rebuild_header,
506 .cache = ether1394_header_cache,
507 .cache_update = ether1394_header_cache_update,
508 .parse = ether1394_header_parse,
509 };
510
511 static const struct net_device_ops ether1394_netdev_ops = {
512 .ndo_open = ether1394_open,
513 .ndo_stop = ether1394_stop,
514 .ndo_start_xmit = ether1394_tx,
515 .ndo_tx_timeout = ether1394_tx_timeout,
516 .ndo_change_mtu = ether1394_change_mtu,
517 };
518
519 static void ether1394_init_dev(struct net_device *dev)
520 {
521
522 dev->header_ops = &ether1394_header_ops;
523 dev->netdev_ops = &ether1394_netdev_ops;
524
525 dev->watchdog_timeo = ETHER1394_TIMEOUT;
526 dev->flags = IFF_BROADCAST | IFF_MULTICAST;
527 dev->features = NETIF_F_HIGHDMA;
528 dev->addr_len = ETH1394_ALEN;
529 dev->hard_header_len = ETH1394_HLEN;
530 dev->type = ARPHRD_IEEE1394;
531
532 /* FIXME: This value was copied from ether_setup(). Is it too much? */
533 dev->tx_queue_len = 1000;
534 }
535
536 /*
537 * Wake the queue up after commonly encountered transmit failure conditions are
538 * hopefully over. Currently only tlabel exhaustion is accounted for.
539 */
540 static void ether1394_wake_queue(struct work_struct *work)
541 {
542 struct eth1394_priv *priv;
543 struct hpsb_packet *packet;
544
545 priv = container_of(work, struct eth1394_priv, wake);
546 packet = hpsb_alloc_packet(0);
547
548 /* This is really bad, but unjam the queue anyway. */
549 if (!packet)
550 goto out;
551
552 packet->host = priv->host;
553 packet->node_id = priv->wake_node;
554 /*
555 * A transaction label is all we really want. If we get one, it almost
556 * always means we can get a lot more because the ieee1394 core recycled
557 * a whole batch of tlabels, at last.
558 */
559 if (hpsb_get_tlabel(packet) == 0)
560 hpsb_free_tlabel(packet);
561
562 hpsb_free_packet(packet);
563 out:
564 netif_wake_queue(priv->wake_dev);
565 }
566
567 /*
568 * This function is called every time a card is found. It is generally called
569 * when the module is installed. This is where we add all of our ethernet
570 * devices. One for each host.
571 */
572 static void ether1394_add_host(struct hpsb_host *host)
573 {
574 struct eth1394_host_info *hi = NULL;
575 struct net_device *dev = NULL;
576 struct eth1394_priv *priv;
577 u64 fifo_addr;
578
579 if (hpsb_config_rom_ip1394_add(host) != 0) {
580 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
581 return;
582 }
583
584 fifo_addr = hpsb_allocate_and_register_addrspace(
585 &eth1394_highlevel, host, &addr_ops,
586 ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
587 CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
588 if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
589 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
590 hpsb_config_rom_ip1394_remove(host);
591 return;
592 }
593
594 dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
595 if (dev == NULL) {
596 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
597 goto out;
598 }
599
600 SET_NETDEV_DEV(dev, &host->device);
601
602 priv = netdev_priv(dev);
603 INIT_LIST_HEAD(&priv->ip_node_list);
604 spin_lock_init(&priv->lock);
605 priv->host = host;
606 priv->local_fifo = fifo_addr;
607 INIT_WORK(&priv->wake, ether1394_wake_queue);
608 priv->wake_dev = dev;
609
610 hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
611 if (hi == NULL) {
612 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
613 goto out;
614 }
615
616 ether1394_reset_priv(dev, 1);
617
618 if (register_netdev(dev)) {
619 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
620 goto out;
621 }
622
623 ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
624 host->id);
625
626 hi->host = host;
627 hi->dev = dev;
628
629 /* Ignore validity in hopes that it will be set in the future. It'll
630 * be checked when the eth device is opened. */
631 priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
632
633 ether1394_recv_init(priv);
634 return;
635 out:
636 if (dev)
637 free_netdev(dev);
638 if (hi)
639 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
640 hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
641 hpsb_config_rom_ip1394_remove(host);
642 }
643
644 /* Remove a card from our list */
645 static void ether1394_remove_host(struct hpsb_host *host)
646 {
647 struct eth1394_host_info *hi;
648 struct eth1394_priv *priv;
649
650 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
651 if (!hi)
652 return;
653 priv = netdev_priv(hi->dev);
654 hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
655 hpsb_config_rom_ip1394_remove(host);
656 if (priv->iso)
657 hpsb_iso_shutdown(priv->iso);
658 unregister_netdev(hi->dev);
659 free_netdev(hi->dev);
660 }
661
662 /* A bus reset happened */
663 static void ether1394_host_reset(struct hpsb_host *host)
664 {
665 struct eth1394_host_info *hi;
666 struct eth1394_priv *priv;
667 struct net_device *dev;
668 struct list_head *lh, *n;
669 struct eth1394_node_ref *node;
670 struct eth1394_node_info *node_info;
671 unsigned long flags;
672
673 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
674
675 /* This can happen for hosts that we don't use */
676 if (!hi)
677 return;
678
679 dev = hi->dev;
680 priv = netdev_priv(dev);
681
682 /* Reset our private host data, but not our MTU */
683 netif_stop_queue(dev);
684 ether1394_reset_priv(dev, 0);
685
686 list_for_each_entry(node, &priv->ip_node_list, list) {
687 node_info = dev_get_drvdata(&node->ud->device);
688
689 spin_lock_irqsave(&node_info->pdg.lock, flags);
690
691 list_for_each_safe(lh, n, &node_info->pdg.list)
692 purge_partial_datagram(lh);
693
694 INIT_LIST_HEAD(&(node_info->pdg.list));
695 node_info->pdg.sz = 0;
696
697 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
698 }
699
700 netif_wake_queue(dev);
701 }
702
703 /******************************************
704 * HW Header net device functions
705 ******************************************/
706 /* These functions have been adapted from net/ethernet/eth.c */
707
708 /* Create a fake MAC header for an arbitrary protocol layer.
709 * saddr=NULL means use device source address
710 * daddr=NULL means leave destination address (eg unresolved arp). */
711 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
712 unsigned short type, const void *daddr,
713 const void *saddr, unsigned len)
714 {
715 struct eth1394hdr *eth =
716 (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
717
718 eth->h_proto = htons(type);
719
720 if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
721 memset(eth->h_dest, 0, dev->addr_len);
722 return dev->hard_header_len;
723 }
724
725 if (daddr) {
726 memcpy(eth->h_dest, daddr, dev->addr_len);
727 return dev->hard_header_len;
728 }
729
730 return -dev->hard_header_len;
731 }
732
733 /* Rebuild the faked MAC header. This is called after an ARP
734 * (or in future other address resolution) has completed on this
735 * sk_buff. We now let ARP fill in the other fields.
736 *
737 * This routine CANNOT use cached dst->neigh!
738 * Really, it is used only when dst->neigh is wrong.
739 */
740 static int ether1394_rebuild_header(struct sk_buff *skb)
741 {
742 struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
743
744 if (eth->h_proto == htons(ETH_P_IP))
745 return arp_find((unsigned char *)&eth->h_dest, skb);
746
747 ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
748 "unable to resolve type %04x addresses\n",
749 ntohs(eth->h_proto));
750 return 0;
751 }
752
753 static int ether1394_header_parse(const struct sk_buff *skb,
754 unsigned char *haddr)
755 {
756 memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
757 return ETH1394_ALEN;
758 }
759
760 static int ether1394_header_cache(const struct neighbour *neigh,
761 struct hh_cache *hh)
762 {
763 __be16 type = hh->hh_type;
764 struct net_device *dev = neigh->dev;
765 struct eth1394hdr *eth =
766 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
767
768 if (type == htons(ETH_P_802_3))
769 return -1;
770
771 eth->h_proto = type;
772 memcpy(eth->h_dest, neigh->ha, dev->addr_len);
773
774 hh->hh_len = ETH1394_HLEN;
775 return 0;
776 }
777
778 /* Called by Address Resolution module to notify changes in address. */
779 static void ether1394_header_cache_update(struct hh_cache *hh,
780 const struct net_device *dev,
781 const unsigned char * haddr)
782 {
783 memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
784 }
785
786 /******************************************
787 * Datagram reception code
788 ******************************************/
789
790 /* Copied from net/ethernet/eth.c */
791 static __be16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
792 {
793 struct eth1394hdr *eth;
794 unsigned char *rawp;
795
796 skb_reset_mac_header(skb);
797 skb_pull(skb, ETH1394_HLEN);
798 eth = eth1394_hdr(skb);
799
800 if (*eth->h_dest & 1) {
801 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
802 skb->pkt_type = PACKET_BROADCAST;
803 #if 0
804 else
805 skb->pkt_type = PACKET_MULTICAST;
806 #endif
807 } else {
808 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
809 skb->pkt_type = PACKET_OTHERHOST;
810 }
811
812 if (ntohs(eth->h_proto) >= 1536)
813 return eth->h_proto;
814
815 rawp = skb->data;
816
817 if (*(unsigned short *)rawp == 0xFFFF)
818 return htons(ETH_P_802_3);
819
820 return htons(ETH_P_802_2);
821 }
822
823 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
824 * We also perform ARP translation here, if need be. */
825 static __be16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
826 nodeid_t srcid, nodeid_t destid,
827 __be16 ether_type)
828 {
829 struct eth1394_priv *priv = netdev_priv(dev);
830 __be64 dest_hw;
831 __be16 ret = 0;
832
833 /* Setup our hw addresses. We use these to build the ethernet header. */
834 if (destid == (LOCAL_BUS | ALL_NODES))
835 dest_hw = ~cpu_to_be64(0); /* broadcast */
836 else
837 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
838 priv->host->csr.guid_lo);
839
840 /* If this is an ARP packet, convert it. First, we want to make
841 * use of some of the fields, since they tell us a little bit
842 * about the sending machine. */
843 if (ether_type == htons(ETH_P_ARP)) {
844 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
845 struct arphdr *arp = (struct arphdr *)skb->data;
846 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
847 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
848 ntohl(arp1394->fifo_lo);
849 u8 max_rec = min(priv->host->csr.max_rec,
850 (u8)(arp1394->max_rec));
851 int sspd = arp1394->sspd;
852 u16 maxpayload;
853 struct eth1394_node_ref *node;
854 struct eth1394_node_info *node_info;
855 __be64 guid;
856
857 /* Sanity check. MacOSX seems to be sending us 131 in this
858 * field (atleast on my Panther G5). Not sure why. */
859 if (sspd > 5 || sspd < 0)
860 sspd = 0;
861
862 maxpayload = min(eth1394_speedto_maxpayload[sspd],
863 (u16)(1 << (max_rec + 1)));
864
865 guid = get_unaligned(&arp1394->s_uniq_id);
866 node = eth1394_find_node_guid(&priv->ip_node_list,
867 be64_to_cpu(guid));
868 if (!node)
869 return cpu_to_be16(0);
870
871 node_info = dev_get_drvdata(&node->ud->device);
872
873 /* Update our speed/payload/fifo_offset table */
874 node_info->maxpayload = maxpayload;
875 node_info->sspd = sspd;
876 node_info->fifo = fifo_addr;
877
878 /* Now that we're done with the 1394 specific stuff, we'll
879 * need to alter some of the data. Believe it or not, all
880 * that needs to be done is sender_IP_address needs to be
881 * moved, the destination hardware address get stuffed
882 * in and the hardware address length set to 8.
883 *
884 * IMPORTANT: The code below overwrites 1394 specific data
885 * needed above so keep the munging of the data for the
886 * higher level IP stack last. */
887
888 arp->ar_hln = 8;
889 arp_ptr += arp->ar_hln; /* skip over sender unique id */
890 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
891 arp_ptr += arp->ar_pln; /* skip over sender IP addr */
892
893 if (arp->ar_op == htons(ARPOP_REQUEST))
894 memset(arp_ptr, 0, sizeof(u64));
895 else
896 memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
897 }
898
899 /* Now add the ethernet header. */
900 if (dev_hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
901 skb->len) >= 0)
902 ret = ether1394_type_trans(skb, dev);
903
904 return ret;
905 }
906
907 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
908 {
909 struct fragment_info *fi;
910 int end = offset + len;
911
912 list_for_each_entry(fi, frag_list, list)
913 if (offset < fi->offset + fi->len && end > fi->offset)
914 return 1;
915
916 return 0;
917 }
918
919 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
920 {
921 struct partial_datagram *pd;
922
923 list_for_each_entry(pd, pdgl, list)
924 if (pd->dgl == dgl)
925 return &pd->list;
926
927 return NULL;
928 }
929
930 /* Assumes that new fragment does not overlap any existing fragments */
931 static int new_fragment(struct list_head *frag_info, int offset, int len)
932 {
933 struct list_head *lh;
934 struct fragment_info *fi, *fi2, *new;
935
936 list_for_each(lh, frag_info) {
937 fi = list_entry(lh, struct fragment_info, list);
938 if (fi->offset + fi->len == offset) {
939 /* The new fragment can be tacked on to the end */
940 fi->len += len;
941 /* Did the new fragment plug a hole? */
942 fi2 = list_entry(lh->next, struct fragment_info, list);
943 if (fi->offset + fi->len == fi2->offset) {
944 /* glue fragments together */
945 fi->len += fi2->len;
946 list_del(lh->next);
947 kfree(fi2);
948 }
949 return 0;
950 } else if (offset + len == fi->offset) {
951 /* The new fragment can be tacked on to the beginning */
952 fi->offset = offset;
953 fi->len += len;
954 /* Did the new fragment plug a hole? */
955 fi2 = list_entry(lh->prev, struct fragment_info, list);
956 if (fi2->offset + fi2->len == fi->offset) {
957 /* glue fragments together */
958 fi2->len += fi->len;
959 list_del(lh);
960 kfree(fi);
961 }
962 return 0;
963 } else if (offset > fi->offset + fi->len) {
964 break;
965 } else if (offset + len < fi->offset) {
966 lh = lh->prev;
967 break;
968 }
969 }
970
971 new = kmalloc(sizeof(*new), GFP_ATOMIC);
972 if (!new)
973 return -ENOMEM;
974
975 new->offset = offset;
976 new->len = len;
977
978 list_add(&new->list, lh);
979 return 0;
980 }
981
982 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
983 int dgl, int dg_size, char *frag_buf,
984 int frag_off, int frag_len)
985 {
986 struct partial_datagram *new;
987
988 new = kmalloc(sizeof(*new), GFP_ATOMIC);
989 if (!new)
990 return -ENOMEM;
991
992 INIT_LIST_HEAD(&new->frag_info);
993
994 if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
995 kfree(new);
996 return -ENOMEM;
997 }
998
999 new->dgl = dgl;
1000 new->dg_size = dg_size;
1001
1002 new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1003 if (!new->skb) {
1004 struct fragment_info *fi = list_entry(new->frag_info.next,
1005 struct fragment_info,
1006 list);
1007 kfree(fi);
1008 kfree(new);
1009 return -ENOMEM;
1010 }
1011
1012 skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1013 new->pbuf = skb_put(new->skb, dg_size);
1014 memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1015
1016 list_add(&new->list, pdgl);
1017 return 0;
1018 }
1019
1020 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1021 char *frag_buf, int frag_off, int frag_len)
1022 {
1023 struct partial_datagram *pd =
1024 list_entry(lh, struct partial_datagram, list);
1025
1026 if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1027 return -ENOMEM;
1028
1029 memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1030
1031 /* Move list entry to beginnig of list so that oldest partial
1032 * datagrams percolate to the end of the list */
1033 list_move(lh, pdgl);
1034 return 0;
1035 }
1036
1037 static int is_datagram_complete(struct list_head *lh, int dg_size)
1038 {
1039 struct partial_datagram *pd;
1040 struct fragment_info *fi;
1041
1042 pd = list_entry(lh, struct partial_datagram, list);
1043 fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1044
1045 return (fi->len == dg_size);
1046 }
1047
1048 /* Packet reception. We convert the IP1394 encapsulation header to an
1049 * ethernet header, and fill it with some of our other fields. This is
1050 * an incoming packet from the 1394 bus. */
1051 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1052 char *buf, int len)
1053 {
1054 struct sk_buff *skb;
1055 unsigned long flags;
1056 struct eth1394_priv *priv = netdev_priv(dev);
1057 union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1058 __be16 ether_type = cpu_to_be16(0); /* initialized to clear warning */
1059 int hdr_len;
1060 struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1061 struct eth1394_node_info *node_info;
1062
1063 if (!ud) {
1064 struct eth1394_node_ref *node;
1065 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1066 if (unlikely(!node)) {
1067 HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1068 "lookup failure: " NODE_BUS_FMT,
1069 NODE_BUS_ARGS(priv->host, srcid));
1070 dev->stats.rx_dropped++;
1071 return -1;
1072 }
1073 ud = node->ud;
1074
1075 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1076 }
1077
1078 node_info = dev_get_drvdata(&ud->device);
1079
1080 /* First, did we receive a fragmented or unfragmented datagram? */
1081 hdr->words.word1 = ntohs(hdr->words.word1);
1082
1083 hdr_len = hdr_type_len[hdr->common.lf];
1084
1085 if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1086 /* An unfragmented datagram has been received by the ieee1394
1087 * bus. Build an skbuff around it so we can pass it to the
1088 * high level network layer. */
1089
1090 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1091 if (unlikely(!skb)) {
1092 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1093 dev->stats.rx_dropped++;
1094 return -1;
1095 }
1096 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1097 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1098 len - hdr_len);
1099 ether_type = hdr->uf.ether_type;
1100 } else {
1101 /* A datagram fragment has been received, now the fun begins. */
1102
1103 struct list_head *pdgl, *lh;
1104 struct partial_datagram *pd;
1105 int fg_off;
1106 int fg_len = len - hdr_len;
1107 int dg_size;
1108 int dgl;
1109 int retval;
1110 struct pdg_list *pdg = &(node_info->pdg);
1111
1112 hdr->words.word3 = ntohs(hdr->words.word3);
1113 /* The 4th header word is reserved so no need to do ntohs() */
1114
1115 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1116 ether_type = hdr->ff.ether_type;
1117 dgl = hdr->ff.dgl;
1118 dg_size = hdr->ff.dg_size + 1;
1119 fg_off = 0;
1120 } else {
1121 hdr->words.word2 = ntohs(hdr->words.word2);
1122 dgl = hdr->sf.dgl;
1123 dg_size = hdr->sf.dg_size + 1;
1124 fg_off = hdr->sf.fg_off;
1125 }
1126 spin_lock_irqsave(&pdg->lock, flags);
1127
1128 pdgl = &(pdg->list);
1129 lh = find_partial_datagram(pdgl, dgl);
1130
1131 if (lh == NULL) {
1132 while (pdg->sz >= max_partial_datagrams) {
1133 /* remove the oldest */
1134 purge_partial_datagram(pdgl->prev);
1135 pdg->sz--;
1136 }
1137
1138 retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1139 buf + hdr_len, fg_off,
1140 fg_len);
1141 if (retval < 0) {
1142 spin_unlock_irqrestore(&pdg->lock, flags);
1143 goto bad_proto;
1144 }
1145 pdg->sz++;
1146 lh = find_partial_datagram(pdgl, dgl);
1147 } else {
1148 pd = list_entry(lh, struct partial_datagram, list);
1149
1150 if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1151 /* Overlapping fragments, obliterate old
1152 * datagram and start new one. */
1153 purge_partial_datagram(lh);
1154 retval = new_partial_datagram(dev, pdgl, dgl,
1155 dg_size,
1156 buf + hdr_len,
1157 fg_off, fg_len);
1158 if (retval < 0) {
1159 pdg->sz--;
1160 spin_unlock_irqrestore(&pdg->lock, flags);
1161 goto bad_proto;
1162 }
1163 } else {
1164 retval = update_partial_datagram(pdgl, lh,
1165 buf + hdr_len,
1166 fg_off, fg_len);
1167 if (retval < 0) {
1168 /* Couldn't save off fragment anyway
1169 * so might as well obliterate the
1170 * datagram now. */
1171 purge_partial_datagram(lh);
1172 pdg->sz--;
1173 spin_unlock_irqrestore(&pdg->lock, flags);
1174 goto bad_proto;
1175 }
1176 } /* fragment overlap */
1177 } /* new datagram or add to existing one */
1178
1179 pd = list_entry(lh, struct partial_datagram, list);
1180
1181 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1182 pd->ether_type = ether_type;
1183
1184 if (is_datagram_complete(lh, dg_size)) {
1185 ether_type = pd->ether_type;
1186 pdg->sz--;
1187 skb = skb_get(pd->skb);
1188 purge_partial_datagram(lh);
1189 spin_unlock_irqrestore(&pdg->lock, flags);
1190 } else {
1191 /* Datagram is not complete, we're done for the
1192 * moment. */
1193 spin_unlock_irqrestore(&pdg->lock, flags);
1194 return 0;
1195 }
1196 } /* unframgented datagram or fragmented one */
1197
1198 /* Write metadata, and then pass to the receive level */
1199 skb->dev = dev;
1200 skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
1201
1202 /* Parse the encapsulation header. This actually does the job of
1203 * converting to an ethernet frame header, aswell as arp
1204 * conversion if needed. ARP conversion is easier in this
1205 * direction, since we are using ethernet as our backend. */
1206 skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1207 ether_type);
1208
1209 spin_lock_irqsave(&priv->lock, flags);
1210
1211 if (!skb->protocol) {
1212 dev->stats.rx_errors++;
1213 dev->stats.rx_dropped++;
1214 dev_kfree_skb_any(skb);
1215 } else if (netif_rx(skb) == NET_RX_DROP) {
1216 dev->stats.rx_errors++;
1217 dev->stats.rx_dropped++;
1218 } else {
1219 dev->stats.rx_packets++;
1220 dev->stats.rx_bytes += skb->len;
1221 }
1222
1223 spin_unlock_irqrestore(&priv->lock, flags);
1224
1225 bad_proto:
1226 if (netif_queue_stopped(dev))
1227 netif_wake_queue(dev);
1228
1229 return 0;
1230 }
1231
1232 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1233 quadlet_t *data, u64 addr, size_t len, u16 flags)
1234 {
1235 struct eth1394_host_info *hi;
1236
1237 hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1238 if (unlikely(!hi)) {
1239 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1240 host->id);
1241 return RCODE_ADDRESS_ERROR;
1242 }
1243
1244 if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1245 return RCODE_ADDRESS_ERROR;
1246 else
1247 return RCODE_COMPLETE;
1248 }
1249
1250 static void ether1394_iso(struct hpsb_iso *iso)
1251 {
1252 __be32 *data;
1253 char *buf;
1254 struct eth1394_host_info *hi;
1255 struct net_device *dev;
1256 unsigned int len;
1257 u32 specifier_id;
1258 u16 source_id;
1259 int i;
1260 int nready;
1261
1262 hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1263 if (unlikely(!hi)) {
1264 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1265 iso->host->id);
1266 return;
1267 }
1268
1269 dev = hi->dev;
1270
1271 nready = hpsb_iso_n_ready(iso);
1272 for (i = 0; i < nready; i++) {
1273 struct hpsb_iso_packet_info *info =
1274 &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1275 data = (__be32 *)(iso->data_buf.kvirt + info->offset);
1276
1277 /* skip over GASP header */
1278 buf = (char *)data + 8;
1279 len = info->len - 8;
1280
1281 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1282 (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1283 source_id = be32_to_cpu(data[0]) >> 16;
1284
1285 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1286 || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1287 /* This packet is not for us */
1288 continue;
1289 }
1290 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1291 buf, len);
1292 }
1293
1294 hpsb_iso_recv_release_packets(iso, i);
1295
1296 }
1297
1298 /******************************************
1299 * Datagram transmission code
1300 ******************************************/
1301
1302 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1303 * arphdr) is the same format as the ip1394 header, so they overlap. The rest
1304 * needs to be munged a bit. The remainder of the arphdr is formatted based
1305 * on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
1306 * judge.
1307 *
1308 * Now that the EUI is used for the hardware address all we need to do to make
1309 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1310 * speed, and unicast FIFO address information between the sender_unique_id
1311 * and the IP addresses.
1312 */
1313 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1314 struct net_device *dev)
1315 {
1316 struct eth1394_priv *priv = netdev_priv(dev);
1317 struct arphdr *arp = (struct arphdr *)skb->data;
1318 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1319 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1320
1321 arp1394->hw_addr_len = 16;
1322 arp1394->sip = *(u32*)(arp_ptr + ETH1394_ALEN);
1323 arp1394->max_rec = priv->host->csr.max_rec;
1324 arp1394->sspd = priv->host->csr.lnk_spd;
1325 arp1394->fifo_hi = htons(priv->local_fifo >> 32);
1326 arp1394->fifo_lo = htonl(priv->local_fifo & ~0x0);
1327 }
1328
1329 /* We need to encapsulate the standard header with our own. We use the
1330 * ethernet header's proto for our own. */
1331 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1332 __be16 proto,
1333 union eth1394_hdr *hdr,
1334 u16 dg_size, u16 dgl)
1335 {
1336 unsigned int adj_max_payload =
1337 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1338
1339 /* Does it all fit in one packet? */
1340 if (dg_size <= adj_max_payload) {
1341 hdr->uf.lf = ETH1394_HDR_LF_UF;
1342 hdr->uf.ether_type = proto;
1343 } else {
1344 hdr->ff.lf = ETH1394_HDR_LF_FF;
1345 hdr->ff.ether_type = proto;
1346 hdr->ff.dg_size = dg_size - 1;
1347 hdr->ff.dgl = dgl;
1348 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1349 }
1350 return DIV_ROUND_UP(dg_size, adj_max_payload);
1351 }
1352
1353 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1354 unsigned int max_payload,
1355 union eth1394_hdr *hdr)
1356 {
1357 union eth1394_hdr *bufhdr;
1358 int ftype = hdr->common.lf;
1359 int hdrsz = hdr_type_len[ftype];
1360 unsigned int adj_max_payload = max_payload - hdrsz;
1361
1362 switch (ftype) {
1363 case ETH1394_HDR_LF_UF:
1364 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1365 bufhdr->words.word1 = htons(hdr->words.word1);
1366 bufhdr->words.word2 = hdr->words.word2;
1367 break;
1368
1369 case ETH1394_HDR_LF_FF:
1370 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1371 bufhdr->words.word1 = htons(hdr->words.word1);
1372 bufhdr->words.word2 = hdr->words.word2;
1373 bufhdr->words.word3 = htons(hdr->words.word3);
1374 bufhdr->words.word4 = 0;
1375
1376 /* Set frag type here for future interior fragments */
1377 hdr->common.lf = ETH1394_HDR_LF_IF;
1378 hdr->sf.fg_off = 0;
1379 break;
1380
1381 default:
1382 hdr->sf.fg_off += adj_max_payload;
1383 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1384 if (max_payload >= skb->len)
1385 hdr->common.lf = ETH1394_HDR_LF_LF;
1386 bufhdr->words.word1 = htons(hdr->words.word1);
1387 bufhdr->words.word2 = htons(hdr->words.word2);
1388 bufhdr->words.word3 = htons(hdr->words.word3);
1389 bufhdr->words.word4 = 0;
1390 }
1391 return min(max_payload, skb->len);
1392 }
1393
1394 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1395 {
1396 struct hpsb_packet *p;
1397
1398 p = hpsb_alloc_packet(0);
1399 if (p) {
1400 p->host = host;
1401 p->generation = get_hpsb_generation(host);
1402 p->type = hpsb_async;
1403 }
1404 return p;
1405 }
1406
1407 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1408 struct hpsb_host *host, nodeid_t node,
1409 u64 addr, void *data, int tx_len)
1410 {
1411 p->node_id = node;
1412
1413 if (hpsb_get_tlabel(p))
1414 return -EAGAIN;
1415
1416 p->tcode = TCODE_WRITEB;
1417 p->header_size = 16;
1418 p->expect_response = 1;
1419 p->header[0] =
1420 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1421 p->header[1] = host->node_id << 16 | addr >> 32;
1422 p->header[2] = addr & 0xffffffff;
1423 p->header[3] = tx_len << 16;
1424 p->data_size = (tx_len + 3) & ~3;
1425 p->data = data;
1426
1427 return 0;
1428 }
1429
1430 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1431 struct eth1394_priv *priv,
1432 struct sk_buff *skb, int length)
1433 {
1434 p->header_size = 4;
1435 p->tcode = TCODE_STREAM_DATA;
1436
1437 p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1438 TCODE_STREAM_DATA << 4;
1439 p->data_size = length;
1440 p->data = (quadlet_t *)skb->data - 2;
1441 p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1442 ETHER1394_GASP_SPECIFIER_ID_HI);
1443 p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1444 ETHER1394_GASP_VERSION);
1445
1446 p->speed_code = priv->bc_sspd;
1447
1448 /* prevent hpsb_send_packet() from overriding our speed code */
1449 p->node_id = LOCAL_BUS | ALL_NODES;
1450 }
1451
1452 static void ether1394_free_packet(struct hpsb_packet *packet)
1453 {
1454 if (packet->tcode != TCODE_STREAM_DATA)
1455 hpsb_free_tlabel(packet);
1456 hpsb_free_packet(packet);
1457 }
1458
1459 static void ether1394_complete_cb(void *__ptask);
1460
1461 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1462 {
1463 struct eth1394_priv *priv = ptask->priv;
1464 struct hpsb_packet *packet = NULL;
1465
1466 packet = ether1394_alloc_common_packet(priv->host);
1467 if (!packet)
1468 return -ENOMEM;
1469
1470 if (ptask->tx_type == ETH1394_GASP) {
1471 int length = tx_len + 2 * sizeof(quadlet_t);
1472
1473 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1474 } else if (ether1394_prep_write_packet(packet, priv->host,
1475 ptask->dest_node,
1476 ptask->addr, ptask->skb->data,
1477 tx_len)) {
1478 hpsb_free_packet(packet);
1479 return -EAGAIN;
1480 }
1481
1482 ptask->packet = packet;
1483 hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1484 ptask);
1485
1486 if (hpsb_send_packet(packet) < 0) {
1487 ether1394_free_packet(packet);
1488 return -EIO;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* Task function to be run when a datagram transmission is completed */
1495 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1496 {
1497 struct sk_buff *skb = ptask->skb;
1498 struct net_device *dev = skb->dev;
1499 struct eth1394_priv *priv = netdev_priv(dev);
1500 unsigned long flags;
1501
1502 /* Statistics */
1503 spin_lock_irqsave(&priv->lock, flags);
1504 if (fail) {
1505 dev->stats.tx_dropped++;
1506 dev->stats.tx_errors++;
1507 } else {
1508 dev->stats.tx_bytes += skb->len;
1509 dev->stats.tx_packets++;
1510 }
1511 spin_unlock_irqrestore(&priv->lock, flags);
1512
1513 dev_kfree_skb_any(skb);
1514 kmem_cache_free(packet_task_cache, ptask);
1515 }
1516
1517 /* Callback for when a packet has been sent and the status of that packet is
1518 * known */
1519 static void ether1394_complete_cb(void *__ptask)
1520 {
1521 struct packet_task *ptask = (struct packet_task *)__ptask;
1522 struct hpsb_packet *packet = ptask->packet;
1523 int fail = 0;
1524
1525 if (packet->tcode != TCODE_STREAM_DATA)
1526 fail = hpsb_packet_success(packet);
1527
1528 ether1394_free_packet(packet);
1529
1530 ptask->outstanding_pkts--;
1531 if (ptask->outstanding_pkts > 0 && !fail) {
1532 int tx_len, err;
1533
1534 /* Add the encapsulation header to the fragment */
1535 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1536 &ptask->hdr);
1537 err = ether1394_send_packet(ptask, tx_len);
1538 if (err) {
1539 if (err == -EAGAIN)
1540 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1541
1542 ether1394_dg_complete(ptask, 1);
1543 }
1544 } else {
1545 ether1394_dg_complete(ptask, fail);
1546 }
1547 }
1548
1549 /* Transmit a packet (called by kernel) */
1550 static netdev_tx_t ether1394_tx(struct sk_buff *skb,
1551 struct net_device *dev)
1552 {
1553 struct eth1394hdr hdr_buf;
1554 struct eth1394_priv *priv = netdev_priv(dev);
1555 __be16 proto;
1556 unsigned long flags;
1557 nodeid_t dest_node;
1558 eth1394_tx_type tx_type;
1559 unsigned int tx_len;
1560 unsigned int max_payload;
1561 u16 dg_size;
1562 u16 dgl;
1563 struct packet_task *ptask;
1564 struct eth1394_node_ref *node;
1565 struct eth1394_node_info *node_info = NULL;
1566
1567 ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1568 if (ptask == NULL)
1569 goto fail;
1570
1571 /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1572 * it does not set our validity bit. We need to compensate for
1573 * that somewhere else, but not in eth1394. */
1574 #if 0
1575 if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1576 goto fail;
1577 #endif
1578
1579 skb = skb_share_check(skb, GFP_ATOMIC);
1580 if (!skb)
1581 goto fail;
1582
1583 /* Get rid of the fake eth1394 header, but first make a copy.
1584 * We might need to rebuild the header on tx failure. */
1585 memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1586 skb_pull(skb, ETH1394_HLEN);
1587
1588 proto = hdr_buf.h_proto;
1589 dg_size = skb->len;
1590
1591 /* Set the transmission type for the packet. ARP packets and IP
1592 * broadcast packets are sent via GASP. */
1593 if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1594 proto == htons(ETH_P_ARP) ||
1595 (proto == htons(ETH_P_IP) &&
1596 IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1597 tx_type = ETH1394_GASP;
1598 dest_node = LOCAL_BUS | ALL_NODES;
1599 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1600 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1601 dgl = priv->bc_dgl;
1602 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1603 priv->bc_dgl++;
1604 } else {
1605 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1606
1607 node = eth1394_find_node_guid(&priv->ip_node_list,
1608 be64_to_cpu(guid));
1609 if (!node)
1610 goto fail;
1611
1612 node_info = dev_get_drvdata(&node->ud->device);
1613 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1614 goto fail;
1615
1616 dest_node = node->ud->ne->nodeid;
1617 max_payload = node_info->maxpayload;
1618 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1619
1620 dgl = node_info->dgl;
1621 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1622 node_info->dgl++;
1623 tx_type = ETH1394_WRREQ;
1624 }
1625
1626 /* If this is an ARP packet, convert it */
1627 if (proto == htons(ETH_P_ARP))
1628 ether1394_arp_to_1394arp(skb, dev);
1629
1630 ptask->hdr.words.word1 = 0;
1631 ptask->hdr.words.word2 = 0;
1632 ptask->hdr.words.word3 = 0;
1633 ptask->hdr.words.word4 = 0;
1634 ptask->skb = skb;
1635 ptask->priv = priv;
1636 ptask->tx_type = tx_type;
1637
1638 if (tx_type != ETH1394_GASP) {
1639 u64 addr;
1640
1641 spin_lock_irqsave(&priv->lock, flags);
1642 addr = node_info->fifo;
1643 spin_unlock_irqrestore(&priv->lock, flags);
1644
1645 ptask->addr = addr;
1646 ptask->dest_node = dest_node;
1647 }
1648
1649 ptask->tx_type = tx_type;
1650 ptask->max_payload = max_payload;
1651 ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1652 proto, &ptask->hdr, dg_size, dgl);
1653
1654 /* Add the encapsulation header to the fragment */
1655 tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1656 dev->trans_start = jiffies;
1657 if (ether1394_send_packet(ptask, tx_len)) {
1658 if (dest_node == (LOCAL_BUS | ALL_NODES))
1659 goto fail;
1660
1661 /* At this point we want to restore the packet. When we return
1662 * here with NETDEV_TX_BUSY we will get another entrance in this
1663 * routine with the same skb and we need it to look the same.
1664 * So we pull 4 more bytes, then build the header again. */
1665 skb_pull(skb, 4);
1666 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1667 hdr_buf.h_dest, NULL, 0);
1668
1669 /* Most failures of ether1394_send_packet are recoverable. */
1670 netif_stop_queue(dev);
1671 priv->wake_node = dest_node;
1672 schedule_work(&priv->wake);
1673 kmem_cache_free(packet_task_cache, ptask);
1674 return NETDEV_TX_BUSY;
1675 }
1676
1677 return NETDEV_TX_OK;
1678 fail:
1679 if (ptask)
1680 kmem_cache_free(packet_task_cache, ptask);
1681
1682 if (skb != NULL)
1683 dev_kfree_skb(skb);
1684
1685 spin_lock_irqsave(&priv->lock, flags);
1686 dev->stats.tx_dropped++;
1687 dev->stats.tx_errors++;
1688 spin_unlock_irqrestore(&priv->lock, flags);
1689
1690 return NETDEV_TX_OK;
1691 }
1692
1693 static int __init ether1394_init_module(void)
1694 {
1695 int err;
1696
1697 packet_task_cache = kmem_cache_create("packet_task",
1698 sizeof(struct packet_task),
1699 0, 0, NULL);
1700 if (!packet_task_cache)
1701 return -ENOMEM;
1702
1703 hpsb_register_highlevel(&eth1394_highlevel);
1704 err = hpsb_register_protocol(&eth1394_proto_driver);
1705 if (err) {
1706 hpsb_unregister_highlevel(&eth1394_highlevel);
1707 kmem_cache_destroy(packet_task_cache);
1708 }
1709 return err;
1710 }
1711
1712 static void __exit ether1394_exit_module(void)
1713 {
1714 hpsb_unregister_protocol(&eth1394_proto_driver);
1715 hpsb_unregister_highlevel(&eth1394_highlevel);
1716 kmem_cache_destroy(packet_task_cache);
1717 }
1718
1719 module_init(ether1394_init_module);
1720 module_exit(ether1394_exit_module);