Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/pci-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ide / pci / hpt366.c
1 /*
2 * Copyright (C) 1999-2003 Andre Hedrick <andre@linux-ide.org>
3 * Portions Copyright (C) 2001 Sun Microsystems, Inc.
4 * Portions Copyright (C) 2003 Red Hat Inc
5 * Portions Copyright (C) 2007 Bartlomiej Zolnierkiewicz
6 * Portions Copyright (C) 2005-2007 MontaVista Software, Inc.
7 *
8 * Thanks to HighPoint Technologies for their assistance, and hardware.
9 * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
10 * donation of an ABit BP6 mainboard, processor, and memory acellerated
11 * development and support.
12 *
13 *
14 * HighPoint has its own drivers (open source except for the RAID part)
15 * available from http://www.highpoint-tech.com/BIOS%20+%20Driver/.
16 * This may be useful to anyone wanting to work on this driver, however do not
17 * trust them too much since the code tends to become less and less meaningful
18 * as the time passes... :-/
19 *
20 * Note that final HPT370 support was done by force extraction of GPL.
21 *
22 * - add function for getting/setting power status of drive
23 * - the HPT370's state machine can get confused. reset it before each dma
24 * xfer to prevent that from happening.
25 * - reset state engine whenever we get an error.
26 * - check for busmaster state at end of dma.
27 * - use new highpoint timings.
28 * - detect bus speed using highpoint register.
29 * - use pll if we don't have a clock table. added a 66MHz table that's
30 * just 2x the 33MHz table.
31 * - removed turnaround. NOTE: we never want to switch between pll and
32 * pci clocks as the chip can glitch in those cases. the highpoint
33 * approved workaround slows everything down too much to be useful. in
34 * addition, we would have to serialize access to each chip.
35 * Adrian Sun <a.sun@sun.com>
36 *
37 * add drive timings for 66MHz PCI bus,
38 * fix ATA Cable signal detection, fix incorrect /proc info
39 * add /proc display for per-drive PIO/DMA/UDMA mode and
40 * per-channel ATA-33/66 Cable detect.
41 * Duncan Laurie <void@sun.com>
42 *
43 * fixup /proc output for multiple controllers
44 * Tim Hockin <thockin@sun.com>
45 *
46 * On hpt366:
47 * Reset the hpt366 on error, reset on dma
48 * Fix disabling Fast Interrupt hpt366.
49 * Mike Waychison <crlf@sun.com>
50 *
51 * Added support for 372N clocking and clock switching. The 372N needs
52 * different clocks on read/write. This requires overloading rw_disk and
53 * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
54 * keeping me sane.
55 * Alan Cox <alan@redhat.com>
56 *
57 * - fix the clock turnaround code: it was writing to the wrong ports when
58 * called for the secondary channel, caching the current clock mode per-
59 * channel caused the cached register value to get out of sync with the
60 * actual one, the channels weren't serialized, the turnaround shouldn't
61 * be done on 66 MHz PCI bus
62 * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
63 * does not allow for this speed anyway
64 * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
65 * their primary channel is kind of virtual, it isn't tied to any pins)
66 * - fix/remove bad/unused timing tables and use one set of tables for the whole
67 * HPT37x chip family; save space by introducing the separate transfer mode
68 * table in which the mode lookup is done
69 * - use f_CNT value saved by the HighPoint BIOS as reading it directly gives
70 * the wrong PCI frequency since DPLL has already been calibrated by BIOS;
71 * read it only from the function 0 of HPT374 chips
72 * - fix the hotswap code: it caused RESET- to glitch when tristating the bus,
73 * and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
74 * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
75 * they tamper with its fields
76 * - pass to the init_setup handlers a copy of the ide_pci_device_t structure
77 * since they may tamper with its fields
78 * - prefix the driver startup messages with the real chip name
79 * - claim the extra 240 bytes of I/O space for all chips
80 * - optimize the UltraDMA filtering and the drive list lookup code
81 * - use pci_get_slot() to get to the function 1 of HPT36x/374
82 * - cache offset of the channel's misc. control registers (MCRs) being used
83 * throughout the driver
84 * - only touch the relevant MCR when detecting the cable type on HPT374's
85 * function 1
86 * - rename all the register related variables consistently
87 * - move all the interrupt twiddling code from the speedproc handlers into
88 * init_hwif_hpt366(), also grouping all the DMA related code together there
89 * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
90 * separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
91 * when setting an UltraDMA mode
92 * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
93 * the best possible one
94 * - clean up DMA timeout handling for HPT370
95 * - switch to using the enumeration type to differ between the numerous chip
96 * variants, matching PCI device/revision ID with the chip type early, at the
97 * init_setup stage
98 * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
99 * stop duplicating it for each channel by storing the pointer in the pci_dev
100 * structure: first, at the init_setup stage, point it to a static "template"
101 * with only the chip type and its specific base DPLL frequency, the highest
102 * UltraDMA mode, and the chip settings table pointer filled, then, at the
103 * init_chipset stage, allocate per-chip instance and fill it with the rest
104 * of the necessary information
105 * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
106 * switch to calculating PCI clock frequency based on the chip's base DPLL
107 * frequency
108 * - switch to using the DPLL clock and enable UltraATA/133 mode by default on
109 * anything newer than HPT370/A (except HPT374 that is not capable of this
110 * mode according to the manual)
111 * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
112 * also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
113 * unify HPT36x/37x timing setup code and the speedproc handlers by joining
114 * the register setting lists into the table indexed by the clock selected
115 * - set the correct hwif->ultra_mask for each individual chip
116 * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
117 * Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
118 */
119
120 #include <linux/types.h>
121 #include <linux/module.h>
122 #include <linux/kernel.h>
123 #include <linux/delay.h>
124 #include <linux/timer.h>
125 #include <linux/mm.h>
126 #include <linux/ioport.h>
127 #include <linux/blkdev.h>
128 #include <linux/hdreg.h>
129
130 #include <linux/interrupt.h>
131 #include <linux/pci.h>
132 #include <linux/init.h>
133 #include <linux/ide.h>
134
135 #include <asm/uaccess.h>
136 #include <asm/io.h>
137 #include <asm/irq.h>
138
139 /* various tuning parameters */
140 #define HPT_RESET_STATE_ENGINE
141 #undef HPT_DELAY_INTERRUPT
142 #define HPT_SERIALIZE_IO 0
143
144 static const char *quirk_drives[] = {
145 "QUANTUM FIREBALLlct08 08",
146 "QUANTUM FIREBALLP KA6.4",
147 "QUANTUM FIREBALLP LM20.4",
148 "QUANTUM FIREBALLP LM20.5",
149 NULL
150 };
151
152 static const char *bad_ata100_5[] = {
153 "IBM-DTLA-307075",
154 "IBM-DTLA-307060",
155 "IBM-DTLA-307045",
156 "IBM-DTLA-307030",
157 "IBM-DTLA-307020",
158 "IBM-DTLA-307015",
159 "IBM-DTLA-305040",
160 "IBM-DTLA-305030",
161 "IBM-DTLA-305020",
162 "IC35L010AVER07-0",
163 "IC35L020AVER07-0",
164 "IC35L030AVER07-0",
165 "IC35L040AVER07-0",
166 "IC35L060AVER07-0",
167 "WDC AC310200R",
168 NULL
169 };
170
171 static const char *bad_ata66_4[] = {
172 "IBM-DTLA-307075",
173 "IBM-DTLA-307060",
174 "IBM-DTLA-307045",
175 "IBM-DTLA-307030",
176 "IBM-DTLA-307020",
177 "IBM-DTLA-307015",
178 "IBM-DTLA-305040",
179 "IBM-DTLA-305030",
180 "IBM-DTLA-305020",
181 "IC35L010AVER07-0",
182 "IC35L020AVER07-0",
183 "IC35L030AVER07-0",
184 "IC35L040AVER07-0",
185 "IC35L060AVER07-0",
186 "WDC AC310200R",
187 "MAXTOR STM3320620A",
188 NULL
189 };
190
191 static const char *bad_ata66_3[] = {
192 "WDC AC310200R",
193 NULL
194 };
195
196 static const char *bad_ata33[] = {
197 "Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
198 "Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
199 "Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
200 "Maxtor 90510D4",
201 "Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
202 "Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
203 "Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
204 NULL
205 };
206
207 static u8 xfer_speeds[] = {
208 XFER_UDMA_6,
209 XFER_UDMA_5,
210 XFER_UDMA_4,
211 XFER_UDMA_3,
212 XFER_UDMA_2,
213 XFER_UDMA_1,
214 XFER_UDMA_0,
215
216 XFER_MW_DMA_2,
217 XFER_MW_DMA_1,
218 XFER_MW_DMA_0,
219
220 XFER_PIO_4,
221 XFER_PIO_3,
222 XFER_PIO_2,
223 XFER_PIO_1,
224 XFER_PIO_0
225 };
226
227 /* Key for bus clock timings
228 * 36x 37x
229 * bits bits
230 * 0:3 0:3 data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
231 * cycles = value + 1
232 * 4:7 4:8 data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
233 * cycles = value + 1
234 * 8:11 9:12 cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
235 * register access.
236 * 12:15 13:17 cmd_low_time. Active time of DIOW_/DIOR_ during task file
237 * register access.
238 * 16:18 18:20 udma_cycle_time. Clock cycles for UDMA xfer.
239 * - 21 CLK frequency: 0=ATA clock, 1=dual ATA clock.
240 * 19:21 22:24 pre_high_time. Time to initialize the 1st cycle for PIO and
241 * MW DMA xfer.
242 * 22:24 25:27 cmd_pre_high_time. Time to initialize the 1st PIO cycle for
243 * task file register access.
244 * 28 28 UDMA enable.
245 * 29 29 DMA enable.
246 * 30 30 PIO MST enable. If set, the chip is in bus master mode during
247 * PIO xfer.
248 * 31 31 FIFO enable.
249 */
250
251 static u32 forty_base_hpt36x[] = {
252 /* XFER_UDMA_6 */ 0x900fd943,
253 /* XFER_UDMA_5 */ 0x900fd943,
254 /* XFER_UDMA_4 */ 0x900fd943,
255 /* XFER_UDMA_3 */ 0x900ad943,
256 /* XFER_UDMA_2 */ 0x900bd943,
257 /* XFER_UDMA_1 */ 0x9008d943,
258 /* XFER_UDMA_0 */ 0x9008d943,
259
260 /* XFER_MW_DMA_2 */ 0xa008d943,
261 /* XFER_MW_DMA_1 */ 0xa010d955,
262 /* XFER_MW_DMA_0 */ 0xa010d9fc,
263
264 /* XFER_PIO_4 */ 0xc008d963,
265 /* XFER_PIO_3 */ 0xc010d974,
266 /* XFER_PIO_2 */ 0xc010d997,
267 /* XFER_PIO_1 */ 0xc010d9c7,
268 /* XFER_PIO_0 */ 0xc018d9d9
269 };
270
271 static u32 thirty_three_base_hpt36x[] = {
272 /* XFER_UDMA_6 */ 0x90c9a731,
273 /* XFER_UDMA_5 */ 0x90c9a731,
274 /* XFER_UDMA_4 */ 0x90c9a731,
275 /* XFER_UDMA_3 */ 0x90cfa731,
276 /* XFER_UDMA_2 */ 0x90caa731,
277 /* XFER_UDMA_1 */ 0x90cba731,
278 /* XFER_UDMA_0 */ 0x90c8a731,
279
280 /* XFER_MW_DMA_2 */ 0xa0c8a731,
281 /* XFER_MW_DMA_1 */ 0xa0c8a732, /* 0xa0c8a733 */
282 /* XFER_MW_DMA_0 */ 0xa0c8a797,
283
284 /* XFER_PIO_4 */ 0xc0c8a731,
285 /* XFER_PIO_3 */ 0xc0c8a742,
286 /* XFER_PIO_2 */ 0xc0d0a753,
287 /* XFER_PIO_1 */ 0xc0d0a7a3, /* 0xc0d0a793 */
288 /* XFER_PIO_0 */ 0xc0d0a7aa /* 0xc0d0a7a7 */
289 };
290
291 static u32 twenty_five_base_hpt36x[] = {
292 /* XFER_UDMA_6 */ 0x90c98521,
293 /* XFER_UDMA_5 */ 0x90c98521,
294 /* XFER_UDMA_4 */ 0x90c98521,
295 /* XFER_UDMA_3 */ 0x90cf8521,
296 /* XFER_UDMA_2 */ 0x90cf8521,
297 /* XFER_UDMA_1 */ 0x90cb8521,
298 /* XFER_UDMA_0 */ 0x90cb8521,
299
300 /* XFER_MW_DMA_2 */ 0xa0ca8521,
301 /* XFER_MW_DMA_1 */ 0xa0ca8532,
302 /* XFER_MW_DMA_0 */ 0xa0ca8575,
303
304 /* XFER_PIO_4 */ 0xc0ca8521,
305 /* XFER_PIO_3 */ 0xc0ca8532,
306 /* XFER_PIO_2 */ 0xc0ca8542,
307 /* XFER_PIO_1 */ 0xc0d08572,
308 /* XFER_PIO_0 */ 0xc0d08585
309 };
310
311 #if 0
312 /* These are the timing tables from the HighPoint open source drivers... */
313 static u32 thirty_three_base_hpt37x[] = {
314 /* XFER_UDMA_6 */ 0x12446231, /* 0x12646231 ?? */
315 /* XFER_UDMA_5 */ 0x12446231,
316 /* XFER_UDMA_4 */ 0x12446231,
317 /* XFER_UDMA_3 */ 0x126c6231,
318 /* XFER_UDMA_2 */ 0x12486231,
319 /* XFER_UDMA_1 */ 0x124c6233,
320 /* XFER_UDMA_0 */ 0x12506297,
321
322 /* XFER_MW_DMA_2 */ 0x22406c31,
323 /* XFER_MW_DMA_1 */ 0x22406c33,
324 /* XFER_MW_DMA_0 */ 0x22406c97,
325
326 /* XFER_PIO_4 */ 0x06414e31,
327 /* XFER_PIO_3 */ 0x06414e42,
328 /* XFER_PIO_2 */ 0x06414e53,
329 /* XFER_PIO_1 */ 0x06814e93,
330 /* XFER_PIO_0 */ 0x06814ea7
331 };
332
333 static u32 fifty_base_hpt37x[] = {
334 /* XFER_UDMA_6 */ 0x12848242,
335 /* XFER_UDMA_5 */ 0x12848242,
336 /* XFER_UDMA_4 */ 0x12ac8242,
337 /* XFER_UDMA_3 */ 0x128c8242,
338 /* XFER_UDMA_2 */ 0x120c8242,
339 /* XFER_UDMA_1 */ 0x12148254,
340 /* XFER_UDMA_0 */ 0x121882ea,
341
342 /* XFER_MW_DMA_2 */ 0x22808242,
343 /* XFER_MW_DMA_1 */ 0x22808254,
344 /* XFER_MW_DMA_0 */ 0x228082ea,
345
346 /* XFER_PIO_4 */ 0x0a81f442,
347 /* XFER_PIO_3 */ 0x0a81f443,
348 /* XFER_PIO_2 */ 0x0a81f454,
349 /* XFER_PIO_1 */ 0x0ac1f465,
350 /* XFER_PIO_0 */ 0x0ac1f48a
351 };
352
353 static u32 sixty_six_base_hpt37x[] = {
354 /* XFER_UDMA_6 */ 0x1c869c62,
355 /* XFER_UDMA_5 */ 0x1cae9c62, /* 0x1c8a9c62 */
356 /* XFER_UDMA_4 */ 0x1c8a9c62,
357 /* XFER_UDMA_3 */ 0x1c8e9c62,
358 /* XFER_UDMA_2 */ 0x1c929c62,
359 /* XFER_UDMA_1 */ 0x1c9a9c62,
360 /* XFER_UDMA_0 */ 0x1c829c62,
361
362 /* XFER_MW_DMA_2 */ 0x2c829c62,
363 /* XFER_MW_DMA_1 */ 0x2c829c66,
364 /* XFER_MW_DMA_0 */ 0x2c829d2e,
365
366 /* XFER_PIO_4 */ 0x0c829c62,
367 /* XFER_PIO_3 */ 0x0c829c84,
368 /* XFER_PIO_2 */ 0x0c829ca6,
369 /* XFER_PIO_1 */ 0x0d029d26,
370 /* XFER_PIO_0 */ 0x0d029d5e
371 };
372 #else
373 /*
374 * The following are the new timing tables with PIO mode data/taskfile transfer
375 * overclocking fixed...
376 */
377
378 /* This table is taken from the HPT370 data manual rev. 1.02 */
379 static u32 thirty_three_base_hpt37x[] = {
380 /* XFER_UDMA_6 */ 0x16455031, /* 0x16655031 ?? */
381 /* XFER_UDMA_5 */ 0x16455031,
382 /* XFER_UDMA_4 */ 0x16455031,
383 /* XFER_UDMA_3 */ 0x166d5031,
384 /* XFER_UDMA_2 */ 0x16495031,
385 /* XFER_UDMA_1 */ 0x164d5033,
386 /* XFER_UDMA_0 */ 0x16515097,
387
388 /* XFER_MW_DMA_2 */ 0x26515031,
389 /* XFER_MW_DMA_1 */ 0x26515033,
390 /* XFER_MW_DMA_0 */ 0x26515097,
391
392 /* XFER_PIO_4 */ 0x06515021,
393 /* XFER_PIO_3 */ 0x06515022,
394 /* XFER_PIO_2 */ 0x06515033,
395 /* XFER_PIO_1 */ 0x06915065,
396 /* XFER_PIO_0 */ 0x06d1508a
397 };
398
399 static u32 fifty_base_hpt37x[] = {
400 /* XFER_UDMA_6 */ 0x1a861842,
401 /* XFER_UDMA_5 */ 0x1a861842,
402 /* XFER_UDMA_4 */ 0x1aae1842,
403 /* XFER_UDMA_3 */ 0x1a8e1842,
404 /* XFER_UDMA_2 */ 0x1a0e1842,
405 /* XFER_UDMA_1 */ 0x1a161854,
406 /* XFER_UDMA_0 */ 0x1a1a18ea,
407
408 /* XFER_MW_DMA_2 */ 0x2a821842,
409 /* XFER_MW_DMA_1 */ 0x2a821854,
410 /* XFER_MW_DMA_0 */ 0x2a8218ea,
411
412 /* XFER_PIO_4 */ 0x0a821842,
413 /* XFER_PIO_3 */ 0x0a821843,
414 /* XFER_PIO_2 */ 0x0a821855,
415 /* XFER_PIO_1 */ 0x0ac218a8,
416 /* XFER_PIO_0 */ 0x0b02190c
417 };
418
419 static u32 sixty_six_base_hpt37x[] = {
420 /* XFER_UDMA_6 */ 0x1c86fe62,
421 /* XFER_UDMA_5 */ 0x1caefe62, /* 0x1c8afe62 */
422 /* XFER_UDMA_4 */ 0x1c8afe62,
423 /* XFER_UDMA_3 */ 0x1c8efe62,
424 /* XFER_UDMA_2 */ 0x1c92fe62,
425 /* XFER_UDMA_1 */ 0x1c9afe62,
426 /* XFER_UDMA_0 */ 0x1c82fe62,
427
428 /* XFER_MW_DMA_2 */ 0x2c82fe62,
429 /* XFER_MW_DMA_1 */ 0x2c82fe66,
430 /* XFER_MW_DMA_0 */ 0x2c82ff2e,
431
432 /* XFER_PIO_4 */ 0x0c82fe62,
433 /* XFER_PIO_3 */ 0x0c82fe84,
434 /* XFER_PIO_2 */ 0x0c82fea6,
435 /* XFER_PIO_1 */ 0x0d02ff26,
436 /* XFER_PIO_0 */ 0x0d42ff7f
437 };
438 #endif
439
440 #define HPT366_DEBUG_DRIVE_INFO 0
441 #define HPT371_ALLOW_ATA133_6 1
442 #define HPT302_ALLOW_ATA133_6 1
443 #define HPT372_ALLOW_ATA133_6 1
444 #define HPT370_ALLOW_ATA100_5 0
445 #define HPT366_ALLOW_ATA66_4 1
446 #define HPT366_ALLOW_ATA66_3 1
447 #define HPT366_MAX_DEVS 8
448
449 /* Supported ATA clock frequencies */
450 enum ata_clock {
451 ATA_CLOCK_25MHZ,
452 ATA_CLOCK_33MHZ,
453 ATA_CLOCK_40MHZ,
454 ATA_CLOCK_50MHZ,
455 ATA_CLOCK_66MHZ,
456 NUM_ATA_CLOCKS
457 };
458
459 struct hpt_timings {
460 u32 pio_mask;
461 u32 dma_mask;
462 u32 ultra_mask;
463 u32 *clock_table[NUM_ATA_CLOCKS];
464 };
465
466 /*
467 * Hold all the HighPoint chip information in one place.
468 */
469
470 struct hpt_info {
471 char *chip_name; /* Chip name */
472 u8 chip_type; /* Chip type */
473 u8 udma_mask; /* Allowed UltraDMA modes mask. */
474 u8 dpll_clk; /* DPLL clock in MHz */
475 u8 pci_clk; /* PCI clock in MHz */
476 struct hpt_timings *timings; /* Chipset timing data */
477 u8 clock; /* ATA clock selected */
478 };
479
480 /* Supported HighPoint chips */
481 enum {
482 HPT36x,
483 HPT370,
484 HPT370A,
485 HPT374,
486 HPT372,
487 HPT372A,
488 HPT302,
489 HPT371,
490 HPT372N,
491 HPT302N,
492 HPT371N
493 };
494
495 static struct hpt_timings hpt36x_timings = {
496 .pio_mask = 0xc1f8ffff,
497 .dma_mask = 0x303800ff,
498 .ultra_mask = 0x30070000,
499 .clock_table = {
500 [ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
501 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
502 [ATA_CLOCK_40MHZ] = forty_base_hpt36x,
503 [ATA_CLOCK_50MHZ] = NULL,
504 [ATA_CLOCK_66MHZ] = NULL
505 }
506 };
507
508 static struct hpt_timings hpt37x_timings = {
509 .pio_mask = 0xcfc3ffff,
510 .dma_mask = 0x31c001ff,
511 .ultra_mask = 0x303c0000,
512 .clock_table = {
513 [ATA_CLOCK_25MHZ] = NULL,
514 [ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
515 [ATA_CLOCK_40MHZ] = NULL,
516 [ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
517 [ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
518 }
519 };
520
521 static const struct hpt_info hpt36x __devinitdata = {
522 .chip_name = "HPT36x",
523 .chip_type = HPT36x,
524 .udma_mask = HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
525 .dpll_clk = 0, /* no DPLL */
526 .timings = &hpt36x_timings
527 };
528
529 static const struct hpt_info hpt370 __devinitdata = {
530 .chip_name = "HPT370",
531 .chip_type = HPT370,
532 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
533 .dpll_clk = 48,
534 .timings = &hpt37x_timings
535 };
536
537 static const struct hpt_info hpt370a __devinitdata = {
538 .chip_name = "HPT370A",
539 .chip_type = HPT370A,
540 .udma_mask = HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
541 .dpll_clk = 48,
542 .timings = &hpt37x_timings
543 };
544
545 static const struct hpt_info hpt374 __devinitdata = {
546 .chip_name = "HPT374",
547 .chip_type = HPT374,
548 .udma_mask = ATA_UDMA5,
549 .dpll_clk = 48,
550 .timings = &hpt37x_timings
551 };
552
553 static const struct hpt_info hpt372 __devinitdata = {
554 .chip_name = "HPT372",
555 .chip_type = HPT372,
556 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
557 .dpll_clk = 55,
558 .timings = &hpt37x_timings
559 };
560
561 static const struct hpt_info hpt372a __devinitdata = {
562 .chip_name = "HPT372A",
563 .chip_type = HPT372A,
564 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
565 .dpll_clk = 66,
566 .timings = &hpt37x_timings
567 };
568
569 static const struct hpt_info hpt302 __devinitdata = {
570 .chip_name = "HPT302",
571 .chip_type = HPT302,
572 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
573 .dpll_clk = 66,
574 .timings = &hpt37x_timings
575 };
576
577 static const struct hpt_info hpt371 __devinitdata = {
578 .chip_name = "HPT371",
579 .chip_type = HPT371,
580 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
581 .dpll_clk = 66,
582 .timings = &hpt37x_timings
583 };
584
585 static const struct hpt_info hpt372n __devinitdata = {
586 .chip_name = "HPT372N",
587 .chip_type = HPT372N,
588 .udma_mask = HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
589 .dpll_clk = 77,
590 .timings = &hpt37x_timings
591 };
592
593 static const struct hpt_info hpt302n __devinitdata = {
594 .chip_name = "HPT302N",
595 .chip_type = HPT302N,
596 .udma_mask = HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
597 .dpll_clk = 77,
598 .timings = &hpt37x_timings
599 };
600
601 static const struct hpt_info hpt371n __devinitdata = {
602 .chip_name = "HPT371N",
603 .chip_type = HPT371N,
604 .udma_mask = HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
605 .dpll_clk = 77,
606 .timings = &hpt37x_timings
607 };
608
609 static int check_in_drive_list(ide_drive_t *drive, const char **list)
610 {
611 struct hd_driveid *id = drive->id;
612
613 while (*list)
614 if (!strcmp(*list++,id->model))
615 return 1;
616 return 0;
617 }
618
619 /*
620 * The Marvell bridge chips used on the HighPoint SATA cards do not seem
621 * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
622 */
623
624 static u8 hpt3xx_udma_filter(ide_drive_t *drive)
625 {
626 ide_hwif_t *hwif = HWIF(drive);
627 struct pci_dev *dev = to_pci_dev(hwif->dev);
628 struct hpt_info *info = pci_get_drvdata(dev);
629 u8 mask = hwif->ultra_mask;
630
631 switch (info->chip_type) {
632 case HPT36x:
633 if (!HPT366_ALLOW_ATA66_4 ||
634 check_in_drive_list(drive, bad_ata66_4))
635 mask = ATA_UDMA3;
636
637 if (!HPT366_ALLOW_ATA66_3 ||
638 check_in_drive_list(drive, bad_ata66_3))
639 mask = ATA_UDMA2;
640 break;
641 case HPT370:
642 if (!HPT370_ALLOW_ATA100_5 ||
643 check_in_drive_list(drive, bad_ata100_5))
644 mask = ATA_UDMA4;
645 break;
646 case HPT370A:
647 if (!HPT370_ALLOW_ATA100_5 ||
648 check_in_drive_list(drive, bad_ata100_5))
649 return ATA_UDMA4;
650 case HPT372 :
651 case HPT372A:
652 case HPT372N:
653 case HPT374 :
654 if (ide_dev_is_sata(drive->id))
655 mask &= ~0x0e;
656 /* Fall thru */
657 default:
658 return mask;
659 }
660
661 return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
662 }
663
664 static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
665 {
666 ide_hwif_t *hwif = HWIF(drive);
667 struct pci_dev *dev = to_pci_dev(hwif->dev);
668 struct hpt_info *info = pci_get_drvdata(dev);
669
670 switch (info->chip_type) {
671 case HPT372 :
672 case HPT372A:
673 case HPT372N:
674 case HPT374 :
675 if (ide_dev_is_sata(drive->id))
676 return 0x00;
677 /* Fall thru */
678 default:
679 return 0x07;
680 }
681 }
682
683 static u32 get_speed_setting(u8 speed, struct hpt_info *info)
684 {
685 int i;
686
687 /*
688 * Lookup the transfer mode table to get the index into
689 * the timing table.
690 *
691 * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
692 */
693 for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
694 if (xfer_speeds[i] == speed)
695 break;
696
697 return info->timings->clock_table[info->clock][i];
698 }
699
700 static void hpt3xx_set_mode(ide_drive_t *drive, const u8 speed)
701 {
702 struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
703 struct hpt_info *info = pci_get_drvdata(dev);
704 struct hpt_timings *t = info->timings;
705 u8 itr_addr = 0x40 + (drive->dn * 4);
706 u32 old_itr = 0;
707 u32 new_itr = get_speed_setting(speed, info);
708 u32 itr_mask = speed < XFER_MW_DMA_0 ? t->pio_mask :
709 (speed < XFER_UDMA_0 ? t->dma_mask :
710 t->ultra_mask);
711
712 pci_read_config_dword(dev, itr_addr, &old_itr);
713 new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
714 /*
715 * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
716 * to avoid problems handling I/O errors later
717 */
718 new_itr &= ~0xc0000000;
719
720 pci_write_config_dword(dev, itr_addr, new_itr);
721 }
722
723 static void hpt3xx_set_pio_mode(ide_drive_t *drive, const u8 pio)
724 {
725 hpt3xx_set_mode(drive, XFER_PIO_0 + pio);
726 }
727
728 static void hpt3xx_quirkproc(ide_drive_t *drive)
729 {
730 struct hd_driveid *id = drive->id;
731 const char **list = quirk_drives;
732
733 while (*list)
734 if (strstr(id->model, *list++)) {
735 drive->quirk_list = 1;
736 return;
737 }
738
739 drive->quirk_list = 0;
740 }
741
742 static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
743 {
744 ide_hwif_t *hwif = HWIF(drive);
745 struct pci_dev *dev = to_pci_dev(hwif->dev);
746 struct hpt_info *info = pci_get_drvdata(dev);
747
748 if (drive->quirk_list) {
749 if (info->chip_type >= HPT370) {
750 u8 scr1 = 0;
751
752 pci_read_config_byte(dev, 0x5a, &scr1);
753 if (((scr1 & 0x10) >> 4) != mask) {
754 if (mask)
755 scr1 |= 0x10;
756 else
757 scr1 &= ~0x10;
758 pci_write_config_byte(dev, 0x5a, scr1);
759 }
760 } else {
761 if (mask)
762 disable_irq(hwif->irq);
763 else
764 enable_irq (hwif->irq);
765 }
766 } else
767 outb(mask ? (drive->ctl | 2) : (drive->ctl & ~2),
768 IDE_CONTROL_REG);
769 }
770
771 /*
772 * This is specific to the HPT366 UDMA chipset
773 * by HighPoint|Triones Technologies, Inc.
774 */
775 static void hpt366_dma_lost_irq(ide_drive_t *drive)
776 {
777 struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
778 u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
779
780 pci_read_config_byte(dev, 0x50, &mcr1);
781 pci_read_config_byte(dev, 0x52, &mcr3);
782 pci_read_config_byte(dev, 0x5a, &scr1);
783 printk("%s: (%s) mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
784 drive->name, __FUNCTION__, mcr1, mcr3, scr1);
785 if (scr1 & 0x10)
786 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
787 ide_dma_lost_irq(drive);
788 }
789
790 static void hpt370_clear_engine(ide_drive_t *drive)
791 {
792 ide_hwif_t *hwif = HWIF(drive);
793 struct pci_dev *dev = to_pci_dev(hwif->dev);
794
795 pci_write_config_byte(dev, hwif->select_data, 0x37);
796 udelay(10);
797 }
798
799 static void hpt370_irq_timeout(ide_drive_t *drive)
800 {
801 ide_hwif_t *hwif = HWIF(drive);
802 struct pci_dev *dev = to_pci_dev(hwif->dev);
803 u16 bfifo = 0;
804 u8 dma_cmd;
805
806 pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
807 printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
808
809 /* get DMA command mode */
810 dma_cmd = inb(hwif->dma_command);
811 /* stop DMA */
812 outb(dma_cmd & ~0x1, hwif->dma_command);
813 hpt370_clear_engine(drive);
814 }
815
816 static void hpt370_ide_dma_start(ide_drive_t *drive)
817 {
818 #ifdef HPT_RESET_STATE_ENGINE
819 hpt370_clear_engine(drive);
820 #endif
821 ide_dma_start(drive);
822 }
823
824 static int hpt370_ide_dma_end(ide_drive_t *drive)
825 {
826 ide_hwif_t *hwif = HWIF(drive);
827 u8 dma_stat = inb(hwif->dma_status);
828
829 if (dma_stat & 0x01) {
830 /* wait a little */
831 udelay(20);
832 dma_stat = inb(hwif->dma_status);
833 if (dma_stat & 0x01)
834 hpt370_irq_timeout(drive);
835 }
836 return __ide_dma_end(drive);
837 }
838
839 static void hpt370_dma_timeout(ide_drive_t *drive)
840 {
841 hpt370_irq_timeout(drive);
842 ide_dma_timeout(drive);
843 }
844
845 /* returns 1 if DMA IRQ issued, 0 otherwise */
846 static int hpt374_ide_dma_test_irq(ide_drive_t *drive)
847 {
848 ide_hwif_t *hwif = HWIF(drive);
849 struct pci_dev *dev = to_pci_dev(hwif->dev);
850 u16 bfifo = 0;
851 u8 dma_stat;
852
853 pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
854 if (bfifo & 0x1FF) {
855 // printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
856 return 0;
857 }
858
859 dma_stat = inb(hwif->dma_status);
860 /* return 1 if INTR asserted */
861 if (dma_stat & 4)
862 return 1;
863
864 if (!drive->waiting_for_dma)
865 printk(KERN_WARNING "%s: (%s) called while not waiting\n",
866 drive->name, __FUNCTION__);
867 return 0;
868 }
869
870 static int hpt374_ide_dma_end(ide_drive_t *drive)
871 {
872 ide_hwif_t *hwif = HWIF(drive);
873 struct pci_dev *dev = to_pci_dev(hwif->dev);
874 u8 mcr = 0, mcr_addr = hwif->select_data;
875 u8 bwsr = 0, mask = hwif->channel ? 0x02 : 0x01;
876
877 pci_read_config_byte(dev, 0x6a, &bwsr);
878 pci_read_config_byte(dev, mcr_addr, &mcr);
879 if (bwsr & mask)
880 pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
881 return __ide_dma_end(drive);
882 }
883
884 /**
885 * hpt3xxn_set_clock - perform clock switching dance
886 * @hwif: hwif to switch
887 * @mode: clocking mode (0x21 for write, 0x23 otherwise)
888 *
889 * Switch the DPLL clock on the HPT3xxN devices. This is a right mess.
890 */
891
892 static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
893 {
894 unsigned long base = hwif->extra_base;
895 u8 scr2 = inb(base + 0x6b);
896
897 if ((scr2 & 0x7f) == mode)
898 return;
899
900 /* Tristate the bus */
901 outb(0x80, base + 0x63);
902 outb(0x80, base + 0x67);
903
904 /* Switch clock and reset channels */
905 outb(mode, base + 0x6b);
906 outb(0xc0, base + 0x69);
907
908 /*
909 * Reset the state machines.
910 * NOTE: avoid accidentally enabling the disabled channels.
911 */
912 outb(inb(base + 0x60) | 0x32, base + 0x60);
913 outb(inb(base + 0x64) | 0x32, base + 0x64);
914
915 /* Complete reset */
916 outb(0x00, base + 0x69);
917
918 /* Reconnect channels to bus */
919 outb(0x00, base + 0x63);
920 outb(0x00, base + 0x67);
921 }
922
923 /**
924 * hpt3xxn_rw_disk - prepare for I/O
925 * @drive: drive for command
926 * @rq: block request structure
927 *
928 * This is called when a disk I/O is issued to HPT3xxN.
929 * We need it because of the clock switching.
930 */
931
932 static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
933 {
934 hpt3xxn_set_clock(HWIF(drive), rq_data_dir(rq) ? 0x23 : 0x21);
935 }
936
937 /*
938 * Set/get power state for a drive.
939 * NOTE: affects both drives on each channel.
940 *
941 * When we turn the power back on, we need to re-initialize things.
942 */
943 #define TRISTATE_BIT 0x8000
944
945 static int hpt3xx_busproc(ide_drive_t *drive, int state)
946 {
947 ide_hwif_t *hwif = HWIF(drive);
948 struct pci_dev *dev = to_pci_dev(hwif->dev);
949 u8 mcr_addr = hwif->select_data + 2;
950 u8 resetmask = hwif->channel ? 0x80 : 0x40;
951 u8 bsr2 = 0;
952 u16 mcr = 0;
953
954 hwif->bus_state = state;
955
956 /* Grab the status. */
957 pci_read_config_word(dev, mcr_addr, &mcr);
958 pci_read_config_byte(dev, 0x59, &bsr2);
959
960 /*
961 * Set the state. We don't set it if we don't need to do so.
962 * Make sure that the drive knows that it has failed if it's off.
963 */
964 switch (state) {
965 case BUSSTATE_ON:
966 if (!(bsr2 & resetmask))
967 return 0;
968 hwif->drives[0].failures = hwif->drives[1].failures = 0;
969
970 pci_write_config_byte(dev, 0x59, bsr2 & ~resetmask);
971 pci_write_config_word(dev, mcr_addr, mcr & ~TRISTATE_BIT);
972 return 0;
973 case BUSSTATE_OFF:
974 if ((bsr2 & resetmask) && !(mcr & TRISTATE_BIT))
975 return 0;
976 mcr &= ~TRISTATE_BIT;
977 break;
978 case BUSSTATE_TRISTATE:
979 if ((bsr2 & resetmask) && (mcr & TRISTATE_BIT))
980 return 0;
981 mcr |= TRISTATE_BIT;
982 break;
983 default:
984 return -EINVAL;
985 }
986
987 hwif->drives[0].failures = hwif->drives[0].max_failures + 1;
988 hwif->drives[1].failures = hwif->drives[1].max_failures + 1;
989
990 pci_write_config_word(dev, mcr_addr, mcr);
991 pci_write_config_byte(dev, 0x59, bsr2 | resetmask);
992 return 0;
993 }
994
995 /**
996 * hpt37x_calibrate_dpll - calibrate the DPLL
997 * @dev: PCI device
998 *
999 * Perform a calibration cycle on the DPLL.
1000 * Returns 1 if this succeeds
1001 */
1002 static int __devinit hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
1003 {
1004 u32 dpll = (f_high << 16) | f_low | 0x100;
1005 u8 scr2;
1006 int i;
1007
1008 pci_write_config_dword(dev, 0x5c, dpll);
1009
1010 /* Wait for oscillator ready */
1011 for(i = 0; i < 0x5000; ++i) {
1012 udelay(50);
1013 pci_read_config_byte(dev, 0x5b, &scr2);
1014 if (scr2 & 0x80)
1015 break;
1016 }
1017 /* See if it stays ready (we'll just bail out if it's not yet) */
1018 for(i = 0; i < 0x1000; ++i) {
1019 pci_read_config_byte(dev, 0x5b, &scr2);
1020 /* DPLL destabilized? */
1021 if(!(scr2 & 0x80))
1022 return 0;
1023 }
1024 /* Turn off tuning, we have the DPLL set */
1025 pci_read_config_dword (dev, 0x5c, &dpll);
1026 pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
1027 return 1;
1028 }
1029
1030 static unsigned int __devinit init_chipset_hpt366(struct pci_dev *dev, const char *name)
1031 {
1032 struct hpt_info *info = kmalloc(sizeof(struct hpt_info), GFP_KERNEL);
1033 unsigned long io_base = pci_resource_start(dev, 4);
1034 u8 pci_clk, dpll_clk = 0; /* PCI and DPLL clock in MHz */
1035 u8 chip_type;
1036 enum ata_clock clock;
1037
1038 if (info == NULL) {
1039 printk(KERN_ERR "%s: out of memory!\n", name);
1040 return -ENOMEM;
1041 }
1042
1043 /*
1044 * Copy everything from a static "template" structure
1045 * to just allocated per-chip hpt_info structure.
1046 */
1047 memcpy(info, pci_get_drvdata(dev), sizeof(struct hpt_info));
1048 chip_type = info->chip_type;
1049
1050 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
1051 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
1052 pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
1053 pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
1054
1055 /*
1056 * First, try to estimate the PCI clock frequency...
1057 */
1058 if (chip_type >= HPT370) {
1059 u8 scr1 = 0;
1060 u16 f_cnt = 0;
1061 u32 temp = 0;
1062
1063 /* Interrupt force enable. */
1064 pci_read_config_byte(dev, 0x5a, &scr1);
1065 if (scr1 & 0x10)
1066 pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
1067
1068 /*
1069 * HighPoint does this for HPT372A.
1070 * NOTE: This register is only writeable via I/O space.
1071 */
1072 if (chip_type == HPT372A)
1073 outb(0x0e, io_base + 0x9c);
1074
1075 /*
1076 * Default to PCI clock. Make sure MA15/16 are set to output
1077 * to prevent drives having problems with 40-pin cables.
1078 */
1079 pci_write_config_byte(dev, 0x5b, 0x23);
1080
1081 /*
1082 * We'll have to read f_CNT value in order to determine
1083 * the PCI clock frequency according to the following ratio:
1084 *
1085 * f_CNT = Fpci * 192 / Fdpll
1086 *
1087 * First try reading the register in which the HighPoint BIOS
1088 * saves f_CNT value before reprogramming the DPLL from its
1089 * default setting (which differs for the various chips).
1090 *
1091 * NOTE: This register is only accessible via I/O space;
1092 * HPT374 BIOS only saves it for the function 0, so we have to
1093 * always read it from there -- no need to check the result of
1094 * pci_get_slot() for the function 0 as the whole device has
1095 * been already "pinned" (via function 1) in init_setup_hpt374()
1096 */
1097 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1098 struct pci_dev *dev1 = pci_get_slot(dev->bus,
1099 dev->devfn - 1);
1100 unsigned long io_base = pci_resource_start(dev1, 4);
1101
1102 temp = inl(io_base + 0x90);
1103 pci_dev_put(dev1);
1104 } else
1105 temp = inl(io_base + 0x90);
1106
1107 /*
1108 * In case the signature check fails, we'll have to
1109 * resort to reading the f_CNT register itself in hopes
1110 * that nobody has touched the DPLL yet...
1111 */
1112 if ((temp & 0xFFFFF000) != 0xABCDE000) {
1113 int i;
1114
1115 printk(KERN_WARNING "%s: no clock data saved by BIOS\n",
1116 name);
1117
1118 /* Calculate the average value of f_CNT. */
1119 for (temp = i = 0; i < 128; i++) {
1120 pci_read_config_word(dev, 0x78, &f_cnt);
1121 temp += f_cnt & 0x1ff;
1122 mdelay(1);
1123 }
1124 f_cnt = temp / 128;
1125 } else
1126 f_cnt = temp & 0x1ff;
1127
1128 dpll_clk = info->dpll_clk;
1129 pci_clk = (f_cnt * dpll_clk) / 192;
1130
1131 /* Clamp PCI clock to bands. */
1132 if (pci_clk < 40)
1133 pci_clk = 33;
1134 else if(pci_clk < 45)
1135 pci_clk = 40;
1136 else if(pci_clk < 55)
1137 pci_clk = 50;
1138 else
1139 pci_clk = 66;
1140
1141 printk(KERN_INFO "%s: DPLL base: %d MHz, f_CNT: %d, "
1142 "assuming %d MHz PCI\n", name, dpll_clk, f_cnt, pci_clk);
1143 } else {
1144 u32 itr1 = 0;
1145
1146 pci_read_config_dword(dev, 0x40, &itr1);
1147
1148 /* Detect PCI clock by looking at cmd_high_time. */
1149 switch((itr1 >> 8) & 0x07) {
1150 case 0x09:
1151 pci_clk = 40;
1152 break;
1153 case 0x05:
1154 pci_clk = 25;
1155 break;
1156 case 0x07:
1157 default:
1158 pci_clk = 33;
1159 break;
1160 }
1161 }
1162
1163 /* Let's assume we'll use PCI clock for the ATA clock... */
1164 switch (pci_clk) {
1165 case 25:
1166 clock = ATA_CLOCK_25MHZ;
1167 break;
1168 case 33:
1169 default:
1170 clock = ATA_CLOCK_33MHZ;
1171 break;
1172 case 40:
1173 clock = ATA_CLOCK_40MHZ;
1174 break;
1175 case 50:
1176 clock = ATA_CLOCK_50MHZ;
1177 break;
1178 case 66:
1179 clock = ATA_CLOCK_66MHZ;
1180 break;
1181 }
1182
1183 /*
1184 * Only try the DPLL if we don't have a table for the PCI clock that
1185 * we are running at for HPT370/A, always use it for anything newer...
1186 *
1187 * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1188 * We also don't like using the DPLL because this causes glitches
1189 * on PRST-/SRST- when the state engine gets reset...
1190 */
1191 if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1192 u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1193 int adjust;
1194
1195 /*
1196 * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1197 * supported/enabled, use 50 MHz DPLL clock otherwise...
1198 */
1199 if (info->udma_mask == ATA_UDMA6) {
1200 dpll_clk = 66;
1201 clock = ATA_CLOCK_66MHZ;
1202 } else if (dpll_clk) { /* HPT36x chips don't have DPLL */
1203 dpll_clk = 50;
1204 clock = ATA_CLOCK_50MHZ;
1205 }
1206
1207 if (info->timings->clock_table[clock] == NULL) {
1208 printk(KERN_ERR "%s: unknown bus timing!\n", name);
1209 kfree(info);
1210 return -EIO;
1211 }
1212
1213 /* Select the DPLL clock. */
1214 pci_write_config_byte(dev, 0x5b, 0x21);
1215
1216 /*
1217 * Adjust the DPLL based upon PCI clock, enable it,
1218 * and wait for stabilization...
1219 */
1220 f_low = (pci_clk * 48) / dpll_clk;
1221
1222 for (adjust = 0; adjust < 8; adjust++) {
1223 if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1224 break;
1225
1226 /*
1227 * See if it'll settle at a fractionally different clock
1228 */
1229 if (adjust & 1)
1230 f_low -= adjust >> 1;
1231 else
1232 f_low += adjust >> 1;
1233 }
1234 if (adjust == 8) {
1235 printk(KERN_ERR "%s: DPLL did not stabilize!\n", name);
1236 kfree(info);
1237 return -EIO;
1238 }
1239
1240 printk("%s: using %d MHz DPLL clock\n", name, dpll_clk);
1241 } else {
1242 /* Mark the fact that we're not using the DPLL. */
1243 dpll_clk = 0;
1244
1245 printk("%s: using %d MHz PCI clock\n", name, pci_clk);
1246 }
1247
1248 /* Store the clock frequencies. */
1249 info->dpll_clk = dpll_clk;
1250 info->pci_clk = pci_clk;
1251 info->clock = clock;
1252
1253 /* Point to this chip's own instance of the hpt_info structure. */
1254 pci_set_drvdata(dev, info);
1255
1256 if (chip_type >= HPT370) {
1257 u8 mcr1, mcr4;
1258
1259 /*
1260 * Reset the state engines.
1261 * NOTE: Avoid accidentally enabling the disabled channels.
1262 */
1263 pci_read_config_byte (dev, 0x50, &mcr1);
1264 pci_read_config_byte (dev, 0x54, &mcr4);
1265 pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1266 pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1267 udelay(100);
1268 }
1269
1270 /*
1271 * On HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1272 * the MISC. register to stretch the UltraDMA Tss timing.
1273 * NOTE: This register is only writeable via I/O space.
1274 */
1275 if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1276
1277 outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1278
1279 return dev->irq;
1280 }
1281
1282 static void __devinit init_hwif_hpt366(ide_hwif_t *hwif)
1283 {
1284 struct pci_dev *dev = to_pci_dev(hwif->dev);
1285 struct hpt_info *info = pci_get_drvdata(dev);
1286 int serialize = HPT_SERIALIZE_IO;
1287 u8 scr1 = 0, ata66 = hwif->channel ? 0x01 : 0x02;
1288 u8 chip_type = info->chip_type;
1289 u8 new_mcr, old_mcr = 0;
1290
1291 /* Cache the channel's MISC. control registers' offset */
1292 hwif->select_data = hwif->channel ? 0x54 : 0x50;
1293
1294 hwif->set_pio_mode = &hpt3xx_set_pio_mode;
1295 hwif->set_dma_mode = &hpt3xx_set_mode;
1296
1297 hwif->quirkproc = &hpt3xx_quirkproc;
1298 hwif->maskproc = &hpt3xx_maskproc;
1299 hwif->busproc = &hpt3xx_busproc;
1300
1301 hwif->udma_filter = &hpt3xx_udma_filter;
1302 hwif->mdma_filter = &hpt3xx_mdma_filter;
1303
1304 /*
1305 * HPT3xxN chips have some complications:
1306 *
1307 * - on 33 MHz PCI we must clock switch
1308 * - on 66 MHz PCI we must NOT use the PCI clock
1309 */
1310 if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1311 /*
1312 * Clock is shared between the channels,
1313 * so we'll have to serialize them... :-(
1314 */
1315 serialize = 1;
1316 hwif->rw_disk = &hpt3xxn_rw_disk;
1317 }
1318
1319 /* Serialize access to this device if needed */
1320 if (serialize && hwif->mate)
1321 hwif->serialized = hwif->mate->serialized = 1;
1322
1323 /*
1324 * Disable the "fast interrupt" prediction. Don't hold off
1325 * on interrupts. (== 0x01 despite what the docs say)
1326 */
1327 pci_read_config_byte(dev, hwif->select_data + 1, &old_mcr);
1328
1329 if (info->chip_type >= HPT374)
1330 new_mcr = old_mcr & ~0x07;
1331 else if (info->chip_type >= HPT370) {
1332 new_mcr = old_mcr;
1333 new_mcr &= ~0x02;
1334
1335 #ifdef HPT_DELAY_INTERRUPT
1336 new_mcr &= ~0x01;
1337 #else
1338 new_mcr |= 0x01;
1339 #endif
1340 } else /* HPT366 and HPT368 */
1341 new_mcr = old_mcr & ~0x80;
1342
1343 if (new_mcr != old_mcr)
1344 pci_write_config_byte(dev, hwif->select_data + 1, new_mcr);
1345
1346 if (hwif->dma_base == 0)
1347 return;
1348
1349 /*
1350 * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1351 * address lines to access an external EEPROM. To read valid
1352 * cable detect state the pins must be enabled as inputs.
1353 */
1354 if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1355 /*
1356 * HPT374 PCI function 1
1357 * - set bit 15 of reg 0x52 to enable TCBLID as input
1358 * - set bit 15 of reg 0x56 to enable FCBLID as input
1359 */
1360 u8 mcr_addr = hwif->select_data + 2;
1361 u16 mcr;
1362
1363 pci_read_config_word (dev, mcr_addr, &mcr);
1364 pci_write_config_word(dev, mcr_addr, (mcr | 0x8000));
1365 /* now read cable id register */
1366 pci_read_config_byte (dev, 0x5a, &scr1);
1367 pci_write_config_word(dev, mcr_addr, mcr);
1368 } else if (chip_type >= HPT370) {
1369 /*
1370 * HPT370/372 and 374 pcifn 0
1371 * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1372 */
1373 u8 scr2 = 0;
1374
1375 pci_read_config_byte (dev, 0x5b, &scr2);
1376 pci_write_config_byte(dev, 0x5b, (scr2 & ~1));
1377 /* now read cable id register */
1378 pci_read_config_byte (dev, 0x5a, &scr1);
1379 pci_write_config_byte(dev, 0x5b, scr2);
1380 } else
1381 pci_read_config_byte (dev, 0x5a, &scr1);
1382
1383 if (hwif->cbl != ATA_CBL_PATA40_SHORT)
1384 hwif->cbl = (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1385
1386 if (chip_type >= HPT374) {
1387 hwif->ide_dma_test_irq = &hpt374_ide_dma_test_irq;
1388 hwif->ide_dma_end = &hpt374_ide_dma_end;
1389 } else if (chip_type >= HPT370) {
1390 hwif->dma_start = &hpt370_ide_dma_start;
1391 hwif->ide_dma_end = &hpt370_ide_dma_end;
1392 hwif->dma_timeout = &hpt370_dma_timeout;
1393 } else
1394 hwif->dma_lost_irq = &hpt366_dma_lost_irq;
1395 }
1396
1397 static void __devinit init_dma_hpt366(ide_hwif_t *hwif, unsigned long dmabase)
1398 {
1399 struct pci_dev *dev = to_pci_dev(hwif->dev);
1400 u8 masterdma = 0, slavedma = 0;
1401 u8 dma_new = 0, dma_old = 0;
1402 unsigned long flags;
1403
1404 dma_old = inb(dmabase + 2);
1405
1406 local_irq_save(flags);
1407
1408 dma_new = dma_old;
1409 pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1410 pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47, &slavedma);
1411
1412 if (masterdma & 0x30) dma_new |= 0x20;
1413 if ( slavedma & 0x30) dma_new |= 0x40;
1414 if (dma_new != dma_old)
1415 outb(dma_new, dmabase + 2);
1416
1417 local_irq_restore(flags);
1418
1419 ide_setup_dma(hwif, dmabase);
1420 }
1421
1422 static void __devinit hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1423 {
1424 if (dev2->irq != dev->irq) {
1425 /* FIXME: we need a core pci_set_interrupt() */
1426 dev2->irq = dev->irq;
1427 printk(KERN_INFO "HPT374: PCI config space interrupt fixed\n");
1428 }
1429 }
1430
1431 static void __devinit hpt371_init(struct pci_dev *dev)
1432 {
1433 u8 mcr1 = 0;
1434
1435 /*
1436 * HPT371 chips physically have only one channel, the secondary one,
1437 * but the primary channel registers do exist! Go figure...
1438 * So, we manually disable the non-existing channel here
1439 * (if the BIOS hasn't done this already).
1440 */
1441 pci_read_config_byte(dev, 0x50, &mcr1);
1442 if (mcr1 & 0x04)
1443 pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1444 }
1445
1446 static int __devinit hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1447 {
1448 u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1449
1450 /*
1451 * Now we'll have to force both channels enabled if
1452 * at least one of them has been enabled by BIOS...
1453 */
1454 pci_read_config_byte(dev, 0x50, &mcr1);
1455 if (mcr1 & 0x30)
1456 pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1457
1458 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin1);
1459 pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1460
1461 if (pin1 != pin2 && dev->irq == dev2->irq) {
1462 printk(KERN_INFO "HPT36x: onboard version of chipset, "
1463 "pin1=%d pin2=%d\n", pin1, pin2);
1464 return 1;
1465 }
1466
1467 return 0;
1468 }
1469
1470 #define IDE_HFLAGS_HPT3XX \
1471 (IDE_HFLAG_NO_ATAPI_DMA | \
1472 IDE_HFLAG_ABUSE_SET_DMA_MODE | \
1473 IDE_HFLAG_OFF_BOARD)
1474
1475 static const struct ide_port_info hpt366_chipsets[] __devinitdata = {
1476 { /* 0 */
1477 .name = "HPT36x",
1478 .init_chipset = init_chipset_hpt366,
1479 .init_hwif = init_hwif_hpt366,
1480 .init_dma = init_dma_hpt366,
1481 /*
1482 * HPT36x chips have one channel per function and have
1483 * both channel enable bits located differently and visible
1484 * to both functions -- really stupid design decision... :-(
1485 * Bit 4 is for the primary channel, bit 5 for the secondary.
1486 */
1487 .enablebits = {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1488 .extra = 240,
1489 .host_flags = IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1490 .pio_mask = ATA_PIO4,
1491 .mwdma_mask = ATA_MWDMA2,
1492 },{ /* 1 */
1493 .name = "HPT372A",
1494 .init_chipset = init_chipset_hpt366,
1495 .init_hwif = init_hwif_hpt366,
1496 .init_dma = init_dma_hpt366,
1497 .enablebits = {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1498 .extra = 240,
1499 .host_flags = IDE_HFLAGS_HPT3XX,
1500 .pio_mask = ATA_PIO4,
1501 .mwdma_mask = ATA_MWDMA2,
1502 },{ /* 2 */
1503 .name = "HPT302",
1504 .init_chipset = init_chipset_hpt366,
1505 .init_hwif = init_hwif_hpt366,
1506 .init_dma = init_dma_hpt366,
1507 .enablebits = {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1508 .extra = 240,
1509 .host_flags = IDE_HFLAGS_HPT3XX,
1510 .pio_mask = ATA_PIO4,
1511 .mwdma_mask = ATA_MWDMA2,
1512 },{ /* 3 */
1513 .name = "HPT371",
1514 .init_chipset = init_chipset_hpt366,
1515 .init_hwif = init_hwif_hpt366,
1516 .init_dma = init_dma_hpt366,
1517 .enablebits = {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1518 .extra = 240,
1519 .host_flags = IDE_HFLAGS_HPT3XX,
1520 .pio_mask = ATA_PIO4,
1521 .mwdma_mask = ATA_MWDMA2,
1522 },{ /* 4 */
1523 .name = "HPT374",
1524 .init_chipset = init_chipset_hpt366,
1525 .init_hwif = init_hwif_hpt366,
1526 .init_dma = init_dma_hpt366,
1527 .enablebits = {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1528 .udma_mask = ATA_UDMA5,
1529 .extra = 240,
1530 .host_flags = IDE_HFLAGS_HPT3XX,
1531 .pio_mask = ATA_PIO4,
1532 .mwdma_mask = ATA_MWDMA2,
1533 },{ /* 5 */
1534 .name = "HPT372N",
1535 .init_chipset = init_chipset_hpt366,
1536 .init_hwif = init_hwif_hpt366,
1537 .init_dma = init_dma_hpt366,
1538 .enablebits = {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1539 .extra = 240,
1540 .host_flags = IDE_HFLAGS_HPT3XX,
1541 .pio_mask = ATA_PIO4,
1542 .mwdma_mask = ATA_MWDMA2,
1543 }
1544 };
1545
1546 /**
1547 * hpt366_init_one - called when an HPT366 is found
1548 * @dev: the hpt366 device
1549 * @id: the matching pci id
1550 *
1551 * Called when the PCI registration layer (or the IDE initialization)
1552 * finds a device matching our IDE device tables.
1553 */
1554 static int __devinit hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1555 {
1556 const struct hpt_info *info = NULL;
1557 struct pci_dev *dev2 = NULL;
1558 struct ide_port_info d;
1559 u8 idx = id->driver_data;
1560 u8 rev = dev->revision;
1561
1562 if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1563 return -ENODEV;
1564
1565 switch (idx) {
1566 case 0:
1567 if (rev < 3)
1568 info = &hpt36x;
1569 else {
1570 static const struct hpt_info *hpt37x_info[] =
1571 { &hpt370, &hpt370a, &hpt372, &hpt372n };
1572
1573 info = hpt37x_info[min_t(u8, rev, 6) - 3];
1574 idx++;
1575 }
1576 break;
1577 case 1:
1578 info = (rev > 1) ? &hpt372n : &hpt372a;
1579 break;
1580 case 2:
1581 info = (rev > 1) ? &hpt302n : &hpt302;
1582 break;
1583 case 3:
1584 hpt371_init(dev);
1585 info = (rev > 1) ? &hpt371n : &hpt371;
1586 break;
1587 case 4:
1588 info = &hpt374;
1589 break;
1590 case 5:
1591 info = &hpt372n;
1592 break;
1593 }
1594
1595 d = hpt366_chipsets[idx];
1596
1597 d.name = info->chip_name;
1598 d.udma_mask = info->udma_mask;
1599
1600 pci_set_drvdata(dev, (void *)info);
1601
1602 if (info == &hpt36x || info == &hpt374)
1603 dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1604
1605 if (dev2) {
1606 int ret;
1607
1608 pci_set_drvdata(dev2, (void *)info);
1609
1610 if (info == &hpt374)
1611 hpt374_init(dev, dev2);
1612 else {
1613 if (hpt36x_init(dev, dev2))
1614 d.host_flags |= IDE_HFLAG_BOOTABLE;
1615 }
1616
1617 ret = ide_setup_pci_devices(dev, dev2, &d);
1618 if (ret < 0)
1619 pci_dev_put(dev2);
1620 return ret;
1621 }
1622
1623 return ide_setup_pci_device(dev, &d);
1624 }
1625
1626 static const struct pci_device_id hpt366_pci_tbl[] = {
1627 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366), 0 },
1628 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372), 1 },
1629 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302), 2 },
1630 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371), 3 },
1631 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374), 4 },
1632 { PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1633 { 0, },
1634 };
1635 MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1636
1637 static struct pci_driver driver = {
1638 .name = "HPT366_IDE",
1639 .id_table = hpt366_pci_tbl,
1640 .probe = hpt366_init_one,
1641 };
1642
1643 static int __init hpt366_ide_init(void)
1644 {
1645 return ide_pci_register_driver(&driver);
1646 }
1647
1648 module_init(hpt366_ide_init);
1649
1650 MODULE_AUTHOR("Andre Hedrick");
1651 MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1652 MODULE_LICENSE("GPL");