ide: add ide_tf_read() helper
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / ide / ide-io.c
1 /*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58 int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60 int ret = 1;
61
62 /*
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
65 */
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
67 nr_bytes = rq->hard_nr_sectors << 9;
68
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70 rq->errors = -EIO;
71
72 /*
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
75 */
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77 drive->state = 0;
78 HWGROUP(drive)->hwif->ide_dma_on(drive);
79 }
80
81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82 add_disk_randomness(rq->rq_disk);
83 if (dequeue) {
84 if (!list_empty(&rq->queuelist))
85 blkdev_dequeue_request(rq);
86 HWGROUP(drive)->rq = NULL;
87 }
88 end_that_request_last(rq, uptodate);
89 ret = 0;
90 }
91
92 return ret;
93 }
94
95 /**
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
98 * @uptodate:
99 * @nr_sectors: number of sectors completed
100 *
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
104 */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108 unsigned int nr_bytes = nr_sectors << 9;
109 struct request *rq;
110 unsigned long flags;
111 int ret = 1;
112
113 /*
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
116 */
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
119
120 if (!nr_bytes) {
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
123 else
124 nr_bytes = rq->hard_cur_sectors << 9;
125 }
126
127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129 spin_unlock_irqrestore(&ide_lock, flags);
130 return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140 enum {
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
142 idedisk_pm_standby,
143
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
145 idedisk_pm_idle,
146 ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151 struct request_pm_state *pm = rq->data;
152
153 if (drive->media != ide_disk)
154 return;
155
156 switch (pm->pm_step) {
157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
160 else
161 pm->pm_step = idedisk_pm_standby;
162 break;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
164 pm->pm_step = ide_pm_state_completed;
165 break;
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
168 break;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
170 pm->pm_step = ide_pm_restore_dma;
171 break;
172 }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177 struct request_pm_state *pm = rq->data;
178 ide_task_t *args = rq->special;
179
180 memset(args, 0, sizeof(*args));
181
182 switch (pm->pm_step) {
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
185 break;
186 /* Not supported? Switch to next step now. */
187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188 ide_complete_power_step(drive, rq, 0, 0);
189 return ide_stopped;
190 }
191 if (ide_id_has_flush_cache_ext(drive->id))
192 args->tf.command = WIN_FLUSH_CACHE_EXT;
193 else
194 args->tf.command = WIN_FLUSH_CACHE;
195 goto out_do_tf;
196
197 case idedisk_pm_standby: /* Suspend step 2 (standby) */
198 args->tf.command = WIN_STANDBYNOW1;
199 goto out_do_tf;
200
201 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
202 ide_set_max_pio(drive);
203 /*
204 * skip idedisk_pm_idle for ATAPI devices
205 */
206 if (drive->media != ide_disk)
207 pm->pm_step = ide_pm_restore_dma;
208 else
209 ide_complete_power_step(drive, rq, 0, 0);
210 return ide_stopped;
211
212 case idedisk_pm_idle: /* Resume step 2 (idle) */
213 args->tf.command = WIN_IDLEIMMEDIATE;
214 goto out_do_tf;
215
216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
217 /*
218 * Right now, all we do is call ide_set_dma(drive),
219 * we could be smarter and check for current xfer_speed
220 * in struct drive etc...
221 */
222 if (drive->hwif->ide_dma_on == NULL)
223 break;
224 drive->hwif->dma_off_quietly(drive);
225 /*
226 * TODO: respect ->using_dma setting
227 */
228 ide_set_dma(drive);
229 break;
230 }
231 pm->pm_step = ide_pm_state_completed;
232 return ide_stopped;
233
234 out_do_tf:
235 args->tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE;
236 args->data_phase = TASKFILE_NO_DATA;
237 return do_rw_taskfile(drive, args);
238 }
239
240 /**
241 * ide_end_dequeued_request - complete an IDE I/O
242 * @drive: IDE device for the I/O
243 * @uptodate:
244 * @nr_sectors: number of sectors completed
245 *
246 * Complete an I/O that is no longer on the request queue. This
247 * typically occurs when we pull the request and issue a REQUEST_SENSE.
248 * We must still finish the old request but we must not tamper with the
249 * queue in the meantime.
250 *
251 * NOTE: This path does not handle barrier, but barrier is not supported
252 * on ide-cd anyway.
253 */
254
255 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
256 int uptodate, int nr_sectors)
257 {
258 unsigned long flags;
259 int ret;
260
261 spin_lock_irqsave(&ide_lock, flags);
262 BUG_ON(!blk_rq_started(rq));
263 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
264 spin_unlock_irqrestore(&ide_lock, flags);
265
266 return ret;
267 }
268 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
269
270
271 /**
272 * ide_complete_pm_request - end the current Power Management request
273 * @drive: target drive
274 * @rq: request
275 *
276 * This function cleans up the current PM request and stops the queue
277 * if necessary.
278 */
279 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
280 {
281 unsigned long flags;
282
283 #ifdef DEBUG_PM
284 printk("%s: completing PM request, %s\n", drive->name,
285 blk_pm_suspend_request(rq) ? "suspend" : "resume");
286 #endif
287 spin_lock_irqsave(&ide_lock, flags);
288 if (blk_pm_suspend_request(rq)) {
289 blk_stop_queue(drive->queue);
290 } else {
291 drive->blocked = 0;
292 blk_start_queue(drive->queue);
293 }
294 blkdev_dequeue_request(rq);
295 HWGROUP(drive)->rq = NULL;
296 end_that_request_last(rq, 1);
297 spin_unlock_irqrestore(&ide_lock, flags);
298 }
299
300 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
301 {
302 ide_hwif_t *hwif = drive->hwif;
303 struct ide_taskfile *tf = &task->tf;
304
305 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
306 u16 data = hwif->INW(IDE_DATA_REG);
307
308 tf->data = data & 0xff;
309 tf->hob_data = (data >> 8) & 0xff;
310 }
311
312 /* be sure we're looking at the low order bits */
313 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
314
315 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
316 tf->nsect = hwif->INB(IDE_NSECTOR_REG);
317 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
318 tf->lbal = hwif->INB(IDE_SECTOR_REG);
319 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
320 tf->lbam = hwif->INB(IDE_LCYL_REG);
321 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
322 tf->lbah = hwif->INB(IDE_HCYL_REG);
323 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
324 tf->device = hwif->INB(IDE_SELECT_REG);
325
326 if (task->tf_flags & IDE_TFLAG_LBA48) {
327 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
328
329 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
330 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
331 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
332 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG);
333 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
334 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG);
335 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
336 tf->hob_lbam = hwif->INB(IDE_LCYL_REG);
337 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
338 tf->hob_lbah = hwif->INB(IDE_HCYL_REG);
339 }
340 }
341
342 /**
343 * ide_end_drive_cmd - end an explicit drive command
344 * @drive: command
345 * @stat: status bits
346 * @err: error bits
347 *
348 * Clean up after success/failure of an explicit drive command.
349 * These get thrown onto the queue so they are synchronized with
350 * real I/O operations on the drive.
351 *
352 * In LBA48 mode we have to read the register set twice to get
353 * all the extra information out.
354 */
355
356 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
357 {
358 ide_hwif_t *hwif = HWIF(drive);
359 unsigned long flags;
360 struct request *rq;
361
362 spin_lock_irqsave(&ide_lock, flags);
363 rq = HWGROUP(drive)->rq;
364 spin_unlock_irqrestore(&ide_lock, flags);
365
366 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
367 u8 *args = (u8 *) rq->buffer;
368 if (rq->errors == 0)
369 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
370
371 if (args) {
372 args[0] = stat;
373 args[1] = err;
374 args[2] = hwif->INB(IDE_NSECTOR_REG);
375 }
376 } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
377 ide_task_t *args = (ide_task_t *) rq->special;
378 if (rq->errors == 0)
379 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
380
381 if (args) {
382 struct ide_taskfile *tf = &args->tf;
383
384 tf->error = err;
385 tf->status = stat;
386
387 args->tf_flags |= (IDE_TFLAG_IN_TF|IDE_TFLAG_IN_DEVICE);
388 if (args->tf_flags & IDE_TFLAG_LBA48)
389 args->tf_flags |= IDE_TFLAG_IN_HOB;
390
391 ide_tf_read(drive, args);
392 }
393 } else if (blk_pm_request(rq)) {
394 struct request_pm_state *pm = rq->data;
395 #ifdef DEBUG_PM
396 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
397 drive->name, rq->pm->pm_step, stat, err);
398 #endif
399 ide_complete_power_step(drive, rq, stat, err);
400 if (pm->pm_step == ide_pm_state_completed)
401 ide_complete_pm_request(drive, rq);
402 return;
403 }
404
405 spin_lock_irqsave(&ide_lock, flags);
406 blkdev_dequeue_request(rq);
407 HWGROUP(drive)->rq = NULL;
408 rq->errors = err;
409 end_that_request_last(rq, !rq->errors);
410 spin_unlock_irqrestore(&ide_lock, flags);
411 }
412
413 EXPORT_SYMBOL(ide_end_drive_cmd);
414
415 /**
416 * try_to_flush_leftover_data - flush junk
417 * @drive: drive to flush
418 *
419 * try_to_flush_leftover_data() is invoked in response to a drive
420 * unexpectedly having its DRQ_STAT bit set. As an alternative to
421 * resetting the drive, this routine tries to clear the condition
422 * by read a sector's worth of data from the drive. Of course,
423 * this may not help if the drive is *waiting* for data from *us*.
424 */
425 static void try_to_flush_leftover_data (ide_drive_t *drive)
426 {
427 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
428
429 if (drive->media != ide_disk)
430 return;
431 while (i > 0) {
432 u32 buffer[16];
433 u32 wcount = (i > 16) ? 16 : i;
434
435 i -= wcount;
436 HWIF(drive)->ata_input_data(drive, buffer, wcount);
437 }
438 }
439
440 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
441 {
442 if (rq->rq_disk) {
443 ide_driver_t *drv;
444
445 drv = *(ide_driver_t **)rq->rq_disk->private_data;
446 drv->end_request(drive, 0, 0);
447 } else
448 ide_end_request(drive, 0, 0);
449 }
450
451 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
452 {
453 ide_hwif_t *hwif = drive->hwif;
454
455 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
456 /* other bits are useless when BUSY */
457 rq->errors |= ERROR_RESET;
458 } else if (stat & ERR_STAT) {
459 /* err has different meaning on cdrom and tape */
460 if (err == ABRT_ERR) {
461 if (drive->select.b.lba &&
462 /* some newer drives don't support WIN_SPECIFY */
463 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
464 return ide_stopped;
465 } else if ((err & BAD_CRC) == BAD_CRC) {
466 /* UDMA crc error, just retry the operation */
467 drive->crc_count++;
468 } else if (err & (BBD_ERR | ECC_ERR)) {
469 /* retries won't help these */
470 rq->errors = ERROR_MAX;
471 } else if (err & TRK0_ERR) {
472 /* help it find track zero */
473 rq->errors |= ERROR_RECAL;
474 }
475 }
476
477 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
478 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
479 try_to_flush_leftover_data(drive);
480
481 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
482 ide_kill_rq(drive, rq);
483 return ide_stopped;
484 }
485
486 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
487 rq->errors |= ERROR_RESET;
488
489 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
490 ++rq->errors;
491 return ide_do_reset(drive);
492 }
493
494 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
495 drive->special.b.recalibrate = 1;
496
497 ++rq->errors;
498
499 return ide_stopped;
500 }
501
502 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
503 {
504 ide_hwif_t *hwif = drive->hwif;
505
506 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
507 /* other bits are useless when BUSY */
508 rq->errors |= ERROR_RESET;
509 } else {
510 /* add decoding error stuff */
511 }
512
513 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
514 /* force an abort */
515 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
516
517 if (rq->errors >= ERROR_MAX) {
518 ide_kill_rq(drive, rq);
519 } else {
520 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
521 ++rq->errors;
522 return ide_do_reset(drive);
523 }
524 ++rq->errors;
525 }
526
527 return ide_stopped;
528 }
529
530 ide_startstop_t
531 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
532 {
533 if (drive->media == ide_disk)
534 return ide_ata_error(drive, rq, stat, err);
535 return ide_atapi_error(drive, rq, stat, err);
536 }
537
538 EXPORT_SYMBOL_GPL(__ide_error);
539
540 /**
541 * ide_error - handle an error on the IDE
542 * @drive: drive the error occurred on
543 * @msg: message to report
544 * @stat: status bits
545 *
546 * ide_error() takes action based on the error returned by the drive.
547 * For normal I/O that may well include retries. We deal with
548 * both new-style (taskfile) and old style command handling here.
549 * In the case of taskfile command handling there is work left to
550 * do
551 */
552
553 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
554 {
555 struct request *rq;
556 u8 err;
557
558 err = ide_dump_status(drive, msg, stat);
559
560 if ((rq = HWGROUP(drive)->rq) == NULL)
561 return ide_stopped;
562
563 /* retry only "normal" I/O: */
564 if (!blk_fs_request(rq)) {
565 rq->errors = 1;
566 ide_end_drive_cmd(drive, stat, err);
567 return ide_stopped;
568 }
569
570 if (rq->rq_disk) {
571 ide_driver_t *drv;
572
573 drv = *(ide_driver_t **)rq->rq_disk->private_data;
574 return drv->error(drive, rq, stat, err);
575 } else
576 return __ide_error(drive, rq, stat, err);
577 }
578
579 EXPORT_SYMBOL_GPL(ide_error);
580
581 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
582 {
583 if (drive->media != ide_disk)
584 rq->errors |= ERROR_RESET;
585
586 ide_kill_rq(drive, rq);
587
588 return ide_stopped;
589 }
590
591 EXPORT_SYMBOL_GPL(__ide_abort);
592
593 /**
594 * ide_abort - abort pending IDE operations
595 * @drive: drive the error occurred on
596 * @msg: message to report
597 *
598 * ide_abort kills and cleans up when we are about to do a
599 * host initiated reset on active commands. Longer term we
600 * want handlers to have sensible abort handling themselves
601 *
602 * This differs fundamentally from ide_error because in
603 * this case the command is doing just fine when we
604 * blow it away.
605 */
606
607 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
608 {
609 struct request *rq;
610
611 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
612 return ide_stopped;
613
614 /* retry only "normal" I/O: */
615 if (!blk_fs_request(rq)) {
616 rq->errors = 1;
617 ide_end_drive_cmd(drive, BUSY_STAT, 0);
618 return ide_stopped;
619 }
620
621 if (rq->rq_disk) {
622 ide_driver_t *drv;
623
624 drv = *(ide_driver_t **)rq->rq_disk->private_data;
625 return drv->abort(drive, rq);
626 } else
627 return __ide_abort(drive, rq);
628 }
629
630 /**
631 * drive_cmd_intr - drive command completion interrupt
632 * @drive: drive the completion interrupt occurred on
633 *
634 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
635 * We do any necessary data reading and then wait for the drive to
636 * go non busy. At that point we may read the error data and complete
637 * the request
638 */
639
640 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
641 {
642 struct request *rq = HWGROUP(drive)->rq;
643 ide_hwif_t *hwif = HWIF(drive);
644 u8 *args = (u8 *) rq->buffer;
645 u8 stat = hwif->INB(IDE_STATUS_REG);
646 int retries = 10;
647
648 local_irq_enable_in_hardirq();
649 if (rq->cmd_type == REQ_TYPE_ATA_CMD &&
650 (stat & DRQ_STAT) && args && args[3]) {
651 u8 io_32bit = drive->io_32bit;
652 drive->io_32bit = 0;
653 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
654 drive->io_32bit = io_32bit;
655 while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--)
656 udelay(100);
657 }
658
659 if (!OK_STAT(stat, READY_STAT, BAD_STAT))
660 return ide_error(drive, "drive_cmd", stat);
661 /* calls ide_end_drive_cmd */
662 ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
663 return ide_stopped;
664 }
665
666 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
667 {
668 tf->nsect = drive->sect;
669 tf->lbal = drive->sect;
670 tf->lbam = drive->cyl;
671 tf->lbah = drive->cyl >> 8;
672 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
673 tf->command = WIN_SPECIFY;
674 }
675
676 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
677 {
678 tf->nsect = drive->sect;
679 tf->command = WIN_RESTORE;
680 }
681
682 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
683 {
684 tf->nsect = drive->mult_req;
685 tf->command = WIN_SETMULT;
686 }
687
688 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
689 {
690 special_t *s = &drive->special;
691 ide_task_t args;
692
693 memset(&args, 0, sizeof(ide_task_t));
694 args.data_phase = TASKFILE_NO_DATA;
695
696 if (s->b.set_geometry) {
697 s->b.set_geometry = 0;
698 ide_tf_set_specify_cmd(drive, &args.tf);
699 } else if (s->b.recalibrate) {
700 s->b.recalibrate = 0;
701 ide_tf_set_restore_cmd(drive, &args.tf);
702 } else if (s->b.set_multmode) {
703 s->b.set_multmode = 0;
704 if (drive->mult_req > drive->id->max_multsect)
705 drive->mult_req = drive->id->max_multsect;
706 ide_tf_set_setmult_cmd(drive, &args.tf);
707 } else if (s->all) {
708 int special = s->all;
709 s->all = 0;
710 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
711 return ide_stopped;
712 }
713
714 args.tf_flags = IDE_TFLAG_OUT_TF | IDE_TFLAG_OUT_DEVICE |
715 IDE_TFLAG_CUSTOM_HANDLER;
716
717 do_rw_taskfile(drive, &args);
718
719 return ide_started;
720 }
721
722 /*
723 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
724 */
725 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
726 {
727 switch (req_pio) {
728 case 202:
729 case 201:
730 case 200:
731 case 102:
732 case 101:
733 case 100:
734 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
735 case 9:
736 case 8:
737 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
738 case 7:
739 case 6:
740 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
741 default:
742 return 0;
743 }
744 }
745
746 /**
747 * do_special - issue some special commands
748 * @drive: drive the command is for
749 *
750 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
751 * commands to a drive. It used to do much more, but has been scaled
752 * back.
753 */
754
755 static ide_startstop_t do_special (ide_drive_t *drive)
756 {
757 special_t *s = &drive->special;
758
759 #ifdef DEBUG
760 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
761 #endif
762 if (s->b.set_tune) {
763 ide_hwif_t *hwif = drive->hwif;
764 u8 req_pio = drive->tune_req;
765
766 s->b.set_tune = 0;
767
768 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
769
770 if (hwif->set_pio_mode == NULL)
771 return ide_stopped;
772
773 /*
774 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
775 */
776 if (req_pio == 8 || req_pio == 9) {
777 unsigned long flags;
778
779 spin_lock_irqsave(&ide_lock, flags);
780 hwif->set_pio_mode(drive, req_pio);
781 spin_unlock_irqrestore(&ide_lock, flags);
782 } else
783 hwif->set_pio_mode(drive, req_pio);
784 } else {
785 int keep_dma = drive->using_dma;
786
787 ide_set_pio(drive, req_pio);
788
789 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
790 if (keep_dma)
791 hwif->ide_dma_on(drive);
792 }
793 }
794
795 return ide_stopped;
796 } else {
797 if (drive->media == ide_disk)
798 return ide_disk_special(drive);
799
800 s->all = 0;
801 drive->mult_req = 0;
802 return ide_stopped;
803 }
804 }
805
806 void ide_map_sg(ide_drive_t *drive, struct request *rq)
807 {
808 ide_hwif_t *hwif = drive->hwif;
809 struct scatterlist *sg = hwif->sg_table;
810
811 if (hwif->sg_mapped) /* needed by ide-scsi */
812 return;
813
814 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
815 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
816 } else {
817 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
818 hwif->sg_nents = 1;
819 }
820 }
821
822 EXPORT_SYMBOL_GPL(ide_map_sg);
823
824 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
825 {
826 ide_hwif_t *hwif = drive->hwif;
827
828 hwif->nsect = hwif->nleft = rq->nr_sectors;
829 hwif->cursg_ofs = 0;
830 hwif->cursg = NULL;
831 }
832
833 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
834
835 /**
836 * execute_drive_command - issue special drive command
837 * @drive: the drive to issue the command on
838 * @rq: the request structure holding the command
839 *
840 * execute_drive_cmd() issues a special drive command, usually
841 * initiated by ioctl() from the external hdparm program. The
842 * command can be a drive command, drive task or taskfile
843 * operation. Weirdly you can call it with NULL to wait for
844 * all commands to finish. Don't do this as that is due to change
845 */
846
847 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
848 struct request *rq)
849 {
850 ide_hwif_t *hwif = HWIF(drive);
851 u8 *args = rq->buffer;
852 ide_task_t ltask;
853 struct ide_taskfile *tf = &ltask.tf;
854
855 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
856 ide_task_t *task = rq->special;
857
858 if (task == NULL)
859 goto done;
860
861 hwif->data_phase = task->data_phase;
862
863 switch (hwif->data_phase) {
864 case TASKFILE_MULTI_OUT:
865 case TASKFILE_OUT:
866 case TASKFILE_MULTI_IN:
867 case TASKFILE_IN:
868 ide_init_sg_cmd(drive, rq);
869 ide_map_sg(drive, rq);
870 default:
871 break;
872 }
873
874 return do_rw_taskfile(drive, task);
875 }
876
877 if (args == NULL)
878 goto done;
879
880 memset(&ltask, 0, sizeof(ltask));
881 if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
882 #ifdef DEBUG
883 printk("%s: DRIVE_CMD\n", drive->name);
884 #endif
885 tf->feature = args[2];
886 if (args[0] == WIN_SMART) {
887 tf->nsect = args[3];
888 tf->lbal = args[1];
889 tf->lbam = 0x4f;
890 tf->lbah = 0xc2;
891 ltask.tf_flags = IDE_TFLAG_OUT_TF;
892 } else {
893 tf->nsect = args[1];
894 ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
895 IDE_TFLAG_OUT_NSECT;
896 }
897 }
898 tf->command = args[0];
899 ide_tf_load(drive, &ltask);
900 ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
901 return ide_started;
902
903 done:
904 /*
905 * NULL is actually a valid way of waiting for
906 * all current requests to be flushed from the queue.
907 */
908 #ifdef DEBUG
909 printk("%s: DRIVE_CMD (null)\n", drive->name);
910 #endif
911 ide_end_drive_cmd(drive,
912 hwif->INB(IDE_STATUS_REG),
913 hwif->INB(IDE_ERROR_REG));
914 return ide_stopped;
915 }
916
917 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
918 {
919 struct request_pm_state *pm = rq->data;
920
921 if (blk_pm_suspend_request(rq) &&
922 pm->pm_step == ide_pm_state_start_suspend)
923 /* Mark drive blocked when starting the suspend sequence. */
924 drive->blocked = 1;
925 else if (blk_pm_resume_request(rq) &&
926 pm->pm_step == ide_pm_state_start_resume) {
927 /*
928 * The first thing we do on wakeup is to wait for BSY bit to
929 * go away (with a looong timeout) as a drive on this hwif may
930 * just be POSTing itself.
931 * We do that before even selecting as the "other" device on
932 * the bus may be broken enough to walk on our toes at this
933 * point.
934 */
935 int rc;
936 #ifdef DEBUG_PM
937 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
938 #endif
939 rc = ide_wait_not_busy(HWIF(drive), 35000);
940 if (rc)
941 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
942 SELECT_DRIVE(drive);
943 if (IDE_CONTROL_REG)
944 HWIF(drive)->OUTB(drive->ctl, IDE_CONTROL_REG);
945 rc = ide_wait_not_busy(HWIF(drive), 100000);
946 if (rc)
947 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
948 }
949 }
950
951 /**
952 * start_request - start of I/O and command issuing for IDE
953 *
954 * start_request() initiates handling of a new I/O request. It
955 * accepts commands and I/O (read/write) requests. It also does
956 * the final remapping for weird stuff like EZDrive. Once
957 * device mapper can work sector level the EZDrive stuff can go away
958 *
959 * FIXME: this function needs a rename
960 */
961
962 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
963 {
964 ide_startstop_t startstop;
965 sector_t block;
966
967 BUG_ON(!blk_rq_started(rq));
968
969 #ifdef DEBUG
970 printk("%s: start_request: current=0x%08lx\n",
971 HWIF(drive)->name, (unsigned long) rq);
972 #endif
973
974 /* bail early if we've exceeded max_failures */
975 if (drive->max_failures && (drive->failures > drive->max_failures)) {
976 rq->cmd_flags |= REQ_FAILED;
977 goto kill_rq;
978 }
979
980 block = rq->sector;
981 if (blk_fs_request(rq) &&
982 (drive->media == ide_disk || drive->media == ide_floppy)) {
983 block += drive->sect0;
984 }
985 /* Yecch - this will shift the entire interval,
986 possibly killing some innocent following sector */
987 if (block == 0 && drive->remap_0_to_1 == 1)
988 block = 1; /* redirect MBR access to EZ-Drive partn table */
989
990 if (blk_pm_request(rq))
991 ide_check_pm_state(drive, rq);
992
993 SELECT_DRIVE(drive);
994 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
995 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
996 return startstop;
997 }
998 if (!drive->special.all) {
999 ide_driver_t *drv;
1000
1001 /*
1002 * We reset the drive so we need to issue a SETFEATURES.
1003 * Do it _after_ do_special() restored device parameters.
1004 */
1005 if (drive->current_speed == 0xff)
1006 ide_config_drive_speed(drive, drive->desired_speed);
1007
1008 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1009 rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1010 return execute_drive_cmd(drive, rq);
1011 else if (blk_pm_request(rq)) {
1012 struct request_pm_state *pm = rq->data;
1013 #ifdef DEBUG_PM
1014 printk("%s: start_power_step(step: %d)\n",
1015 drive->name, rq->pm->pm_step);
1016 #endif
1017 startstop = ide_start_power_step(drive, rq);
1018 if (startstop == ide_stopped &&
1019 pm->pm_step == ide_pm_state_completed)
1020 ide_complete_pm_request(drive, rq);
1021 return startstop;
1022 }
1023
1024 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1025 return drv->do_request(drive, rq, block);
1026 }
1027 return do_special(drive);
1028 kill_rq:
1029 ide_kill_rq(drive, rq);
1030 return ide_stopped;
1031 }
1032
1033 /**
1034 * ide_stall_queue - pause an IDE device
1035 * @drive: drive to stall
1036 * @timeout: time to stall for (jiffies)
1037 *
1038 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1039 * to the hwgroup by sleeping for timeout jiffies.
1040 */
1041
1042 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1043 {
1044 if (timeout > WAIT_WORSTCASE)
1045 timeout = WAIT_WORSTCASE;
1046 drive->sleep = timeout + jiffies;
1047 drive->sleeping = 1;
1048 }
1049
1050 EXPORT_SYMBOL(ide_stall_queue);
1051
1052 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1053
1054 /**
1055 * choose_drive - select a drive to service
1056 * @hwgroup: hardware group to select on
1057 *
1058 * choose_drive() selects the next drive which will be serviced.
1059 * This is necessary because the IDE layer can't issue commands
1060 * to both drives on the same cable, unlike SCSI.
1061 */
1062
1063 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1064 {
1065 ide_drive_t *drive, *best;
1066
1067 repeat:
1068 best = NULL;
1069 drive = hwgroup->drive;
1070
1071 /*
1072 * drive is doing pre-flush, ordered write, post-flush sequence. even
1073 * though that is 3 requests, it must be seen as a single transaction.
1074 * we must not preempt this drive until that is complete
1075 */
1076 if (blk_queue_flushing(drive->queue)) {
1077 /*
1078 * small race where queue could get replugged during
1079 * the 3-request flush cycle, just yank the plug since
1080 * we want it to finish asap
1081 */
1082 blk_remove_plug(drive->queue);
1083 return drive;
1084 }
1085
1086 do {
1087 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1088 && !elv_queue_empty(drive->queue)) {
1089 if (!best
1090 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1091 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1092 {
1093 if (!blk_queue_plugged(drive->queue))
1094 best = drive;
1095 }
1096 }
1097 } while ((drive = drive->next) != hwgroup->drive);
1098 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1099 long t = (signed long)(WAKEUP(best) - jiffies);
1100 if (t >= WAIT_MIN_SLEEP) {
1101 /*
1102 * We *may* have some time to spare, but first let's see if
1103 * someone can potentially benefit from our nice mood today..
1104 */
1105 drive = best->next;
1106 do {
1107 if (!drive->sleeping
1108 && time_before(jiffies - best->service_time, WAKEUP(drive))
1109 && time_before(WAKEUP(drive), jiffies + t))
1110 {
1111 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1112 goto repeat;
1113 }
1114 } while ((drive = drive->next) != best);
1115 }
1116 }
1117 return best;
1118 }
1119
1120 /*
1121 * Issue a new request to a drive from hwgroup
1122 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1123 *
1124 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1125 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1126 * may have both interfaces in a single hwgroup to "serialize" access.
1127 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1128 * together into one hwgroup for serialized access.
1129 *
1130 * Note also that several hwgroups can end up sharing a single IRQ,
1131 * possibly along with many other devices. This is especially common in
1132 * PCI-based systems with off-board IDE controller cards.
1133 *
1134 * The IDE driver uses the single global ide_lock spinlock to protect
1135 * access to the request queues, and to protect the hwgroup->busy flag.
1136 *
1137 * The first thread into the driver for a particular hwgroup sets the
1138 * hwgroup->busy flag to indicate that this hwgroup is now active,
1139 * and then initiates processing of the top request from the request queue.
1140 *
1141 * Other threads attempting entry notice the busy setting, and will simply
1142 * queue their new requests and exit immediately. Note that hwgroup->busy
1143 * remains set even when the driver is merely awaiting the next interrupt.
1144 * Thus, the meaning is "this hwgroup is busy processing a request".
1145 *
1146 * When processing of a request completes, the completing thread or IRQ-handler
1147 * will start the next request from the queue. If no more work remains,
1148 * the driver will clear the hwgroup->busy flag and exit.
1149 *
1150 * The ide_lock (spinlock) is used to protect all access to the
1151 * hwgroup->busy flag, but is otherwise not needed for most processing in
1152 * the driver. This makes the driver much more friendlier to shared IRQs
1153 * than previous designs, while remaining 100% (?) SMP safe and capable.
1154 */
1155 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1156 {
1157 ide_drive_t *drive;
1158 ide_hwif_t *hwif;
1159 struct request *rq;
1160 ide_startstop_t startstop;
1161 int loops = 0;
1162
1163 /* for atari only: POSSIBLY BROKEN HERE(?) */
1164 ide_get_lock(ide_intr, hwgroup);
1165
1166 /* caller must own ide_lock */
1167 BUG_ON(!irqs_disabled());
1168
1169 while (!hwgroup->busy) {
1170 hwgroup->busy = 1;
1171 drive = choose_drive(hwgroup);
1172 if (drive == NULL) {
1173 int sleeping = 0;
1174 unsigned long sleep = 0; /* shut up, gcc */
1175 hwgroup->rq = NULL;
1176 drive = hwgroup->drive;
1177 do {
1178 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1179 sleeping = 1;
1180 sleep = drive->sleep;
1181 }
1182 } while ((drive = drive->next) != hwgroup->drive);
1183 if (sleeping) {
1184 /*
1185 * Take a short snooze, and then wake up this hwgroup again.
1186 * This gives other hwgroups on the same a chance to
1187 * play fairly with us, just in case there are big differences
1188 * in relative throughputs.. don't want to hog the cpu too much.
1189 */
1190 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1191 sleep = jiffies + WAIT_MIN_SLEEP;
1192 #if 1
1193 if (timer_pending(&hwgroup->timer))
1194 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1195 #endif
1196 /* so that ide_timer_expiry knows what to do */
1197 hwgroup->sleeping = 1;
1198 hwgroup->req_gen_timer = hwgroup->req_gen;
1199 mod_timer(&hwgroup->timer, sleep);
1200 /* we purposely leave hwgroup->busy==1
1201 * while sleeping */
1202 } else {
1203 /* Ugly, but how can we sleep for the lock
1204 * otherwise? perhaps from tq_disk?
1205 */
1206
1207 /* for atari only */
1208 ide_release_lock();
1209 hwgroup->busy = 0;
1210 }
1211
1212 /* no more work for this hwgroup (for now) */
1213 return;
1214 }
1215 again:
1216 hwif = HWIF(drive);
1217 if (hwgroup->hwif->sharing_irq &&
1218 hwif != hwgroup->hwif &&
1219 hwif->io_ports[IDE_CONTROL_OFFSET]) {
1220 /*
1221 * set nIEN for previous hwif, drives in the
1222 * quirk_list may not like intr setups/cleanups
1223 */
1224 if (drive->quirk_list != 1)
1225 hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
1226 }
1227 hwgroup->hwif = hwif;
1228 hwgroup->drive = drive;
1229 drive->sleeping = 0;
1230 drive->service_start = jiffies;
1231
1232 if (blk_queue_plugged(drive->queue)) {
1233 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1234 break;
1235 }
1236
1237 /*
1238 * we know that the queue isn't empty, but this can happen
1239 * if the q->prep_rq_fn() decides to kill a request
1240 */
1241 rq = elv_next_request(drive->queue);
1242 if (!rq) {
1243 hwgroup->busy = 0;
1244 break;
1245 }
1246
1247 /*
1248 * Sanity: don't accept a request that isn't a PM request
1249 * if we are currently power managed. This is very important as
1250 * blk_stop_queue() doesn't prevent the elv_next_request()
1251 * above to return us whatever is in the queue. Since we call
1252 * ide_do_request() ourselves, we end up taking requests while
1253 * the queue is blocked...
1254 *
1255 * We let requests forced at head of queue with ide-preempt
1256 * though. I hope that doesn't happen too much, hopefully not
1257 * unless the subdriver triggers such a thing in its own PM
1258 * state machine.
1259 *
1260 * We count how many times we loop here to make sure we service
1261 * all drives in the hwgroup without looping for ever
1262 */
1263 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1264 drive = drive->next ? drive->next : hwgroup->drive;
1265 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1266 goto again;
1267 /* We clear busy, there should be no pending ATA command at this point. */
1268 hwgroup->busy = 0;
1269 break;
1270 }
1271
1272 hwgroup->rq = rq;
1273
1274 /*
1275 * Some systems have trouble with IDE IRQs arriving while
1276 * the driver is still setting things up. So, here we disable
1277 * the IRQ used by this interface while the request is being started.
1278 * This may look bad at first, but pretty much the same thing
1279 * happens anyway when any interrupt comes in, IDE or otherwise
1280 * -- the kernel masks the IRQ while it is being handled.
1281 */
1282 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1283 disable_irq_nosync(hwif->irq);
1284 spin_unlock(&ide_lock);
1285 local_irq_enable_in_hardirq();
1286 /* allow other IRQs while we start this request */
1287 startstop = start_request(drive, rq);
1288 spin_lock_irq(&ide_lock);
1289 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1290 enable_irq(hwif->irq);
1291 if (startstop == ide_stopped)
1292 hwgroup->busy = 0;
1293 }
1294 }
1295
1296 /*
1297 * Passes the stuff to ide_do_request
1298 */
1299 void do_ide_request(struct request_queue *q)
1300 {
1301 ide_drive_t *drive = q->queuedata;
1302
1303 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1304 }
1305
1306 /*
1307 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1308 * retry the current request in pio mode instead of risking tossing it
1309 * all away
1310 */
1311 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1312 {
1313 ide_hwif_t *hwif = HWIF(drive);
1314 struct request *rq;
1315 ide_startstop_t ret = ide_stopped;
1316
1317 /*
1318 * end current dma transaction
1319 */
1320
1321 if (error < 0) {
1322 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1323 (void)HWIF(drive)->ide_dma_end(drive);
1324 ret = ide_error(drive, "dma timeout error",
1325 hwif->INB(IDE_STATUS_REG));
1326 } else {
1327 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1328 hwif->dma_timeout(drive);
1329 }
1330
1331 /*
1332 * disable dma for now, but remember that we did so because of
1333 * a timeout -- we'll reenable after we finish this next request
1334 * (or rather the first chunk of it) in pio.
1335 */
1336 drive->retry_pio++;
1337 drive->state = DMA_PIO_RETRY;
1338 hwif->dma_off_quietly(drive);
1339
1340 /*
1341 * un-busy drive etc (hwgroup->busy is cleared on return) and
1342 * make sure request is sane
1343 */
1344 rq = HWGROUP(drive)->rq;
1345
1346 if (!rq)
1347 goto out;
1348
1349 HWGROUP(drive)->rq = NULL;
1350
1351 rq->errors = 0;
1352
1353 if (!rq->bio)
1354 goto out;
1355
1356 rq->sector = rq->bio->bi_sector;
1357 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1358 rq->hard_cur_sectors = rq->current_nr_sectors;
1359 rq->buffer = bio_data(rq->bio);
1360 out:
1361 return ret;
1362 }
1363
1364 /**
1365 * ide_timer_expiry - handle lack of an IDE interrupt
1366 * @data: timer callback magic (hwgroup)
1367 *
1368 * An IDE command has timed out before the expected drive return
1369 * occurred. At this point we attempt to clean up the current
1370 * mess. If the current handler includes an expiry handler then
1371 * we invoke the expiry handler, and providing it is happy the
1372 * work is done. If that fails we apply generic recovery rules
1373 * invoking the handler and checking the drive DMA status. We
1374 * have an excessively incestuous relationship with the DMA
1375 * logic that wants cleaning up.
1376 */
1377
1378 void ide_timer_expiry (unsigned long data)
1379 {
1380 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1381 ide_handler_t *handler;
1382 ide_expiry_t *expiry;
1383 unsigned long flags;
1384 unsigned long wait = -1;
1385
1386 spin_lock_irqsave(&ide_lock, flags);
1387
1388 if (((handler = hwgroup->handler) == NULL) ||
1389 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1390 /*
1391 * Either a marginal timeout occurred
1392 * (got the interrupt just as timer expired),
1393 * or we were "sleeping" to give other devices a chance.
1394 * Either way, we don't really want to complain about anything.
1395 */
1396 if (hwgroup->sleeping) {
1397 hwgroup->sleeping = 0;
1398 hwgroup->busy = 0;
1399 }
1400 } else {
1401 ide_drive_t *drive = hwgroup->drive;
1402 if (!drive) {
1403 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1404 hwgroup->handler = NULL;
1405 } else {
1406 ide_hwif_t *hwif;
1407 ide_startstop_t startstop = ide_stopped;
1408 if (!hwgroup->busy) {
1409 hwgroup->busy = 1; /* paranoia */
1410 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1411 }
1412 if ((expiry = hwgroup->expiry) != NULL) {
1413 /* continue */
1414 if ((wait = expiry(drive)) > 0) {
1415 /* reset timer */
1416 hwgroup->timer.expires = jiffies + wait;
1417 hwgroup->req_gen_timer = hwgroup->req_gen;
1418 add_timer(&hwgroup->timer);
1419 spin_unlock_irqrestore(&ide_lock, flags);
1420 return;
1421 }
1422 }
1423 hwgroup->handler = NULL;
1424 /*
1425 * We need to simulate a real interrupt when invoking
1426 * the handler() function, which means we need to
1427 * globally mask the specific IRQ:
1428 */
1429 spin_unlock(&ide_lock);
1430 hwif = HWIF(drive);
1431 /* disable_irq_nosync ?? */
1432 disable_irq(hwif->irq);
1433 /* local CPU only,
1434 * as if we were handling an interrupt */
1435 local_irq_disable();
1436 if (hwgroup->polling) {
1437 startstop = handler(drive);
1438 } else if (drive_is_ready(drive)) {
1439 if (drive->waiting_for_dma)
1440 hwgroup->hwif->dma_lost_irq(drive);
1441 (void)ide_ack_intr(hwif);
1442 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1443 startstop = handler(drive);
1444 } else {
1445 if (drive->waiting_for_dma) {
1446 startstop = ide_dma_timeout_retry(drive, wait);
1447 } else
1448 startstop =
1449 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1450 }
1451 drive->service_time = jiffies - drive->service_start;
1452 spin_lock_irq(&ide_lock);
1453 enable_irq(hwif->irq);
1454 if (startstop == ide_stopped)
1455 hwgroup->busy = 0;
1456 }
1457 }
1458 ide_do_request(hwgroup, IDE_NO_IRQ);
1459 spin_unlock_irqrestore(&ide_lock, flags);
1460 }
1461
1462 /**
1463 * unexpected_intr - handle an unexpected IDE interrupt
1464 * @irq: interrupt line
1465 * @hwgroup: hwgroup being processed
1466 *
1467 * There's nothing really useful we can do with an unexpected interrupt,
1468 * other than reading the status register (to clear it), and logging it.
1469 * There should be no way that an irq can happen before we're ready for it,
1470 * so we needn't worry much about losing an "important" interrupt here.
1471 *
1472 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1473 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1474 * looks "good", we just ignore the interrupt completely.
1475 *
1476 * This routine assumes __cli() is in effect when called.
1477 *
1478 * If an unexpected interrupt happens on irq15 while we are handling irq14
1479 * and if the two interfaces are "serialized" (CMD640), then it looks like
1480 * we could screw up by interfering with a new request being set up for
1481 * irq15.
1482 *
1483 * In reality, this is a non-issue. The new command is not sent unless
1484 * the drive is ready to accept one, in which case we know the drive is
1485 * not trying to interrupt us. And ide_set_handler() is always invoked
1486 * before completing the issuance of any new drive command, so we will not
1487 * be accidentally invoked as a result of any valid command completion
1488 * interrupt.
1489 *
1490 * Note that we must walk the entire hwgroup here. We know which hwif
1491 * is doing the current command, but we don't know which hwif burped
1492 * mysteriously.
1493 */
1494
1495 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1496 {
1497 u8 stat;
1498 ide_hwif_t *hwif = hwgroup->hwif;
1499
1500 /*
1501 * handle the unexpected interrupt
1502 */
1503 do {
1504 if (hwif->irq == irq) {
1505 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1506 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1507 /* Try to not flood the console with msgs */
1508 static unsigned long last_msgtime, count;
1509 ++count;
1510 if (time_after(jiffies, last_msgtime + HZ)) {
1511 last_msgtime = jiffies;
1512 printk(KERN_ERR "%s%s: unexpected interrupt, "
1513 "status=0x%02x, count=%ld\n",
1514 hwif->name,
1515 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1516 }
1517 }
1518 }
1519 } while ((hwif = hwif->next) != hwgroup->hwif);
1520 }
1521
1522 /**
1523 * ide_intr - default IDE interrupt handler
1524 * @irq: interrupt number
1525 * @dev_id: hwif group
1526 * @regs: unused weirdness from the kernel irq layer
1527 *
1528 * This is the default IRQ handler for the IDE layer. You should
1529 * not need to override it. If you do be aware it is subtle in
1530 * places
1531 *
1532 * hwgroup->hwif is the interface in the group currently performing
1533 * a command. hwgroup->drive is the drive and hwgroup->handler is
1534 * the IRQ handler to call. As we issue a command the handlers
1535 * step through multiple states, reassigning the handler to the
1536 * next step in the process. Unlike a smart SCSI controller IDE
1537 * expects the main processor to sequence the various transfer
1538 * stages. We also manage a poll timer to catch up with most
1539 * timeout situations. There are still a few where the handlers
1540 * don't ever decide to give up.
1541 *
1542 * The handler eventually returns ide_stopped to indicate the
1543 * request completed. At this point we issue the next request
1544 * on the hwgroup and the process begins again.
1545 */
1546
1547 irqreturn_t ide_intr (int irq, void *dev_id)
1548 {
1549 unsigned long flags;
1550 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1551 ide_hwif_t *hwif;
1552 ide_drive_t *drive;
1553 ide_handler_t *handler;
1554 ide_startstop_t startstop;
1555
1556 spin_lock_irqsave(&ide_lock, flags);
1557 hwif = hwgroup->hwif;
1558
1559 if (!ide_ack_intr(hwif)) {
1560 spin_unlock_irqrestore(&ide_lock, flags);
1561 return IRQ_NONE;
1562 }
1563
1564 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1565 /*
1566 * Not expecting an interrupt from this drive.
1567 * That means this could be:
1568 * (1) an interrupt from another PCI device
1569 * sharing the same PCI INT# as us.
1570 * or (2) a drive just entered sleep or standby mode,
1571 * and is interrupting to let us know.
1572 * or (3) a spurious interrupt of unknown origin.
1573 *
1574 * For PCI, we cannot tell the difference,
1575 * so in that case we just ignore it and hope it goes away.
1576 *
1577 * FIXME: unexpected_intr should be hwif-> then we can
1578 * remove all the ifdef PCI crap
1579 */
1580 #ifdef CONFIG_BLK_DEV_IDEPCI
1581 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1582 #endif /* CONFIG_BLK_DEV_IDEPCI */
1583 {
1584 /*
1585 * Probably not a shared PCI interrupt,
1586 * so we can safely try to do something about it:
1587 */
1588 unexpected_intr(irq, hwgroup);
1589 #ifdef CONFIG_BLK_DEV_IDEPCI
1590 } else {
1591 /*
1592 * Whack the status register, just in case
1593 * we have a leftover pending IRQ.
1594 */
1595 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1596 #endif /* CONFIG_BLK_DEV_IDEPCI */
1597 }
1598 spin_unlock_irqrestore(&ide_lock, flags);
1599 return IRQ_NONE;
1600 }
1601 drive = hwgroup->drive;
1602 if (!drive) {
1603 /*
1604 * This should NEVER happen, and there isn't much
1605 * we could do about it here.
1606 *
1607 * [Note - this can occur if the drive is hot unplugged]
1608 */
1609 spin_unlock_irqrestore(&ide_lock, flags);
1610 return IRQ_HANDLED;
1611 }
1612 if (!drive_is_ready(drive)) {
1613 /*
1614 * This happens regularly when we share a PCI IRQ with
1615 * another device. Unfortunately, it can also happen
1616 * with some buggy drives that trigger the IRQ before
1617 * their status register is up to date. Hopefully we have
1618 * enough advance overhead that the latter isn't a problem.
1619 */
1620 spin_unlock_irqrestore(&ide_lock, flags);
1621 return IRQ_NONE;
1622 }
1623 if (!hwgroup->busy) {
1624 hwgroup->busy = 1; /* paranoia */
1625 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1626 }
1627 hwgroup->handler = NULL;
1628 hwgroup->req_gen++;
1629 del_timer(&hwgroup->timer);
1630 spin_unlock(&ide_lock);
1631
1632 /* Some controllers might set DMA INTR no matter DMA or PIO;
1633 * bmdma status might need to be cleared even for
1634 * PIO interrupts to prevent spurious/lost irq.
1635 */
1636 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1637 /* ide_dma_end() needs bmdma status for error checking.
1638 * So, skip clearing bmdma status here and leave it
1639 * to ide_dma_end() if this is dma interrupt.
1640 */
1641 hwif->ide_dma_clear_irq(drive);
1642
1643 if (drive->unmask)
1644 local_irq_enable_in_hardirq();
1645 /* service this interrupt, may set handler for next interrupt */
1646 startstop = handler(drive);
1647 spin_lock_irq(&ide_lock);
1648
1649 /*
1650 * Note that handler() may have set things up for another
1651 * interrupt to occur soon, but it cannot happen until
1652 * we exit from this routine, because it will be the
1653 * same irq as is currently being serviced here, and Linux
1654 * won't allow another of the same (on any CPU) until we return.
1655 */
1656 drive->service_time = jiffies - drive->service_start;
1657 if (startstop == ide_stopped) {
1658 if (hwgroup->handler == NULL) { /* paranoia */
1659 hwgroup->busy = 0;
1660 ide_do_request(hwgroup, hwif->irq);
1661 } else {
1662 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1663 "on exit\n", drive->name);
1664 }
1665 }
1666 spin_unlock_irqrestore(&ide_lock, flags);
1667 return IRQ_HANDLED;
1668 }
1669
1670 /**
1671 * ide_init_drive_cmd - initialize a drive command request
1672 * @rq: request object
1673 *
1674 * Initialize a request before we fill it in and send it down to
1675 * ide_do_drive_cmd. Commands must be set up by this function. Right
1676 * now it doesn't do a lot, but if that changes abusers will have a
1677 * nasty surprise.
1678 */
1679
1680 void ide_init_drive_cmd (struct request *rq)
1681 {
1682 memset(rq, 0, sizeof(*rq));
1683 rq->cmd_type = REQ_TYPE_ATA_CMD;
1684 rq->ref_count = 1;
1685 }
1686
1687 EXPORT_SYMBOL(ide_init_drive_cmd);
1688
1689 /**
1690 * ide_do_drive_cmd - issue IDE special command
1691 * @drive: device to issue command
1692 * @rq: request to issue
1693 * @action: action for processing
1694 *
1695 * This function issues a special IDE device request
1696 * onto the request queue.
1697 *
1698 * If action is ide_wait, then the rq is queued at the end of the
1699 * request queue, and the function sleeps until it has been processed.
1700 * This is for use when invoked from an ioctl handler.
1701 *
1702 * If action is ide_preempt, then the rq is queued at the head of
1703 * the request queue, displacing the currently-being-processed
1704 * request and this function returns immediately without waiting
1705 * for the new rq to be completed. This is VERY DANGEROUS, and is
1706 * intended for careful use by the ATAPI tape/cdrom driver code.
1707 *
1708 * If action is ide_end, then the rq is queued at the end of the
1709 * request queue, and the function returns immediately without waiting
1710 * for the new rq to be completed. This is again intended for careful
1711 * use by the ATAPI tape/cdrom driver code.
1712 */
1713
1714 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1715 {
1716 unsigned long flags;
1717 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1718 DECLARE_COMPLETION_ONSTACK(wait);
1719 int where = ELEVATOR_INSERT_BACK, err;
1720 int must_wait = (action == ide_wait || action == ide_head_wait);
1721
1722 rq->errors = 0;
1723
1724 /*
1725 * we need to hold an extra reference to request for safe inspection
1726 * after completion
1727 */
1728 if (must_wait) {
1729 rq->ref_count++;
1730 rq->end_io_data = &wait;
1731 rq->end_io = blk_end_sync_rq;
1732 }
1733
1734 spin_lock_irqsave(&ide_lock, flags);
1735 if (action == ide_preempt)
1736 hwgroup->rq = NULL;
1737 if (action == ide_preempt || action == ide_head_wait) {
1738 where = ELEVATOR_INSERT_FRONT;
1739 rq->cmd_flags |= REQ_PREEMPT;
1740 }
1741 __elv_add_request(drive->queue, rq, where, 0);
1742 ide_do_request(hwgroup, IDE_NO_IRQ);
1743 spin_unlock_irqrestore(&ide_lock, flags);
1744
1745 err = 0;
1746 if (must_wait) {
1747 wait_for_completion(&wait);
1748 if (rq->errors)
1749 err = -EIO;
1750
1751 blk_put_request(rq);
1752 }
1753
1754 return err;
1755 }
1756
1757 EXPORT_SYMBOL(ide_do_drive_cmd);
1758
1759 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1760 {
1761 ide_task_t task;
1762
1763 memset(&task, 0, sizeof(task));
1764 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1765 IDE_TFLAG_OUT_FEATURE | tf_flags;
1766 task.tf.feature = dma; /* Use PIO/DMA */
1767 task.tf.lbam = bcount & 0xff;
1768 task.tf.lbah = (bcount >> 8) & 0xff;
1769
1770 ide_tf_load(drive, &task);
1771 }
1772
1773 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);