Merge remote-tracking branch 'spi/fix/hspi' into spi-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / i2c / i2c-core.c
1 /* i2c-core.c - a device driver for the iic-bus interface */
2 /* ------------------------------------------------------------------------- */
3 /* Copyright (C) 1995-99 Simon G. Vogl
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
18 MA 02110-1301 USA. */
19 /* ------------------------------------------------------------------------- */
20
21 /* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi>.
22 All SMBus-related things are written by Frodo Looijaard <frodol@dds.nl>
23 SMBus 2.0 support by Mark Studebaker <mdsxyz123@yahoo.com> and
24 Jean Delvare <khali@linux-fr.org>
25 Mux support by Rodolfo Giometti <giometti@enneenne.com> and
26 Michael Lawnick <michael.lawnick.ext@nsn.com> */
27
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/delay.h>
31 #include <linux/errno.h>
32 #include <linux/gpio.h>
33 #include <linux/slab.h>
34 #include <linux/i2c.h>
35 #include <linux/init.h>
36 #include <linux/idr.h>
37 #include <linux/mutex.h>
38 #include <linux/of_device.h>
39 #include <linux/completion.h>
40 #include <linux/hardirq.h>
41 #include <linux/irqflags.h>
42 #include <linux/rwsem.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/acpi.h>
45 #include <asm/uaccess.h>
46
47 #include "i2c-core.h"
48
49
50 /* core_lock protects i2c_adapter_idr, and guarantees
51 that device detection, deletion of detected devices, and attach_adapter
52 calls are serialized */
53 static DEFINE_MUTEX(core_lock);
54 static DEFINE_IDR(i2c_adapter_idr);
55
56 static struct device_type i2c_client_type;
57 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver);
58
59 /* ------------------------------------------------------------------------- */
60
61 static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
62 const struct i2c_client *client)
63 {
64 while (id->name[0]) {
65 if (strcmp(client->name, id->name) == 0)
66 return id;
67 id++;
68 }
69 return NULL;
70 }
71
72 static int i2c_device_match(struct device *dev, struct device_driver *drv)
73 {
74 struct i2c_client *client = i2c_verify_client(dev);
75 struct i2c_driver *driver;
76
77 if (!client)
78 return 0;
79
80 /* Attempt an OF style match */
81 if (of_driver_match_device(dev, drv))
82 return 1;
83
84 /* Then ACPI style match */
85 if (acpi_driver_match_device(dev, drv))
86 return 1;
87
88 driver = to_i2c_driver(drv);
89 /* match on an id table if there is one */
90 if (driver->id_table)
91 return i2c_match_id(driver->id_table, client) != NULL;
92
93 return 0;
94 }
95
96
97 /* uevent helps with hotplug: modprobe -q $(MODALIAS) */
98 static int i2c_device_uevent(struct device *dev, struct kobj_uevent_env *env)
99 {
100 struct i2c_client *client = to_i2c_client(dev);
101
102 if (add_uevent_var(env, "MODALIAS=%s%s",
103 I2C_MODULE_PREFIX, client->name))
104 return -ENOMEM;
105 dev_dbg(dev, "uevent\n");
106 return 0;
107 }
108
109 /* i2c bus recovery routines */
110 static int get_scl_gpio_value(struct i2c_adapter *adap)
111 {
112 return gpio_get_value(adap->bus_recovery_info->scl_gpio);
113 }
114
115 static void set_scl_gpio_value(struct i2c_adapter *adap, int val)
116 {
117 gpio_set_value(adap->bus_recovery_info->scl_gpio, val);
118 }
119
120 static int get_sda_gpio_value(struct i2c_adapter *adap)
121 {
122 return gpio_get_value(adap->bus_recovery_info->sda_gpio);
123 }
124
125 static int i2c_get_gpios_for_recovery(struct i2c_adapter *adap)
126 {
127 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
128 struct device *dev = &adap->dev;
129 int ret = 0;
130
131 ret = gpio_request_one(bri->scl_gpio, GPIOF_OPEN_DRAIN |
132 GPIOF_OUT_INIT_HIGH, "i2c-scl");
133 if (ret) {
134 dev_warn(dev, "Can't get SCL gpio: %d\n", bri->scl_gpio);
135 return ret;
136 }
137
138 if (bri->get_sda) {
139 if (gpio_request_one(bri->sda_gpio, GPIOF_IN, "i2c-sda")) {
140 /* work without SDA polling */
141 dev_warn(dev, "Can't get SDA gpio: %d. Not using SDA polling\n",
142 bri->sda_gpio);
143 bri->get_sda = NULL;
144 }
145 }
146
147 return ret;
148 }
149
150 static void i2c_put_gpios_for_recovery(struct i2c_adapter *adap)
151 {
152 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
153
154 if (bri->get_sda)
155 gpio_free(bri->sda_gpio);
156
157 gpio_free(bri->scl_gpio);
158 }
159
160 /*
161 * We are generating clock pulses. ndelay() determines durating of clk pulses.
162 * We will generate clock with rate 100 KHz and so duration of both clock levels
163 * is: delay in ns = (10^6 / 100) / 2
164 */
165 #define RECOVERY_NDELAY 5000
166 #define RECOVERY_CLK_CNT 9
167
168 static int i2c_generic_recovery(struct i2c_adapter *adap)
169 {
170 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
171 int i = 0, val = 1, ret = 0;
172
173 if (bri->prepare_recovery)
174 bri->prepare_recovery(bri);
175
176 /*
177 * By this time SCL is high, as we need to give 9 falling-rising edges
178 */
179 while (i++ < RECOVERY_CLK_CNT * 2) {
180 if (val) {
181 /* Break if SDA is high */
182 if (bri->get_sda && bri->get_sda(adap))
183 break;
184 /* SCL shouldn't be low here */
185 if (!bri->get_scl(adap)) {
186 dev_err(&adap->dev,
187 "SCL is stuck low, exit recovery\n");
188 ret = -EBUSY;
189 break;
190 }
191 }
192
193 val = !val;
194 bri->set_scl(adap, val);
195 ndelay(RECOVERY_NDELAY);
196 }
197
198 if (bri->unprepare_recovery)
199 bri->unprepare_recovery(bri);
200
201 return ret;
202 }
203
204 int i2c_generic_scl_recovery(struct i2c_adapter *adap)
205 {
206 adap->bus_recovery_info->set_scl(adap, 1);
207 return i2c_generic_recovery(adap);
208 }
209
210 int i2c_generic_gpio_recovery(struct i2c_adapter *adap)
211 {
212 int ret;
213
214 ret = i2c_get_gpios_for_recovery(adap);
215 if (ret)
216 return ret;
217
218 ret = i2c_generic_recovery(adap);
219 i2c_put_gpios_for_recovery(adap);
220
221 return ret;
222 }
223
224 int i2c_recover_bus(struct i2c_adapter *adap)
225 {
226 if (!adap->bus_recovery_info)
227 return -EOPNOTSUPP;
228
229 dev_dbg(&adap->dev, "Trying i2c bus recovery\n");
230 return adap->bus_recovery_info->recover_bus(adap);
231 }
232
233 static int i2c_device_probe(struct device *dev)
234 {
235 struct i2c_client *client = i2c_verify_client(dev);
236 struct i2c_driver *driver;
237 int status;
238
239 if (!client)
240 return 0;
241
242 driver = to_i2c_driver(dev->driver);
243 if (!driver->probe || !driver->id_table)
244 return -ENODEV;
245 client->driver = driver;
246 if (!device_can_wakeup(&client->dev))
247 device_init_wakeup(&client->dev,
248 client->flags & I2C_CLIENT_WAKE);
249 dev_dbg(dev, "probe\n");
250
251 status = driver->probe(client, i2c_match_id(driver->id_table, client));
252 if (status) {
253 client->driver = NULL;
254 i2c_set_clientdata(client, NULL);
255 }
256 return status;
257 }
258
259 static int i2c_device_remove(struct device *dev)
260 {
261 struct i2c_client *client = i2c_verify_client(dev);
262 struct i2c_driver *driver;
263 int status;
264
265 if (!client || !dev->driver)
266 return 0;
267
268 driver = to_i2c_driver(dev->driver);
269 if (driver->remove) {
270 dev_dbg(dev, "remove\n");
271 status = driver->remove(client);
272 } else {
273 dev->driver = NULL;
274 status = 0;
275 }
276 if (status == 0) {
277 client->driver = NULL;
278 i2c_set_clientdata(client, NULL);
279 }
280 return status;
281 }
282
283 static void i2c_device_shutdown(struct device *dev)
284 {
285 struct i2c_client *client = i2c_verify_client(dev);
286 struct i2c_driver *driver;
287
288 if (!client || !dev->driver)
289 return;
290 driver = to_i2c_driver(dev->driver);
291 if (driver->shutdown)
292 driver->shutdown(client);
293 }
294
295 #ifdef CONFIG_PM_SLEEP
296 static int i2c_legacy_suspend(struct device *dev, pm_message_t mesg)
297 {
298 struct i2c_client *client = i2c_verify_client(dev);
299 struct i2c_driver *driver;
300
301 if (!client || !dev->driver)
302 return 0;
303 driver = to_i2c_driver(dev->driver);
304 if (!driver->suspend)
305 return 0;
306 return driver->suspend(client, mesg);
307 }
308
309 static int i2c_legacy_resume(struct device *dev)
310 {
311 struct i2c_client *client = i2c_verify_client(dev);
312 struct i2c_driver *driver;
313
314 if (!client || !dev->driver)
315 return 0;
316 driver = to_i2c_driver(dev->driver);
317 if (!driver->resume)
318 return 0;
319 return driver->resume(client);
320 }
321
322 static int i2c_device_pm_suspend(struct device *dev)
323 {
324 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
325
326 if (pm)
327 return pm_generic_suspend(dev);
328 else
329 return i2c_legacy_suspend(dev, PMSG_SUSPEND);
330 }
331
332 static int i2c_device_pm_resume(struct device *dev)
333 {
334 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
335
336 if (pm)
337 return pm_generic_resume(dev);
338 else
339 return i2c_legacy_resume(dev);
340 }
341
342 static int i2c_device_pm_freeze(struct device *dev)
343 {
344 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
345
346 if (pm)
347 return pm_generic_freeze(dev);
348 else
349 return i2c_legacy_suspend(dev, PMSG_FREEZE);
350 }
351
352 static int i2c_device_pm_thaw(struct device *dev)
353 {
354 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
355
356 if (pm)
357 return pm_generic_thaw(dev);
358 else
359 return i2c_legacy_resume(dev);
360 }
361
362 static int i2c_device_pm_poweroff(struct device *dev)
363 {
364 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
365
366 if (pm)
367 return pm_generic_poweroff(dev);
368 else
369 return i2c_legacy_suspend(dev, PMSG_HIBERNATE);
370 }
371
372 static int i2c_device_pm_restore(struct device *dev)
373 {
374 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
375
376 if (pm)
377 return pm_generic_restore(dev);
378 else
379 return i2c_legacy_resume(dev);
380 }
381 #else /* !CONFIG_PM_SLEEP */
382 #define i2c_device_pm_suspend NULL
383 #define i2c_device_pm_resume NULL
384 #define i2c_device_pm_freeze NULL
385 #define i2c_device_pm_thaw NULL
386 #define i2c_device_pm_poweroff NULL
387 #define i2c_device_pm_restore NULL
388 #endif /* !CONFIG_PM_SLEEP */
389
390 static void i2c_client_dev_release(struct device *dev)
391 {
392 kfree(to_i2c_client(dev));
393 }
394
395 static ssize_t
396 show_name(struct device *dev, struct device_attribute *attr, char *buf)
397 {
398 return sprintf(buf, "%s\n", dev->type == &i2c_client_type ?
399 to_i2c_client(dev)->name : to_i2c_adapter(dev)->name);
400 }
401
402 static ssize_t
403 show_modalias(struct device *dev, struct device_attribute *attr, char *buf)
404 {
405 struct i2c_client *client = to_i2c_client(dev);
406 return sprintf(buf, "%s%s\n", I2C_MODULE_PREFIX, client->name);
407 }
408
409 static DEVICE_ATTR(name, S_IRUGO, show_name, NULL);
410 static DEVICE_ATTR(modalias, S_IRUGO, show_modalias, NULL);
411
412 static struct attribute *i2c_dev_attrs[] = {
413 &dev_attr_name.attr,
414 /* modalias helps coldplug: modprobe $(cat .../modalias) */
415 &dev_attr_modalias.attr,
416 NULL
417 };
418
419 static struct attribute_group i2c_dev_attr_group = {
420 .attrs = i2c_dev_attrs,
421 };
422
423 static const struct attribute_group *i2c_dev_attr_groups[] = {
424 &i2c_dev_attr_group,
425 NULL
426 };
427
428 static const struct dev_pm_ops i2c_device_pm_ops = {
429 .suspend = i2c_device_pm_suspend,
430 .resume = i2c_device_pm_resume,
431 .freeze = i2c_device_pm_freeze,
432 .thaw = i2c_device_pm_thaw,
433 .poweroff = i2c_device_pm_poweroff,
434 .restore = i2c_device_pm_restore,
435 SET_RUNTIME_PM_OPS(
436 pm_generic_runtime_suspend,
437 pm_generic_runtime_resume,
438 pm_generic_runtime_idle
439 )
440 };
441
442 struct bus_type i2c_bus_type = {
443 .name = "i2c",
444 .match = i2c_device_match,
445 .probe = i2c_device_probe,
446 .remove = i2c_device_remove,
447 .shutdown = i2c_device_shutdown,
448 .pm = &i2c_device_pm_ops,
449 };
450 EXPORT_SYMBOL_GPL(i2c_bus_type);
451
452 static struct device_type i2c_client_type = {
453 .groups = i2c_dev_attr_groups,
454 .uevent = i2c_device_uevent,
455 .release = i2c_client_dev_release,
456 };
457
458
459 /**
460 * i2c_verify_client - return parameter as i2c_client, or NULL
461 * @dev: device, probably from some driver model iterator
462 *
463 * When traversing the driver model tree, perhaps using driver model
464 * iterators like @device_for_each_child(), you can't assume very much
465 * about the nodes you find. Use this function to avoid oopses caused
466 * by wrongly treating some non-I2C device as an i2c_client.
467 */
468 struct i2c_client *i2c_verify_client(struct device *dev)
469 {
470 return (dev->type == &i2c_client_type)
471 ? to_i2c_client(dev)
472 : NULL;
473 }
474 EXPORT_SYMBOL(i2c_verify_client);
475
476
477 /* This is a permissive address validity check, I2C address map constraints
478 * are purposely not enforced, except for the general call address. */
479 static int i2c_check_client_addr_validity(const struct i2c_client *client)
480 {
481 if (client->flags & I2C_CLIENT_TEN) {
482 /* 10-bit address, all values are valid */
483 if (client->addr > 0x3ff)
484 return -EINVAL;
485 } else {
486 /* 7-bit address, reject the general call address */
487 if (client->addr == 0x00 || client->addr > 0x7f)
488 return -EINVAL;
489 }
490 return 0;
491 }
492
493 /* And this is a strict address validity check, used when probing. If a
494 * device uses a reserved address, then it shouldn't be probed. 7-bit
495 * addressing is assumed, 10-bit address devices are rare and should be
496 * explicitly enumerated. */
497 static int i2c_check_addr_validity(unsigned short addr)
498 {
499 /*
500 * Reserved addresses per I2C specification:
501 * 0x00 General call address / START byte
502 * 0x01 CBUS address
503 * 0x02 Reserved for different bus format
504 * 0x03 Reserved for future purposes
505 * 0x04-0x07 Hs-mode master code
506 * 0x78-0x7b 10-bit slave addressing
507 * 0x7c-0x7f Reserved for future purposes
508 */
509 if (addr < 0x08 || addr > 0x77)
510 return -EINVAL;
511 return 0;
512 }
513
514 static int __i2c_check_addr_busy(struct device *dev, void *addrp)
515 {
516 struct i2c_client *client = i2c_verify_client(dev);
517 int addr = *(int *)addrp;
518
519 if (client && client->addr == addr)
520 return -EBUSY;
521 return 0;
522 }
523
524 /* walk up mux tree */
525 static int i2c_check_mux_parents(struct i2c_adapter *adapter, int addr)
526 {
527 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
528 int result;
529
530 result = device_for_each_child(&adapter->dev, &addr,
531 __i2c_check_addr_busy);
532
533 if (!result && parent)
534 result = i2c_check_mux_parents(parent, addr);
535
536 return result;
537 }
538
539 /* recurse down mux tree */
540 static int i2c_check_mux_children(struct device *dev, void *addrp)
541 {
542 int result;
543
544 if (dev->type == &i2c_adapter_type)
545 result = device_for_each_child(dev, addrp,
546 i2c_check_mux_children);
547 else
548 result = __i2c_check_addr_busy(dev, addrp);
549
550 return result;
551 }
552
553 static int i2c_check_addr_busy(struct i2c_adapter *adapter, int addr)
554 {
555 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
556 int result = 0;
557
558 if (parent)
559 result = i2c_check_mux_parents(parent, addr);
560
561 if (!result)
562 result = device_for_each_child(&adapter->dev, &addr,
563 i2c_check_mux_children);
564
565 return result;
566 }
567
568 /**
569 * i2c_lock_adapter - Get exclusive access to an I2C bus segment
570 * @adapter: Target I2C bus segment
571 */
572 void i2c_lock_adapter(struct i2c_adapter *adapter)
573 {
574 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
575
576 if (parent)
577 i2c_lock_adapter(parent);
578 else
579 rt_mutex_lock(&adapter->bus_lock);
580 }
581 EXPORT_SYMBOL_GPL(i2c_lock_adapter);
582
583 /**
584 * i2c_trylock_adapter - Try to get exclusive access to an I2C bus segment
585 * @adapter: Target I2C bus segment
586 */
587 static int i2c_trylock_adapter(struct i2c_adapter *adapter)
588 {
589 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
590
591 if (parent)
592 return i2c_trylock_adapter(parent);
593 else
594 return rt_mutex_trylock(&adapter->bus_lock);
595 }
596
597 /**
598 * i2c_unlock_adapter - Release exclusive access to an I2C bus segment
599 * @adapter: Target I2C bus segment
600 */
601 void i2c_unlock_adapter(struct i2c_adapter *adapter)
602 {
603 struct i2c_adapter *parent = i2c_parent_is_i2c_adapter(adapter);
604
605 if (parent)
606 i2c_unlock_adapter(parent);
607 else
608 rt_mutex_unlock(&adapter->bus_lock);
609 }
610 EXPORT_SYMBOL_GPL(i2c_unlock_adapter);
611
612 /**
613 * i2c_new_device - instantiate an i2c device
614 * @adap: the adapter managing the device
615 * @info: describes one I2C device; bus_num is ignored
616 * Context: can sleep
617 *
618 * Create an i2c device. Binding is handled through driver model
619 * probe()/remove() methods. A driver may be bound to this device when we
620 * return from this function, or any later moment (e.g. maybe hotplugging will
621 * load the driver module). This call is not appropriate for use by mainboard
622 * initialization logic, which usually runs during an arch_initcall() long
623 * before any i2c_adapter could exist.
624 *
625 * This returns the new i2c client, which may be saved for later use with
626 * i2c_unregister_device(); or NULL to indicate an error.
627 */
628 struct i2c_client *
629 i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
630 {
631 struct i2c_client *client;
632 int status;
633
634 client = kzalloc(sizeof *client, GFP_KERNEL);
635 if (!client)
636 return NULL;
637
638 client->adapter = adap;
639
640 client->dev.platform_data = info->platform_data;
641
642 if (info->archdata)
643 client->dev.archdata = *info->archdata;
644
645 client->flags = info->flags;
646 client->addr = info->addr;
647 client->irq = info->irq;
648
649 strlcpy(client->name, info->type, sizeof(client->name));
650
651 /* Check for address validity */
652 status = i2c_check_client_addr_validity(client);
653 if (status) {
654 dev_err(&adap->dev, "Invalid %d-bit I2C address 0x%02hx\n",
655 client->flags & I2C_CLIENT_TEN ? 10 : 7, client->addr);
656 goto out_err_silent;
657 }
658
659 /* Check for address business */
660 status = i2c_check_addr_busy(adap, client->addr);
661 if (status)
662 goto out_err;
663
664 client->dev.parent = &client->adapter->dev;
665 client->dev.bus = &i2c_bus_type;
666 client->dev.type = &i2c_client_type;
667 client->dev.of_node = info->of_node;
668 ACPI_HANDLE_SET(&client->dev, info->acpi_node.handle);
669
670 /* For 10-bit clients, add an arbitrary offset to avoid collisions */
671 dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
672 client->addr | ((client->flags & I2C_CLIENT_TEN)
673 ? 0xa000 : 0));
674 status = device_register(&client->dev);
675 if (status)
676 goto out_err;
677
678 dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
679 client->name, dev_name(&client->dev));
680
681 return client;
682
683 out_err:
684 dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
685 "(%d)\n", client->name, client->addr, status);
686 out_err_silent:
687 kfree(client);
688 return NULL;
689 }
690 EXPORT_SYMBOL_GPL(i2c_new_device);
691
692
693 /**
694 * i2c_unregister_device - reverse effect of i2c_new_device()
695 * @client: value returned from i2c_new_device()
696 * Context: can sleep
697 */
698 void i2c_unregister_device(struct i2c_client *client)
699 {
700 device_unregister(&client->dev);
701 }
702 EXPORT_SYMBOL_GPL(i2c_unregister_device);
703
704
705 static const struct i2c_device_id dummy_id[] = {
706 { "dummy", 0 },
707 { },
708 };
709
710 static int dummy_probe(struct i2c_client *client,
711 const struct i2c_device_id *id)
712 {
713 return 0;
714 }
715
716 static int dummy_remove(struct i2c_client *client)
717 {
718 return 0;
719 }
720
721 static struct i2c_driver dummy_driver = {
722 .driver.name = "dummy",
723 .probe = dummy_probe,
724 .remove = dummy_remove,
725 .id_table = dummy_id,
726 };
727
728 /**
729 * i2c_new_dummy - return a new i2c device bound to a dummy driver
730 * @adapter: the adapter managing the device
731 * @address: seven bit address to be used
732 * Context: can sleep
733 *
734 * This returns an I2C client bound to the "dummy" driver, intended for use
735 * with devices that consume multiple addresses. Examples of such chips
736 * include various EEPROMS (like 24c04 and 24c08 models).
737 *
738 * These dummy devices have two main uses. First, most I2C and SMBus calls
739 * except i2c_transfer() need a client handle; the dummy will be that handle.
740 * And second, this prevents the specified address from being bound to a
741 * different driver.
742 *
743 * This returns the new i2c client, which should be saved for later use with
744 * i2c_unregister_device(); or NULL to indicate an error.
745 */
746 struct i2c_client *i2c_new_dummy(struct i2c_adapter *adapter, u16 address)
747 {
748 struct i2c_board_info info = {
749 I2C_BOARD_INFO("dummy", address),
750 };
751
752 return i2c_new_device(adapter, &info);
753 }
754 EXPORT_SYMBOL_GPL(i2c_new_dummy);
755
756 /* ------------------------------------------------------------------------- */
757
758 /* I2C bus adapters -- one roots each I2C or SMBUS segment */
759
760 static void i2c_adapter_dev_release(struct device *dev)
761 {
762 struct i2c_adapter *adap = to_i2c_adapter(dev);
763 complete(&adap->dev_released);
764 }
765
766 /*
767 * This function is only needed for mutex_lock_nested, so it is never
768 * called unless locking correctness checking is enabled. Thus we
769 * make it inline to avoid a compiler warning. That's what gcc ends up
770 * doing anyway.
771 */
772 static inline unsigned int i2c_adapter_depth(struct i2c_adapter *adapter)
773 {
774 unsigned int depth = 0;
775
776 while ((adapter = i2c_parent_is_i2c_adapter(adapter)))
777 depth++;
778
779 return depth;
780 }
781
782 /*
783 * Let users instantiate I2C devices through sysfs. This can be used when
784 * platform initialization code doesn't contain the proper data for
785 * whatever reason. Also useful for drivers that do device detection and
786 * detection fails, either because the device uses an unexpected address,
787 * or this is a compatible device with different ID register values.
788 *
789 * Parameter checking may look overzealous, but we really don't want
790 * the user to provide incorrect parameters.
791 */
792 static ssize_t
793 i2c_sysfs_new_device(struct device *dev, struct device_attribute *attr,
794 const char *buf, size_t count)
795 {
796 struct i2c_adapter *adap = to_i2c_adapter(dev);
797 struct i2c_board_info info;
798 struct i2c_client *client;
799 char *blank, end;
800 int res;
801
802 memset(&info, 0, sizeof(struct i2c_board_info));
803
804 blank = strchr(buf, ' ');
805 if (!blank) {
806 dev_err(dev, "%s: Missing parameters\n", "new_device");
807 return -EINVAL;
808 }
809 if (blank - buf > I2C_NAME_SIZE - 1) {
810 dev_err(dev, "%s: Invalid device name\n", "new_device");
811 return -EINVAL;
812 }
813 memcpy(info.type, buf, blank - buf);
814
815 /* Parse remaining parameters, reject extra parameters */
816 res = sscanf(++blank, "%hi%c", &info.addr, &end);
817 if (res < 1) {
818 dev_err(dev, "%s: Can't parse I2C address\n", "new_device");
819 return -EINVAL;
820 }
821 if (res > 1 && end != '\n') {
822 dev_err(dev, "%s: Extra parameters\n", "new_device");
823 return -EINVAL;
824 }
825
826 client = i2c_new_device(adap, &info);
827 if (!client)
828 return -EINVAL;
829
830 /* Keep track of the added device */
831 mutex_lock(&adap->userspace_clients_lock);
832 list_add_tail(&client->detected, &adap->userspace_clients);
833 mutex_unlock(&adap->userspace_clients_lock);
834 dev_info(dev, "%s: Instantiated device %s at 0x%02hx\n", "new_device",
835 info.type, info.addr);
836
837 return count;
838 }
839
840 /*
841 * And of course let the users delete the devices they instantiated, if
842 * they got it wrong. This interface can only be used to delete devices
843 * instantiated by i2c_sysfs_new_device above. This guarantees that we
844 * don't delete devices to which some kernel code still has references.
845 *
846 * Parameter checking may look overzealous, but we really don't want
847 * the user to delete the wrong device.
848 */
849 static ssize_t
850 i2c_sysfs_delete_device(struct device *dev, struct device_attribute *attr,
851 const char *buf, size_t count)
852 {
853 struct i2c_adapter *adap = to_i2c_adapter(dev);
854 struct i2c_client *client, *next;
855 unsigned short addr;
856 char end;
857 int res;
858
859 /* Parse parameters, reject extra parameters */
860 res = sscanf(buf, "%hi%c", &addr, &end);
861 if (res < 1) {
862 dev_err(dev, "%s: Can't parse I2C address\n", "delete_device");
863 return -EINVAL;
864 }
865 if (res > 1 && end != '\n') {
866 dev_err(dev, "%s: Extra parameters\n", "delete_device");
867 return -EINVAL;
868 }
869
870 /* Make sure the device was added through sysfs */
871 res = -ENOENT;
872 mutex_lock_nested(&adap->userspace_clients_lock,
873 i2c_adapter_depth(adap));
874 list_for_each_entry_safe(client, next, &adap->userspace_clients,
875 detected) {
876 if (client->addr == addr) {
877 dev_info(dev, "%s: Deleting device %s at 0x%02hx\n",
878 "delete_device", client->name, client->addr);
879
880 list_del(&client->detected);
881 i2c_unregister_device(client);
882 res = count;
883 break;
884 }
885 }
886 mutex_unlock(&adap->userspace_clients_lock);
887
888 if (res < 0)
889 dev_err(dev, "%s: Can't find device in list\n",
890 "delete_device");
891 return res;
892 }
893
894 static DEVICE_ATTR(new_device, S_IWUSR, NULL, i2c_sysfs_new_device);
895 static DEVICE_ATTR_IGNORE_LOCKDEP(delete_device, S_IWUSR, NULL,
896 i2c_sysfs_delete_device);
897
898 static struct attribute *i2c_adapter_attrs[] = {
899 &dev_attr_name.attr,
900 &dev_attr_new_device.attr,
901 &dev_attr_delete_device.attr,
902 NULL
903 };
904
905 static struct attribute_group i2c_adapter_attr_group = {
906 .attrs = i2c_adapter_attrs,
907 };
908
909 static const struct attribute_group *i2c_adapter_attr_groups[] = {
910 &i2c_adapter_attr_group,
911 NULL
912 };
913
914 struct device_type i2c_adapter_type = {
915 .groups = i2c_adapter_attr_groups,
916 .release = i2c_adapter_dev_release,
917 };
918 EXPORT_SYMBOL_GPL(i2c_adapter_type);
919
920 /**
921 * i2c_verify_adapter - return parameter as i2c_adapter or NULL
922 * @dev: device, probably from some driver model iterator
923 *
924 * When traversing the driver model tree, perhaps using driver model
925 * iterators like @device_for_each_child(), you can't assume very much
926 * about the nodes you find. Use this function to avoid oopses caused
927 * by wrongly treating some non-I2C device as an i2c_adapter.
928 */
929 struct i2c_adapter *i2c_verify_adapter(struct device *dev)
930 {
931 return (dev->type == &i2c_adapter_type)
932 ? to_i2c_adapter(dev)
933 : NULL;
934 }
935 EXPORT_SYMBOL(i2c_verify_adapter);
936
937 #ifdef CONFIG_I2C_COMPAT
938 static struct class_compat *i2c_adapter_compat_class;
939 #endif
940
941 static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
942 {
943 struct i2c_devinfo *devinfo;
944
945 down_read(&__i2c_board_lock);
946 list_for_each_entry(devinfo, &__i2c_board_list, list) {
947 if (devinfo->busnum == adapter->nr
948 && !i2c_new_device(adapter,
949 &devinfo->board_info))
950 dev_err(&adapter->dev,
951 "Can't create device at 0x%02x\n",
952 devinfo->board_info.addr);
953 }
954 up_read(&__i2c_board_lock);
955 }
956
957 static int i2c_do_add_adapter(struct i2c_driver *driver,
958 struct i2c_adapter *adap)
959 {
960 /* Detect supported devices on that bus, and instantiate them */
961 i2c_detect(adap, driver);
962
963 /* Let legacy drivers scan this bus for matching devices */
964 if (driver->attach_adapter) {
965 dev_warn(&adap->dev, "%s: attach_adapter method is deprecated\n",
966 driver->driver.name);
967 dev_warn(&adap->dev, "Please use another way to instantiate "
968 "your i2c_client\n");
969 /* We ignore the return code; if it fails, too bad */
970 driver->attach_adapter(adap);
971 }
972 return 0;
973 }
974
975 static int __process_new_adapter(struct device_driver *d, void *data)
976 {
977 return i2c_do_add_adapter(to_i2c_driver(d), data);
978 }
979
980 static int i2c_register_adapter(struct i2c_adapter *adap)
981 {
982 int res = 0;
983
984 /* Can't register until after driver model init */
985 if (unlikely(WARN_ON(!i2c_bus_type.p))) {
986 res = -EAGAIN;
987 goto out_list;
988 }
989
990 /* Sanity checks */
991 if (unlikely(adap->name[0] == '\0')) {
992 pr_err("i2c-core: Attempt to register an adapter with "
993 "no name!\n");
994 return -EINVAL;
995 }
996 if (unlikely(!adap->algo)) {
997 pr_err("i2c-core: Attempt to register adapter '%s' with "
998 "no algo!\n", adap->name);
999 return -EINVAL;
1000 }
1001
1002 rt_mutex_init(&adap->bus_lock);
1003 mutex_init(&adap->userspace_clients_lock);
1004 INIT_LIST_HEAD(&adap->userspace_clients);
1005
1006 /* Set default timeout to 1 second if not already set */
1007 if (adap->timeout == 0)
1008 adap->timeout = HZ;
1009
1010 dev_set_name(&adap->dev, "i2c-%d", adap->nr);
1011 adap->dev.bus = &i2c_bus_type;
1012 adap->dev.type = &i2c_adapter_type;
1013 res = device_register(&adap->dev);
1014 if (res)
1015 goto out_list;
1016
1017 dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
1018
1019 #ifdef CONFIG_I2C_COMPAT
1020 res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
1021 adap->dev.parent);
1022 if (res)
1023 dev_warn(&adap->dev,
1024 "Failed to create compatibility class link\n");
1025 #endif
1026
1027 /* bus recovery specific initialization */
1028 if (adap->bus_recovery_info) {
1029 struct i2c_bus_recovery_info *bri = adap->bus_recovery_info;
1030
1031 if (!bri->recover_bus) {
1032 dev_err(&adap->dev, "No recover_bus() found, not using recovery\n");
1033 adap->bus_recovery_info = NULL;
1034 goto exit_recovery;
1035 }
1036
1037 /* Generic GPIO recovery */
1038 if (bri->recover_bus == i2c_generic_gpio_recovery) {
1039 if (!gpio_is_valid(bri->scl_gpio)) {
1040 dev_err(&adap->dev, "Invalid SCL gpio, not using recovery\n");
1041 adap->bus_recovery_info = NULL;
1042 goto exit_recovery;
1043 }
1044
1045 if (gpio_is_valid(bri->sda_gpio))
1046 bri->get_sda = get_sda_gpio_value;
1047 else
1048 bri->get_sda = NULL;
1049
1050 bri->get_scl = get_scl_gpio_value;
1051 bri->set_scl = set_scl_gpio_value;
1052 } else if (!bri->set_scl || !bri->get_scl) {
1053 /* Generic SCL recovery */
1054 dev_err(&adap->dev, "No {get|set}_gpio() found, not using recovery\n");
1055 adap->bus_recovery_info = NULL;
1056 }
1057 }
1058
1059 exit_recovery:
1060 /* create pre-declared device nodes */
1061 if (adap->nr < __i2c_first_dynamic_bus_num)
1062 i2c_scan_static_board_info(adap);
1063
1064 /* Notify drivers */
1065 mutex_lock(&core_lock);
1066 bus_for_each_drv(&i2c_bus_type, NULL, adap, __process_new_adapter);
1067 mutex_unlock(&core_lock);
1068
1069 return 0;
1070
1071 out_list:
1072 mutex_lock(&core_lock);
1073 idr_remove(&i2c_adapter_idr, adap->nr);
1074 mutex_unlock(&core_lock);
1075 return res;
1076 }
1077
1078 /**
1079 * __i2c_add_numbered_adapter - i2c_add_numbered_adapter where nr is never -1
1080 * @adap: the adapter to register (with adap->nr initialized)
1081 * Context: can sleep
1082 *
1083 * See i2c_add_numbered_adapter() for details.
1084 */
1085 static int __i2c_add_numbered_adapter(struct i2c_adapter *adap)
1086 {
1087 int id;
1088
1089 mutex_lock(&core_lock);
1090 id = idr_alloc(&i2c_adapter_idr, adap, adap->nr, adap->nr + 1,
1091 GFP_KERNEL);
1092 mutex_unlock(&core_lock);
1093 if (id < 0)
1094 return id == -ENOSPC ? -EBUSY : id;
1095
1096 return i2c_register_adapter(adap);
1097 }
1098
1099 /**
1100 * i2c_add_adapter - declare i2c adapter, use dynamic bus number
1101 * @adapter: the adapter to add
1102 * Context: can sleep
1103 *
1104 * This routine is used to declare an I2C adapter when its bus number
1105 * doesn't matter or when its bus number is specified by an dt alias.
1106 * Examples of bases when the bus number doesn't matter: I2C adapters
1107 * dynamically added by USB links or PCI plugin cards.
1108 *
1109 * When this returns zero, a new bus number was allocated and stored
1110 * in adap->nr, and the specified adapter became available for clients.
1111 * Otherwise, a negative errno value is returned.
1112 */
1113 int i2c_add_adapter(struct i2c_adapter *adapter)
1114 {
1115 struct device *dev = &adapter->dev;
1116 int id;
1117
1118 if (dev->of_node) {
1119 id = of_alias_get_id(dev->of_node, "i2c");
1120 if (id >= 0) {
1121 adapter->nr = id;
1122 return __i2c_add_numbered_adapter(adapter);
1123 }
1124 }
1125
1126 mutex_lock(&core_lock);
1127 id = idr_alloc(&i2c_adapter_idr, adapter,
1128 __i2c_first_dynamic_bus_num, 0, GFP_KERNEL);
1129 mutex_unlock(&core_lock);
1130 if (id < 0)
1131 return id;
1132
1133 adapter->nr = id;
1134
1135 return i2c_register_adapter(adapter);
1136 }
1137 EXPORT_SYMBOL(i2c_add_adapter);
1138
1139 /**
1140 * i2c_add_numbered_adapter - declare i2c adapter, use static bus number
1141 * @adap: the adapter to register (with adap->nr initialized)
1142 * Context: can sleep
1143 *
1144 * This routine is used to declare an I2C adapter when its bus number
1145 * matters. For example, use it for I2C adapters from system-on-chip CPUs,
1146 * or otherwise built in to the system's mainboard, and where i2c_board_info
1147 * is used to properly configure I2C devices.
1148 *
1149 * If the requested bus number is set to -1, then this function will behave
1150 * identically to i2c_add_adapter, and will dynamically assign a bus number.
1151 *
1152 * If no devices have pre-been declared for this bus, then be sure to
1153 * register the adapter before any dynamically allocated ones. Otherwise
1154 * the required bus ID may not be available.
1155 *
1156 * When this returns zero, the specified adapter became available for
1157 * clients using the bus number provided in adap->nr. Also, the table
1158 * of I2C devices pre-declared using i2c_register_board_info() is scanned,
1159 * and the appropriate driver model device nodes are created. Otherwise, a
1160 * negative errno value is returned.
1161 */
1162 int i2c_add_numbered_adapter(struct i2c_adapter *adap)
1163 {
1164 if (adap->nr == -1) /* -1 means dynamically assign bus id */
1165 return i2c_add_adapter(adap);
1166
1167 return __i2c_add_numbered_adapter(adap);
1168 }
1169 EXPORT_SYMBOL_GPL(i2c_add_numbered_adapter);
1170
1171 static void i2c_do_del_adapter(struct i2c_driver *driver,
1172 struct i2c_adapter *adapter)
1173 {
1174 struct i2c_client *client, *_n;
1175
1176 /* Remove the devices we created ourselves as the result of hardware
1177 * probing (using a driver's detect method) */
1178 list_for_each_entry_safe(client, _n, &driver->clients, detected) {
1179 if (client->adapter == adapter) {
1180 dev_dbg(&adapter->dev, "Removing %s at 0x%x\n",
1181 client->name, client->addr);
1182 list_del(&client->detected);
1183 i2c_unregister_device(client);
1184 }
1185 }
1186 }
1187
1188 static int __unregister_client(struct device *dev, void *dummy)
1189 {
1190 struct i2c_client *client = i2c_verify_client(dev);
1191 if (client && strcmp(client->name, "dummy"))
1192 i2c_unregister_device(client);
1193 return 0;
1194 }
1195
1196 static int __unregister_dummy(struct device *dev, void *dummy)
1197 {
1198 struct i2c_client *client = i2c_verify_client(dev);
1199 if (client)
1200 i2c_unregister_device(client);
1201 return 0;
1202 }
1203
1204 static int __process_removed_adapter(struct device_driver *d, void *data)
1205 {
1206 i2c_do_del_adapter(to_i2c_driver(d), data);
1207 return 0;
1208 }
1209
1210 /**
1211 * i2c_del_adapter - unregister I2C adapter
1212 * @adap: the adapter being unregistered
1213 * Context: can sleep
1214 *
1215 * This unregisters an I2C adapter which was previously registered
1216 * by @i2c_add_adapter or @i2c_add_numbered_adapter.
1217 */
1218 void i2c_del_adapter(struct i2c_adapter *adap)
1219 {
1220 struct i2c_adapter *found;
1221 struct i2c_client *client, *next;
1222
1223 /* First make sure that this adapter was ever added */
1224 mutex_lock(&core_lock);
1225 found = idr_find(&i2c_adapter_idr, adap->nr);
1226 mutex_unlock(&core_lock);
1227 if (found != adap) {
1228 pr_debug("i2c-core: attempting to delete unregistered "
1229 "adapter [%s]\n", adap->name);
1230 return;
1231 }
1232
1233 /* Tell drivers about this removal */
1234 mutex_lock(&core_lock);
1235 bus_for_each_drv(&i2c_bus_type, NULL, adap,
1236 __process_removed_adapter);
1237 mutex_unlock(&core_lock);
1238
1239 /* Remove devices instantiated from sysfs */
1240 mutex_lock_nested(&adap->userspace_clients_lock,
1241 i2c_adapter_depth(adap));
1242 list_for_each_entry_safe(client, next, &adap->userspace_clients,
1243 detected) {
1244 dev_dbg(&adap->dev, "Removing %s at 0x%x\n", client->name,
1245 client->addr);
1246 list_del(&client->detected);
1247 i2c_unregister_device(client);
1248 }
1249 mutex_unlock(&adap->userspace_clients_lock);
1250
1251 /* Detach any active clients. This can't fail, thus we do not
1252 * check the returned value. This is a two-pass process, because
1253 * we can't remove the dummy devices during the first pass: they
1254 * could have been instantiated by real devices wishing to clean
1255 * them up properly, so we give them a chance to do that first. */
1256 device_for_each_child(&adap->dev, NULL, __unregister_client);
1257 device_for_each_child(&adap->dev, NULL, __unregister_dummy);
1258
1259 #ifdef CONFIG_I2C_COMPAT
1260 class_compat_remove_link(i2c_adapter_compat_class, &adap->dev,
1261 adap->dev.parent);
1262 #endif
1263
1264 /* device name is gone after device_unregister */
1265 dev_dbg(&adap->dev, "adapter [%s] unregistered\n", adap->name);
1266
1267 /* clean up the sysfs representation */
1268 init_completion(&adap->dev_released);
1269 device_unregister(&adap->dev);
1270
1271 /* wait for sysfs to drop all references */
1272 wait_for_completion(&adap->dev_released);
1273
1274 /* free bus id */
1275 mutex_lock(&core_lock);
1276 idr_remove(&i2c_adapter_idr, adap->nr);
1277 mutex_unlock(&core_lock);
1278
1279 /* Clear the device structure in case this adapter is ever going to be
1280 added again */
1281 memset(&adap->dev, 0, sizeof(adap->dev));
1282 }
1283 EXPORT_SYMBOL(i2c_del_adapter);
1284
1285
1286 /* ------------------------------------------------------------------------- */
1287
1288 int i2c_for_each_dev(void *data, int (*fn)(struct device *, void *))
1289 {
1290 int res;
1291
1292 mutex_lock(&core_lock);
1293 res = bus_for_each_dev(&i2c_bus_type, NULL, data, fn);
1294 mutex_unlock(&core_lock);
1295
1296 return res;
1297 }
1298 EXPORT_SYMBOL_GPL(i2c_for_each_dev);
1299
1300 static int __process_new_driver(struct device *dev, void *data)
1301 {
1302 if (dev->type != &i2c_adapter_type)
1303 return 0;
1304 return i2c_do_add_adapter(data, to_i2c_adapter(dev));
1305 }
1306
1307 /*
1308 * An i2c_driver is used with one or more i2c_client (device) nodes to access
1309 * i2c slave chips, on a bus instance associated with some i2c_adapter.
1310 */
1311
1312 int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
1313 {
1314 int res;
1315
1316 /* Can't register until after driver model init */
1317 if (unlikely(WARN_ON(!i2c_bus_type.p)))
1318 return -EAGAIN;
1319
1320 /* add the driver to the list of i2c drivers in the driver core */
1321 driver->driver.owner = owner;
1322 driver->driver.bus = &i2c_bus_type;
1323
1324 /* When registration returns, the driver core
1325 * will have called probe() for all matching-but-unbound devices.
1326 */
1327 res = driver_register(&driver->driver);
1328 if (res)
1329 return res;
1330
1331 /* Drivers should switch to dev_pm_ops instead. */
1332 if (driver->suspend)
1333 pr_warn("i2c-core: driver [%s] using legacy suspend method\n",
1334 driver->driver.name);
1335 if (driver->resume)
1336 pr_warn("i2c-core: driver [%s] using legacy resume method\n",
1337 driver->driver.name);
1338
1339 pr_debug("i2c-core: driver [%s] registered\n", driver->driver.name);
1340
1341 INIT_LIST_HEAD(&driver->clients);
1342 /* Walk the adapters that are already present */
1343 i2c_for_each_dev(driver, __process_new_driver);
1344
1345 return 0;
1346 }
1347 EXPORT_SYMBOL(i2c_register_driver);
1348
1349 static int __process_removed_driver(struct device *dev, void *data)
1350 {
1351 if (dev->type == &i2c_adapter_type)
1352 i2c_do_del_adapter(data, to_i2c_adapter(dev));
1353 return 0;
1354 }
1355
1356 /**
1357 * i2c_del_driver - unregister I2C driver
1358 * @driver: the driver being unregistered
1359 * Context: can sleep
1360 */
1361 void i2c_del_driver(struct i2c_driver *driver)
1362 {
1363 i2c_for_each_dev(driver, __process_removed_driver);
1364
1365 driver_unregister(&driver->driver);
1366 pr_debug("i2c-core: driver [%s] unregistered\n", driver->driver.name);
1367 }
1368 EXPORT_SYMBOL(i2c_del_driver);
1369
1370 /* ------------------------------------------------------------------------- */
1371
1372 /**
1373 * i2c_use_client - increments the reference count of the i2c client structure
1374 * @client: the client being referenced
1375 *
1376 * Each live reference to a client should be refcounted. The driver model does
1377 * that automatically as part of driver binding, so that most drivers don't
1378 * need to do this explicitly: they hold a reference until they're unbound
1379 * from the device.
1380 *
1381 * A pointer to the client with the incremented reference counter is returned.
1382 */
1383 struct i2c_client *i2c_use_client(struct i2c_client *client)
1384 {
1385 if (client && get_device(&client->dev))
1386 return client;
1387 return NULL;
1388 }
1389 EXPORT_SYMBOL(i2c_use_client);
1390
1391 /**
1392 * i2c_release_client - release a use of the i2c client structure
1393 * @client: the client being no longer referenced
1394 *
1395 * Must be called when a user of a client is finished with it.
1396 */
1397 void i2c_release_client(struct i2c_client *client)
1398 {
1399 if (client)
1400 put_device(&client->dev);
1401 }
1402 EXPORT_SYMBOL(i2c_release_client);
1403
1404 struct i2c_cmd_arg {
1405 unsigned cmd;
1406 void *arg;
1407 };
1408
1409 static int i2c_cmd(struct device *dev, void *_arg)
1410 {
1411 struct i2c_client *client = i2c_verify_client(dev);
1412 struct i2c_cmd_arg *arg = _arg;
1413
1414 if (client && client->driver && client->driver->command)
1415 client->driver->command(client, arg->cmd, arg->arg);
1416 return 0;
1417 }
1418
1419 void i2c_clients_command(struct i2c_adapter *adap, unsigned int cmd, void *arg)
1420 {
1421 struct i2c_cmd_arg cmd_arg;
1422
1423 cmd_arg.cmd = cmd;
1424 cmd_arg.arg = arg;
1425 device_for_each_child(&adap->dev, &cmd_arg, i2c_cmd);
1426 }
1427 EXPORT_SYMBOL(i2c_clients_command);
1428
1429 static int __init i2c_init(void)
1430 {
1431 int retval;
1432
1433 retval = bus_register(&i2c_bus_type);
1434 if (retval)
1435 return retval;
1436 #ifdef CONFIG_I2C_COMPAT
1437 i2c_adapter_compat_class = class_compat_register("i2c-adapter");
1438 if (!i2c_adapter_compat_class) {
1439 retval = -ENOMEM;
1440 goto bus_err;
1441 }
1442 #endif
1443 retval = i2c_add_driver(&dummy_driver);
1444 if (retval)
1445 goto class_err;
1446 return 0;
1447
1448 class_err:
1449 #ifdef CONFIG_I2C_COMPAT
1450 class_compat_unregister(i2c_adapter_compat_class);
1451 bus_err:
1452 #endif
1453 bus_unregister(&i2c_bus_type);
1454 return retval;
1455 }
1456
1457 static void __exit i2c_exit(void)
1458 {
1459 i2c_del_driver(&dummy_driver);
1460 #ifdef CONFIG_I2C_COMPAT
1461 class_compat_unregister(i2c_adapter_compat_class);
1462 #endif
1463 bus_unregister(&i2c_bus_type);
1464 }
1465
1466 /* We must initialize early, because some subsystems register i2c drivers
1467 * in subsys_initcall() code, but are linked (and initialized) before i2c.
1468 */
1469 postcore_initcall(i2c_init);
1470 module_exit(i2c_exit);
1471
1472 /* ----------------------------------------------------
1473 * the functional interface to the i2c busses.
1474 * ----------------------------------------------------
1475 */
1476
1477 /**
1478 * __i2c_transfer - unlocked flavor of i2c_transfer
1479 * @adap: Handle to I2C bus
1480 * @msgs: One or more messages to execute before STOP is issued to
1481 * terminate the operation; each message begins with a START.
1482 * @num: Number of messages to be executed.
1483 *
1484 * Returns negative errno, else the number of messages executed.
1485 *
1486 * Adapter lock must be held when calling this function. No debug logging
1487 * takes place. adap->algo->master_xfer existence isn't checked.
1488 */
1489 int __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1490 {
1491 unsigned long orig_jiffies;
1492 int ret, try;
1493
1494 /* Retry automatically on arbitration loss */
1495 orig_jiffies = jiffies;
1496 for (ret = 0, try = 0; try <= adap->retries; try++) {
1497 ret = adap->algo->master_xfer(adap, msgs, num);
1498 if (ret != -EAGAIN)
1499 break;
1500 if (time_after(jiffies, orig_jiffies + adap->timeout))
1501 break;
1502 }
1503
1504 return ret;
1505 }
1506 EXPORT_SYMBOL(__i2c_transfer);
1507
1508 /**
1509 * i2c_transfer - execute a single or combined I2C message
1510 * @adap: Handle to I2C bus
1511 * @msgs: One or more messages to execute before STOP is issued to
1512 * terminate the operation; each message begins with a START.
1513 * @num: Number of messages to be executed.
1514 *
1515 * Returns negative errno, else the number of messages executed.
1516 *
1517 * Note that there is no requirement that each message be sent to
1518 * the same slave address, although that is the most common model.
1519 */
1520 int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
1521 {
1522 int ret;
1523
1524 /* REVISIT the fault reporting model here is weak:
1525 *
1526 * - When we get an error after receiving N bytes from a slave,
1527 * there is no way to report "N".
1528 *
1529 * - When we get a NAK after transmitting N bytes to a slave,
1530 * there is no way to report "N" ... or to let the master
1531 * continue executing the rest of this combined message, if
1532 * that's the appropriate response.
1533 *
1534 * - When for example "num" is two and we successfully complete
1535 * the first message but get an error part way through the
1536 * second, it's unclear whether that should be reported as
1537 * one (discarding status on the second message) or errno
1538 * (discarding status on the first one).
1539 */
1540
1541 if (adap->algo->master_xfer) {
1542 #ifdef DEBUG
1543 for (ret = 0; ret < num; ret++) {
1544 dev_dbg(&adap->dev, "master_xfer[%d] %c, addr=0x%02x, "
1545 "len=%d%s\n", ret, (msgs[ret].flags & I2C_M_RD)
1546 ? 'R' : 'W', msgs[ret].addr, msgs[ret].len,
1547 (msgs[ret].flags & I2C_M_RECV_LEN) ? "+" : "");
1548 }
1549 #endif
1550
1551 if (in_atomic() || irqs_disabled()) {
1552 ret = i2c_trylock_adapter(adap);
1553 if (!ret)
1554 /* I2C activity is ongoing. */
1555 return -EAGAIN;
1556 } else {
1557 i2c_lock_adapter(adap);
1558 }
1559
1560 ret = __i2c_transfer(adap, msgs, num);
1561 i2c_unlock_adapter(adap);
1562
1563 return ret;
1564 } else {
1565 dev_dbg(&adap->dev, "I2C level transfers not supported\n");
1566 return -EOPNOTSUPP;
1567 }
1568 }
1569 EXPORT_SYMBOL(i2c_transfer);
1570
1571 /**
1572 * i2c_master_send - issue a single I2C message in master transmit mode
1573 * @client: Handle to slave device
1574 * @buf: Data that will be written to the slave
1575 * @count: How many bytes to write, must be less than 64k since msg.len is u16
1576 *
1577 * Returns negative errno, or else the number of bytes written.
1578 */
1579 int i2c_master_send(const struct i2c_client *client, const char *buf, int count)
1580 {
1581 int ret;
1582 struct i2c_adapter *adap = client->adapter;
1583 struct i2c_msg msg;
1584
1585 msg.addr = client->addr;
1586 msg.flags = client->flags & I2C_M_TEN;
1587 msg.len = count;
1588 msg.buf = (char *)buf;
1589
1590 ret = i2c_transfer(adap, &msg, 1);
1591
1592 /*
1593 * If everything went ok (i.e. 1 msg transmitted), return #bytes
1594 * transmitted, else error code.
1595 */
1596 return (ret == 1) ? count : ret;
1597 }
1598 EXPORT_SYMBOL(i2c_master_send);
1599
1600 /**
1601 * i2c_master_recv - issue a single I2C message in master receive mode
1602 * @client: Handle to slave device
1603 * @buf: Where to store data read from slave
1604 * @count: How many bytes to read, must be less than 64k since msg.len is u16
1605 *
1606 * Returns negative errno, or else the number of bytes read.
1607 */
1608 int i2c_master_recv(const struct i2c_client *client, char *buf, int count)
1609 {
1610 struct i2c_adapter *adap = client->adapter;
1611 struct i2c_msg msg;
1612 int ret;
1613
1614 msg.addr = client->addr;
1615 msg.flags = client->flags & I2C_M_TEN;
1616 msg.flags |= I2C_M_RD;
1617 msg.len = count;
1618 msg.buf = buf;
1619
1620 ret = i2c_transfer(adap, &msg, 1);
1621
1622 /*
1623 * If everything went ok (i.e. 1 msg received), return #bytes received,
1624 * else error code.
1625 */
1626 return (ret == 1) ? count : ret;
1627 }
1628 EXPORT_SYMBOL(i2c_master_recv);
1629
1630 /* ----------------------------------------------------
1631 * the i2c address scanning function
1632 * Will not work for 10-bit addresses!
1633 * ----------------------------------------------------
1634 */
1635
1636 /*
1637 * Legacy default probe function, mostly relevant for SMBus. The default
1638 * probe method is a quick write, but it is known to corrupt the 24RF08
1639 * EEPROMs due to a state machine bug, and could also irreversibly
1640 * write-protect some EEPROMs, so for address ranges 0x30-0x37 and 0x50-0x5f,
1641 * we use a short byte read instead. Also, some bus drivers don't implement
1642 * quick write, so we fallback to a byte read in that case too.
1643 * On x86, there is another special case for FSC hardware monitoring chips,
1644 * which want regular byte reads (address 0x73.) Fortunately, these are the
1645 * only known chips using this I2C address on PC hardware.
1646 * Returns 1 if probe succeeded, 0 if not.
1647 */
1648 static int i2c_default_probe(struct i2c_adapter *adap, unsigned short addr)
1649 {
1650 int err;
1651 union i2c_smbus_data dummy;
1652
1653 #ifdef CONFIG_X86
1654 if (addr == 0x73 && (adap->class & I2C_CLASS_HWMON)
1655 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE_DATA))
1656 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1657 I2C_SMBUS_BYTE_DATA, &dummy);
1658 else
1659 #endif
1660 if (!((addr & ~0x07) == 0x30 || (addr & ~0x0f) == 0x50)
1661 && i2c_check_functionality(adap, I2C_FUNC_SMBUS_QUICK))
1662 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_WRITE, 0,
1663 I2C_SMBUS_QUICK, NULL);
1664 else if (i2c_check_functionality(adap, I2C_FUNC_SMBUS_READ_BYTE))
1665 err = i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1666 I2C_SMBUS_BYTE, &dummy);
1667 else {
1668 dev_warn(&adap->dev, "No suitable probing method supported\n");
1669 err = -EOPNOTSUPP;
1670 }
1671
1672 return err >= 0;
1673 }
1674
1675 static int i2c_detect_address(struct i2c_client *temp_client,
1676 struct i2c_driver *driver)
1677 {
1678 struct i2c_board_info info;
1679 struct i2c_adapter *adapter = temp_client->adapter;
1680 int addr = temp_client->addr;
1681 int err;
1682
1683 /* Make sure the address is valid */
1684 err = i2c_check_addr_validity(addr);
1685 if (err) {
1686 dev_warn(&adapter->dev, "Invalid probe address 0x%02x\n",
1687 addr);
1688 return err;
1689 }
1690
1691 /* Skip if already in use */
1692 if (i2c_check_addr_busy(adapter, addr))
1693 return 0;
1694
1695 /* Make sure there is something at this address */
1696 if (!i2c_default_probe(adapter, addr))
1697 return 0;
1698
1699 /* Finally call the custom detection function */
1700 memset(&info, 0, sizeof(struct i2c_board_info));
1701 info.addr = addr;
1702 err = driver->detect(temp_client, &info);
1703 if (err) {
1704 /* -ENODEV is returned if the detection fails. We catch it
1705 here as this isn't an error. */
1706 return err == -ENODEV ? 0 : err;
1707 }
1708
1709 /* Consistency check */
1710 if (info.type[0] == '\0') {
1711 dev_err(&adapter->dev, "%s detection function provided "
1712 "no name for 0x%x\n", driver->driver.name,
1713 addr);
1714 } else {
1715 struct i2c_client *client;
1716
1717 /* Detection succeeded, instantiate the device */
1718 dev_dbg(&adapter->dev, "Creating %s at 0x%02x\n",
1719 info.type, info.addr);
1720 client = i2c_new_device(adapter, &info);
1721 if (client)
1722 list_add_tail(&client->detected, &driver->clients);
1723 else
1724 dev_err(&adapter->dev, "Failed creating %s at 0x%02x\n",
1725 info.type, info.addr);
1726 }
1727 return 0;
1728 }
1729
1730 static int i2c_detect(struct i2c_adapter *adapter, struct i2c_driver *driver)
1731 {
1732 const unsigned short *address_list;
1733 struct i2c_client *temp_client;
1734 int i, err = 0;
1735 int adap_id = i2c_adapter_id(adapter);
1736
1737 address_list = driver->address_list;
1738 if (!driver->detect || !address_list)
1739 return 0;
1740
1741 /* Stop here if the classes do not match */
1742 if (!(adapter->class & driver->class))
1743 return 0;
1744
1745 /* Set up a temporary client to help detect callback */
1746 temp_client = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
1747 if (!temp_client)
1748 return -ENOMEM;
1749 temp_client->adapter = adapter;
1750
1751 for (i = 0; address_list[i] != I2C_CLIENT_END; i += 1) {
1752 dev_dbg(&adapter->dev, "found normal entry for adapter %d, "
1753 "addr 0x%02x\n", adap_id, address_list[i]);
1754 temp_client->addr = address_list[i];
1755 err = i2c_detect_address(temp_client, driver);
1756 if (unlikely(err))
1757 break;
1758 }
1759
1760 kfree(temp_client);
1761 return err;
1762 }
1763
1764 int i2c_probe_func_quick_read(struct i2c_adapter *adap, unsigned short addr)
1765 {
1766 return i2c_smbus_xfer(adap, addr, 0, I2C_SMBUS_READ, 0,
1767 I2C_SMBUS_QUICK, NULL) >= 0;
1768 }
1769 EXPORT_SYMBOL_GPL(i2c_probe_func_quick_read);
1770
1771 struct i2c_client *
1772 i2c_new_probed_device(struct i2c_adapter *adap,
1773 struct i2c_board_info *info,
1774 unsigned short const *addr_list,
1775 int (*probe)(struct i2c_adapter *, unsigned short addr))
1776 {
1777 int i;
1778
1779 if (!probe)
1780 probe = i2c_default_probe;
1781
1782 for (i = 0; addr_list[i] != I2C_CLIENT_END; i++) {
1783 /* Check address validity */
1784 if (i2c_check_addr_validity(addr_list[i]) < 0) {
1785 dev_warn(&adap->dev, "Invalid 7-bit address "
1786 "0x%02x\n", addr_list[i]);
1787 continue;
1788 }
1789
1790 /* Check address availability */
1791 if (i2c_check_addr_busy(adap, addr_list[i])) {
1792 dev_dbg(&adap->dev, "Address 0x%02x already in "
1793 "use, not probing\n", addr_list[i]);
1794 continue;
1795 }
1796
1797 /* Test address responsiveness */
1798 if (probe(adap, addr_list[i]))
1799 break;
1800 }
1801
1802 if (addr_list[i] == I2C_CLIENT_END) {
1803 dev_dbg(&adap->dev, "Probing failed, no device found\n");
1804 return NULL;
1805 }
1806
1807 info->addr = addr_list[i];
1808 return i2c_new_device(adap, info);
1809 }
1810 EXPORT_SYMBOL_GPL(i2c_new_probed_device);
1811
1812 struct i2c_adapter *i2c_get_adapter(int nr)
1813 {
1814 struct i2c_adapter *adapter;
1815
1816 mutex_lock(&core_lock);
1817 adapter = idr_find(&i2c_adapter_idr, nr);
1818 if (adapter && !try_module_get(adapter->owner))
1819 adapter = NULL;
1820
1821 mutex_unlock(&core_lock);
1822 return adapter;
1823 }
1824 EXPORT_SYMBOL(i2c_get_adapter);
1825
1826 void i2c_put_adapter(struct i2c_adapter *adap)
1827 {
1828 module_put(adap->owner);
1829 }
1830 EXPORT_SYMBOL(i2c_put_adapter);
1831
1832 /* The SMBus parts */
1833
1834 #define POLY (0x1070U << 3)
1835 static u8 crc8(u16 data)
1836 {
1837 int i;
1838
1839 for (i = 0; i < 8; i++) {
1840 if (data & 0x8000)
1841 data = data ^ POLY;
1842 data = data << 1;
1843 }
1844 return (u8)(data >> 8);
1845 }
1846
1847 /* Incremental CRC8 over count bytes in the array pointed to by p */
1848 static u8 i2c_smbus_pec(u8 crc, u8 *p, size_t count)
1849 {
1850 int i;
1851
1852 for (i = 0; i < count; i++)
1853 crc = crc8((crc ^ p[i]) << 8);
1854 return crc;
1855 }
1856
1857 /* Assume a 7-bit address, which is reasonable for SMBus */
1858 static u8 i2c_smbus_msg_pec(u8 pec, struct i2c_msg *msg)
1859 {
1860 /* The address will be sent first */
1861 u8 addr = (msg->addr << 1) | !!(msg->flags & I2C_M_RD);
1862 pec = i2c_smbus_pec(pec, &addr, 1);
1863
1864 /* The data buffer follows */
1865 return i2c_smbus_pec(pec, msg->buf, msg->len);
1866 }
1867
1868 /* Used for write only transactions */
1869 static inline void i2c_smbus_add_pec(struct i2c_msg *msg)
1870 {
1871 msg->buf[msg->len] = i2c_smbus_msg_pec(0, msg);
1872 msg->len++;
1873 }
1874
1875 /* Return <0 on CRC error
1876 If there was a write before this read (most cases) we need to take the
1877 partial CRC from the write part into account.
1878 Note that this function does modify the message (we need to decrease the
1879 message length to hide the CRC byte from the caller). */
1880 static int i2c_smbus_check_pec(u8 cpec, struct i2c_msg *msg)
1881 {
1882 u8 rpec = msg->buf[--msg->len];
1883 cpec = i2c_smbus_msg_pec(cpec, msg);
1884
1885 if (rpec != cpec) {
1886 pr_debug("i2c-core: Bad PEC 0x%02x vs. 0x%02x\n",
1887 rpec, cpec);
1888 return -EBADMSG;
1889 }
1890 return 0;
1891 }
1892
1893 /**
1894 * i2c_smbus_read_byte - SMBus "receive byte" protocol
1895 * @client: Handle to slave device
1896 *
1897 * This executes the SMBus "receive byte" protocol, returning negative errno
1898 * else the byte received from the device.
1899 */
1900 s32 i2c_smbus_read_byte(const struct i2c_client *client)
1901 {
1902 union i2c_smbus_data data;
1903 int status;
1904
1905 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1906 I2C_SMBUS_READ, 0,
1907 I2C_SMBUS_BYTE, &data);
1908 return (status < 0) ? status : data.byte;
1909 }
1910 EXPORT_SYMBOL(i2c_smbus_read_byte);
1911
1912 /**
1913 * i2c_smbus_write_byte - SMBus "send byte" protocol
1914 * @client: Handle to slave device
1915 * @value: Byte to be sent
1916 *
1917 * This executes the SMBus "send byte" protocol, returning negative errno
1918 * else zero on success.
1919 */
1920 s32 i2c_smbus_write_byte(const struct i2c_client *client, u8 value)
1921 {
1922 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1923 I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
1924 }
1925 EXPORT_SYMBOL(i2c_smbus_write_byte);
1926
1927 /**
1928 * i2c_smbus_read_byte_data - SMBus "read byte" protocol
1929 * @client: Handle to slave device
1930 * @command: Byte interpreted by slave
1931 *
1932 * This executes the SMBus "read byte" protocol, returning negative errno
1933 * else a data byte received from the device.
1934 */
1935 s32 i2c_smbus_read_byte_data(const struct i2c_client *client, u8 command)
1936 {
1937 union i2c_smbus_data data;
1938 int status;
1939
1940 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1941 I2C_SMBUS_READ, command,
1942 I2C_SMBUS_BYTE_DATA, &data);
1943 return (status < 0) ? status : data.byte;
1944 }
1945 EXPORT_SYMBOL(i2c_smbus_read_byte_data);
1946
1947 /**
1948 * i2c_smbus_write_byte_data - SMBus "write byte" protocol
1949 * @client: Handle to slave device
1950 * @command: Byte interpreted by slave
1951 * @value: Byte being written
1952 *
1953 * This executes the SMBus "write byte" protocol, returning negative errno
1954 * else zero on success.
1955 */
1956 s32 i2c_smbus_write_byte_data(const struct i2c_client *client, u8 command,
1957 u8 value)
1958 {
1959 union i2c_smbus_data data;
1960 data.byte = value;
1961 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1962 I2C_SMBUS_WRITE, command,
1963 I2C_SMBUS_BYTE_DATA, &data);
1964 }
1965 EXPORT_SYMBOL(i2c_smbus_write_byte_data);
1966
1967 /**
1968 * i2c_smbus_read_word_data - SMBus "read word" protocol
1969 * @client: Handle to slave device
1970 * @command: Byte interpreted by slave
1971 *
1972 * This executes the SMBus "read word" protocol, returning negative errno
1973 * else a 16-bit unsigned "word" received from the device.
1974 */
1975 s32 i2c_smbus_read_word_data(const struct i2c_client *client, u8 command)
1976 {
1977 union i2c_smbus_data data;
1978 int status;
1979
1980 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
1981 I2C_SMBUS_READ, command,
1982 I2C_SMBUS_WORD_DATA, &data);
1983 return (status < 0) ? status : data.word;
1984 }
1985 EXPORT_SYMBOL(i2c_smbus_read_word_data);
1986
1987 /**
1988 * i2c_smbus_write_word_data - SMBus "write word" protocol
1989 * @client: Handle to slave device
1990 * @command: Byte interpreted by slave
1991 * @value: 16-bit "word" being written
1992 *
1993 * This executes the SMBus "write word" protocol, returning negative errno
1994 * else zero on success.
1995 */
1996 s32 i2c_smbus_write_word_data(const struct i2c_client *client, u8 command,
1997 u16 value)
1998 {
1999 union i2c_smbus_data data;
2000 data.word = value;
2001 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2002 I2C_SMBUS_WRITE, command,
2003 I2C_SMBUS_WORD_DATA, &data);
2004 }
2005 EXPORT_SYMBOL(i2c_smbus_write_word_data);
2006
2007 /**
2008 * i2c_smbus_read_block_data - SMBus "block read" protocol
2009 * @client: Handle to slave device
2010 * @command: Byte interpreted by slave
2011 * @values: Byte array into which data will be read; big enough to hold
2012 * the data returned by the slave. SMBus allows at most 32 bytes.
2013 *
2014 * This executes the SMBus "block read" protocol, returning negative errno
2015 * else the number of data bytes in the slave's response.
2016 *
2017 * Note that using this function requires that the client's adapter support
2018 * the I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers
2019 * support this; its emulation through I2C messaging relies on a specific
2020 * mechanism (I2C_M_RECV_LEN) which may not be implemented.
2021 */
2022 s32 i2c_smbus_read_block_data(const struct i2c_client *client, u8 command,
2023 u8 *values)
2024 {
2025 union i2c_smbus_data data;
2026 int status;
2027
2028 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2029 I2C_SMBUS_READ, command,
2030 I2C_SMBUS_BLOCK_DATA, &data);
2031 if (status)
2032 return status;
2033
2034 memcpy(values, &data.block[1], data.block[0]);
2035 return data.block[0];
2036 }
2037 EXPORT_SYMBOL(i2c_smbus_read_block_data);
2038
2039 /**
2040 * i2c_smbus_write_block_data - SMBus "block write" protocol
2041 * @client: Handle to slave device
2042 * @command: Byte interpreted by slave
2043 * @length: Size of data block; SMBus allows at most 32 bytes
2044 * @values: Byte array which will be written.
2045 *
2046 * This executes the SMBus "block write" protocol, returning negative errno
2047 * else zero on success.
2048 */
2049 s32 i2c_smbus_write_block_data(const struct i2c_client *client, u8 command,
2050 u8 length, const u8 *values)
2051 {
2052 union i2c_smbus_data data;
2053
2054 if (length > I2C_SMBUS_BLOCK_MAX)
2055 length = I2C_SMBUS_BLOCK_MAX;
2056 data.block[0] = length;
2057 memcpy(&data.block[1], values, length);
2058 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2059 I2C_SMBUS_WRITE, command,
2060 I2C_SMBUS_BLOCK_DATA, &data);
2061 }
2062 EXPORT_SYMBOL(i2c_smbus_write_block_data);
2063
2064 /* Returns the number of read bytes */
2065 s32 i2c_smbus_read_i2c_block_data(const struct i2c_client *client, u8 command,
2066 u8 length, u8 *values)
2067 {
2068 union i2c_smbus_data data;
2069 int status;
2070
2071 if (length > I2C_SMBUS_BLOCK_MAX)
2072 length = I2C_SMBUS_BLOCK_MAX;
2073 data.block[0] = length;
2074 status = i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2075 I2C_SMBUS_READ, command,
2076 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2077 if (status < 0)
2078 return status;
2079
2080 memcpy(values, &data.block[1], data.block[0]);
2081 return data.block[0];
2082 }
2083 EXPORT_SYMBOL(i2c_smbus_read_i2c_block_data);
2084
2085 s32 i2c_smbus_write_i2c_block_data(const struct i2c_client *client, u8 command,
2086 u8 length, const u8 *values)
2087 {
2088 union i2c_smbus_data data;
2089
2090 if (length > I2C_SMBUS_BLOCK_MAX)
2091 length = I2C_SMBUS_BLOCK_MAX;
2092 data.block[0] = length;
2093 memcpy(data.block + 1, values, length);
2094 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
2095 I2C_SMBUS_WRITE, command,
2096 I2C_SMBUS_I2C_BLOCK_DATA, &data);
2097 }
2098 EXPORT_SYMBOL(i2c_smbus_write_i2c_block_data);
2099
2100 /* Simulate a SMBus command using the i2c protocol
2101 No checking of parameters is done! */
2102 static s32 i2c_smbus_xfer_emulated(struct i2c_adapter *adapter, u16 addr,
2103 unsigned short flags,
2104 char read_write, u8 command, int size,
2105 union i2c_smbus_data *data)
2106 {
2107 /* So we need to generate a series of msgs. In the case of writing, we
2108 need to use only one message; when reading, we need two. We initialize
2109 most things with sane defaults, to keep the code below somewhat
2110 simpler. */
2111 unsigned char msgbuf0[I2C_SMBUS_BLOCK_MAX+3];
2112 unsigned char msgbuf1[I2C_SMBUS_BLOCK_MAX+2];
2113 int num = read_write == I2C_SMBUS_READ ? 2 : 1;
2114 int i;
2115 u8 partial_pec = 0;
2116 int status;
2117 struct i2c_msg msg[2] = {
2118 {
2119 .addr = addr,
2120 .flags = flags,
2121 .len = 1,
2122 .buf = msgbuf0,
2123 }, {
2124 .addr = addr,
2125 .flags = flags | I2C_M_RD,
2126 .len = 0,
2127 .buf = msgbuf1,
2128 },
2129 };
2130
2131 msgbuf0[0] = command;
2132 switch (size) {
2133 case I2C_SMBUS_QUICK:
2134 msg[0].len = 0;
2135 /* Special case: The read/write field is used as data */
2136 msg[0].flags = flags | (read_write == I2C_SMBUS_READ ?
2137 I2C_M_RD : 0);
2138 num = 1;
2139 break;
2140 case I2C_SMBUS_BYTE:
2141 if (read_write == I2C_SMBUS_READ) {
2142 /* Special case: only a read! */
2143 msg[0].flags = I2C_M_RD | flags;
2144 num = 1;
2145 }
2146 break;
2147 case I2C_SMBUS_BYTE_DATA:
2148 if (read_write == I2C_SMBUS_READ)
2149 msg[1].len = 1;
2150 else {
2151 msg[0].len = 2;
2152 msgbuf0[1] = data->byte;
2153 }
2154 break;
2155 case I2C_SMBUS_WORD_DATA:
2156 if (read_write == I2C_SMBUS_READ)
2157 msg[1].len = 2;
2158 else {
2159 msg[0].len = 3;
2160 msgbuf0[1] = data->word & 0xff;
2161 msgbuf0[2] = data->word >> 8;
2162 }
2163 break;
2164 case I2C_SMBUS_PROC_CALL:
2165 num = 2; /* Special case */
2166 read_write = I2C_SMBUS_READ;
2167 msg[0].len = 3;
2168 msg[1].len = 2;
2169 msgbuf0[1] = data->word & 0xff;
2170 msgbuf0[2] = data->word >> 8;
2171 break;
2172 case I2C_SMBUS_BLOCK_DATA:
2173 if (read_write == I2C_SMBUS_READ) {
2174 msg[1].flags |= I2C_M_RECV_LEN;
2175 msg[1].len = 1; /* block length will be added by
2176 the underlying bus driver */
2177 } else {
2178 msg[0].len = data->block[0] + 2;
2179 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 2) {
2180 dev_err(&adapter->dev,
2181 "Invalid block write size %d\n",
2182 data->block[0]);
2183 return -EINVAL;
2184 }
2185 for (i = 1; i < msg[0].len; i++)
2186 msgbuf0[i] = data->block[i-1];
2187 }
2188 break;
2189 case I2C_SMBUS_BLOCK_PROC_CALL:
2190 num = 2; /* Another special case */
2191 read_write = I2C_SMBUS_READ;
2192 if (data->block[0] > I2C_SMBUS_BLOCK_MAX) {
2193 dev_err(&adapter->dev,
2194 "Invalid block write size %d\n",
2195 data->block[0]);
2196 return -EINVAL;
2197 }
2198 msg[0].len = data->block[0] + 2;
2199 for (i = 1; i < msg[0].len; i++)
2200 msgbuf0[i] = data->block[i-1];
2201 msg[1].flags |= I2C_M_RECV_LEN;
2202 msg[1].len = 1; /* block length will be added by
2203 the underlying bus driver */
2204 break;
2205 case I2C_SMBUS_I2C_BLOCK_DATA:
2206 if (read_write == I2C_SMBUS_READ) {
2207 msg[1].len = data->block[0];
2208 } else {
2209 msg[0].len = data->block[0] + 1;
2210 if (msg[0].len > I2C_SMBUS_BLOCK_MAX + 1) {
2211 dev_err(&adapter->dev,
2212 "Invalid block write size %d\n",
2213 data->block[0]);
2214 return -EINVAL;
2215 }
2216 for (i = 1; i <= data->block[0]; i++)
2217 msgbuf0[i] = data->block[i];
2218 }
2219 break;
2220 default:
2221 dev_err(&adapter->dev, "Unsupported transaction %d\n", size);
2222 return -EOPNOTSUPP;
2223 }
2224
2225 i = ((flags & I2C_CLIENT_PEC) && size != I2C_SMBUS_QUICK
2226 && size != I2C_SMBUS_I2C_BLOCK_DATA);
2227 if (i) {
2228 /* Compute PEC if first message is a write */
2229 if (!(msg[0].flags & I2C_M_RD)) {
2230 if (num == 1) /* Write only */
2231 i2c_smbus_add_pec(&msg[0]);
2232 else /* Write followed by read */
2233 partial_pec = i2c_smbus_msg_pec(0, &msg[0]);
2234 }
2235 /* Ask for PEC if last message is a read */
2236 if (msg[num-1].flags & I2C_M_RD)
2237 msg[num-1].len++;
2238 }
2239
2240 status = i2c_transfer(adapter, msg, num);
2241 if (status < 0)
2242 return status;
2243
2244 /* Check PEC if last message is a read */
2245 if (i && (msg[num-1].flags & I2C_M_RD)) {
2246 status = i2c_smbus_check_pec(partial_pec, &msg[num-1]);
2247 if (status < 0)
2248 return status;
2249 }
2250
2251 if (read_write == I2C_SMBUS_READ)
2252 switch (size) {
2253 case I2C_SMBUS_BYTE:
2254 data->byte = msgbuf0[0];
2255 break;
2256 case I2C_SMBUS_BYTE_DATA:
2257 data->byte = msgbuf1[0];
2258 break;
2259 case I2C_SMBUS_WORD_DATA:
2260 case I2C_SMBUS_PROC_CALL:
2261 data->word = msgbuf1[0] | (msgbuf1[1] << 8);
2262 break;
2263 case I2C_SMBUS_I2C_BLOCK_DATA:
2264 for (i = 0; i < data->block[0]; i++)
2265 data->block[i+1] = msgbuf1[i];
2266 break;
2267 case I2C_SMBUS_BLOCK_DATA:
2268 case I2C_SMBUS_BLOCK_PROC_CALL:
2269 for (i = 0; i < msgbuf1[0] + 1; i++)
2270 data->block[i] = msgbuf1[i];
2271 break;
2272 }
2273 return 0;
2274 }
2275
2276 /**
2277 * i2c_smbus_xfer - execute SMBus protocol operations
2278 * @adapter: Handle to I2C bus
2279 * @addr: Address of SMBus slave on that bus
2280 * @flags: I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)
2281 * @read_write: I2C_SMBUS_READ or I2C_SMBUS_WRITE
2282 * @command: Byte interpreted by slave, for protocols which use such bytes
2283 * @protocol: SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL
2284 * @data: Data to be read or written
2285 *
2286 * This executes an SMBus protocol operation, and returns a negative
2287 * errno code else zero on success.
2288 */
2289 s32 i2c_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags,
2290 char read_write, u8 command, int protocol,
2291 union i2c_smbus_data *data)
2292 {
2293 unsigned long orig_jiffies;
2294 int try;
2295 s32 res;
2296
2297 flags &= I2C_M_TEN | I2C_CLIENT_PEC | I2C_CLIENT_SCCB;
2298
2299 if (adapter->algo->smbus_xfer) {
2300 i2c_lock_adapter(adapter);
2301
2302 /* Retry automatically on arbitration loss */
2303 orig_jiffies = jiffies;
2304 for (res = 0, try = 0; try <= adapter->retries; try++) {
2305 res = adapter->algo->smbus_xfer(adapter, addr, flags,
2306 read_write, command,
2307 protocol, data);
2308 if (res != -EAGAIN)
2309 break;
2310 if (time_after(jiffies,
2311 orig_jiffies + adapter->timeout))
2312 break;
2313 }
2314 i2c_unlock_adapter(adapter);
2315
2316 if (res != -EOPNOTSUPP || !adapter->algo->master_xfer)
2317 return res;
2318 /*
2319 * Fall back to i2c_smbus_xfer_emulated if the adapter doesn't
2320 * implement native support for the SMBus operation.
2321 */
2322 }
2323
2324 return i2c_smbus_xfer_emulated(adapter, addr, flags, read_write,
2325 command, protocol, data);
2326 }
2327 EXPORT_SYMBOL(i2c_smbus_xfer);
2328
2329 MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
2330 MODULE_DESCRIPTION("I2C-Bus main module");
2331 MODULE_LICENSE("GPL");