Merge branch 'master' into next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / hwmon / pmbus_core.c
1 /*
2 * Hardware monitoring driver for PMBus devices
3 *
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/err.h>
25 #include <linux/slab.h>
26 #include <linux/i2c.h>
27 #include <linux/hwmon.h>
28 #include <linux/hwmon-sysfs.h>
29 #include <linux/delay.h>
30 #include <linux/i2c/pmbus.h>
31 #include "pmbus.h"
32
33 /*
34 * Constants needed to determine number of sensors, booleans, and labels.
35 */
36 #define PMBUS_MAX_INPUT_SENSORS 11 /* 6*volt, 3*curr, 2*power */
37 #define PMBUS_VOUT_SENSORS_PER_PAGE 5 /* input, min, max, lcrit,
38 crit */
39 #define PMBUS_IOUT_SENSORS_PER_PAGE 4 /* input, min, max, crit */
40 #define PMBUS_POUT_SENSORS_PER_PAGE 4 /* input, cap, max, crit */
41 #define PMBUS_MAX_SENSORS_PER_FAN 1 /* input */
42 #define PMBUS_MAX_SENSORS_PER_TEMP 5 /* input, min, max, lcrit,
43 crit */
44
45 #define PMBUS_MAX_INPUT_BOOLEANS 7 /* v: min_alarm, max_alarm,
46 lcrit_alarm, crit_alarm;
47 c: alarm, crit_alarm;
48 p: crit_alarm */
49 #define PMBUS_VOUT_BOOLEANS_PER_PAGE 4 /* min_alarm, max_alarm,
50 lcrit_alarm, crit_alarm */
51 #define PMBUS_IOUT_BOOLEANS_PER_PAGE 3 /* alarm, lcrit_alarm,
52 crit_alarm */
53 #define PMBUS_POUT_BOOLEANS_PER_PAGE 2 /* alarm, crit_alarm */
54 #define PMBUS_MAX_BOOLEANS_PER_FAN 2 /* alarm, fault */
55 #define PMBUS_MAX_BOOLEANS_PER_TEMP 4 /* min_alarm, max_alarm,
56 lcrit_alarm, crit_alarm */
57
58 #define PMBUS_MAX_INPUT_LABELS 4 /* vin, vcap, iin, pin */
59
60 /*
61 * status, status_vout, status_iout, status_fans, status_fan34, and status_temp
62 * are paged. status_input is unpaged.
63 */
64 #define PB_NUM_STATUS_REG (PMBUS_PAGES * 6 + 1)
65
66 /*
67 * Index into status register array, per status register group
68 */
69 #define PB_STATUS_BASE 0
70 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
71 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
72 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
73 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
74 #define PB_STATUS_INPUT_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
75 #define PB_STATUS_TEMP_BASE (PB_STATUS_INPUT_BASE + 1)
76
77 struct pmbus_sensor {
78 char name[I2C_NAME_SIZE]; /* sysfs sensor name */
79 struct sensor_device_attribute attribute;
80 u8 page; /* page number */
81 u8 reg; /* register */
82 enum pmbus_sensor_classes class; /* sensor class */
83 bool update; /* runtime sensor update needed */
84 int data; /* Sensor data.
85 Negative if there was a read error */
86 };
87
88 struct pmbus_boolean {
89 char name[I2C_NAME_SIZE]; /* sysfs boolean name */
90 struct sensor_device_attribute attribute;
91 };
92
93 struct pmbus_label {
94 char name[I2C_NAME_SIZE]; /* sysfs label name */
95 struct sensor_device_attribute attribute;
96 char label[I2C_NAME_SIZE]; /* label */
97 };
98
99 struct pmbus_data {
100 struct device *hwmon_dev;
101
102 u32 flags; /* from platform data */
103
104 int exponent; /* linear mode: exponent for output voltages */
105
106 const struct pmbus_driver_info *info;
107
108 int max_attributes;
109 int num_attributes;
110 struct attribute **attributes;
111 struct attribute_group group;
112
113 /*
114 * Sensors cover both sensor and limit registers.
115 */
116 int max_sensors;
117 int num_sensors;
118 struct pmbus_sensor *sensors;
119 /*
120 * Booleans are used for alarms.
121 * Values are determined from status registers.
122 */
123 int max_booleans;
124 int num_booleans;
125 struct pmbus_boolean *booleans;
126 /*
127 * Labels are used to map generic names (e.g., "in1")
128 * to PMBus specific names (e.g., "vin" or "vout1").
129 */
130 int max_labels;
131 int num_labels;
132 struct pmbus_label *labels;
133
134 struct mutex update_lock;
135 bool valid;
136 unsigned long last_updated; /* in jiffies */
137
138 /*
139 * A single status register covers multiple attributes,
140 * so we keep them all together.
141 */
142 u8 status[PB_NUM_STATUS_REG];
143
144 u8 currpage;
145 };
146
147 int pmbus_set_page(struct i2c_client *client, u8 page)
148 {
149 struct pmbus_data *data = i2c_get_clientdata(client);
150 int rv = 0;
151 int newpage;
152
153 if (page != data->currpage) {
154 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
155 newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
156 if (newpage != page)
157 rv = -EINVAL;
158 else
159 data->currpage = page;
160 }
161 return rv;
162 }
163 EXPORT_SYMBOL_GPL(pmbus_set_page);
164
165 static int pmbus_write_byte(struct i2c_client *client, u8 page, u8 value)
166 {
167 int rv;
168
169 rv = pmbus_set_page(client, page);
170 if (rv < 0)
171 return rv;
172
173 return i2c_smbus_write_byte(client, value);
174 }
175
176 static int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg,
177 u16 word)
178 {
179 int rv;
180
181 rv = pmbus_set_page(client, page);
182 if (rv < 0)
183 return rv;
184
185 return i2c_smbus_write_word_data(client, reg, word);
186 }
187
188 int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
189 {
190 int rv;
191
192 rv = pmbus_set_page(client, page);
193 if (rv < 0)
194 return rv;
195
196 return i2c_smbus_read_word_data(client, reg);
197 }
198 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
199
200 static int pmbus_read_byte_data(struct i2c_client *client, u8 page, u8 reg)
201 {
202 int rv;
203
204 rv = pmbus_set_page(client, page);
205 if (rv < 0)
206 return rv;
207
208 return i2c_smbus_read_byte_data(client, reg);
209 }
210
211 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
212 {
213 pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
214 }
215
216 void pmbus_clear_faults(struct i2c_client *client)
217 {
218 struct pmbus_data *data = i2c_get_clientdata(client);
219 int i;
220
221 for (i = 0; i < data->info->pages; i++)
222 pmbus_clear_fault_page(client, i);
223 }
224 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
225
226 static int pmbus_check_status_cml(struct i2c_client *client, int page)
227 {
228 int status, status2;
229
230 status = pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
231 if (status < 0 || (status & PB_STATUS_CML)) {
232 status2 = pmbus_read_byte_data(client, page, PMBUS_STATUS_CML);
233 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
234 return -EINVAL;
235 }
236 return 0;
237 }
238
239 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
240 {
241 int rv;
242 struct pmbus_data *data = i2c_get_clientdata(client);
243
244 rv = pmbus_read_byte_data(client, page, reg);
245 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
246 rv = pmbus_check_status_cml(client, page);
247 pmbus_clear_fault_page(client, page);
248 return rv >= 0;
249 }
250 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
251
252 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
253 {
254 int rv;
255 struct pmbus_data *data = i2c_get_clientdata(client);
256
257 rv = pmbus_read_word_data(client, page, reg);
258 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
259 rv = pmbus_check_status_cml(client, page);
260 pmbus_clear_fault_page(client, page);
261 return rv >= 0;
262 }
263 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
264
265 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
266 {
267 struct pmbus_data *data = i2c_get_clientdata(client);
268
269 return data->info;
270 }
271 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
272
273 static int pmbus_get_status(struct i2c_client *client, int page, int reg)
274 {
275 struct pmbus_data *data = i2c_get_clientdata(client);
276 const struct pmbus_driver_info *info = data->info;
277 int status;
278
279 if (info->get_status) {
280 status = info->get_status(client, page, reg);
281 if (status != -ENODATA)
282 return status;
283 }
284 return pmbus_read_byte_data(client, page, reg);
285 }
286
287 static struct pmbus_data *pmbus_update_device(struct device *dev)
288 {
289 struct i2c_client *client = to_i2c_client(dev);
290 struct pmbus_data *data = i2c_get_clientdata(client);
291 const struct pmbus_driver_info *info = data->info;
292
293 mutex_lock(&data->update_lock);
294 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
295 int i;
296
297 for (i = 0; i < info->pages; i++)
298 data->status[PB_STATUS_BASE + i]
299 = pmbus_read_byte_data(client, i,
300 PMBUS_STATUS_BYTE);
301 for (i = 0; i < info->pages; i++) {
302 if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT))
303 continue;
304 data->status[PB_STATUS_VOUT_BASE + i]
305 = pmbus_get_status(client, i, PMBUS_STATUS_VOUT);
306 }
307 for (i = 0; i < info->pages; i++) {
308 if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT))
309 continue;
310 data->status[PB_STATUS_IOUT_BASE + i]
311 = pmbus_get_status(client, i, PMBUS_STATUS_IOUT);
312 }
313 for (i = 0; i < info->pages; i++) {
314 if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP))
315 continue;
316 data->status[PB_STATUS_TEMP_BASE + i]
317 = pmbus_get_status(client, i,
318 PMBUS_STATUS_TEMPERATURE);
319 }
320 for (i = 0; i < info->pages; i++) {
321 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12))
322 continue;
323 data->status[PB_STATUS_FAN_BASE + i]
324 = pmbus_get_status(client, i, PMBUS_STATUS_FAN_12);
325 }
326
327 for (i = 0; i < info->pages; i++) {
328 if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34))
329 continue;
330 data->status[PB_STATUS_FAN34_BASE + i]
331 = pmbus_get_status(client, i, PMBUS_STATUS_FAN_34);
332 }
333
334 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
335 data->status[PB_STATUS_INPUT_BASE]
336 = pmbus_get_status(client, 0, PMBUS_STATUS_INPUT);
337
338 for (i = 0; i < data->num_sensors; i++) {
339 struct pmbus_sensor *sensor = &data->sensors[i];
340
341 if (!data->valid || sensor->update)
342 sensor->data
343 = pmbus_read_word_data(client, sensor->page,
344 sensor->reg);
345 }
346 pmbus_clear_faults(client);
347 data->last_updated = jiffies;
348 data->valid = 1;
349 }
350 mutex_unlock(&data->update_lock);
351 return data;
352 }
353
354 /*
355 * Convert linear sensor values to milli- or micro-units
356 * depending on sensor type.
357 */
358 static int pmbus_reg2data_linear(struct pmbus_data *data,
359 struct pmbus_sensor *sensor)
360 {
361 s16 exponent;
362 s32 mantissa;
363 long val;
364
365 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
366 exponent = data->exponent;
367 mantissa = (u16) sensor->data;
368 } else { /* LINEAR11 */
369 exponent = (sensor->data >> 11) & 0x001f;
370 mantissa = sensor->data & 0x07ff;
371
372 if (exponent > 0x0f)
373 exponent |= 0xffe0; /* sign extend exponent */
374 if (mantissa > 0x03ff)
375 mantissa |= 0xfffff800; /* sign extend mantissa */
376 }
377
378 val = mantissa;
379
380 /* scale result to milli-units for all sensors except fans */
381 if (sensor->class != PSC_FAN)
382 val = val * 1000L;
383
384 /* scale result to micro-units for power sensors */
385 if (sensor->class == PSC_POWER)
386 val = val * 1000L;
387
388 if (exponent >= 0)
389 val <<= exponent;
390 else
391 val >>= -exponent;
392
393 return (int)val;
394 }
395
396 /*
397 * Convert direct sensor values to milli- or micro-units
398 * depending on sensor type.
399 */
400 static int pmbus_reg2data_direct(struct pmbus_data *data,
401 struct pmbus_sensor *sensor)
402 {
403 long val = (s16) sensor->data;
404 long m, b, R;
405
406 m = data->info->m[sensor->class];
407 b = data->info->b[sensor->class];
408 R = data->info->R[sensor->class];
409
410 if (m == 0)
411 return 0;
412
413 /* X = 1/m * (Y * 10^-R - b) */
414 R = -R;
415 /* scale result to milli-units for everything but fans */
416 if (sensor->class != PSC_FAN) {
417 R += 3;
418 b *= 1000;
419 }
420
421 /* scale result to micro-units for power sensors */
422 if (sensor->class == PSC_POWER) {
423 R += 3;
424 b *= 1000;
425 }
426
427 while (R > 0) {
428 val *= 10;
429 R--;
430 }
431 while (R < 0) {
432 val = DIV_ROUND_CLOSEST(val, 10);
433 R++;
434 }
435
436 return (int)((val - b) / m);
437 }
438
439 static int pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
440 {
441 int val;
442
443 if (data->info->direct[sensor->class])
444 val = pmbus_reg2data_direct(data, sensor);
445 else
446 val = pmbus_reg2data_linear(data, sensor);
447
448 return val;
449 }
450
451 #define MAX_MANTISSA (1023 * 1000)
452 #define MIN_MANTISSA (511 * 1000)
453
454 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
455 enum pmbus_sensor_classes class, long val)
456 {
457 s16 exponent = 0, mantissa;
458 bool negative = false;
459
460 /* simple case */
461 if (val == 0)
462 return 0;
463
464 if (class == PSC_VOLTAGE_OUT) {
465 /* LINEAR16 does not support negative voltages */
466 if (val < 0)
467 return 0;
468
469 /*
470 * For a static exponents, we don't have a choice
471 * but to adjust the value to it.
472 */
473 if (data->exponent < 0)
474 val <<= -data->exponent;
475 else
476 val >>= data->exponent;
477 val = DIV_ROUND_CLOSEST(val, 1000);
478 return val & 0xffff;
479 }
480
481 if (val < 0) {
482 negative = true;
483 val = -val;
484 }
485
486 /* Power is in uW. Convert to mW before converting. */
487 if (class == PSC_POWER)
488 val = DIV_ROUND_CLOSEST(val, 1000L);
489
490 /*
491 * For simplicity, convert fan data to milli-units
492 * before calculating the exponent.
493 */
494 if (class == PSC_FAN)
495 val = val * 1000;
496
497 /* Reduce large mantissa until it fits into 10 bit */
498 while (val >= MAX_MANTISSA && exponent < 15) {
499 exponent++;
500 val >>= 1;
501 }
502 /* Increase small mantissa to improve precision */
503 while (val < MIN_MANTISSA && exponent > -15) {
504 exponent--;
505 val <<= 1;
506 }
507
508 /* Convert mantissa from milli-units to units */
509 mantissa = DIV_ROUND_CLOSEST(val, 1000);
510
511 /* Ensure that resulting number is within range */
512 if (mantissa > 0x3ff)
513 mantissa = 0x3ff;
514
515 /* restore sign */
516 if (negative)
517 mantissa = -mantissa;
518
519 /* Convert to 5 bit exponent, 11 bit mantissa */
520 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
521 }
522
523 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
524 enum pmbus_sensor_classes class, long val)
525 {
526 long m, b, R;
527
528 m = data->info->m[class];
529 b = data->info->b[class];
530 R = data->info->R[class];
531
532 /* Power is in uW. Adjust R and b. */
533 if (class == PSC_POWER) {
534 R -= 3;
535 b *= 1000;
536 }
537
538 /* Calculate Y = (m * X + b) * 10^R */
539 if (class != PSC_FAN) {
540 R -= 3; /* Adjust R and b for data in milli-units */
541 b *= 1000;
542 }
543 val = val * m + b;
544
545 while (R > 0) {
546 val *= 10;
547 R--;
548 }
549 while (R < 0) {
550 val = DIV_ROUND_CLOSEST(val, 10);
551 R++;
552 }
553
554 return val;
555 }
556
557 static u16 pmbus_data2reg(struct pmbus_data *data,
558 enum pmbus_sensor_classes class, long val)
559 {
560 u16 regval;
561
562 if (data->info->direct[class])
563 regval = pmbus_data2reg_direct(data, class, val);
564 else
565 regval = pmbus_data2reg_linear(data, class, val);
566
567 return regval;
568 }
569
570 /*
571 * Return boolean calculated from converted data.
572 * <index> defines a status register index and mask, and optionally
573 * two sensor indexes.
574 * The upper half-word references the two sensors,
575 * two sensor indices.
576 * The upper half-word references the two optional sensors,
577 * the lower half word references status register and mask.
578 * The function returns true if (status[reg] & mask) is true and,
579 * if specified, if v1 >= v2.
580 * To determine if an object exceeds upper limits, specify <v, limit>.
581 * To determine if an object exceeds lower limits, specify <limit, v>.
582 *
583 * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of
584 * index are set. s1 and s2 (the sensor index values) are zero in this case.
585 * The function returns true if (status[reg] & mask) is true.
586 *
587 * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against
588 * a specified limit has to be performed to determine the boolean result.
589 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
590 * sensor values referenced by sensor indices s1 and s2).
591 *
592 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
593 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
594 *
595 * If a negative value is stored in any of the referenced registers, this value
596 * reflects an error code which will be returned.
597 */
598 static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val)
599 {
600 u8 s1 = (index >> 24) & 0xff;
601 u8 s2 = (index >> 16) & 0xff;
602 u8 reg = (index >> 8) & 0xff;
603 u8 mask = index & 0xff;
604 int status;
605 u8 regval;
606
607 status = data->status[reg];
608 if (status < 0)
609 return status;
610
611 regval = status & mask;
612 if (!s1 && !s2)
613 *val = !!regval;
614 else {
615 int v1, v2;
616 struct pmbus_sensor *sensor1, *sensor2;
617
618 sensor1 = &data->sensors[s1];
619 if (sensor1->data < 0)
620 return sensor1->data;
621 sensor2 = &data->sensors[s2];
622 if (sensor2->data < 0)
623 return sensor2->data;
624
625 v1 = pmbus_reg2data(data, sensor1);
626 v2 = pmbus_reg2data(data, sensor2);
627 *val = !!(regval && v1 >= v2);
628 }
629 return 0;
630 }
631
632 static ssize_t pmbus_show_boolean(struct device *dev,
633 struct device_attribute *da, char *buf)
634 {
635 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
636 struct pmbus_data *data = pmbus_update_device(dev);
637 int val;
638 int err;
639
640 err = pmbus_get_boolean(data, attr->index, &val);
641 if (err)
642 return err;
643 return snprintf(buf, PAGE_SIZE, "%d\n", val);
644 }
645
646 static ssize_t pmbus_show_sensor(struct device *dev,
647 struct device_attribute *da, char *buf)
648 {
649 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
650 struct pmbus_data *data = pmbus_update_device(dev);
651 struct pmbus_sensor *sensor;
652
653 sensor = &data->sensors[attr->index];
654 if (sensor->data < 0)
655 return sensor->data;
656
657 return snprintf(buf, PAGE_SIZE, "%d\n", pmbus_reg2data(data, sensor));
658 }
659
660 static ssize_t pmbus_set_sensor(struct device *dev,
661 struct device_attribute *devattr,
662 const char *buf, size_t count)
663 {
664 struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
665 struct i2c_client *client = to_i2c_client(dev);
666 struct pmbus_data *data = i2c_get_clientdata(client);
667 struct pmbus_sensor *sensor = &data->sensors[attr->index];
668 ssize_t rv = count;
669 long val = 0;
670 int ret;
671 u16 regval;
672
673 if (strict_strtol(buf, 10, &val) < 0)
674 return -EINVAL;
675
676 mutex_lock(&data->update_lock);
677 regval = pmbus_data2reg(data, sensor->class, val);
678 ret = pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
679 if (ret < 0)
680 rv = ret;
681 else
682 data->sensors[attr->index].data = regval;
683 mutex_unlock(&data->update_lock);
684 return rv;
685 }
686
687 static ssize_t pmbus_show_label(struct device *dev,
688 struct device_attribute *da, char *buf)
689 {
690 struct i2c_client *client = to_i2c_client(dev);
691 struct pmbus_data *data = i2c_get_clientdata(client);
692 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
693
694 return snprintf(buf, PAGE_SIZE, "%s\n",
695 data->labels[attr->index].label);
696 }
697
698 #define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set) \
699 do { \
700 struct sensor_device_attribute *a \
701 = &data->_type##s[data->num_##_type##s].attribute; \
702 BUG_ON(data->num_attributes >= data->max_attributes); \
703 a->dev_attr.attr.name = _name; \
704 a->dev_attr.attr.mode = _mode; \
705 a->dev_attr.show = _show; \
706 a->dev_attr.store = _set; \
707 a->index = _idx; \
708 data->attributes[data->num_attributes] = &a->dev_attr.attr; \
709 data->num_attributes++; \
710 } while (0)
711
712 #define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx) \
713 PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type, \
714 pmbus_show_##_type, NULL)
715
716 #define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx) \
717 PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type, \
718 pmbus_show_##_type, pmbus_set_##_type)
719
720 static void pmbus_add_boolean(struct pmbus_data *data,
721 const char *name, const char *type, int seq,
722 int idx)
723 {
724 struct pmbus_boolean *boolean;
725
726 BUG_ON(data->num_booleans >= data->max_booleans);
727
728 boolean = &data->booleans[data->num_booleans];
729
730 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
731 name, seq, type);
732 PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx);
733 data->num_booleans++;
734 }
735
736 static void pmbus_add_boolean_reg(struct pmbus_data *data,
737 const char *name, const char *type,
738 int seq, int reg, int bit)
739 {
740 pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit);
741 }
742
743 static void pmbus_add_boolean_cmp(struct pmbus_data *data,
744 const char *name, const char *type,
745 int seq, int i1, int i2, int reg, int mask)
746 {
747 pmbus_add_boolean(data, name, type, seq,
748 (i1 << 24) | (i2 << 16) | (reg << 8) | mask);
749 }
750
751 static void pmbus_add_sensor(struct pmbus_data *data,
752 const char *name, const char *type, int seq,
753 int page, int reg, enum pmbus_sensor_classes class,
754 bool update, bool readonly)
755 {
756 struct pmbus_sensor *sensor;
757
758 BUG_ON(data->num_sensors >= data->max_sensors);
759
760 sensor = &data->sensors[data->num_sensors];
761 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
762 name, seq, type);
763 sensor->page = page;
764 sensor->reg = reg;
765 sensor->class = class;
766 sensor->update = update;
767 if (readonly)
768 PMBUS_ADD_GET_ATTR(data, sensor->name, sensor,
769 data->num_sensors);
770 else
771 PMBUS_ADD_SET_ATTR(data, sensor->name, sensor,
772 data->num_sensors);
773 data->num_sensors++;
774 }
775
776 static void pmbus_add_label(struct pmbus_data *data,
777 const char *name, int seq,
778 const char *lstring, int index)
779 {
780 struct pmbus_label *label;
781
782 BUG_ON(data->num_labels >= data->max_labels);
783
784 label = &data->labels[data->num_labels];
785 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
786 if (!index)
787 strncpy(label->label, lstring, sizeof(label->label) - 1);
788 else
789 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
790 index);
791
792 PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels);
793 data->num_labels++;
794 }
795
796 static const int pmbus_temp_registers[] = {
797 PMBUS_READ_TEMPERATURE_1,
798 PMBUS_READ_TEMPERATURE_2,
799 PMBUS_READ_TEMPERATURE_3
800 };
801
802 static const int pmbus_temp_flags[] = {
803 PMBUS_HAVE_TEMP,
804 PMBUS_HAVE_TEMP2,
805 PMBUS_HAVE_TEMP3
806 };
807
808 static const int pmbus_fan_registers[] = {
809 PMBUS_READ_FAN_SPEED_1,
810 PMBUS_READ_FAN_SPEED_2,
811 PMBUS_READ_FAN_SPEED_3,
812 PMBUS_READ_FAN_SPEED_4
813 };
814
815 static const int pmbus_fan_config_registers[] = {
816 PMBUS_FAN_CONFIG_12,
817 PMBUS_FAN_CONFIG_12,
818 PMBUS_FAN_CONFIG_34,
819 PMBUS_FAN_CONFIG_34
820 };
821
822 static const int pmbus_fan_status_registers[] = {
823 PMBUS_STATUS_FAN_12,
824 PMBUS_STATUS_FAN_12,
825 PMBUS_STATUS_FAN_34,
826 PMBUS_STATUS_FAN_34
827 };
828
829 static const u32 pmbus_fan_flags[] = {
830 PMBUS_HAVE_FAN12,
831 PMBUS_HAVE_FAN12,
832 PMBUS_HAVE_FAN34,
833 PMBUS_HAVE_FAN34
834 };
835
836 static const u32 pmbus_fan_status_flags[] = {
837 PMBUS_HAVE_STATUS_FAN12,
838 PMBUS_HAVE_STATUS_FAN12,
839 PMBUS_HAVE_STATUS_FAN34,
840 PMBUS_HAVE_STATUS_FAN34
841 };
842
843 /*
844 * Determine maximum number of sensors, booleans, and labels.
845 * To keep things simple, only make a rough high estimate.
846 */
847 static void pmbus_find_max_attr(struct i2c_client *client,
848 struct pmbus_data *data)
849 {
850 const struct pmbus_driver_info *info = data->info;
851 int page, max_sensors, max_booleans, max_labels;
852
853 max_sensors = PMBUS_MAX_INPUT_SENSORS;
854 max_booleans = PMBUS_MAX_INPUT_BOOLEANS;
855 max_labels = PMBUS_MAX_INPUT_LABELS;
856
857 for (page = 0; page < info->pages; page++) {
858 if (info->func[page] & PMBUS_HAVE_VOUT) {
859 max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE;
860 max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE;
861 max_labels++;
862 }
863 if (info->func[page] & PMBUS_HAVE_IOUT) {
864 max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE;
865 max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE;
866 max_labels++;
867 }
868 if (info->func[page] & PMBUS_HAVE_POUT) {
869 max_sensors += PMBUS_POUT_SENSORS_PER_PAGE;
870 max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE;
871 max_labels++;
872 }
873 if (info->func[page] & PMBUS_HAVE_FAN12) {
874 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
875 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
876 }
877 if (info->func[page] & PMBUS_HAVE_FAN34) {
878 max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN;
879 max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN;
880 }
881 if (info->func[page] & PMBUS_HAVE_TEMP) {
882 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
883 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
884 }
885 if (info->func[page] & PMBUS_HAVE_TEMP2) {
886 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
887 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
888 }
889 if (info->func[page] & PMBUS_HAVE_TEMP3) {
890 max_sensors += PMBUS_MAX_SENSORS_PER_TEMP;
891 max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP;
892 }
893 }
894 data->max_sensors = max_sensors;
895 data->max_booleans = max_booleans;
896 data->max_labels = max_labels;
897 data->max_attributes = max_sensors + max_booleans + max_labels;
898 }
899
900 /*
901 * Search for attributes. Allocate sensors, booleans, and labels as needed.
902 */
903 static void pmbus_find_attributes(struct i2c_client *client,
904 struct pmbus_data *data)
905 {
906 const struct pmbus_driver_info *info = data->info;
907 int page, i0, i1, in_index;
908
909 /*
910 * Input voltage sensors
911 */
912 in_index = 1;
913 if (info->func[0] & PMBUS_HAVE_VIN) {
914 bool have_alarm = false;
915
916 i0 = data->num_sensors;
917 pmbus_add_label(data, "in", in_index, "vin", 0);
918 pmbus_add_sensor(data, "in", "input", in_index, 0,
919 PMBUS_READ_VIN, PSC_VOLTAGE_IN, true, true);
920 if (pmbus_check_word_register(client, 0,
921 PMBUS_VIN_UV_WARN_LIMIT)) {
922 i1 = data->num_sensors;
923 pmbus_add_sensor(data, "in", "min", in_index,
924 0, PMBUS_VIN_UV_WARN_LIMIT,
925 PSC_VOLTAGE_IN, false, false);
926 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) {
927 pmbus_add_boolean_reg(data, "in", "min_alarm",
928 in_index,
929 PB_STATUS_INPUT_BASE,
930 PB_VOLTAGE_UV_WARNING);
931 have_alarm = true;
932 }
933 }
934 if (pmbus_check_word_register(client, 0,
935 PMBUS_VIN_UV_FAULT_LIMIT)) {
936 i1 = data->num_sensors;
937 pmbus_add_sensor(data, "in", "lcrit", in_index,
938 0, PMBUS_VIN_UV_FAULT_LIMIT,
939 PSC_VOLTAGE_IN, false, false);
940 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) {
941 pmbus_add_boolean_reg(data, "in", "lcrit_alarm",
942 in_index,
943 PB_STATUS_INPUT_BASE,
944 PB_VOLTAGE_UV_FAULT);
945 have_alarm = true;
946 }
947 }
948 if (pmbus_check_word_register(client, 0,
949 PMBUS_VIN_OV_WARN_LIMIT)) {
950 i1 = data->num_sensors;
951 pmbus_add_sensor(data, "in", "max", in_index,
952 0, PMBUS_VIN_OV_WARN_LIMIT,
953 PSC_VOLTAGE_IN, false, false);
954 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) {
955 pmbus_add_boolean_reg(data, "in", "max_alarm",
956 in_index,
957 PB_STATUS_INPUT_BASE,
958 PB_VOLTAGE_OV_WARNING);
959 have_alarm = true;
960 }
961 }
962 if (pmbus_check_word_register(client, 0,
963 PMBUS_VIN_OV_FAULT_LIMIT)) {
964 i1 = data->num_sensors;
965 pmbus_add_sensor(data, "in", "crit", in_index,
966 0, PMBUS_VIN_OV_FAULT_LIMIT,
967 PSC_VOLTAGE_IN, false, false);
968 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) {
969 pmbus_add_boolean_reg(data, "in", "crit_alarm",
970 in_index,
971 PB_STATUS_INPUT_BASE,
972 PB_VOLTAGE_OV_FAULT);
973 have_alarm = true;
974 }
975 }
976 /*
977 * Add generic alarm attribute only if there are no individual
978 * attributes.
979 */
980 if (!have_alarm)
981 pmbus_add_boolean_reg(data, "in", "alarm",
982 in_index,
983 PB_STATUS_BASE,
984 PB_STATUS_VIN_UV);
985 in_index++;
986 }
987 if (info->func[0] & PMBUS_HAVE_VCAP) {
988 pmbus_add_label(data, "in", in_index, "vcap", 0);
989 pmbus_add_sensor(data, "in", "input", in_index, 0,
990 PMBUS_READ_VCAP, PSC_VOLTAGE_IN, true, true);
991 in_index++;
992 }
993
994 /*
995 * Output voltage sensors
996 */
997 for (page = 0; page < info->pages; page++) {
998 bool have_alarm = false;
999
1000 if (!(info->func[page] & PMBUS_HAVE_VOUT))
1001 continue;
1002
1003 i0 = data->num_sensors;
1004 pmbus_add_label(data, "in", in_index, "vout", page + 1);
1005 pmbus_add_sensor(data, "in", "input", in_index, page,
1006 PMBUS_READ_VOUT, PSC_VOLTAGE_OUT, true, true);
1007 if (pmbus_check_word_register(client, page,
1008 PMBUS_VOUT_UV_WARN_LIMIT)) {
1009 i1 = data->num_sensors;
1010 pmbus_add_sensor(data, "in", "min", in_index, page,
1011 PMBUS_VOUT_UV_WARN_LIMIT,
1012 PSC_VOLTAGE_OUT, false, false);
1013 if (info->func[page] & PMBUS_HAVE_STATUS_VOUT) {
1014 pmbus_add_boolean_reg(data, "in", "min_alarm",
1015 in_index,
1016 PB_STATUS_VOUT_BASE +
1017 page,
1018 PB_VOLTAGE_UV_WARNING);
1019 have_alarm = true;
1020 }
1021 }
1022 if (pmbus_check_word_register(client, page,
1023 PMBUS_VOUT_UV_FAULT_LIMIT)) {
1024 i1 = data->num_sensors;
1025 pmbus_add_sensor(data, "in", "lcrit", in_index, page,
1026 PMBUS_VOUT_UV_FAULT_LIMIT,
1027 PSC_VOLTAGE_OUT, false, false);
1028 if (info->func[page] & PMBUS_HAVE_STATUS_VOUT) {
1029 pmbus_add_boolean_reg(data, "in", "lcrit_alarm",
1030 in_index,
1031 PB_STATUS_VOUT_BASE +
1032 page,
1033 PB_VOLTAGE_UV_FAULT);
1034 have_alarm = true;
1035 }
1036 }
1037 if (pmbus_check_word_register(client, page,
1038 PMBUS_VOUT_OV_WARN_LIMIT)) {
1039 i1 = data->num_sensors;
1040 pmbus_add_sensor(data, "in", "max", in_index, page,
1041 PMBUS_VOUT_OV_WARN_LIMIT,
1042 PSC_VOLTAGE_OUT, false, false);
1043 if (info->func[page] & PMBUS_HAVE_STATUS_VOUT) {
1044 pmbus_add_boolean_reg(data, "in", "max_alarm",
1045 in_index,
1046 PB_STATUS_VOUT_BASE +
1047 page,
1048 PB_VOLTAGE_OV_WARNING);
1049 have_alarm = true;
1050 }
1051 }
1052 if (pmbus_check_word_register(client, page,
1053 PMBUS_VOUT_OV_FAULT_LIMIT)) {
1054 i1 = data->num_sensors;
1055 pmbus_add_sensor(data, "in", "crit", in_index, page,
1056 PMBUS_VOUT_OV_FAULT_LIMIT,
1057 PSC_VOLTAGE_OUT, false, false);
1058 if (info->func[page] & PMBUS_HAVE_STATUS_VOUT) {
1059 pmbus_add_boolean_reg(data, "in", "crit_alarm",
1060 in_index,
1061 PB_STATUS_VOUT_BASE +
1062 page,
1063 PB_VOLTAGE_OV_FAULT);
1064 have_alarm = true;
1065 }
1066 }
1067 /*
1068 * Add generic alarm attribute only if there are no individual
1069 * attributes.
1070 */
1071 if (!have_alarm)
1072 pmbus_add_boolean_reg(data, "in", "alarm",
1073 in_index,
1074 PB_STATUS_BASE + page,
1075 PB_STATUS_VOUT_OV);
1076 in_index++;
1077 }
1078
1079 /*
1080 * Current sensors
1081 */
1082
1083 /*
1084 * Input current sensors
1085 */
1086 in_index = 1;
1087 if (info->func[0] & PMBUS_HAVE_IIN) {
1088 i0 = data->num_sensors;
1089 pmbus_add_label(data, "curr", in_index, "iin", 0);
1090 pmbus_add_sensor(data, "curr", "input", in_index, 0,
1091 PMBUS_READ_IIN, PSC_CURRENT_IN, true, true);
1092 if (pmbus_check_word_register(client, 0,
1093 PMBUS_IIN_OC_WARN_LIMIT)) {
1094 i1 = data->num_sensors;
1095 pmbus_add_sensor(data, "curr", "max", in_index,
1096 0, PMBUS_IIN_OC_WARN_LIMIT,
1097 PSC_CURRENT_IN, false, false);
1098 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) {
1099 pmbus_add_boolean_reg(data, "curr", "max_alarm",
1100 in_index,
1101 PB_STATUS_INPUT_BASE,
1102 PB_IIN_OC_WARNING);
1103 }
1104 }
1105 if (pmbus_check_word_register(client, 0,
1106 PMBUS_IIN_OC_FAULT_LIMIT)) {
1107 i1 = data->num_sensors;
1108 pmbus_add_sensor(data, "curr", "crit", in_index,
1109 0, PMBUS_IIN_OC_FAULT_LIMIT,
1110 PSC_CURRENT_IN, false, false);
1111 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
1112 pmbus_add_boolean_reg(data, "curr",
1113 "crit_alarm",
1114 in_index,
1115 PB_STATUS_INPUT_BASE,
1116 PB_IIN_OC_FAULT);
1117 }
1118 in_index++;
1119 }
1120
1121 /*
1122 * Output current sensors
1123 */
1124 for (page = 0; page < info->pages; page++) {
1125 bool have_alarm = false;
1126
1127 if (!(info->func[page] & PMBUS_HAVE_IOUT))
1128 continue;
1129
1130 i0 = data->num_sensors;
1131 pmbus_add_label(data, "curr", in_index, "iout", page + 1);
1132 pmbus_add_sensor(data, "curr", "input", in_index, page,
1133 PMBUS_READ_IOUT, PSC_CURRENT_OUT, true, true);
1134 if (pmbus_check_word_register(client, page,
1135 PMBUS_IOUT_OC_WARN_LIMIT)) {
1136 i1 = data->num_sensors;
1137 pmbus_add_sensor(data, "curr", "max", in_index, page,
1138 PMBUS_IOUT_OC_WARN_LIMIT,
1139 PSC_CURRENT_OUT, false, false);
1140 if (info->func[page] & PMBUS_HAVE_STATUS_IOUT) {
1141 pmbus_add_boolean_reg(data, "curr", "max_alarm",
1142 in_index,
1143 PB_STATUS_IOUT_BASE +
1144 page, PB_IOUT_OC_WARNING);
1145 have_alarm = true;
1146 }
1147 }
1148 if (pmbus_check_word_register(client, page,
1149 PMBUS_IOUT_UC_FAULT_LIMIT)) {
1150 i1 = data->num_sensors;
1151 pmbus_add_sensor(data, "curr", "lcrit", in_index, page,
1152 PMBUS_IOUT_UC_FAULT_LIMIT,
1153 PSC_CURRENT_OUT, false, false);
1154 if (info->func[page] & PMBUS_HAVE_STATUS_IOUT) {
1155 pmbus_add_boolean_reg(data, "curr",
1156 "lcrit_alarm",
1157 in_index,
1158 PB_STATUS_IOUT_BASE +
1159 page, PB_IOUT_UC_FAULT);
1160 have_alarm = true;
1161 }
1162 }
1163 if (pmbus_check_word_register(client, page,
1164 PMBUS_IOUT_OC_FAULT_LIMIT)) {
1165 i1 = data->num_sensors;
1166 pmbus_add_sensor(data, "curr", "crit", in_index, page,
1167 PMBUS_IOUT_OC_FAULT_LIMIT,
1168 PSC_CURRENT_OUT, false, false);
1169 if (info->func[page] & PMBUS_HAVE_STATUS_IOUT) {
1170 pmbus_add_boolean_reg(data, "curr",
1171 "crit_alarm",
1172 in_index,
1173 PB_STATUS_IOUT_BASE +
1174 page, PB_IOUT_OC_FAULT);
1175 have_alarm = true;
1176 }
1177 }
1178 /*
1179 * Add generic alarm attribute only if there are no individual
1180 * attributes.
1181 */
1182 if (!have_alarm)
1183 pmbus_add_boolean_reg(data, "curr", "alarm",
1184 in_index,
1185 PB_STATUS_BASE + page,
1186 PB_STATUS_IOUT_OC);
1187 in_index++;
1188 }
1189
1190 /*
1191 * Power sensors
1192 */
1193 /*
1194 * Input Power sensors
1195 */
1196 in_index = 1;
1197 if (info->func[0] & PMBUS_HAVE_PIN) {
1198 i0 = data->num_sensors;
1199 pmbus_add_label(data, "power", in_index, "pin", 0);
1200 pmbus_add_sensor(data, "power", "input", in_index,
1201 0, PMBUS_READ_PIN, PSC_POWER, true, true);
1202 if (pmbus_check_word_register(client, 0,
1203 PMBUS_PIN_OP_WARN_LIMIT)) {
1204 i1 = data->num_sensors;
1205 pmbus_add_sensor(data, "power", "max", in_index,
1206 0, PMBUS_PIN_OP_WARN_LIMIT, PSC_POWER,
1207 false, false);
1208 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
1209 pmbus_add_boolean_reg(data, "power",
1210 "alarm",
1211 in_index,
1212 PB_STATUS_INPUT_BASE,
1213 PB_PIN_OP_WARNING);
1214 }
1215 in_index++;
1216 }
1217
1218 /*
1219 * Output Power sensors
1220 */
1221 for (page = 0; page < info->pages; page++) {
1222 bool need_alarm = false;
1223
1224 if (!(info->func[page] & PMBUS_HAVE_POUT))
1225 continue;
1226
1227 i0 = data->num_sensors;
1228 pmbus_add_label(data, "power", in_index, "pout", page + 1);
1229 pmbus_add_sensor(data, "power", "input", in_index, page,
1230 PMBUS_READ_POUT, PSC_POWER, true, true);
1231 /*
1232 * Per hwmon sysfs API, power_cap is to be used to limit output
1233 * power.
1234 * We have two registers related to maximum output power,
1235 * PMBUS_POUT_MAX and PMBUS_POUT_OP_WARN_LIMIT.
1236 * PMBUS_POUT_MAX matches the powerX_cap attribute definition.
1237 * There is no attribute in the API to match
1238 * PMBUS_POUT_OP_WARN_LIMIT. We use powerX_max for now.
1239 */
1240 if (pmbus_check_word_register(client, page, PMBUS_POUT_MAX)) {
1241 i1 = data->num_sensors;
1242 pmbus_add_sensor(data, "power", "cap", in_index, page,
1243 PMBUS_POUT_MAX, PSC_POWER,
1244 false, false);
1245 need_alarm = true;
1246 }
1247 if (pmbus_check_word_register(client, page,
1248 PMBUS_POUT_OP_WARN_LIMIT)) {
1249 i1 = data->num_sensors;
1250 pmbus_add_sensor(data, "power", "max", in_index, page,
1251 PMBUS_POUT_OP_WARN_LIMIT, PSC_POWER,
1252 false, false);
1253 need_alarm = true;
1254 }
1255 if (need_alarm && (info->func[page] & PMBUS_HAVE_STATUS_IOUT))
1256 pmbus_add_boolean_reg(data, "power", "alarm",
1257 in_index,
1258 PB_STATUS_IOUT_BASE + page,
1259 PB_POUT_OP_WARNING
1260 | PB_POWER_LIMITING);
1261
1262 if (pmbus_check_word_register(client, page,
1263 PMBUS_POUT_OP_FAULT_LIMIT)) {
1264 i1 = data->num_sensors;
1265 pmbus_add_sensor(data, "power", "crit", in_index, page,
1266 PMBUS_POUT_OP_FAULT_LIMIT, PSC_POWER,
1267 false, false);
1268 if (info->func[page] & PMBUS_HAVE_STATUS_IOUT)
1269 pmbus_add_boolean_reg(data, "power",
1270 "crit_alarm",
1271 in_index,
1272 PB_STATUS_IOUT_BASE
1273 + page,
1274 PB_POUT_OP_FAULT);
1275 }
1276 in_index++;
1277 }
1278
1279 /*
1280 * Temperature sensors
1281 */
1282 in_index = 1;
1283 for (page = 0; page < info->pages; page++) {
1284 int t;
1285
1286 for (t = 0; t < ARRAY_SIZE(pmbus_temp_registers); t++) {
1287 bool have_alarm = false;
1288
1289 /*
1290 * A PMBus chip may support any combination of
1291 * temperature registers on any page. So we can not
1292 * abort after a failure to detect a register, but have
1293 * to continue checking for all registers on all pages.
1294 */
1295 if (!(info->func[page] & pmbus_temp_flags[t]))
1296 continue;
1297
1298 if (!pmbus_check_word_register
1299 (client, page, pmbus_temp_registers[t]))
1300 continue;
1301
1302 i0 = data->num_sensors;
1303 pmbus_add_sensor(data, "temp", "input", in_index, page,
1304 pmbus_temp_registers[t],
1305 PSC_TEMPERATURE, true, true);
1306
1307 /*
1308 * PMBus provides only one status register for TEMP1-3.
1309 * Thus, we can not use the status register to determine
1310 * which of the three sensors actually caused an alarm.
1311 * Always compare current temperature against the limit
1312 * registers to determine alarm conditions for a
1313 * specific sensor.
1314 *
1315 * Since there is only one set of limit registers for
1316 * up to three temperature sensors, we need to update
1317 * all limit registers after the limit was changed for
1318 * one of the sensors. This ensures that correct limits
1319 * are reported for all temperature sensors.
1320 */
1321 if (pmbus_check_word_register
1322 (client, page, PMBUS_UT_WARN_LIMIT)) {
1323 i1 = data->num_sensors;
1324 pmbus_add_sensor(data, "temp", "min", in_index,
1325 page, PMBUS_UT_WARN_LIMIT,
1326 PSC_TEMPERATURE, true, false);
1327 if (info->func[page] & PMBUS_HAVE_STATUS_TEMP) {
1328 pmbus_add_boolean_cmp(data, "temp",
1329 "min_alarm", in_index, i1, i0,
1330 PB_STATUS_TEMP_BASE + page,
1331 PB_TEMP_UT_WARNING);
1332 have_alarm = true;
1333 }
1334 }
1335 if (pmbus_check_word_register(client, page,
1336 PMBUS_UT_FAULT_LIMIT)) {
1337 i1 = data->num_sensors;
1338 pmbus_add_sensor(data, "temp", "lcrit",
1339 in_index, page,
1340 PMBUS_UT_FAULT_LIMIT,
1341 PSC_TEMPERATURE, true, false);
1342 if (info->func[page] & PMBUS_HAVE_STATUS_TEMP) {
1343 pmbus_add_boolean_cmp(data, "temp",
1344 "lcrit_alarm", in_index, i1, i0,
1345 PB_STATUS_TEMP_BASE + page,
1346 PB_TEMP_UT_FAULT);
1347 have_alarm = true;
1348 }
1349 }
1350 if (pmbus_check_word_register
1351 (client, page, PMBUS_OT_WARN_LIMIT)) {
1352 i1 = data->num_sensors;
1353 pmbus_add_sensor(data, "temp", "max", in_index,
1354 page, PMBUS_OT_WARN_LIMIT,
1355 PSC_TEMPERATURE, true, false);
1356 if (info->func[page] & PMBUS_HAVE_STATUS_TEMP) {
1357 pmbus_add_boolean_cmp(data, "temp",
1358 "max_alarm", in_index, i0, i1,
1359 PB_STATUS_TEMP_BASE + page,
1360 PB_TEMP_OT_WARNING);
1361 have_alarm = true;
1362 }
1363 }
1364 if (pmbus_check_word_register(client, page,
1365 PMBUS_OT_FAULT_LIMIT)) {
1366 i1 = data->num_sensors;
1367 pmbus_add_sensor(data, "temp", "crit", in_index,
1368 page, PMBUS_OT_FAULT_LIMIT,
1369 PSC_TEMPERATURE, true, false);
1370 if (info->func[page] & PMBUS_HAVE_STATUS_TEMP) {
1371 pmbus_add_boolean_cmp(data, "temp",
1372 "crit_alarm", in_index, i0, i1,
1373 PB_STATUS_TEMP_BASE + page,
1374 PB_TEMP_OT_FAULT);
1375 have_alarm = true;
1376 }
1377 }
1378 /*
1379 * Last resort - we were not able to create any alarm
1380 * registers. Report alarm for all sensors using the
1381 * status register temperature alarm bit.
1382 */
1383 if (!have_alarm)
1384 pmbus_add_boolean_reg(data, "temp", "alarm",
1385 in_index,
1386 PB_STATUS_BASE + page,
1387 PB_STATUS_TEMPERATURE);
1388 in_index++;
1389 }
1390 }
1391
1392 /*
1393 * Fans
1394 */
1395 in_index = 1;
1396 for (page = 0; page < info->pages; page++) {
1397 int f;
1398
1399 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1400 int regval;
1401
1402 if (!(info->func[page] & pmbus_fan_flags[f]))
1403 break;
1404
1405 if (!pmbus_check_word_register(client, page,
1406 pmbus_fan_registers[f])
1407 || !pmbus_check_byte_register(client, page,
1408 pmbus_fan_config_registers[f]))
1409 break;
1410
1411 /*
1412 * Skip fan if not installed.
1413 * Each fan configuration register covers multiple fans,
1414 * so we have to do some magic.
1415 */
1416 regval = pmbus_read_byte_data(client, page,
1417 pmbus_fan_config_registers[f]);
1418 if (regval < 0 ||
1419 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1420 continue;
1421
1422 i0 = data->num_sensors;
1423 pmbus_add_sensor(data, "fan", "input", in_index, page,
1424 pmbus_fan_registers[f], PSC_FAN, true,
1425 true);
1426
1427 /*
1428 * Each fan status register covers multiple fans,
1429 * so we have to do some magic.
1430 */
1431 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1432 pmbus_check_byte_register(client,
1433 page, pmbus_fan_status_registers[f])) {
1434 int base;
1435
1436 if (f > 1) /* fan 3, 4 */
1437 base = PB_STATUS_FAN34_BASE + page;
1438 else
1439 base = PB_STATUS_FAN_BASE + page;
1440 pmbus_add_boolean_reg(data, "fan", "alarm",
1441 in_index, base,
1442 PB_FAN_FAN1_WARNING >> (f & 1));
1443 pmbus_add_boolean_reg(data, "fan", "fault",
1444 in_index, base,
1445 PB_FAN_FAN1_FAULT >> (f & 1));
1446 }
1447 in_index++;
1448 }
1449 }
1450 }
1451
1452 /*
1453 * Identify chip parameters.
1454 * This function is called for all chips.
1455 */
1456 static int pmbus_identify_common(struct i2c_client *client,
1457 struct pmbus_data *data)
1458 {
1459 int vout_mode = -1, exponent;
1460
1461 if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE))
1462 vout_mode = pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE);
1463 if (vout_mode >= 0 && vout_mode != 0xff) {
1464 /*
1465 * Not all chips support the VOUT_MODE command,
1466 * so a failure to read it is not an error.
1467 */
1468 switch (vout_mode >> 5) {
1469 case 0: /* linear mode */
1470 if (data->info->direct[PSC_VOLTAGE_OUT])
1471 return -ENODEV;
1472
1473 exponent = vout_mode & 0x1f;
1474 /* and sign-extend it */
1475 if (exponent & 0x10)
1476 exponent |= ~0x1f;
1477 data->exponent = exponent;
1478 break;
1479 case 2: /* direct mode */
1480 if (!data->info->direct[PSC_VOLTAGE_OUT])
1481 return -ENODEV;
1482 break;
1483 default:
1484 return -ENODEV;
1485 }
1486 }
1487
1488 /* Determine maximum number of sensors, booleans, and labels */
1489 pmbus_find_max_attr(client, data);
1490 pmbus_clear_fault_page(client, 0);
1491 return 0;
1492 }
1493
1494 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1495 struct pmbus_driver_info *info)
1496 {
1497 const struct pmbus_platform_data *pdata = client->dev.platform_data;
1498 struct pmbus_data *data;
1499 int ret;
1500
1501 if (!info) {
1502 dev_err(&client->dev, "Missing chip information");
1503 return -ENODEV;
1504 }
1505
1506 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1507 | I2C_FUNC_SMBUS_BYTE_DATA
1508 | I2C_FUNC_SMBUS_WORD_DATA))
1509 return -ENODEV;
1510
1511 data = kzalloc(sizeof(*data), GFP_KERNEL);
1512 if (!data) {
1513 dev_err(&client->dev, "No memory to allocate driver data\n");
1514 return -ENOMEM;
1515 }
1516
1517 i2c_set_clientdata(client, data);
1518 mutex_init(&data->update_lock);
1519
1520 /*
1521 * Bail out if status register or PMBus revision register
1522 * does not exist.
1523 */
1524 if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0
1525 || i2c_smbus_read_byte_data(client, PMBUS_REVISION) < 0) {
1526 dev_err(&client->dev,
1527 "Status or revision register not found\n");
1528 ret = -ENODEV;
1529 goto out_data;
1530 }
1531
1532 if (pdata)
1533 data->flags = pdata->flags;
1534 data->info = info;
1535
1536 pmbus_clear_faults(client);
1537
1538 if (info->identify) {
1539 ret = (*info->identify)(client, info);
1540 if (ret < 0) {
1541 dev_err(&client->dev, "Chip identification failed\n");
1542 goto out_data;
1543 }
1544 }
1545
1546 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1547 dev_err(&client->dev, "Bad number of PMBus pages: %d\n",
1548 info->pages);
1549 ret = -EINVAL;
1550 goto out_data;
1551 }
1552 /*
1553 * Bail out if more than one page was configured, but we can not
1554 * select the highest page. This is an indication that the wrong
1555 * chip type was selected. Better bail out now than keep
1556 * returning errors later on.
1557 */
1558 if (info->pages > 1 && pmbus_set_page(client, info->pages - 1) < 0) {
1559 dev_err(&client->dev, "Failed to select page %d\n",
1560 info->pages - 1);
1561 ret = -EINVAL;
1562 goto out_data;
1563 }
1564
1565 ret = pmbus_identify_common(client, data);
1566 if (ret < 0) {
1567 dev_err(&client->dev, "Failed to identify chip capabilities\n");
1568 goto out_data;
1569 }
1570
1571 ret = -ENOMEM;
1572 data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors,
1573 GFP_KERNEL);
1574 if (!data->sensors) {
1575 dev_err(&client->dev, "No memory to allocate sensor data\n");
1576 goto out_data;
1577 }
1578
1579 data->booleans = kzalloc(sizeof(struct pmbus_boolean)
1580 * data->max_booleans, GFP_KERNEL);
1581 if (!data->booleans) {
1582 dev_err(&client->dev, "No memory to allocate boolean data\n");
1583 goto out_sensors;
1584 }
1585
1586 data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels,
1587 GFP_KERNEL);
1588 if (!data->labels) {
1589 dev_err(&client->dev, "No memory to allocate label data\n");
1590 goto out_booleans;
1591 }
1592
1593 data->attributes = kzalloc(sizeof(struct attribute *)
1594 * data->max_attributes, GFP_KERNEL);
1595 if (!data->attributes) {
1596 dev_err(&client->dev, "No memory to allocate attribute data\n");
1597 goto out_labels;
1598 }
1599
1600 pmbus_find_attributes(client, data);
1601
1602 /*
1603 * If there are no attributes, something is wrong.
1604 * Bail out instead of trying to register nothing.
1605 */
1606 if (!data->num_attributes) {
1607 dev_err(&client->dev, "No attributes found\n");
1608 ret = -ENODEV;
1609 goto out_attributes;
1610 }
1611
1612 /* Register sysfs hooks */
1613 data->group.attrs = data->attributes;
1614 ret = sysfs_create_group(&client->dev.kobj, &data->group);
1615 if (ret) {
1616 dev_err(&client->dev, "Failed to create sysfs entries\n");
1617 goto out_attributes;
1618 }
1619 data->hwmon_dev = hwmon_device_register(&client->dev);
1620 if (IS_ERR(data->hwmon_dev)) {
1621 ret = PTR_ERR(data->hwmon_dev);
1622 dev_err(&client->dev, "Failed to register hwmon device\n");
1623 goto out_hwmon_device_register;
1624 }
1625 return 0;
1626
1627 out_hwmon_device_register:
1628 sysfs_remove_group(&client->dev.kobj, &data->group);
1629 out_attributes:
1630 kfree(data->attributes);
1631 out_labels:
1632 kfree(data->labels);
1633 out_booleans:
1634 kfree(data->booleans);
1635 out_sensors:
1636 kfree(data->sensors);
1637 out_data:
1638 kfree(data);
1639 return ret;
1640 }
1641 EXPORT_SYMBOL_GPL(pmbus_do_probe);
1642
1643 int pmbus_do_remove(struct i2c_client *client)
1644 {
1645 struct pmbus_data *data = i2c_get_clientdata(client);
1646 hwmon_device_unregister(data->hwmon_dev);
1647 sysfs_remove_group(&client->dev.kobj, &data->group);
1648 kfree(data->attributes);
1649 kfree(data->labels);
1650 kfree(data->booleans);
1651 kfree(data->sensors);
1652 kfree(data);
1653 return 0;
1654 }
1655 EXPORT_SYMBOL_GPL(pmbus_do_remove);
1656
1657 MODULE_AUTHOR("Guenter Roeck");
1658 MODULE_DESCRIPTION("PMBus core driver");
1659 MODULE_LICENSE("GPL");