Merge tag 'drm/tegra/for-3.19-rc1-fixes' of git://people.freedesktop.org/~tagr/linux...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / hv / ring_buffer.c
1 /*
2 *
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
29 #include <linux/uio.h>
30
31 #include "hyperv_vmbus.h"
32
33 void hv_begin_read(struct hv_ring_buffer_info *rbi)
34 {
35 rbi->ring_buffer->interrupt_mask = 1;
36 mb();
37 }
38
39 u32 hv_end_read(struct hv_ring_buffer_info *rbi)
40 {
41 u32 read;
42 u32 write;
43
44 rbi->ring_buffer->interrupt_mask = 0;
45 mb();
46
47 /*
48 * Now check to see if the ring buffer is still empty.
49 * If it is not, we raced and we need to process new
50 * incoming messages.
51 */
52 hv_get_ringbuffer_availbytes(rbi, &read, &write);
53
54 return read;
55 }
56
57 /*
58 * When we write to the ring buffer, check if the host needs to
59 * be signaled. Here is the details of this protocol:
60 *
61 * 1. The host guarantees that while it is draining the
62 * ring buffer, it will set the interrupt_mask to
63 * indicate it does not need to be interrupted when
64 * new data is placed.
65 *
66 * 2. The host guarantees that it will completely drain
67 * the ring buffer before exiting the read loop. Further,
68 * once the ring buffer is empty, it will clear the
69 * interrupt_mask and re-check to see if new data has
70 * arrived.
71 */
72
73 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
74 {
75 mb();
76 if (rbi->ring_buffer->interrupt_mask)
77 return false;
78
79 /* check interrupt_mask before read_index */
80 rmb();
81 /*
82 * This is the only case we need to signal when the
83 * ring transitions from being empty to non-empty.
84 */
85 if (old_write == rbi->ring_buffer->read_index)
86 return true;
87
88 return false;
89 }
90
91 /*
92 * To optimize the flow management on the send-side,
93 * when the sender is blocked because of lack of
94 * sufficient space in the ring buffer, potential the
95 * consumer of the ring buffer can signal the producer.
96 * This is controlled by the following parameters:
97 *
98 * 1. pending_send_sz: This is the size in bytes that the
99 * producer is trying to send.
100 * 2. The feature bit feat_pending_send_sz set to indicate if
101 * the consumer of the ring will signal when the ring
102 * state transitions from being full to a state where
103 * there is room for the producer to send the pending packet.
104 */
105
106 static bool hv_need_to_signal_on_read(u32 old_rd,
107 struct hv_ring_buffer_info *rbi)
108 {
109 u32 prev_write_sz;
110 u32 cur_write_sz;
111 u32 r_size;
112 u32 write_loc = rbi->ring_buffer->write_index;
113 u32 read_loc = rbi->ring_buffer->read_index;
114 u32 pending_sz = rbi->ring_buffer->pending_send_sz;
115
116 /*
117 * If the other end is not blocked on write don't bother.
118 */
119 if (pending_sz == 0)
120 return false;
121
122 r_size = rbi->ring_datasize;
123 cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
124 read_loc - write_loc;
125
126 prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) :
127 old_rd - write_loc;
128
129
130 if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
131 return true;
132
133 return false;
134 }
135
136 /*
137 * hv_get_next_write_location()
138 *
139 * Get the next write location for the specified ring buffer
140 *
141 */
142 static inline u32
143 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
144 {
145 u32 next = ring_info->ring_buffer->write_index;
146
147 return next;
148 }
149
150 /*
151 * hv_set_next_write_location()
152 *
153 * Set the next write location for the specified ring buffer
154 *
155 */
156 static inline void
157 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
158 u32 next_write_location)
159 {
160 ring_info->ring_buffer->write_index = next_write_location;
161 }
162
163 /*
164 * hv_get_next_read_location()
165 *
166 * Get the next read location for the specified ring buffer
167 */
168 static inline u32
169 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
170 {
171 u32 next = ring_info->ring_buffer->read_index;
172
173 return next;
174 }
175
176 /*
177 * hv_get_next_readlocation_withoffset()
178 *
179 * Get the next read location + offset for the specified ring buffer.
180 * This allows the caller to skip
181 */
182 static inline u32
183 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
184 u32 offset)
185 {
186 u32 next = ring_info->ring_buffer->read_index;
187
188 next += offset;
189 next %= ring_info->ring_datasize;
190
191 return next;
192 }
193
194 /*
195 *
196 * hv_set_next_read_location()
197 *
198 * Set the next read location for the specified ring buffer
199 *
200 */
201 static inline void
202 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
203 u32 next_read_location)
204 {
205 ring_info->ring_buffer->read_index = next_read_location;
206 }
207
208
209 /*
210 *
211 * hv_get_ring_buffer()
212 *
213 * Get the start of the ring buffer
214 */
215 static inline void *
216 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
217 {
218 return (void *)ring_info->ring_buffer->buffer;
219 }
220
221
222 /*
223 *
224 * hv_get_ring_buffersize()
225 *
226 * Get the size of the ring buffer
227 */
228 static inline u32
229 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
230 {
231 return ring_info->ring_datasize;
232 }
233
234 /*
235 *
236 * hv_get_ring_bufferindices()
237 *
238 * Get the read and write indices as u64 of the specified ring buffer
239 *
240 */
241 static inline u64
242 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
243 {
244 return (u64)ring_info->ring_buffer->write_index << 32;
245 }
246
247 /*
248 *
249 * hv_copyfrom_ringbuffer()
250 *
251 * Helper routine to copy to source from ring buffer.
252 * Assume there is enough room. Handles wrap-around in src case only!!
253 *
254 */
255 static u32 hv_copyfrom_ringbuffer(
256 struct hv_ring_buffer_info *ring_info,
257 void *dest,
258 u32 destlen,
259 u32 start_read_offset)
260 {
261 void *ring_buffer = hv_get_ring_buffer(ring_info);
262 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
263
264 u32 frag_len;
265
266 /* wrap-around detected at the src */
267 if (destlen > ring_buffer_size - start_read_offset) {
268 frag_len = ring_buffer_size - start_read_offset;
269
270 memcpy(dest, ring_buffer + start_read_offset, frag_len);
271 memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
272 } else
273
274 memcpy(dest, ring_buffer + start_read_offset, destlen);
275
276
277 start_read_offset += destlen;
278 start_read_offset %= ring_buffer_size;
279
280 return start_read_offset;
281 }
282
283
284 /*
285 *
286 * hv_copyto_ringbuffer()
287 *
288 * Helper routine to copy from source to ring buffer.
289 * Assume there is enough room. Handles wrap-around in dest case only!!
290 *
291 */
292 static u32 hv_copyto_ringbuffer(
293 struct hv_ring_buffer_info *ring_info,
294 u32 start_write_offset,
295 void *src,
296 u32 srclen)
297 {
298 void *ring_buffer = hv_get_ring_buffer(ring_info);
299 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
300 u32 frag_len;
301
302 /* wrap-around detected! */
303 if (srclen > ring_buffer_size - start_write_offset) {
304 frag_len = ring_buffer_size - start_write_offset;
305 memcpy(ring_buffer + start_write_offset, src, frag_len);
306 memcpy(ring_buffer, src + frag_len, srclen - frag_len);
307 } else
308 memcpy(ring_buffer + start_write_offset, src, srclen);
309
310 start_write_offset += srclen;
311 start_write_offset %= ring_buffer_size;
312
313 return start_write_offset;
314 }
315
316 /*
317 *
318 * hv_ringbuffer_get_debuginfo()
319 *
320 * Get various debug metrics for the specified ring buffer
321 *
322 */
323 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
324 struct hv_ring_buffer_debug_info *debug_info)
325 {
326 u32 bytes_avail_towrite;
327 u32 bytes_avail_toread;
328
329 if (ring_info->ring_buffer) {
330 hv_get_ringbuffer_availbytes(ring_info,
331 &bytes_avail_toread,
332 &bytes_avail_towrite);
333
334 debug_info->bytes_avail_toread = bytes_avail_toread;
335 debug_info->bytes_avail_towrite = bytes_avail_towrite;
336 debug_info->current_read_index =
337 ring_info->ring_buffer->read_index;
338 debug_info->current_write_index =
339 ring_info->ring_buffer->write_index;
340 debug_info->current_interrupt_mask =
341 ring_info->ring_buffer->interrupt_mask;
342 }
343 }
344
345 /*
346 *
347 * hv_ringbuffer_init()
348 *
349 *Initialize the ring buffer
350 *
351 */
352 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
353 void *buffer, u32 buflen)
354 {
355 if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
356 return -EINVAL;
357
358 memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
359
360 ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
361 ring_info->ring_buffer->read_index =
362 ring_info->ring_buffer->write_index = 0;
363
364 /*
365 * Set the feature bit for enabling flow control.
366 */
367 ring_info->ring_buffer->feature_bits.value = 1;
368
369 ring_info->ring_size = buflen;
370 ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
371
372 spin_lock_init(&ring_info->ring_lock);
373
374 return 0;
375 }
376
377 /*
378 *
379 * hv_ringbuffer_cleanup()
380 *
381 * Cleanup the ring buffer
382 *
383 */
384 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
385 {
386 }
387
388 /*
389 *
390 * hv_ringbuffer_write()
391 *
392 * Write to the ring buffer
393 *
394 */
395 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
396 struct kvec *kv_list, u32 kv_count, bool *signal)
397 {
398 int i = 0;
399 u32 bytes_avail_towrite;
400 u32 bytes_avail_toread;
401 u32 totalbytes_towrite = 0;
402
403 u32 next_write_location;
404 u32 old_write;
405 u64 prev_indices = 0;
406 unsigned long flags;
407
408 for (i = 0; i < kv_count; i++)
409 totalbytes_towrite += kv_list[i].iov_len;
410
411 totalbytes_towrite += sizeof(u64);
412
413 spin_lock_irqsave(&outring_info->ring_lock, flags);
414
415 hv_get_ringbuffer_availbytes(outring_info,
416 &bytes_avail_toread,
417 &bytes_avail_towrite);
418
419
420 /* If there is only room for the packet, assume it is full. */
421 /* Otherwise, the next time around, we think the ring buffer */
422 /* is empty since the read index == write index */
423 if (bytes_avail_towrite <= totalbytes_towrite) {
424 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
425 return -EAGAIN;
426 }
427
428 /* Write to the ring buffer */
429 next_write_location = hv_get_next_write_location(outring_info);
430
431 old_write = next_write_location;
432
433 for (i = 0; i < kv_count; i++) {
434 next_write_location = hv_copyto_ringbuffer(outring_info,
435 next_write_location,
436 kv_list[i].iov_base,
437 kv_list[i].iov_len);
438 }
439
440 /* Set previous packet start */
441 prev_indices = hv_get_ring_bufferindices(outring_info);
442
443 next_write_location = hv_copyto_ringbuffer(outring_info,
444 next_write_location,
445 &prev_indices,
446 sizeof(u64));
447
448 /* Issue a full memory barrier before updating the write index */
449 mb();
450
451 /* Now, update the write location */
452 hv_set_next_write_location(outring_info, next_write_location);
453
454
455 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
456
457 *signal = hv_need_to_signal(old_write, outring_info);
458 return 0;
459 }
460
461
462 /*
463 *
464 * hv_ringbuffer_peek()
465 *
466 * Read without advancing the read index
467 *
468 */
469 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
470 void *Buffer, u32 buflen)
471 {
472 u32 bytes_avail_towrite;
473 u32 bytes_avail_toread;
474 u32 next_read_location = 0;
475 unsigned long flags;
476
477 spin_lock_irqsave(&Inring_info->ring_lock, flags);
478
479 hv_get_ringbuffer_availbytes(Inring_info,
480 &bytes_avail_toread,
481 &bytes_avail_towrite);
482
483 /* Make sure there is something to read */
484 if (bytes_avail_toread < buflen) {
485
486 spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
487
488 return -EAGAIN;
489 }
490
491 /* Convert to byte offset */
492 next_read_location = hv_get_next_read_location(Inring_info);
493
494 next_read_location = hv_copyfrom_ringbuffer(Inring_info,
495 Buffer,
496 buflen,
497 next_read_location);
498
499 spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
500
501 return 0;
502 }
503
504
505 /*
506 *
507 * hv_ringbuffer_read()
508 *
509 * Read and advance the read index
510 *
511 */
512 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
513 u32 buflen, u32 offset, bool *signal)
514 {
515 u32 bytes_avail_towrite;
516 u32 bytes_avail_toread;
517 u32 next_read_location = 0;
518 u64 prev_indices = 0;
519 unsigned long flags;
520 u32 old_read;
521
522 if (buflen <= 0)
523 return -EINVAL;
524
525 spin_lock_irqsave(&inring_info->ring_lock, flags);
526
527 hv_get_ringbuffer_availbytes(inring_info,
528 &bytes_avail_toread,
529 &bytes_avail_towrite);
530
531 old_read = bytes_avail_toread;
532
533 /* Make sure there is something to read */
534 if (bytes_avail_toread < buflen) {
535 spin_unlock_irqrestore(&inring_info->ring_lock, flags);
536
537 return -EAGAIN;
538 }
539
540 next_read_location =
541 hv_get_next_readlocation_withoffset(inring_info, offset);
542
543 next_read_location = hv_copyfrom_ringbuffer(inring_info,
544 buffer,
545 buflen,
546 next_read_location);
547
548 next_read_location = hv_copyfrom_ringbuffer(inring_info,
549 &prev_indices,
550 sizeof(u64),
551 next_read_location);
552
553 /* Make sure all reads are done before we update the read index since */
554 /* the writer may start writing to the read area once the read index */
555 /*is updated */
556 mb();
557
558 /* Update the read index */
559 hv_set_next_read_location(inring_info, next_read_location);
560
561 spin_unlock_irqrestore(&inring_info->ring_lock, flags);
562
563 *signal = hv_need_to_signal_on_read(old_read, inring_info);
564
565 return 0;
566 }