0ef7f73ea56c77730a5b0b5a19d73b6304ed1bda
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / ttm / ttm_tt.c
1 /**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27 /*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31 #include <linux/vmalloc.h>
32 #include <linux/sched.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/file.h>
36 #include <linux/swap.h>
37 #include <linux/slab.h>
38 #include "drm_cache.h"
39 #include "ttm/ttm_module.h"
40 #include "ttm/ttm_bo_driver.h"
41 #include "ttm/ttm_placement.h"
42
43 static int ttm_tt_swapin(struct ttm_tt *ttm);
44
45 /**
46 * Allocates storage for pointers to the pages that back the ttm.
47 *
48 * Uses kmalloc if possible. Otherwise falls back to vmalloc.
49 */
50 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
51 {
52 unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
53 ttm->pages = NULL;
54
55 if (size <= PAGE_SIZE)
56 ttm->pages = kzalloc(size, GFP_KERNEL);
57
58 if (!ttm->pages) {
59 ttm->pages = vmalloc_user(size);
60 if (ttm->pages)
61 ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
62 }
63 }
64
65 static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
66 {
67 if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
68 vfree(ttm->pages);
69 ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
70 } else {
71 kfree(ttm->pages);
72 }
73 ttm->pages = NULL;
74 }
75
76 static struct page *ttm_tt_alloc_page(unsigned page_flags)
77 {
78 gfp_t gfp_flags = GFP_USER;
79
80 if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
81 gfp_flags |= __GFP_ZERO;
82
83 if (page_flags & TTM_PAGE_FLAG_DMA32)
84 gfp_flags |= __GFP_DMA32;
85 else
86 gfp_flags |= __GFP_HIGHMEM;
87
88 return alloc_page(gfp_flags);
89 }
90
91 static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
92 {
93 int write;
94 int dirty;
95 struct page *page;
96 int i;
97 struct ttm_backend *be = ttm->be;
98
99 BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
100 write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
101 dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
102
103 if (be)
104 be->func->clear(be);
105
106 for (i = 0; i < ttm->num_pages; ++i) {
107 page = ttm->pages[i];
108 if (page == NULL)
109 continue;
110
111 if (page == ttm->dummy_read_page) {
112 BUG_ON(write);
113 continue;
114 }
115
116 if (write && dirty && !PageReserved(page))
117 set_page_dirty_lock(page);
118
119 ttm->pages[i] = NULL;
120 ttm_mem_global_free(ttm->glob->mem_glob, PAGE_SIZE);
121 put_page(page);
122 }
123 ttm->state = tt_unpopulated;
124 ttm->first_himem_page = ttm->num_pages;
125 ttm->last_lomem_page = -1;
126 }
127
128 static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
129 {
130 struct page *p;
131 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
132 int ret;
133
134 while (NULL == (p = ttm->pages[index])) {
135 p = ttm_tt_alloc_page(ttm->page_flags);
136
137 if (!p)
138 return NULL;
139
140 ret = ttm_mem_global_alloc_page(mem_glob, p, false, false);
141 if (unlikely(ret != 0))
142 goto out_err;
143
144 if (PageHighMem(p))
145 ttm->pages[--ttm->first_himem_page] = p;
146 else
147 ttm->pages[++ttm->last_lomem_page] = p;
148 }
149 return p;
150 out_err:
151 put_page(p);
152 return NULL;
153 }
154
155 struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
156 {
157 int ret;
158
159 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
160 ret = ttm_tt_swapin(ttm);
161 if (unlikely(ret != 0))
162 return NULL;
163 }
164 return __ttm_tt_get_page(ttm, index);
165 }
166
167 int ttm_tt_populate(struct ttm_tt *ttm)
168 {
169 struct page *page;
170 unsigned long i;
171 struct ttm_backend *be;
172 int ret;
173
174 if (ttm->state != tt_unpopulated)
175 return 0;
176
177 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
178 ret = ttm_tt_swapin(ttm);
179 if (unlikely(ret != 0))
180 return ret;
181 }
182
183 be = ttm->be;
184
185 for (i = 0; i < ttm->num_pages; ++i) {
186 page = __ttm_tt_get_page(ttm, i);
187 if (!page)
188 return -ENOMEM;
189 }
190
191 be->func->populate(be, ttm->num_pages, ttm->pages,
192 ttm->dummy_read_page);
193 ttm->state = tt_unbound;
194 return 0;
195 }
196 EXPORT_SYMBOL(ttm_tt_populate);
197
198 #ifdef CONFIG_X86
199 static inline int ttm_tt_set_page_caching(struct page *p,
200 enum ttm_caching_state c_old,
201 enum ttm_caching_state c_new)
202 {
203 int ret = 0;
204
205 if (PageHighMem(p))
206 return 0;
207
208 if (c_old != tt_cached) {
209 /* p isn't in the default caching state, set it to
210 * writeback first to free its current memtype. */
211
212 ret = set_pages_wb(p, 1);
213 if (ret)
214 return ret;
215 }
216
217 if (c_new == tt_wc)
218 ret = set_memory_wc((unsigned long) page_address(p), 1);
219 else if (c_new == tt_uncached)
220 ret = set_pages_uc(p, 1);
221
222 return ret;
223 }
224 #else /* CONFIG_X86 */
225 static inline int ttm_tt_set_page_caching(struct page *p,
226 enum ttm_caching_state c_old,
227 enum ttm_caching_state c_new)
228 {
229 return 0;
230 }
231 #endif /* CONFIG_X86 */
232
233 /*
234 * Change caching policy for the linear kernel map
235 * for range of pages in a ttm.
236 */
237
238 static int ttm_tt_set_caching(struct ttm_tt *ttm,
239 enum ttm_caching_state c_state)
240 {
241 int i, j;
242 struct page *cur_page;
243 int ret;
244
245 if (ttm->caching_state == c_state)
246 return 0;
247
248 if (c_state != tt_cached) {
249 ret = ttm_tt_populate(ttm);
250 if (unlikely(ret != 0))
251 return ret;
252 }
253
254 if (ttm->caching_state == tt_cached)
255 drm_clflush_pages(ttm->pages, ttm->num_pages);
256
257 for (i = 0; i < ttm->num_pages; ++i) {
258 cur_page = ttm->pages[i];
259 if (likely(cur_page != NULL)) {
260 ret = ttm_tt_set_page_caching(cur_page,
261 ttm->caching_state,
262 c_state);
263 if (unlikely(ret != 0))
264 goto out_err;
265 }
266 }
267
268 ttm->caching_state = c_state;
269
270 return 0;
271
272 out_err:
273 for (j = 0; j < i; ++j) {
274 cur_page = ttm->pages[j];
275 if (likely(cur_page != NULL)) {
276 (void)ttm_tt_set_page_caching(cur_page, c_state,
277 ttm->caching_state);
278 }
279 }
280
281 return ret;
282 }
283
284 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
285 {
286 enum ttm_caching_state state;
287
288 if (placement & TTM_PL_FLAG_WC)
289 state = tt_wc;
290 else if (placement & TTM_PL_FLAG_UNCACHED)
291 state = tt_uncached;
292 else
293 state = tt_cached;
294
295 return ttm_tt_set_caching(ttm, state);
296 }
297 EXPORT_SYMBOL(ttm_tt_set_placement_caching);
298
299 static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
300 {
301 int i;
302 struct page *cur_page;
303 struct ttm_backend *be = ttm->be;
304
305 if (be)
306 be->func->clear(be);
307 (void)ttm_tt_set_caching(ttm, tt_cached);
308 for (i = 0; i < ttm->num_pages; ++i) {
309 cur_page = ttm->pages[i];
310 ttm->pages[i] = NULL;
311 if (cur_page) {
312 if (page_count(cur_page) != 1)
313 printk(KERN_ERR TTM_PFX
314 "Erroneous page count. "
315 "Leaking pages.\n");
316 ttm_mem_global_free_page(ttm->glob->mem_glob,
317 cur_page);
318 __free_page(cur_page);
319 }
320 }
321 ttm->state = tt_unpopulated;
322 ttm->first_himem_page = ttm->num_pages;
323 ttm->last_lomem_page = -1;
324 }
325
326 void ttm_tt_destroy(struct ttm_tt *ttm)
327 {
328 struct ttm_backend *be;
329
330 if (unlikely(ttm == NULL))
331 return;
332
333 be = ttm->be;
334 if (likely(be != NULL)) {
335 be->func->destroy(be);
336 ttm->be = NULL;
337 }
338
339 if (likely(ttm->pages != NULL)) {
340 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
341 ttm_tt_free_user_pages(ttm);
342 else
343 ttm_tt_free_alloced_pages(ttm);
344
345 ttm_tt_free_page_directory(ttm);
346 }
347
348 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
349 ttm->swap_storage)
350 fput(ttm->swap_storage);
351
352 kfree(ttm);
353 }
354
355 int ttm_tt_set_user(struct ttm_tt *ttm,
356 struct task_struct *tsk,
357 unsigned long start, unsigned long num_pages)
358 {
359 struct mm_struct *mm = tsk->mm;
360 int ret;
361 int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
362 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
363
364 BUG_ON(num_pages != ttm->num_pages);
365 BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
366
367 /**
368 * Account user pages as lowmem pages for now.
369 */
370
371 ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
372 false, false);
373 if (unlikely(ret != 0))
374 return ret;
375
376 down_read(&mm->mmap_sem);
377 ret = get_user_pages(tsk, mm, start, num_pages,
378 write, 0, ttm->pages, NULL);
379 up_read(&mm->mmap_sem);
380
381 if (ret != num_pages && write) {
382 ttm_tt_free_user_pages(ttm);
383 ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE);
384 return -ENOMEM;
385 }
386
387 ttm->tsk = tsk;
388 ttm->start = start;
389 ttm->state = tt_unbound;
390
391 return 0;
392 }
393
394 struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
395 uint32_t page_flags, struct page *dummy_read_page)
396 {
397 struct ttm_bo_driver *bo_driver = bdev->driver;
398 struct ttm_tt *ttm;
399
400 if (!bo_driver)
401 return NULL;
402
403 ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
404 if (!ttm)
405 return NULL;
406
407 ttm->glob = bdev->glob;
408 ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
409 ttm->first_himem_page = ttm->num_pages;
410 ttm->last_lomem_page = -1;
411 ttm->caching_state = tt_cached;
412 ttm->page_flags = page_flags;
413
414 ttm->dummy_read_page = dummy_read_page;
415
416 ttm_tt_alloc_page_directory(ttm);
417 if (!ttm->pages) {
418 ttm_tt_destroy(ttm);
419 printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
420 return NULL;
421 }
422 ttm->be = bo_driver->create_ttm_backend_entry(bdev);
423 if (!ttm->be) {
424 ttm_tt_destroy(ttm);
425 printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
426 return NULL;
427 }
428 ttm->state = tt_unpopulated;
429 return ttm;
430 }
431
432 void ttm_tt_unbind(struct ttm_tt *ttm)
433 {
434 int ret;
435 struct ttm_backend *be = ttm->be;
436
437 if (ttm->state == tt_bound) {
438 ret = be->func->unbind(be);
439 BUG_ON(ret);
440 ttm->state = tt_unbound;
441 }
442 }
443
444 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
445 {
446 int ret = 0;
447 struct ttm_backend *be;
448
449 if (!ttm)
450 return -EINVAL;
451
452 if (ttm->state == tt_bound)
453 return 0;
454
455 be = ttm->be;
456
457 ret = ttm_tt_populate(ttm);
458 if (ret)
459 return ret;
460
461 ret = be->func->bind(be, bo_mem);
462 if (ret) {
463 printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
464 return ret;
465 }
466
467 ttm->state = tt_bound;
468
469 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
470 ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
471 return 0;
472 }
473 EXPORT_SYMBOL(ttm_tt_bind);
474
475 static int ttm_tt_swapin(struct ttm_tt *ttm)
476 {
477 struct address_space *swap_space;
478 struct file *swap_storage;
479 struct page *from_page;
480 struct page *to_page;
481 void *from_virtual;
482 void *to_virtual;
483 int i;
484 int ret = -ENOMEM;
485
486 if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
487 ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
488 ttm->num_pages);
489 if (unlikely(ret != 0))
490 return ret;
491
492 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
493 return 0;
494 }
495
496 swap_storage = ttm->swap_storage;
497 BUG_ON(swap_storage == NULL);
498
499 swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
500
501 for (i = 0; i < ttm->num_pages; ++i) {
502 from_page = read_mapping_page(swap_space, i, NULL);
503 if (IS_ERR(from_page)) {
504 ret = PTR_ERR(from_page);
505 goto out_err;
506 }
507 to_page = __ttm_tt_get_page(ttm, i);
508 if (unlikely(to_page == NULL))
509 goto out_err;
510
511 preempt_disable();
512 from_virtual = kmap_atomic(from_page, KM_USER0);
513 to_virtual = kmap_atomic(to_page, KM_USER1);
514 memcpy(to_virtual, from_virtual, PAGE_SIZE);
515 kunmap_atomic(to_virtual, KM_USER1);
516 kunmap_atomic(from_virtual, KM_USER0);
517 preempt_enable();
518 page_cache_release(from_page);
519 }
520
521 if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
522 fput(swap_storage);
523 ttm->swap_storage = NULL;
524 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
525
526 return 0;
527 out_err:
528 ttm_tt_free_alloced_pages(ttm);
529 return ret;
530 }
531
532 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
533 {
534 struct address_space *swap_space;
535 struct file *swap_storage;
536 struct page *from_page;
537 struct page *to_page;
538 void *from_virtual;
539 void *to_virtual;
540 int i;
541 int ret = -ENOMEM;
542
543 BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
544 BUG_ON(ttm->caching_state != tt_cached);
545
546 /*
547 * For user buffers, just unpin the pages, as there should be
548 * vma references.
549 */
550
551 if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
552 ttm_tt_free_user_pages(ttm);
553 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
554 ttm->swap_storage = NULL;
555 return 0;
556 }
557
558 if (!persistant_swap_storage) {
559 swap_storage = shmem_file_setup("ttm swap",
560 ttm->num_pages << PAGE_SHIFT,
561 0);
562 if (unlikely(IS_ERR(swap_storage))) {
563 printk(KERN_ERR "Failed allocating swap storage.\n");
564 return PTR_ERR(swap_storage);
565 }
566 } else
567 swap_storage = persistant_swap_storage;
568
569 swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
570
571 for (i = 0; i < ttm->num_pages; ++i) {
572 from_page = ttm->pages[i];
573 if (unlikely(from_page == NULL))
574 continue;
575 to_page = read_mapping_page(swap_space, i, NULL);
576 if (unlikely(IS_ERR(to_page))) {
577 ret = PTR_ERR(to_page);
578 goto out_err;
579 }
580 preempt_disable();
581 from_virtual = kmap_atomic(from_page, KM_USER0);
582 to_virtual = kmap_atomic(to_page, KM_USER1);
583 memcpy(to_virtual, from_virtual, PAGE_SIZE);
584 kunmap_atomic(to_virtual, KM_USER1);
585 kunmap_atomic(from_virtual, KM_USER0);
586 preempt_enable();
587 set_page_dirty(to_page);
588 mark_page_accessed(to_page);
589 page_cache_release(to_page);
590 }
591
592 ttm_tt_free_alloced_pages(ttm);
593 ttm->swap_storage = swap_storage;
594 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
595 if (persistant_swap_storage)
596 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
597
598 return 0;
599 out_err:
600 if (!persistant_swap_storage)
601 fput(swap_storage);
602
603 return ret;
604 }