Merge 4.14.24 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / ttm / ttm_page_alloc.c
1 /*
2 * Copyright (c) Red Hat Inc.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: Dave Airlie <airlied@redhat.com>
24 * Jerome Glisse <jglisse@redhat.com>
25 * Pauli Nieminen <suokkos@gmail.com>
26 */
27
28 /* simple list based uncached page pool
29 * - Pool collects resently freed pages for reuse
30 * - Use page->lru to keep a free list
31 * - doesn't track currently in use pages
32 */
33
34 #define pr_fmt(fmt) "[TTM] " fmt
35
36 #include <linux/list.h>
37 #include <linux/spinlock.h>
38 #include <linux/highmem.h>
39 #include <linux/mm_types.h>
40 #include <linux/module.h>
41 #include <linux/mm.h>
42 #include <linux/seq_file.h> /* for seq_printf */
43 #include <linux/slab.h>
44 #include <linux/dma-mapping.h>
45
46 #include <linux/atomic.h>
47
48 #include <drm/ttm/ttm_bo_driver.h>
49 #include <drm/ttm/ttm_page_alloc.h>
50
51 #if IS_ENABLED(CONFIG_AGP)
52 #include <asm/agp.h>
53 #endif
54 #ifdef CONFIG_X86
55 #include <asm/set_memory.h>
56 #endif
57
58 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
59 #define SMALL_ALLOCATION 16
60 #define FREE_ALL_PAGES (~0U)
61 /* times are in msecs */
62 #define PAGE_FREE_INTERVAL 1000
63
64 /**
65 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
66 *
67 * @lock: Protects the shared pool from concurrnet access. Must be used with
68 * irqsave/irqrestore variants because pool allocator maybe called from
69 * delayed work.
70 * @fill_lock: Prevent concurrent calls to fill.
71 * @list: Pool of free uc/wc pages for fast reuse.
72 * @gfp_flags: Flags to pass for alloc_page.
73 * @npages: Number of pages in pool.
74 */
75 struct ttm_page_pool {
76 spinlock_t lock;
77 bool fill_lock;
78 struct list_head list;
79 gfp_t gfp_flags;
80 unsigned npages;
81 char *name;
82 unsigned long nfrees;
83 unsigned long nrefills;
84 };
85
86 /**
87 * Limits for the pool. They are handled without locks because only place where
88 * they may change is in sysfs store. They won't have immediate effect anyway
89 * so forcing serialization to access them is pointless.
90 */
91
92 struct ttm_pool_opts {
93 unsigned alloc_size;
94 unsigned max_size;
95 unsigned small;
96 };
97
98 #define NUM_POOLS 4
99
100 /**
101 * struct ttm_pool_manager - Holds memory pools for fst allocation
102 *
103 * Manager is read only object for pool code so it doesn't need locking.
104 *
105 * @free_interval: minimum number of jiffies between freeing pages from pool.
106 * @page_alloc_inited: reference counting for pool allocation.
107 * @work: Work that is used to shrink the pool. Work is only run when there is
108 * some pages to free.
109 * @small_allocation: Limit in number of pages what is small allocation.
110 *
111 * @pools: All pool objects in use.
112 **/
113 struct ttm_pool_manager {
114 struct kobject kobj;
115 struct shrinker mm_shrink;
116 struct ttm_pool_opts options;
117
118 union {
119 struct ttm_page_pool pools[NUM_POOLS];
120 struct {
121 struct ttm_page_pool wc_pool;
122 struct ttm_page_pool uc_pool;
123 struct ttm_page_pool wc_pool_dma32;
124 struct ttm_page_pool uc_pool_dma32;
125 } ;
126 };
127 };
128
129 static struct attribute ttm_page_pool_max = {
130 .name = "pool_max_size",
131 .mode = S_IRUGO | S_IWUSR
132 };
133 static struct attribute ttm_page_pool_small = {
134 .name = "pool_small_allocation",
135 .mode = S_IRUGO | S_IWUSR
136 };
137 static struct attribute ttm_page_pool_alloc_size = {
138 .name = "pool_allocation_size",
139 .mode = S_IRUGO | S_IWUSR
140 };
141
142 static struct attribute *ttm_pool_attrs[] = {
143 &ttm_page_pool_max,
144 &ttm_page_pool_small,
145 &ttm_page_pool_alloc_size,
146 NULL
147 };
148
149 static void ttm_pool_kobj_release(struct kobject *kobj)
150 {
151 struct ttm_pool_manager *m =
152 container_of(kobj, struct ttm_pool_manager, kobj);
153 kfree(m);
154 }
155
156 static ssize_t ttm_pool_store(struct kobject *kobj,
157 struct attribute *attr, const char *buffer, size_t size)
158 {
159 struct ttm_pool_manager *m =
160 container_of(kobj, struct ttm_pool_manager, kobj);
161 int chars;
162 unsigned val;
163 chars = sscanf(buffer, "%u", &val);
164 if (chars == 0)
165 return size;
166
167 /* Convert kb to number of pages */
168 val = val / (PAGE_SIZE >> 10);
169
170 if (attr == &ttm_page_pool_max)
171 m->options.max_size = val;
172 else if (attr == &ttm_page_pool_small)
173 m->options.small = val;
174 else if (attr == &ttm_page_pool_alloc_size) {
175 if (val > NUM_PAGES_TO_ALLOC*8) {
176 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
177 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
178 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
179 return size;
180 } else if (val > NUM_PAGES_TO_ALLOC) {
181 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
182 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
183 }
184 m->options.alloc_size = val;
185 }
186
187 return size;
188 }
189
190 static ssize_t ttm_pool_show(struct kobject *kobj,
191 struct attribute *attr, char *buffer)
192 {
193 struct ttm_pool_manager *m =
194 container_of(kobj, struct ttm_pool_manager, kobj);
195 unsigned val = 0;
196
197 if (attr == &ttm_page_pool_max)
198 val = m->options.max_size;
199 else if (attr == &ttm_page_pool_small)
200 val = m->options.small;
201 else if (attr == &ttm_page_pool_alloc_size)
202 val = m->options.alloc_size;
203
204 val = val * (PAGE_SIZE >> 10);
205
206 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
207 }
208
209 static const struct sysfs_ops ttm_pool_sysfs_ops = {
210 .show = &ttm_pool_show,
211 .store = &ttm_pool_store,
212 };
213
214 static struct kobj_type ttm_pool_kobj_type = {
215 .release = &ttm_pool_kobj_release,
216 .sysfs_ops = &ttm_pool_sysfs_ops,
217 .default_attrs = ttm_pool_attrs,
218 };
219
220 static struct ttm_pool_manager *_manager;
221
222 #ifndef CONFIG_X86
223 static int set_pages_array_wb(struct page **pages, int addrinarray)
224 {
225 #if IS_ENABLED(CONFIG_AGP)
226 int i;
227
228 for (i = 0; i < addrinarray; i++)
229 unmap_page_from_agp(pages[i]);
230 #endif
231 return 0;
232 }
233
234 static int set_pages_array_wc(struct page **pages, int addrinarray)
235 {
236 #if IS_ENABLED(CONFIG_AGP)
237 int i;
238
239 for (i = 0; i < addrinarray; i++)
240 map_page_into_agp(pages[i]);
241 #endif
242 return 0;
243 }
244
245 static int set_pages_array_uc(struct page **pages, int addrinarray)
246 {
247 #if IS_ENABLED(CONFIG_AGP)
248 int i;
249
250 for (i = 0; i < addrinarray; i++)
251 map_page_into_agp(pages[i]);
252 #endif
253 return 0;
254 }
255 #endif
256
257 /**
258 * Select the right pool or requested caching state and ttm flags. */
259 static struct ttm_page_pool *ttm_get_pool(int flags,
260 enum ttm_caching_state cstate)
261 {
262 int pool_index;
263
264 if (cstate == tt_cached)
265 return NULL;
266
267 if (cstate == tt_wc)
268 pool_index = 0x0;
269 else
270 pool_index = 0x1;
271
272 if (flags & TTM_PAGE_FLAG_DMA32)
273 pool_index |= 0x2;
274
275 return &_manager->pools[pool_index];
276 }
277
278 /* set memory back to wb and free the pages. */
279 static void ttm_pages_put(struct page *pages[], unsigned npages)
280 {
281 unsigned i;
282 if (set_pages_array_wb(pages, npages))
283 pr_err("Failed to set %d pages to wb!\n", npages);
284 for (i = 0; i < npages; ++i)
285 __free_page(pages[i]);
286 }
287
288 static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
289 unsigned freed_pages)
290 {
291 pool->npages -= freed_pages;
292 pool->nfrees += freed_pages;
293 }
294
295 /**
296 * Free pages from pool.
297 *
298 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
299 * number of pages in one go.
300 *
301 * @pool: to free the pages from
302 * @free_all: If set to true will free all pages in pool
303 * @use_static: Safe to use static buffer
304 **/
305 static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free,
306 bool use_static)
307 {
308 static struct page *static_buf[NUM_PAGES_TO_ALLOC];
309 unsigned long irq_flags;
310 struct page *p;
311 struct page **pages_to_free;
312 unsigned freed_pages = 0,
313 npages_to_free = nr_free;
314
315 if (NUM_PAGES_TO_ALLOC < nr_free)
316 npages_to_free = NUM_PAGES_TO_ALLOC;
317
318 if (use_static)
319 pages_to_free = static_buf;
320 else
321 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
322 GFP_KERNEL);
323 if (!pages_to_free) {
324 pr_err("Failed to allocate memory for pool free operation\n");
325 return 0;
326 }
327
328 restart:
329 spin_lock_irqsave(&pool->lock, irq_flags);
330
331 list_for_each_entry_reverse(p, &pool->list, lru) {
332 if (freed_pages >= npages_to_free)
333 break;
334
335 pages_to_free[freed_pages++] = p;
336 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
337 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
338 /* remove range of pages from the pool */
339 __list_del(p->lru.prev, &pool->list);
340
341 ttm_pool_update_free_locked(pool, freed_pages);
342 /**
343 * Because changing page caching is costly
344 * we unlock the pool to prevent stalling.
345 */
346 spin_unlock_irqrestore(&pool->lock, irq_flags);
347
348 ttm_pages_put(pages_to_free, freed_pages);
349 if (likely(nr_free != FREE_ALL_PAGES))
350 nr_free -= freed_pages;
351
352 if (NUM_PAGES_TO_ALLOC >= nr_free)
353 npages_to_free = nr_free;
354 else
355 npages_to_free = NUM_PAGES_TO_ALLOC;
356
357 freed_pages = 0;
358
359 /* free all so restart the processing */
360 if (nr_free)
361 goto restart;
362
363 /* Not allowed to fall through or break because
364 * following context is inside spinlock while we are
365 * outside here.
366 */
367 goto out;
368
369 }
370 }
371
372 /* remove range of pages from the pool */
373 if (freed_pages) {
374 __list_del(&p->lru, &pool->list);
375
376 ttm_pool_update_free_locked(pool, freed_pages);
377 nr_free -= freed_pages;
378 }
379
380 spin_unlock_irqrestore(&pool->lock, irq_flags);
381
382 if (freed_pages)
383 ttm_pages_put(pages_to_free, freed_pages);
384 out:
385 if (pages_to_free != static_buf)
386 kfree(pages_to_free);
387 return nr_free;
388 }
389
390 /**
391 * Callback for mm to request pool to reduce number of page held.
392 *
393 * XXX: (dchinner) Deadlock warning!
394 *
395 * This code is crying out for a shrinker per pool....
396 */
397 static unsigned long
398 ttm_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
399 {
400 static DEFINE_MUTEX(lock);
401 static unsigned start_pool;
402 unsigned i;
403 unsigned pool_offset;
404 struct ttm_page_pool *pool;
405 int shrink_pages = sc->nr_to_scan;
406 unsigned long freed = 0;
407
408 if (!mutex_trylock(&lock))
409 return SHRINK_STOP;
410 pool_offset = ++start_pool % NUM_POOLS;
411 /* select start pool in round robin fashion */
412 for (i = 0; i < NUM_POOLS; ++i) {
413 unsigned nr_free = shrink_pages;
414 if (shrink_pages == 0)
415 break;
416 pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
417 /* OK to use static buffer since global mutex is held. */
418 shrink_pages = ttm_page_pool_free(pool, nr_free, true);
419 freed += nr_free - shrink_pages;
420 }
421 mutex_unlock(&lock);
422 return freed;
423 }
424
425
426 static unsigned long
427 ttm_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
428 {
429 unsigned i;
430 unsigned long count = 0;
431
432 for (i = 0; i < NUM_POOLS; ++i)
433 count += _manager->pools[i].npages;
434
435 return count;
436 }
437
438 static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
439 {
440 manager->mm_shrink.count_objects = ttm_pool_shrink_count;
441 manager->mm_shrink.scan_objects = ttm_pool_shrink_scan;
442 manager->mm_shrink.seeks = 1;
443 register_shrinker(&manager->mm_shrink);
444 }
445
446 static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
447 {
448 unregister_shrinker(&manager->mm_shrink);
449 }
450
451 static int ttm_set_pages_caching(struct page **pages,
452 enum ttm_caching_state cstate, unsigned cpages)
453 {
454 int r = 0;
455 /* Set page caching */
456 switch (cstate) {
457 case tt_uncached:
458 r = set_pages_array_uc(pages, cpages);
459 if (r)
460 pr_err("Failed to set %d pages to uc!\n", cpages);
461 break;
462 case tt_wc:
463 r = set_pages_array_wc(pages, cpages);
464 if (r)
465 pr_err("Failed to set %d pages to wc!\n", cpages);
466 break;
467 default:
468 break;
469 }
470 return r;
471 }
472
473 /**
474 * Free pages the pages that failed to change the caching state. If there is
475 * any pages that have changed their caching state already put them to the
476 * pool.
477 */
478 static void ttm_handle_caching_state_failure(struct list_head *pages,
479 int ttm_flags, enum ttm_caching_state cstate,
480 struct page **failed_pages, unsigned cpages)
481 {
482 unsigned i;
483 /* Failed pages have to be freed */
484 for (i = 0; i < cpages; ++i) {
485 list_del(&failed_pages[i]->lru);
486 __free_page(failed_pages[i]);
487 }
488 }
489
490 /**
491 * Allocate new pages with correct caching.
492 *
493 * This function is reentrant if caller updates count depending on number of
494 * pages returned in pages array.
495 */
496 static int ttm_alloc_new_pages(struct list_head *pages, gfp_t gfp_flags,
497 int ttm_flags, enum ttm_caching_state cstate, unsigned count)
498 {
499 struct page **caching_array;
500 struct page *p;
501 int r = 0;
502 unsigned i, cpages;
503 unsigned max_cpages = min(count,
504 (unsigned)(PAGE_SIZE/sizeof(struct page *)));
505
506 /* allocate array for page caching change */
507 caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
508
509 if (!caching_array) {
510 pr_err("Unable to allocate table for new pages\n");
511 return -ENOMEM;
512 }
513
514 for (i = 0, cpages = 0; i < count; ++i) {
515 p = alloc_page(gfp_flags);
516
517 if (!p) {
518 pr_err("Unable to get page %u\n", i);
519
520 /* store already allocated pages in the pool after
521 * setting the caching state */
522 if (cpages) {
523 r = ttm_set_pages_caching(caching_array,
524 cstate, cpages);
525 if (r)
526 ttm_handle_caching_state_failure(pages,
527 ttm_flags, cstate,
528 caching_array, cpages);
529 }
530 r = -ENOMEM;
531 goto out;
532 }
533
534 #ifdef CONFIG_HIGHMEM
535 /* gfp flags of highmem page should never be dma32 so we
536 * we should be fine in such case
537 */
538 if (!PageHighMem(p))
539 #endif
540 {
541 caching_array[cpages++] = p;
542 if (cpages == max_cpages) {
543
544 r = ttm_set_pages_caching(caching_array,
545 cstate, cpages);
546 if (r) {
547 ttm_handle_caching_state_failure(pages,
548 ttm_flags, cstate,
549 caching_array, cpages);
550 goto out;
551 }
552 cpages = 0;
553 }
554 }
555
556 list_add(&p->lru, pages);
557 }
558
559 if (cpages) {
560 r = ttm_set_pages_caching(caching_array, cstate, cpages);
561 if (r)
562 ttm_handle_caching_state_failure(pages,
563 ttm_flags, cstate,
564 caching_array, cpages);
565 }
566 out:
567 kfree(caching_array);
568
569 return r;
570 }
571
572 /**
573 * Fill the given pool if there aren't enough pages and the requested number of
574 * pages is small.
575 */
576 static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool,
577 int ttm_flags, enum ttm_caching_state cstate, unsigned count,
578 unsigned long *irq_flags)
579 {
580 struct page *p;
581 int r;
582 unsigned cpages = 0;
583 /**
584 * Only allow one pool fill operation at a time.
585 * If pool doesn't have enough pages for the allocation new pages are
586 * allocated from outside of pool.
587 */
588 if (pool->fill_lock)
589 return;
590
591 pool->fill_lock = true;
592
593 /* If allocation request is small and there are not enough
594 * pages in a pool we fill the pool up first. */
595 if (count < _manager->options.small
596 && count > pool->npages) {
597 struct list_head new_pages;
598 unsigned alloc_size = _manager->options.alloc_size;
599
600 /**
601 * Can't change page caching if in irqsave context. We have to
602 * drop the pool->lock.
603 */
604 spin_unlock_irqrestore(&pool->lock, *irq_flags);
605
606 INIT_LIST_HEAD(&new_pages);
607 r = ttm_alloc_new_pages(&new_pages, pool->gfp_flags, ttm_flags,
608 cstate, alloc_size);
609 spin_lock_irqsave(&pool->lock, *irq_flags);
610
611 if (!r) {
612 list_splice(&new_pages, &pool->list);
613 ++pool->nrefills;
614 pool->npages += alloc_size;
615 } else {
616 pr_err("Failed to fill pool (%p)\n", pool);
617 /* If we have any pages left put them to the pool. */
618 list_for_each_entry(p, &new_pages, lru) {
619 ++cpages;
620 }
621 list_splice(&new_pages, &pool->list);
622 pool->npages += cpages;
623 }
624
625 }
626 pool->fill_lock = false;
627 }
628
629 /**
630 * Cut 'count' number of pages from the pool and put them on the return list.
631 *
632 * @return count of pages still required to fulfill the request.
633 */
634 static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool,
635 struct list_head *pages,
636 int ttm_flags,
637 enum ttm_caching_state cstate,
638 unsigned count)
639 {
640 unsigned long irq_flags;
641 struct list_head *p;
642 unsigned i;
643
644 spin_lock_irqsave(&pool->lock, irq_flags);
645 ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count, &irq_flags);
646
647 if (count >= pool->npages) {
648 /* take all pages from the pool */
649 list_splice_init(&pool->list, pages);
650 count -= pool->npages;
651 pool->npages = 0;
652 goto out;
653 }
654 /* find the last pages to include for requested number of pages. Split
655 * pool to begin and halve it to reduce search space. */
656 if (count <= pool->npages/2) {
657 i = 0;
658 list_for_each(p, &pool->list) {
659 if (++i == count)
660 break;
661 }
662 } else {
663 i = pool->npages + 1;
664 list_for_each_prev(p, &pool->list) {
665 if (--i == count)
666 break;
667 }
668 }
669 /* Cut 'count' number of pages from the pool */
670 list_cut_position(pages, &pool->list, p);
671 pool->npages -= count;
672 count = 0;
673 out:
674 spin_unlock_irqrestore(&pool->lock, irq_flags);
675 return count;
676 }
677
678 /* Put all pages in pages list to correct pool to wait for reuse */
679 static void ttm_put_pages(struct page **pages, unsigned npages, int flags,
680 enum ttm_caching_state cstate)
681 {
682 unsigned long irq_flags;
683 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
684 unsigned i;
685
686 if (pool == NULL) {
687 /* No pool for this memory type so free the pages */
688 for (i = 0; i < npages; i++) {
689 if (pages[i]) {
690 if (page_count(pages[i]) != 1)
691 pr_err("Erroneous page count. Leaking pages.\n");
692 __free_page(pages[i]);
693 pages[i] = NULL;
694 }
695 }
696 return;
697 }
698
699 spin_lock_irqsave(&pool->lock, irq_flags);
700 for (i = 0; i < npages; i++) {
701 if (pages[i]) {
702 if (page_count(pages[i]) != 1)
703 pr_err("Erroneous page count. Leaking pages.\n");
704 list_add_tail(&pages[i]->lru, &pool->list);
705 pages[i] = NULL;
706 pool->npages++;
707 }
708 }
709 /* Check that we don't go over the pool limit */
710 npages = 0;
711 if (pool->npages > _manager->options.max_size) {
712 npages = pool->npages - _manager->options.max_size;
713 /* free at least NUM_PAGES_TO_ALLOC number of pages
714 * to reduce calls to set_memory_wb */
715 if (npages < NUM_PAGES_TO_ALLOC)
716 npages = NUM_PAGES_TO_ALLOC;
717 }
718 spin_unlock_irqrestore(&pool->lock, irq_flags);
719 if (npages)
720 ttm_page_pool_free(pool, npages, false);
721 }
722
723 /*
724 * On success pages list will hold count number of correctly
725 * cached pages.
726 */
727 static int ttm_get_pages(struct page **pages, unsigned npages, int flags,
728 enum ttm_caching_state cstate)
729 {
730 struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
731 struct list_head plist;
732 struct page *p = NULL;
733 gfp_t gfp_flags = GFP_USER;
734 unsigned count;
735 int r;
736
737 /* set zero flag for page allocation if required */
738 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC)
739 gfp_flags |= __GFP_ZERO;
740
741 /* No pool for cached pages */
742 if (pool == NULL) {
743 if (flags & TTM_PAGE_FLAG_DMA32)
744 gfp_flags |= GFP_DMA32;
745 else
746 gfp_flags |= GFP_HIGHUSER;
747
748 for (r = 0; r < npages; ++r) {
749 p = alloc_page(gfp_flags);
750 if (!p) {
751
752 pr_err("Unable to allocate page\n");
753 return -ENOMEM;
754 }
755
756 pages[r] = p;
757 }
758 return 0;
759 }
760
761 /* combine zero flag to pool flags */
762 gfp_flags |= pool->gfp_flags;
763
764 /* First we take pages from the pool */
765 INIT_LIST_HEAD(&plist);
766 npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages);
767 count = 0;
768 list_for_each_entry(p, &plist, lru) {
769 pages[count++] = p;
770 }
771
772 /* clear the pages coming from the pool if requested */
773 if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
774 list_for_each_entry(p, &plist, lru) {
775 if (PageHighMem(p))
776 clear_highpage(p);
777 else
778 clear_page(page_address(p));
779 }
780 }
781
782 /* If pool didn't have enough pages allocate new one. */
783 if (npages > 0) {
784 /* ttm_alloc_new_pages doesn't reference pool so we can run
785 * multiple requests in parallel.
786 **/
787 INIT_LIST_HEAD(&plist);
788 r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate, npages);
789 list_for_each_entry(p, &plist, lru) {
790 pages[count++] = p;
791 }
792 if (r) {
793 /* If there is any pages in the list put them back to
794 * the pool. */
795 pr_err("Failed to allocate extra pages for large request\n");
796 ttm_put_pages(pages, count, flags, cstate);
797 return r;
798 }
799 }
800
801 return 0;
802 }
803
804 static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, gfp_t flags,
805 char *name)
806 {
807 spin_lock_init(&pool->lock);
808 pool->fill_lock = false;
809 INIT_LIST_HEAD(&pool->list);
810 pool->npages = pool->nfrees = 0;
811 pool->gfp_flags = flags;
812 pool->name = name;
813 }
814
815 int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
816 {
817 int ret;
818
819 WARN_ON(_manager);
820
821 pr_info("Initializing pool allocator\n");
822
823 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
824 if (!_manager)
825 return -ENOMEM;
826
827 ttm_page_pool_init_locked(&_manager->wc_pool, GFP_HIGHUSER, "wc");
828
829 ttm_page_pool_init_locked(&_manager->uc_pool, GFP_HIGHUSER, "uc");
830
831 ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
832 GFP_USER | GFP_DMA32, "wc dma");
833
834 ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
835 GFP_USER | GFP_DMA32, "uc dma");
836
837 _manager->options.max_size = max_pages;
838 _manager->options.small = SMALL_ALLOCATION;
839 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
840
841 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
842 &glob->kobj, "pool");
843 if (unlikely(ret != 0)) {
844 kobject_put(&_manager->kobj);
845 _manager = NULL;
846 return ret;
847 }
848
849 ttm_pool_mm_shrink_init(_manager);
850
851 return 0;
852 }
853
854 void ttm_page_alloc_fini(void)
855 {
856 int i;
857
858 pr_info("Finalizing pool allocator\n");
859 ttm_pool_mm_shrink_fini(_manager);
860
861 /* OK to use static buffer since global mutex is no longer used. */
862 for (i = 0; i < NUM_POOLS; ++i)
863 ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES, true);
864
865 kobject_put(&_manager->kobj);
866 _manager = NULL;
867 }
868
869 int ttm_pool_populate(struct ttm_tt *ttm)
870 {
871 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
872 unsigned i;
873 int ret;
874
875 if (ttm->state != tt_unpopulated)
876 return 0;
877
878 for (i = 0; i < ttm->num_pages; ++i) {
879 ret = ttm_get_pages(&ttm->pages[i], 1,
880 ttm->page_flags,
881 ttm->caching_state);
882 if (ret != 0) {
883 ttm_pool_unpopulate(ttm);
884 return -ENOMEM;
885 }
886
887 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
888 false, false);
889 if (unlikely(ret != 0)) {
890 ttm_pool_unpopulate(ttm);
891 return -ENOMEM;
892 }
893 }
894
895 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
896 ret = ttm_tt_swapin(ttm);
897 if (unlikely(ret != 0)) {
898 ttm_pool_unpopulate(ttm);
899 return ret;
900 }
901 }
902
903 ttm->state = tt_unbound;
904 return 0;
905 }
906 EXPORT_SYMBOL(ttm_pool_populate);
907
908 void ttm_pool_unpopulate(struct ttm_tt *ttm)
909 {
910 unsigned i;
911
912 for (i = 0; i < ttm->num_pages; ++i) {
913 if (ttm->pages[i]) {
914 ttm_mem_global_free_page(ttm->glob->mem_glob,
915 ttm->pages[i]);
916 ttm_put_pages(&ttm->pages[i], 1,
917 ttm->page_flags,
918 ttm->caching_state);
919 }
920 }
921 ttm->state = tt_unpopulated;
922 }
923 EXPORT_SYMBOL(ttm_pool_unpopulate);
924
925 int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
926 {
927 struct ttm_page_pool *p;
928 unsigned i;
929 char *h[] = {"pool", "refills", "pages freed", "size"};
930 if (!_manager) {
931 seq_printf(m, "No pool allocator running.\n");
932 return 0;
933 }
934 seq_printf(m, "%6s %12s %13s %8s\n",
935 h[0], h[1], h[2], h[3]);
936 for (i = 0; i < NUM_POOLS; ++i) {
937 p = &_manager->pools[i];
938
939 seq_printf(m, "%6s %12ld %13ld %8d\n",
940 p->name, p->nrefills,
941 p->nfrees, p->npages);
942 }
943 return 0;
944 }
945 EXPORT_SYMBOL(ttm_page_alloc_debugfs);