Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / ttm / ttm_memory.c
1 /**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "ttm/ttm_memory.h"
29 #include "ttm/ttm_module.h"
30 #include <linux/spinlock.h>
31 #include <linux/sched.h>
32 #include <linux/wait.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35
36 #define TTM_MEMORY_ALLOC_RETRIES 4
37
38 struct ttm_mem_zone {
39 struct kobject kobj;
40 struct ttm_mem_global *glob;
41 const char *name;
42 uint64_t zone_mem;
43 uint64_t emer_mem;
44 uint64_t max_mem;
45 uint64_t swap_limit;
46 uint64_t used_mem;
47 };
48
49 static struct attribute ttm_mem_sys = {
50 .name = "zone_memory",
51 .mode = S_IRUGO
52 };
53 static struct attribute ttm_mem_emer = {
54 .name = "emergency_memory",
55 .mode = S_IRUGO | S_IWUSR
56 };
57 static struct attribute ttm_mem_max = {
58 .name = "available_memory",
59 .mode = S_IRUGO | S_IWUSR
60 };
61 static struct attribute ttm_mem_swap = {
62 .name = "swap_limit",
63 .mode = S_IRUGO | S_IWUSR
64 };
65 static struct attribute ttm_mem_used = {
66 .name = "used_memory",
67 .mode = S_IRUGO
68 };
69
70 static void ttm_mem_zone_kobj_release(struct kobject *kobj)
71 {
72 struct ttm_mem_zone *zone =
73 container_of(kobj, struct ttm_mem_zone, kobj);
74
75 printk(KERN_INFO TTM_PFX
76 "Zone %7s: Used memory at exit: %llu kiB.\n",
77 zone->name, (unsigned long long) zone->used_mem >> 10);
78 kfree(zone);
79 }
80
81 static ssize_t ttm_mem_zone_show(struct kobject *kobj,
82 struct attribute *attr,
83 char *buffer)
84 {
85 struct ttm_mem_zone *zone =
86 container_of(kobj, struct ttm_mem_zone, kobj);
87 uint64_t val = 0;
88
89 spin_lock(&zone->glob->lock);
90 if (attr == &ttm_mem_sys)
91 val = zone->zone_mem;
92 else if (attr == &ttm_mem_emer)
93 val = zone->emer_mem;
94 else if (attr == &ttm_mem_max)
95 val = zone->max_mem;
96 else if (attr == &ttm_mem_swap)
97 val = zone->swap_limit;
98 else if (attr == &ttm_mem_used)
99 val = zone->used_mem;
100 spin_unlock(&zone->glob->lock);
101
102 return snprintf(buffer, PAGE_SIZE, "%llu\n",
103 (unsigned long long) val >> 10);
104 }
105
106 static void ttm_check_swapping(struct ttm_mem_global *glob);
107
108 static ssize_t ttm_mem_zone_store(struct kobject *kobj,
109 struct attribute *attr,
110 const char *buffer,
111 size_t size)
112 {
113 struct ttm_mem_zone *zone =
114 container_of(kobj, struct ttm_mem_zone, kobj);
115 int chars;
116 unsigned long val;
117 uint64_t val64;
118
119 chars = sscanf(buffer, "%lu", &val);
120 if (chars == 0)
121 return size;
122
123 val64 = val;
124 val64 <<= 10;
125
126 spin_lock(&zone->glob->lock);
127 if (val64 > zone->zone_mem)
128 val64 = zone->zone_mem;
129 if (attr == &ttm_mem_emer) {
130 zone->emer_mem = val64;
131 if (zone->max_mem > val64)
132 zone->max_mem = val64;
133 } else if (attr == &ttm_mem_max) {
134 zone->max_mem = val64;
135 if (zone->emer_mem < val64)
136 zone->emer_mem = val64;
137 } else if (attr == &ttm_mem_swap)
138 zone->swap_limit = val64;
139 spin_unlock(&zone->glob->lock);
140
141 ttm_check_swapping(zone->glob);
142
143 return size;
144 }
145
146 static struct attribute *ttm_mem_zone_attrs[] = {
147 &ttm_mem_sys,
148 &ttm_mem_emer,
149 &ttm_mem_max,
150 &ttm_mem_swap,
151 &ttm_mem_used,
152 NULL
153 };
154
155 static struct sysfs_ops ttm_mem_zone_ops = {
156 .show = &ttm_mem_zone_show,
157 .store = &ttm_mem_zone_store
158 };
159
160 static struct kobj_type ttm_mem_zone_kobj_type = {
161 .release = &ttm_mem_zone_kobj_release,
162 .sysfs_ops = &ttm_mem_zone_ops,
163 .default_attrs = ttm_mem_zone_attrs,
164 };
165
166 static void ttm_mem_global_kobj_release(struct kobject *kobj)
167 {
168 struct ttm_mem_global *glob =
169 container_of(kobj, struct ttm_mem_global, kobj);
170
171 kfree(glob);
172 }
173
174 static struct kobj_type ttm_mem_glob_kobj_type = {
175 .release = &ttm_mem_global_kobj_release,
176 };
177
178 static bool ttm_zones_above_swap_target(struct ttm_mem_global *glob,
179 bool from_wq, uint64_t extra)
180 {
181 unsigned int i;
182 struct ttm_mem_zone *zone;
183 uint64_t target;
184
185 for (i = 0; i < glob->num_zones; ++i) {
186 zone = glob->zones[i];
187
188 if (from_wq)
189 target = zone->swap_limit;
190 else if (capable(CAP_SYS_ADMIN))
191 target = zone->emer_mem;
192 else
193 target = zone->max_mem;
194
195 target = (extra > target) ? 0ULL : target;
196
197 if (zone->used_mem > target)
198 return true;
199 }
200 return false;
201 }
202
203 /**
204 * At this point we only support a single shrink callback.
205 * Extend this if needed, perhaps using a linked list of callbacks.
206 * Note that this function is reentrant:
207 * many threads may try to swap out at any given time.
208 */
209
210 static void ttm_shrink(struct ttm_mem_global *glob, bool from_wq,
211 uint64_t extra)
212 {
213 int ret;
214 struct ttm_mem_shrink *shrink;
215
216 spin_lock(&glob->lock);
217 if (glob->shrink == NULL)
218 goto out;
219
220 while (ttm_zones_above_swap_target(glob, from_wq, extra)) {
221 shrink = glob->shrink;
222 spin_unlock(&glob->lock);
223 ret = shrink->do_shrink(shrink);
224 spin_lock(&glob->lock);
225 if (unlikely(ret != 0))
226 goto out;
227 }
228 out:
229 spin_unlock(&glob->lock);
230 }
231
232
233
234 static void ttm_shrink_work(struct work_struct *work)
235 {
236 struct ttm_mem_global *glob =
237 container_of(work, struct ttm_mem_global, work);
238
239 ttm_shrink(glob, true, 0ULL);
240 }
241
242 static int ttm_mem_init_kernel_zone(struct ttm_mem_global *glob,
243 const struct sysinfo *si)
244 {
245 struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
246 uint64_t mem;
247 int ret;
248
249 if (unlikely(!zone))
250 return -ENOMEM;
251
252 mem = si->totalram - si->totalhigh;
253 mem *= si->mem_unit;
254
255 zone->name = "kernel";
256 zone->zone_mem = mem;
257 zone->max_mem = mem >> 1;
258 zone->emer_mem = (mem >> 1) + (mem >> 2);
259 zone->swap_limit = zone->max_mem - (mem >> 3);
260 zone->used_mem = 0;
261 zone->glob = glob;
262 glob->zone_kernel = zone;
263 kobject_init(&zone->kobj, &ttm_mem_zone_kobj_type);
264 ret = kobject_add(&zone->kobj, &glob->kobj, zone->name);
265 if (unlikely(ret != 0)) {
266 kobject_put(&zone->kobj);
267 return ret;
268 }
269 glob->zones[glob->num_zones++] = zone;
270 return 0;
271 }
272
273 #ifdef CONFIG_HIGHMEM
274 static int ttm_mem_init_highmem_zone(struct ttm_mem_global *glob,
275 const struct sysinfo *si)
276 {
277 struct ttm_mem_zone *zone;
278 uint64_t mem;
279 int ret;
280
281 if (si->totalhigh == 0)
282 return 0;
283
284 zone = kzalloc(sizeof(*zone), GFP_KERNEL);
285 if (unlikely(!zone))
286 return -ENOMEM;
287
288 mem = si->totalram;
289 mem *= si->mem_unit;
290
291 zone->name = "highmem";
292 zone->zone_mem = mem;
293 zone->max_mem = mem >> 1;
294 zone->emer_mem = (mem >> 1) + (mem >> 2);
295 zone->swap_limit = zone->max_mem - (mem >> 3);
296 zone->used_mem = 0;
297 zone->glob = glob;
298 glob->zone_highmem = zone;
299 kobject_init(&zone->kobj, &ttm_mem_zone_kobj_type);
300 ret = kobject_add(&zone->kobj, &glob->kobj, zone->name);
301 if (unlikely(ret != 0)) {
302 kobject_put(&zone->kobj);
303 return ret;
304 }
305 glob->zones[glob->num_zones++] = zone;
306 return 0;
307 }
308 #else
309 static int ttm_mem_init_dma32_zone(struct ttm_mem_global *glob,
310 const struct sysinfo *si)
311 {
312 struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL);
313 uint64_t mem;
314 int ret;
315
316 if (unlikely(!zone))
317 return -ENOMEM;
318
319 mem = si->totalram;
320 mem *= si->mem_unit;
321
322 /**
323 * No special dma32 zone needed.
324 */
325
326 if (mem <= ((uint64_t) 1ULL << 32)) {
327 kfree(zone);
328 return 0;
329 }
330
331 /*
332 * Limit max dma32 memory to 4GB for now
333 * until we can figure out how big this
334 * zone really is.
335 */
336
337 mem = ((uint64_t) 1ULL << 32);
338 zone->name = "dma32";
339 zone->zone_mem = mem;
340 zone->max_mem = mem >> 1;
341 zone->emer_mem = (mem >> 1) + (mem >> 2);
342 zone->swap_limit = zone->max_mem - (mem >> 3);
343 zone->used_mem = 0;
344 zone->glob = glob;
345 glob->zone_dma32 = zone;
346 kobject_init(&zone->kobj, &ttm_mem_zone_kobj_type);
347 ret = kobject_add(&zone->kobj, &glob->kobj, zone->name);
348 if (unlikely(ret != 0)) {
349 kobject_put(&zone->kobj);
350 return ret;
351 }
352 glob->zones[glob->num_zones++] = zone;
353 return 0;
354 }
355 #endif
356
357 int ttm_mem_global_init(struct ttm_mem_global *glob)
358 {
359 struct sysinfo si;
360 int ret;
361 int i;
362 struct ttm_mem_zone *zone;
363
364 spin_lock_init(&glob->lock);
365 glob->swap_queue = create_singlethread_workqueue("ttm_swap");
366 INIT_WORK(&glob->work, ttm_shrink_work);
367 init_waitqueue_head(&glob->queue);
368 kobject_init(&glob->kobj, &ttm_mem_glob_kobj_type);
369 ret = kobject_add(&glob->kobj,
370 ttm_get_kobj(),
371 "memory_accounting");
372 if (unlikely(ret != 0)) {
373 kobject_put(&glob->kobj);
374 return ret;
375 }
376
377 si_meminfo(&si);
378
379 ret = ttm_mem_init_kernel_zone(glob, &si);
380 if (unlikely(ret != 0))
381 goto out_no_zone;
382 #ifdef CONFIG_HIGHMEM
383 ret = ttm_mem_init_highmem_zone(glob, &si);
384 if (unlikely(ret != 0))
385 goto out_no_zone;
386 #else
387 ret = ttm_mem_init_dma32_zone(glob, &si);
388 if (unlikely(ret != 0))
389 goto out_no_zone;
390 #endif
391 for (i = 0; i < glob->num_zones; ++i) {
392 zone = glob->zones[i];
393 printk(KERN_INFO TTM_PFX
394 "Zone %7s: Available graphics memory: %llu kiB.\n",
395 zone->name, (unsigned long long) zone->max_mem >> 10);
396 }
397 return 0;
398 out_no_zone:
399 ttm_mem_global_release(glob);
400 return ret;
401 }
402 EXPORT_SYMBOL(ttm_mem_global_init);
403
404 void ttm_mem_global_release(struct ttm_mem_global *glob)
405 {
406 unsigned int i;
407 struct ttm_mem_zone *zone;
408
409 flush_workqueue(glob->swap_queue);
410 destroy_workqueue(glob->swap_queue);
411 glob->swap_queue = NULL;
412 for (i = 0; i < glob->num_zones; ++i) {
413 zone = glob->zones[i];
414 kobject_del(&zone->kobj);
415 kobject_put(&zone->kobj);
416 }
417 kobject_del(&glob->kobj);
418 kobject_put(&glob->kobj);
419 }
420 EXPORT_SYMBOL(ttm_mem_global_release);
421
422 static void ttm_check_swapping(struct ttm_mem_global *glob)
423 {
424 bool needs_swapping = false;
425 unsigned int i;
426 struct ttm_mem_zone *zone;
427
428 spin_lock(&glob->lock);
429 for (i = 0; i < glob->num_zones; ++i) {
430 zone = glob->zones[i];
431 if (zone->used_mem > zone->swap_limit) {
432 needs_swapping = true;
433 break;
434 }
435 }
436
437 spin_unlock(&glob->lock);
438
439 if (unlikely(needs_swapping))
440 (void)queue_work(glob->swap_queue, &glob->work);
441
442 }
443
444 static void ttm_mem_global_free_zone(struct ttm_mem_global *glob,
445 struct ttm_mem_zone *single_zone,
446 uint64_t amount)
447 {
448 unsigned int i;
449 struct ttm_mem_zone *zone;
450
451 spin_lock(&glob->lock);
452 for (i = 0; i < glob->num_zones; ++i) {
453 zone = glob->zones[i];
454 if (single_zone && zone != single_zone)
455 continue;
456 zone->used_mem -= amount;
457 }
458 spin_unlock(&glob->lock);
459 }
460
461 void ttm_mem_global_free(struct ttm_mem_global *glob,
462 uint64_t amount)
463 {
464 return ttm_mem_global_free_zone(glob, NULL, amount);
465 }
466 EXPORT_SYMBOL(ttm_mem_global_free);
467
468 static int ttm_mem_global_reserve(struct ttm_mem_global *glob,
469 struct ttm_mem_zone *single_zone,
470 uint64_t amount, bool reserve)
471 {
472 uint64_t limit;
473 int ret = -ENOMEM;
474 unsigned int i;
475 struct ttm_mem_zone *zone;
476
477 spin_lock(&glob->lock);
478 for (i = 0; i < glob->num_zones; ++i) {
479 zone = glob->zones[i];
480 if (single_zone && zone != single_zone)
481 continue;
482
483 limit = (capable(CAP_SYS_ADMIN)) ?
484 zone->emer_mem : zone->max_mem;
485
486 if (zone->used_mem > limit)
487 goto out_unlock;
488 }
489
490 if (reserve) {
491 for (i = 0; i < glob->num_zones; ++i) {
492 zone = glob->zones[i];
493 if (single_zone && zone != single_zone)
494 continue;
495 zone->used_mem += amount;
496 }
497 }
498
499 ret = 0;
500 out_unlock:
501 spin_unlock(&glob->lock);
502 ttm_check_swapping(glob);
503
504 return ret;
505 }
506
507
508 static int ttm_mem_global_alloc_zone(struct ttm_mem_global *glob,
509 struct ttm_mem_zone *single_zone,
510 uint64_t memory,
511 bool no_wait, bool interruptible)
512 {
513 int count = TTM_MEMORY_ALLOC_RETRIES;
514
515 while (unlikely(ttm_mem_global_reserve(glob,
516 single_zone,
517 memory, true)
518 != 0)) {
519 if (no_wait)
520 return -ENOMEM;
521 if (unlikely(count-- == 0))
522 return -ENOMEM;
523 ttm_shrink(glob, false, memory + (memory >> 2) + 16);
524 }
525
526 return 0;
527 }
528
529 int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory,
530 bool no_wait, bool interruptible)
531 {
532 /**
533 * Normal allocations of kernel memory are registered in
534 * all zones.
535 */
536
537 return ttm_mem_global_alloc_zone(glob, NULL, memory, no_wait,
538 interruptible);
539 }
540 EXPORT_SYMBOL(ttm_mem_global_alloc);
541
542 int ttm_mem_global_alloc_page(struct ttm_mem_global *glob,
543 struct page *page,
544 bool no_wait, bool interruptible)
545 {
546
547 struct ttm_mem_zone *zone = NULL;
548
549 /**
550 * Page allocations may be registed in a single zone
551 * only if highmem or !dma32.
552 */
553
554 #ifdef CONFIG_HIGHMEM
555 if (PageHighMem(page) && glob->zone_highmem != NULL)
556 zone = glob->zone_highmem;
557 #else
558 if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
559 zone = glob->zone_kernel;
560 #endif
561 return ttm_mem_global_alloc_zone(glob, zone, PAGE_SIZE, no_wait,
562 interruptible);
563 }
564
565 void ttm_mem_global_free_page(struct ttm_mem_global *glob, struct page *page)
566 {
567 struct ttm_mem_zone *zone = NULL;
568
569 #ifdef CONFIG_HIGHMEM
570 if (PageHighMem(page) && glob->zone_highmem != NULL)
571 zone = glob->zone_highmem;
572 #else
573 if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL)
574 zone = glob->zone_kernel;
575 #endif
576 ttm_mem_global_free_zone(glob, zone, PAGE_SIZE);
577 }
578
579
580 size_t ttm_round_pot(size_t size)
581 {
582 if ((size & (size - 1)) == 0)
583 return size;
584 else if (size > PAGE_SIZE)
585 return PAGE_ALIGN(size);
586 else {
587 size_t tmp_size = 4;
588
589 while (tmp_size < size)
590 tmp_size <<= 1;
591
592 return tmp_size;
593 }
594 return 0;
595 }
596 EXPORT_SYMBOL(ttm_round_pot);