UAPI: (Scripted) Convert #include "..." to #include <path/...> in drivers/gpu/
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / nouveau / nvd0_display.c
1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25 #include <linux/dma-mapping.h>
26
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
29
30 #include "nouveau_drv.h"
31 #include "nouveau_connector.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_crtc.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fb.h"
36 #include "nouveau_software.h"
37 #include "nv50_display.h"
38
39 #define EVO_DMA_NR 9
40
41 #define EVO_MASTER (0x00)
42 #define EVO_FLIP(c) (0x01 + (c))
43 #define EVO_OVLY(c) (0x05 + (c))
44 #define EVO_OIMM(c) (0x09 + (c))
45 #define EVO_CURS(c) (0x0d + (c))
46
47 /* offsets in shared sync bo of various structures */
48 #define EVO_SYNC(c, o) ((c) * 0x0100 + (o))
49 #define EVO_MAST_NTFY EVO_SYNC( 0, 0x00)
50 #define EVO_FLIP_SEM0(c) EVO_SYNC((c), 0x00)
51 #define EVO_FLIP_SEM1(c) EVO_SYNC((c), 0x10)
52
53 struct evo {
54 int idx;
55 dma_addr_t handle;
56 u32 *ptr;
57 struct {
58 u32 offset;
59 u16 value;
60 } sem;
61 };
62
63 struct nvd0_display {
64 struct nouveau_gpuobj *mem;
65 struct nouveau_bo *sync;
66 struct evo evo[9];
67
68 struct tasklet_struct tasklet;
69 u32 modeset;
70 };
71
72 static struct nvd0_display *
73 nvd0_display(struct drm_device *dev)
74 {
75 struct drm_nouveau_private *dev_priv = dev->dev_private;
76 return dev_priv->engine.display.priv;
77 }
78
79 static struct drm_crtc *
80 nvd0_display_crtc_get(struct drm_encoder *encoder)
81 {
82 return nouveau_encoder(encoder)->crtc;
83 }
84
85 /******************************************************************************
86 * EVO channel helpers
87 *****************************************************************************/
88 static inline int
89 evo_icmd(struct drm_device *dev, int id, u32 mthd, u32 data)
90 {
91 int ret = 0;
92 nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000001);
93 nv_wr32(dev, 0x610704 + (id * 0x10), data);
94 nv_mask(dev, 0x610704 + (id * 0x10), 0x80000ffc, 0x80000000 | mthd);
95 if (!nv_wait(dev, 0x610704 + (id * 0x10), 0x80000000, 0x00000000))
96 ret = -EBUSY;
97 nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000000);
98 return ret;
99 }
100
101 static u32 *
102 evo_wait(struct drm_device *dev, int id, int nr)
103 {
104 struct nvd0_display *disp = nvd0_display(dev);
105 u32 put = nv_rd32(dev, 0x640000 + (id * 0x1000)) / 4;
106
107 if (put + nr >= (PAGE_SIZE / 4)) {
108 disp->evo[id].ptr[put] = 0x20000000;
109
110 nv_wr32(dev, 0x640000 + (id * 0x1000), 0x00000000);
111 if (!nv_wait(dev, 0x640004 + (id * 0x1000), ~0, 0x00000000)) {
112 NV_ERROR(dev, "evo %d dma stalled\n", id);
113 return NULL;
114 }
115
116 put = 0;
117 }
118
119 if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
120 NV_INFO(dev, "Evo%d: %p START\n", id, disp->evo[id].ptr + put);
121
122 return disp->evo[id].ptr + put;
123 }
124
125 static void
126 evo_kick(u32 *push, struct drm_device *dev, int id)
127 {
128 struct nvd0_display *disp = nvd0_display(dev);
129
130 if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO) {
131 u32 curp = nv_rd32(dev, 0x640000 + (id * 0x1000)) >> 2;
132 u32 *cur = disp->evo[id].ptr + curp;
133
134 while (cur < push)
135 NV_INFO(dev, "Evo%d: 0x%08x\n", id, *cur++);
136 NV_INFO(dev, "Evo%d: %p KICK!\n", id, push);
137 }
138
139 nv_wr32(dev, 0x640000 + (id * 0x1000), (push - disp->evo[id].ptr) << 2);
140 }
141
142 #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
143 #define evo_data(p,d) *((p)++) = (d)
144
145 static int
146 evo_init_dma(struct drm_device *dev, int ch)
147 {
148 struct nvd0_display *disp = nvd0_display(dev);
149 u32 flags;
150
151 flags = 0x00000000;
152 if (ch == EVO_MASTER)
153 flags |= 0x01000000;
154
155 nv_wr32(dev, 0x610494 + (ch * 0x0010), (disp->evo[ch].handle >> 8) | 3);
156 nv_wr32(dev, 0x610498 + (ch * 0x0010), 0x00010000);
157 nv_wr32(dev, 0x61049c + (ch * 0x0010), 0x00000001);
158 nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
159 nv_wr32(dev, 0x640000 + (ch * 0x1000), 0x00000000);
160 nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000013 | flags);
161 if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000)) {
162 NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
163 nv_rd32(dev, 0x610490 + (ch * 0x0010)));
164 return -EBUSY;
165 }
166
167 nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
168 nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
169 return 0;
170 }
171
172 static void
173 evo_fini_dma(struct drm_device *dev, int ch)
174 {
175 if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000010))
176 return;
177
178 nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000000);
179 nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000003, 0x00000000);
180 nv_wait(dev, 0x610490 + (ch * 0x0010), 0x80000000, 0x00000000);
181 nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
182 nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
183 }
184
185 static inline void
186 evo_piow(struct drm_device *dev, int ch, u16 mthd, u32 data)
187 {
188 nv_wr32(dev, 0x640000 + (ch * 0x1000) + mthd, data);
189 }
190
191 static int
192 evo_init_pio(struct drm_device *dev, int ch)
193 {
194 nv_wr32(dev, 0x610490 + (ch * 0x0010), 0x00000001);
195 if (!nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00010000)) {
196 NV_ERROR(dev, "PDISP: ch%d 0x%08x\n", ch,
197 nv_rd32(dev, 0x610490 + (ch * 0x0010)));
198 return -EBUSY;
199 }
200
201 nv_mask(dev, 0x610090, (1 << ch), (1 << ch));
202 nv_mask(dev, 0x6100a0, (1 << ch), (1 << ch));
203 return 0;
204 }
205
206 static void
207 evo_fini_pio(struct drm_device *dev, int ch)
208 {
209 if (!(nv_rd32(dev, 0x610490 + (ch * 0x0010)) & 0x00000001))
210 return;
211
212 nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000010, 0x00000010);
213 nv_mask(dev, 0x610490 + (ch * 0x0010), 0x00000001, 0x00000000);
214 nv_wait(dev, 0x610490 + (ch * 0x0010), 0x00010000, 0x00000000);
215 nv_mask(dev, 0x610090, (1 << ch), 0x00000000);
216 nv_mask(dev, 0x6100a0, (1 << ch), 0x00000000);
217 }
218
219 static bool
220 evo_sync_wait(void *data)
221 {
222 return nouveau_bo_rd32(data, EVO_MAST_NTFY) != 0x00000000;
223 }
224
225 static int
226 evo_sync(struct drm_device *dev, int ch)
227 {
228 struct nvd0_display *disp = nvd0_display(dev);
229 u32 *push = evo_wait(dev, ch, 8);
230 if (push) {
231 nouveau_bo_wr32(disp->sync, EVO_MAST_NTFY, 0x00000000);
232 evo_mthd(push, 0x0084, 1);
233 evo_data(push, 0x80000000 | EVO_MAST_NTFY);
234 evo_mthd(push, 0x0080, 2);
235 evo_data(push, 0x00000000);
236 evo_data(push, 0x00000000);
237 evo_kick(push, dev, ch);
238 if (nv_wait_cb(dev, evo_sync_wait, disp->sync))
239 return 0;
240 }
241
242 return -EBUSY;
243 }
244
245 /******************************************************************************
246 * Page flipping channel
247 *****************************************************************************/
248 struct nouveau_bo *
249 nvd0_display_crtc_sema(struct drm_device *dev, int crtc)
250 {
251 return nvd0_display(dev)->sync;
252 }
253
254 void
255 nvd0_display_flip_stop(struct drm_crtc *crtc)
256 {
257 struct nvd0_display *disp = nvd0_display(crtc->dev);
258 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
259 struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
260 u32 *push;
261
262 push = evo_wait(crtc->dev, evo->idx, 8);
263 if (push) {
264 evo_mthd(push, 0x0084, 1);
265 evo_data(push, 0x00000000);
266 evo_mthd(push, 0x0094, 1);
267 evo_data(push, 0x00000000);
268 evo_mthd(push, 0x00c0, 1);
269 evo_data(push, 0x00000000);
270 evo_mthd(push, 0x0080, 1);
271 evo_data(push, 0x00000000);
272 evo_kick(push, crtc->dev, evo->idx);
273 }
274 }
275
276 int
277 nvd0_display_flip_next(struct drm_crtc *crtc, struct drm_framebuffer *fb,
278 struct nouveau_channel *chan, u32 swap_interval)
279 {
280 struct nouveau_framebuffer *nv_fb = nouveau_framebuffer(fb);
281 struct nvd0_display *disp = nvd0_display(crtc->dev);
282 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
283 struct evo *evo = &disp->evo[EVO_FLIP(nv_crtc->index)];
284 u64 offset;
285 u32 *push;
286 int ret;
287
288 swap_interval <<= 4;
289 if (swap_interval == 0)
290 swap_interval |= 0x100;
291
292 push = evo_wait(crtc->dev, evo->idx, 128);
293 if (unlikely(push == NULL))
294 return -EBUSY;
295
296 /* synchronise with the rendering channel, if necessary */
297 if (likely(chan)) {
298 ret = RING_SPACE(chan, 10);
299 if (ret)
300 return ret;
301
302
303 offset = nvc0_software_crtc(chan, nv_crtc->index);
304 offset += evo->sem.offset;
305
306 BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
307 OUT_RING (chan, upper_32_bits(offset));
308 OUT_RING (chan, lower_32_bits(offset));
309 OUT_RING (chan, 0xf00d0000 | evo->sem.value);
310 OUT_RING (chan, 0x1002);
311 BEGIN_NVC0(chan, 0, NV84_SUBCHAN_SEMAPHORE_ADDRESS_HIGH, 4);
312 OUT_RING (chan, upper_32_bits(offset));
313 OUT_RING (chan, lower_32_bits(offset ^ 0x10));
314 OUT_RING (chan, 0x74b1e000);
315 OUT_RING (chan, 0x1001);
316 FIRE_RING (chan);
317 } else {
318 nouveau_bo_wr32(disp->sync, evo->sem.offset / 4,
319 0xf00d0000 | evo->sem.value);
320 evo_sync(crtc->dev, EVO_MASTER);
321 }
322
323 /* queue the flip */
324 evo_mthd(push, 0x0100, 1);
325 evo_data(push, 0xfffe0000);
326 evo_mthd(push, 0x0084, 1);
327 evo_data(push, swap_interval);
328 if (!(swap_interval & 0x00000100)) {
329 evo_mthd(push, 0x00e0, 1);
330 evo_data(push, 0x40000000);
331 }
332 evo_mthd(push, 0x0088, 4);
333 evo_data(push, evo->sem.offset);
334 evo_data(push, 0xf00d0000 | evo->sem.value);
335 evo_data(push, 0x74b1e000);
336 evo_data(push, NvEvoSync);
337 evo_mthd(push, 0x00a0, 2);
338 evo_data(push, 0x00000000);
339 evo_data(push, 0x00000000);
340 evo_mthd(push, 0x00c0, 1);
341 evo_data(push, nv_fb->r_dma);
342 evo_mthd(push, 0x0110, 2);
343 evo_data(push, 0x00000000);
344 evo_data(push, 0x00000000);
345 evo_mthd(push, 0x0400, 5);
346 evo_data(push, nv_fb->nvbo->bo.offset >> 8);
347 evo_data(push, 0);
348 evo_data(push, (fb->height << 16) | fb->width);
349 evo_data(push, nv_fb->r_pitch);
350 evo_data(push, nv_fb->r_format);
351 evo_mthd(push, 0x0080, 1);
352 evo_data(push, 0x00000000);
353 evo_kick(push, crtc->dev, evo->idx);
354
355 evo->sem.offset ^= 0x10;
356 evo->sem.value++;
357 return 0;
358 }
359
360 /******************************************************************************
361 * CRTC
362 *****************************************************************************/
363 static int
364 nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool update)
365 {
366 struct drm_nouveau_private *dev_priv = nv_crtc->base.dev->dev_private;
367 struct drm_device *dev = nv_crtc->base.dev;
368 struct nouveau_connector *nv_connector;
369 struct drm_connector *connector;
370 u32 *push, mode = 0x00;
371 u32 mthd;
372
373 nv_connector = nouveau_crtc_connector_get(nv_crtc);
374 connector = &nv_connector->base;
375 if (nv_connector->dithering_mode == DITHERING_MODE_AUTO) {
376 if (nv_crtc->base.fb->depth > connector->display_info.bpc * 3)
377 mode = DITHERING_MODE_DYNAMIC2X2;
378 } else {
379 mode = nv_connector->dithering_mode;
380 }
381
382 if (nv_connector->dithering_depth == DITHERING_DEPTH_AUTO) {
383 if (connector->display_info.bpc >= 8)
384 mode |= DITHERING_DEPTH_8BPC;
385 } else {
386 mode |= nv_connector->dithering_depth;
387 }
388
389 if (dev_priv->card_type < NV_E0)
390 mthd = 0x0490 + (nv_crtc->index * 0x0300);
391 else
392 mthd = 0x04a0 + (nv_crtc->index * 0x0300);
393
394 push = evo_wait(dev, EVO_MASTER, 4);
395 if (push) {
396 evo_mthd(push, mthd, 1);
397 evo_data(push, mode);
398 if (update) {
399 evo_mthd(push, 0x0080, 1);
400 evo_data(push, 0x00000000);
401 }
402 evo_kick(push, dev, EVO_MASTER);
403 }
404
405 return 0;
406 }
407
408 static int
409 nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, bool update)
410 {
411 struct drm_display_mode *omode, *umode = &nv_crtc->base.mode;
412 struct drm_device *dev = nv_crtc->base.dev;
413 struct drm_crtc *crtc = &nv_crtc->base;
414 struct nouveau_connector *nv_connector;
415 int mode = DRM_MODE_SCALE_NONE;
416 u32 oX, oY, *push;
417
418 /* start off at the resolution we programmed the crtc for, this
419 * effectively handles NONE/FULL scaling
420 */
421 nv_connector = nouveau_crtc_connector_get(nv_crtc);
422 if (nv_connector && nv_connector->native_mode)
423 mode = nv_connector->scaling_mode;
424
425 if (mode != DRM_MODE_SCALE_NONE)
426 omode = nv_connector->native_mode;
427 else
428 omode = umode;
429
430 oX = omode->hdisplay;
431 oY = omode->vdisplay;
432 if (omode->flags & DRM_MODE_FLAG_DBLSCAN)
433 oY *= 2;
434
435 /* add overscan compensation if necessary, will keep the aspect
436 * ratio the same as the backend mode unless overridden by the
437 * user setting both hborder and vborder properties.
438 */
439 if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
440 (nv_connector->underscan == UNDERSCAN_AUTO &&
441 nv_connector->edid &&
442 drm_detect_hdmi_monitor(nv_connector->edid)))) {
443 u32 bX = nv_connector->underscan_hborder;
444 u32 bY = nv_connector->underscan_vborder;
445 u32 aspect = (oY << 19) / oX;
446
447 if (bX) {
448 oX -= (bX * 2);
449 if (bY) oY -= (bY * 2);
450 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
451 } else {
452 oX -= (oX >> 4) + 32;
453 if (bY) oY -= (bY * 2);
454 else oY = ((oX * aspect) + (aspect / 2)) >> 19;
455 }
456 }
457
458 /* handle CENTER/ASPECT scaling, taking into account the areas
459 * removed already for overscan compensation
460 */
461 switch (mode) {
462 case DRM_MODE_SCALE_CENTER:
463 oX = min((u32)umode->hdisplay, oX);
464 oY = min((u32)umode->vdisplay, oY);
465 /* fall-through */
466 case DRM_MODE_SCALE_ASPECT:
467 if (oY < oX) {
468 u32 aspect = (umode->hdisplay << 19) / umode->vdisplay;
469 oX = ((oY * aspect) + (aspect / 2)) >> 19;
470 } else {
471 u32 aspect = (umode->vdisplay << 19) / umode->hdisplay;
472 oY = ((oX * aspect) + (aspect / 2)) >> 19;
473 }
474 break;
475 default:
476 break;
477 }
478
479 push = evo_wait(dev, EVO_MASTER, 8);
480 if (push) {
481 evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3);
482 evo_data(push, (oY << 16) | oX);
483 evo_data(push, (oY << 16) | oX);
484 evo_data(push, (oY << 16) | oX);
485 evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1);
486 evo_data(push, 0x00000000);
487 evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1);
488 evo_data(push, (umode->vdisplay << 16) | umode->hdisplay);
489 evo_kick(push, dev, EVO_MASTER);
490 if (update) {
491 nvd0_display_flip_stop(crtc);
492 nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
493 }
494 }
495
496 return 0;
497 }
498
499 static int
500 nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb,
501 int x, int y, bool update)
502 {
503 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb);
504 u32 *push;
505
506 push = evo_wait(fb->dev, EVO_MASTER, 16);
507 if (push) {
508 evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1);
509 evo_data(push, nvfb->nvbo->bo.offset >> 8);
510 evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4);
511 evo_data(push, (fb->height << 16) | fb->width);
512 evo_data(push, nvfb->r_pitch);
513 evo_data(push, nvfb->r_format);
514 evo_data(push, nvfb->r_dma);
515 evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1);
516 evo_data(push, (y << 16) | x);
517 if (update) {
518 evo_mthd(push, 0x0080, 1);
519 evo_data(push, 0x00000000);
520 }
521 evo_kick(push, fb->dev, EVO_MASTER);
522 }
523
524 nv_crtc->fb.tile_flags = nvfb->r_dma;
525 return 0;
526 }
527
528 static void
529 nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update)
530 {
531 struct drm_device *dev = nv_crtc->base.dev;
532 u32 *push = evo_wait(dev, EVO_MASTER, 16);
533 if (push) {
534 if (show) {
535 evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2);
536 evo_data(push, 0x85000000);
537 evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8);
538 evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
539 evo_data(push, NvEvoVRAM);
540 } else {
541 evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1);
542 evo_data(push, 0x05000000);
543 evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1);
544 evo_data(push, 0x00000000);
545 }
546
547 if (update) {
548 evo_mthd(push, 0x0080, 1);
549 evo_data(push, 0x00000000);
550 }
551
552 evo_kick(push, dev, EVO_MASTER);
553 }
554 }
555
556 static void
557 nvd0_crtc_dpms(struct drm_crtc *crtc, int mode)
558 {
559 }
560
561 static void
562 nvd0_crtc_prepare(struct drm_crtc *crtc)
563 {
564 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
565 u32 *push;
566
567 nvd0_display_flip_stop(crtc);
568
569 push = evo_wait(crtc->dev, EVO_MASTER, 2);
570 if (push) {
571 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
572 evo_data(push, 0x00000000);
573 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1);
574 evo_data(push, 0x03000000);
575 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
576 evo_data(push, 0x00000000);
577 evo_kick(push, crtc->dev, EVO_MASTER);
578 }
579
580 nvd0_crtc_cursor_show(nv_crtc, false, false);
581 }
582
583 static void
584 nvd0_crtc_commit(struct drm_crtc *crtc)
585 {
586 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
587 u32 *push;
588
589 push = evo_wait(crtc->dev, EVO_MASTER, 32);
590 if (push) {
591 evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1);
592 evo_data(push, nv_crtc->fb.tile_flags);
593 evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4);
594 evo_data(push, 0x83000000);
595 evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8);
596 evo_data(push, 0x00000000);
597 evo_data(push, 0x00000000);
598 evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1);
599 evo_data(push, NvEvoVRAM);
600 evo_mthd(push, 0x0430 + (nv_crtc->index * 0x300), 1);
601 evo_data(push, 0xffffff00);
602 evo_kick(push, crtc->dev, EVO_MASTER);
603 }
604
605 nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, true);
606 nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
607 }
608
609 static bool
610 nvd0_crtc_mode_fixup(struct drm_crtc *crtc, const struct drm_display_mode *mode,
611 struct drm_display_mode *adjusted_mode)
612 {
613 return true;
614 }
615
616 static int
617 nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb)
618 {
619 struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb);
620 int ret;
621
622 ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM);
623 if (ret)
624 return ret;
625
626 if (old_fb) {
627 nvfb = nouveau_framebuffer(old_fb);
628 nouveau_bo_unpin(nvfb->nvbo);
629 }
630
631 return 0;
632 }
633
634 static int
635 nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode,
636 struct drm_display_mode *mode, int x, int y,
637 struct drm_framebuffer *old_fb)
638 {
639 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
640 struct nouveau_connector *nv_connector;
641 u32 ilace = (mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 1;
642 u32 vscan = (mode->flags & DRM_MODE_FLAG_DBLSCAN) ? 2 : 1;
643 u32 hactive, hsynce, hbackp, hfrontp, hblanke, hblanks;
644 u32 vactive, vsynce, vbackp, vfrontp, vblanke, vblanks;
645 u32 vblan2e = 0, vblan2s = 1;
646 u32 *push;
647 int ret;
648
649 hactive = mode->htotal;
650 hsynce = mode->hsync_end - mode->hsync_start - 1;
651 hbackp = mode->htotal - mode->hsync_end;
652 hblanke = hsynce + hbackp;
653 hfrontp = mode->hsync_start - mode->hdisplay;
654 hblanks = mode->htotal - hfrontp - 1;
655
656 vactive = mode->vtotal * vscan / ilace;
657 vsynce = ((mode->vsync_end - mode->vsync_start) * vscan / ilace) - 1;
658 vbackp = (mode->vtotal - mode->vsync_end) * vscan / ilace;
659 vblanke = vsynce + vbackp;
660 vfrontp = (mode->vsync_start - mode->vdisplay) * vscan / ilace;
661 vblanks = vactive - vfrontp - 1;
662 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
663 vblan2e = vactive + vsynce + vbackp;
664 vblan2s = vblan2e + (mode->vdisplay * vscan / ilace);
665 vactive = (vactive * 2) + 1;
666 }
667
668 ret = nvd0_crtc_swap_fbs(crtc, old_fb);
669 if (ret)
670 return ret;
671
672 push = evo_wait(crtc->dev, EVO_MASTER, 64);
673 if (push) {
674 evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 6);
675 evo_data(push, 0x00000000);
676 evo_data(push, (vactive << 16) | hactive);
677 evo_data(push, ( vsynce << 16) | hsynce);
678 evo_data(push, (vblanke << 16) | hblanke);
679 evo_data(push, (vblanks << 16) | hblanks);
680 evo_data(push, (vblan2e << 16) | vblan2s);
681 evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1);
682 evo_data(push, 0x00000000); /* ??? */
683 evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3);
684 evo_data(push, mode->clock * 1000);
685 evo_data(push, 0x00200000); /* ??? */
686 evo_data(push, mode->clock * 1000);
687 evo_mthd(push, 0x04d0 + (nv_crtc->index * 0x300), 2);
688 evo_data(push, 0x00000311);
689 evo_data(push, 0x00000100);
690 evo_kick(push, crtc->dev, EVO_MASTER);
691 }
692
693 nv_connector = nouveau_crtc_connector_get(nv_crtc);
694 nvd0_crtc_set_dither(nv_crtc, false);
695 nvd0_crtc_set_scale(nv_crtc, false);
696 nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false);
697 return 0;
698 }
699
700 static int
701 nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
702 struct drm_framebuffer *old_fb)
703 {
704 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
705 int ret;
706
707 if (!crtc->fb) {
708 NV_DEBUG_KMS(crtc->dev, "No FB bound\n");
709 return 0;
710 }
711
712 ret = nvd0_crtc_swap_fbs(crtc, old_fb);
713 if (ret)
714 return ret;
715
716 nvd0_display_flip_stop(crtc);
717 nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true);
718 nvd0_display_flip_next(crtc, crtc->fb, NULL, 1);
719 return 0;
720 }
721
722 static int
723 nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
724 struct drm_framebuffer *fb, int x, int y,
725 enum mode_set_atomic state)
726 {
727 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
728 nvd0_display_flip_stop(crtc);
729 nvd0_crtc_set_image(nv_crtc, fb, x, y, true);
730 return 0;
731 }
732
733 static void
734 nvd0_crtc_lut_load(struct drm_crtc *crtc)
735 {
736 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
737 void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
738 int i;
739
740 for (i = 0; i < 256; i++) {
741 writew(0x6000 + (nv_crtc->lut.r[i] >> 2), lut + (i * 0x20) + 0);
742 writew(0x6000 + (nv_crtc->lut.g[i] >> 2), lut + (i * 0x20) + 2);
743 writew(0x6000 + (nv_crtc->lut.b[i] >> 2), lut + (i * 0x20) + 4);
744 }
745 }
746
747 static int
748 nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
749 uint32_t handle, uint32_t width, uint32_t height)
750 {
751 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
752 struct drm_device *dev = crtc->dev;
753 struct drm_gem_object *gem;
754 struct nouveau_bo *nvbo;
755 bool visible = (handle != 0);
756 int i, ret = 0;
757
758 if (visible) {
759 if (width != 64 || height != 64)
760 return -EINVAL;
761
762 gem = drm_gem_object_lookup(dev, file_priv, handle);
763 if (unlikely(!gem))
764 return -ENOENT;
765 nvbo = nouveau_gem_object(gem);
766
767 ret = nouveau_bo_map(nvbo);
768 if (ret == 0) {
769 for (i = 0; i < 64 * 64; i++) {
770 u32 v = nouveau_bo_rd32(nvbo, i);
771 nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v);
772 }
773 nouveau_bo_unmap(nvbo);
774 }
775
776 drm_gem_object_unreference_unlocked(gem);
777 }
778
779 if (visible != nv_crtc->cursor.visible) {
780 nvd0_crtc_cursor_show(nv_crtc, visible, true);
781 nv_crtc->cursor.visible = visible;
782 }
783
784 return ret;
785 }
786
787 static int
788 nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
789 {
790 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
791 int ch = EVO_CURS(nv_crtc->index);
792
793 evo_piow(crtc->dev, ch, 0x0084, (y << 16) | (x & 0xffff));
794 evo_piow(crtc->dev, ch, 0x0080, 0x00000000);
795 return 0;
796 }
797
798 static void
799 nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
800 uint32_t start, uint32_t size)
801 {
802 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
803 u32 end = max(start + size, (u32)256);
804 u32 i;
805
806 for (i = start; i < end; i++) {
807 nv_crtc->lut.r[i] = r[i];
808 nv_crtc->lut.g[i] = g[i];
809 nv_crtc->lut.b[i] = b[i];
810 }
811
812 nvd0_crtc_lut_load(crtc);
813 }
814
815 static void
816 nvd0_crtc_destroy(struct drm_crtc *crtc)
817 {
818 struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
819 nouveau_bo_unmap(nv_crtc->cursor.nvbo);
820 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
821 nouveau_bo_unmap(nv_crtc->lut.nvbo);
822 nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
823 drm_crtc_cleanup(crtc);
824 kfree(crtc);
825 }
826
827 static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = {
828 .dpms = nvd0_crtc_dpms,
829 .prepare = nvd0_crtc_prepare,
830 .commit = nvd0_crtc_commit,
831 .mode_fixup = nvd0_crtc_mode_fixup,
832 .mode_set = nvd0_crtc_mode_set,
833 .mode_set_base = nvd0_crtc_mode_set_base,
834 .mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic,
835 .load_lut = nvd0_crtc_lut_load,
836 };
837
838 static const struct drm_crtc_funcs nvd0_crtc_func = {
839 .cursor_set = nvd0_crtc_cursor_set,
840 .cursor_move = nvd0_crtc_cursor_move,
841 .gamma_set = nvd0_crtc_gamma_set,
842 .set_config = drm_crtc_helper_set_config,
843 .destroy = nvd0_crtc_destroy,
844 .page_flip = nouveau_crtc_page_flip,
845 };
846
847 static void
848 nvd0_cursor_set_pos(struct nouveau_crtc *nv_crtc, int x, int y)
849 {
850 }
851
852 static void
853 nvd0_cursor_set_offset(struct nouveau_crtc *nv_crtc, uint32_t offset)
854 {
855 }
856
857 static int
858 nvd0_crtc_create(struct drm_device *dev, int index)
859 {
860 struct nouveau_crtc *nv_crtc;
861 struct drm_crtc *crtc;
862 int ret, i;
863
864 nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
865 if (!nv_crtc)
866 return -ENOMEM;
867
868 nv_crtc->index = index;
869 nv_crtc->set_dither = nvd0_crtc_set_dither;
870 nv_crtc->set_scale = nvd0_crtc_set_scale;
871 nv_crtc->cursor.set_offset = nvd0_cursor_set_offset;
872 nv_crtc->cursor.set_pos = nvd0_cursor_set_pos;
873 for (i = 0; i < 256; i++) {
874 nv_crtc->lut.r[i] = i << 8;
875 nv_crtc->lut.g[i] = i << 8;
876 nv_crtc->lut.b[i] = i << 8;
877 }
878
879 crtc = &nv_crtc->base;
880 drm_crtc_init(dev, crtc, &nvd0_crtc_func);
881 drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc);
882 drm_mode_crtc_set_gamma_size(crtc, 256);
883
884 ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM,
885 0, 0x0000, NULL, &nv_crtc->cursor.nvbo);
886 if (!ret) {
887 ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
888 if (!ret)
889 ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
890 if (ret)
891 nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
892 }
893
894 if (ret)
895 goto out;
896
897 ret = nouveau_bo_new(dev, 8192, 0x100, TTM_PL_FLAG_VRAM,
898 0, 0x0000, NULL, &nv_crtc->lut.nvbo);
899 if (!ret) {
900 ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
901 if (!ret)
902 ret = nouveau_bo_map(nv_crtc->lut.nvbo);
903 if (ret)
904 nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
905 }
906
907 if (ret)
908 goto out;
909
910 nvd0_crtc_lut_load(crtc);
911
912 out:
913 if (ret)
914 nvd0_crtc_destroy(crtc);
915 return ret;
916 }
917
918 /******************************************************************************
919 * DAC
920 *****************************************************************************/
921 static void
922 nvd0_dac_dpms(struct drm_encoder *encoder, int mode)
923 {
924 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
925 struct drm_device *dev = encoder->dev;
926 int or = nv_encoder->or;
927 u32 dpms_ctrl;
928
929 dpms_ctrl = 0x80000000;
930 if (mode == DRM_MODE_DPMS_STANDBY || mode == DRM_MODE_DPMS_OFF)
931 dpms_ctrl |= 0x00000001;
932 if (mode == DRM_MODE_DPMS_SUSPEND || mode == DRM_MODE_DPMS_OFF)
933 dpms_ctrl |= 0x00000004;
934
935 nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
936 nv_mask(dev, 0x61a004 + (or * 0x0800), 0xc000007f, dpms_ctrl);
937 nv_wait(dev, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
938 }
939
940 static bool
941 nvd0_dac_mode_fixup(struct drm_encoder *encoder,
942 const struct drm_display_mode *mode,
943 struct drm_display_mode *adjusted_mode)
944 {
945 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
946 struct nouveau_connector *nv_connector;
947
948 nv_connector = nouveau_encoder_connector_get(nv_encoder);
949 if (nv_connector && nv_connector->native_mode) {
950 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
951 int id = adjusted_mode->base.id;
952 *adjusted_mode = *nv_connector->native_mode;
953 adjusted_mode->base.id = id;
954 }
955 }
956
957 return true;
958 }
959
960 static void
961 nvd0_dac_commit(struct drm_encoder *encoder)
962 {
963 }
964
965 static void
966 nvd0_dac_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
967 struct drm_display_mode *adjusted_mode)
968 {
969 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
970 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
971 u32 syncs, magic, *push;
972
973 syncs = 0x00000001;
974 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
975 syncs |= 0x00000008;
976 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
977 syncs |= 0x00000010;
978
979 magic = 0x31ec6000 | (nv_crtc->index << 25);
980 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
981 magic |= 0x00000001;
982
983 nvd0_dac_dpms(encoder, DRM_MODE_DPMS_ON);
984
985 push = evo_wait(encoder->dev, EVO_MASTER, 8);
986 if (push) {
987 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
988 evo_data(push, syncs);
989 evo_data(push, magic);
990 evo_mthd(push, 0x0180 + (nv_encoder->or * 0x020), 2);
991 evo_data(push, 1 << nv_crtc->index);
992 evo_data(push, 0x00ff);
993 evo_kick(push, encoder->dev, EVO_MASTER);
994 }
995
996 nv_encoder->crtc = encoder->crtc;
997 }
998
999 static void
1000 nvd0_dac_disconnect(struct drm_encoder *encoder)
1001 {
1002 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1003 struct drm_device *dev = encoder->dev;
1004 u32 *push;
1005
1006 if (nv_encoder->crtc) {
1007 nvd0_crtc_prepare(nv_encoder->crtc);
1008
1009 push = evo_wait(dev, EVO_MASTER, 4);
1010 if (push) {
1011 evo_mthd(push, 0x0180 + (nv_encoder->or * 0x20), 1);
1012 evo_data(push, 0x00000000);
1013 evo_mthd(push, 0x0080, 1);
1014 evo_data(push, 0x00000000);
1015 evo_kick(push, dev, EVO_MASTER);
1016 }
1017
1018 nv_encoder->crtc = NULL;
1019 }
1020 }
1021
1022 static enum drm_connector_status
1023 nvd0_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
1024 {
1025 enum drm_connector_status status = connector_status_disconnected;
1026 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1027 struct drm_device *dev = encoder->dev;
1028 int or = nv_encoder->or;
1029 u32 load;
1030
1031 nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00100000);
1032 udelay(9500);
1033 nv_wr32(dev, 0x61a00c + (or * 0x800), 0x80000000);
1034
1035 load = nv_rd32(dev, 0x61a00c + (or * 0x800));
1036 if ((load & 0x38000000) == 0x38000000)
1037 status = connector_status_connected;
1038
1039 nv_wr32(dev, 0x61a00c + (or * 0x800), 0x00000000);
1040 return status;
1041 }
1042
1043 static void
1044 nvd0_dac_destroy(struct drm_encoder *encoder)
1045 {
1046 drm_encoder_cleanup(encoder);
1047 kfree(encoder);
1048 }
1049
1050 static const struct drm_encoder_helper_funcs nvd0_dac_hfunc = {
1051 .dpms = nvd0_dac_dpms,
1052 .mode_fixup = nvd0_dac_mode_fixup,
1053 .prepare = nvd0_dac_disconnect,
1054 .commit = nvd0_dac_commit,
1055 .mode_set = nvd0_dac_mode_set,
1056 .disable = nvd0_dac_disconnect,
1057 .get_crtc = nvd0_display_crtc_get,
1058 .detect = nvd0_dac_detect
1059 };
1060
1061 static const struct drm_encoder_funcs nvd0_dac_func = {
1062 .destroy = nvd0_dac_destroy,
1063 };
1064
1065 static int
1066 nvd0_dac_create(struct drm_connector *connector, struct dcb_entry *dcbe)
1067 {
1068 struct drm_device *dev = connector->dev;
1069 struct nouveau_encoder *nv_encoder;
1070 struct drm_encoder *encoder;
1071
1072 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1073 if (!nv_encoder)
1074 return -ENOMEM;
1075 nv_encoder->dcb = dcbe;
1076 nv_encoder->or = ffs(dcbe->or) - 1;
1077
1078 encoder = to_drm_encoder(nv_encoder);
1079 encoder->possible_crtcs = dcbe->heads;
1080 encoder->possible_clones = 0;
1081 drm_encoder_init(dev, encoder, &nvd0_dac_func, DRM_MODE_ENCODER_DAC);
1082 drm_encoder_helper_add(encoder, &nvd0_dac_hfunc);
1083
1084 drm_mode_connector_attach_encoder(connector, encoder);
1085 return 0;
1086 }
1087
1088 /******************************************************************************
1089 * Audio
1090 *****************************************************************************/
1091 static void
1092 nvd0_audio_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1093 {
1094 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1095 struct nouveau_connector *nv_connector;
1096 struct drm_device *dev = encoder->dev;
1097 int i, or = nv_encoder->or * 0x30;
1098
1099 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1100 if (!drm_detect_monitor_audio(nv_connector->edid))
1101 return;
1102
1103 nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000001);
1104
1105 drm_edid_to_eld(&nv_connector->base, nv_connector->edid);
1106 if (nv_connector->base.eld[0]) {
1107 u8 *eld = nv_connector->base.eld;
1108
1109 for (i = 0; i < eld[2] * 4; i++)
1110 nv_wr32(dev, 0x10ec00 + or, (i << 8) | eld[i]);
1111 for (i = eld[2] * 4; i < 0x60; i++)
1112 nv_wr32(dev, 0x10ec00 + or, (i << 8) | 0x00);
1113
1114 nv_mask(dev, 0x10ec10 + or, 0x80000002, 0x80000002);
1115 }
1116 }
1117
1118 static void
1119 nvd0_audio_disconnect(struct drm_encoder *encoder)
1120 {
1121 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1122 struct drm_device *dev = encoder->dev;
1123 int or = nv_encoder->or * 0x30;
1124
1125 nv_mask(dev, 0x10ec10 + or, 0x80000003, 0x80000000);
1126 }
1127
1128 /******************************************************************************
1129 * HDMI
1130 *****************************************************************************/
1131 static void
1132 nvd0_hdmi_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode)
1133 {
1134 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1135 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1136 struct nouveau_connector *nv_connector;
1137 struct drm_device *dev = encoder->dev;
1138 int head = nv_crtc->index * 0x800;
1139 u32 rekey = 56; /* binary driver, and tegra constant */
1140 u32 max_ac_packet;
1141
1142 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1143 if (!drm_detect_hdmi_monitor(nv_connector->edid))
1144 return;
1145
1146 max_ac_packet = mode->htotal - mode->hdisplay;
1147 max_ac_packet -= rekey;
1148 max_ac_packet -= 18; /* constant from tegra */
1149 max_ac_packet /= 32;
1150
1151 /* AVI InfoFrame */
1152 nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
1153 nv_wr32(dev, 0x61671c + head, 0x000d0282);
1154 nv_wr32(dev, 0x616720 + head, 0x0000006f);
1155 nv_wr32(dev, 0x616724 + head, 0x00000000);
1156 nv_wr32(dev, 0x616728 + head, 0x00000000);
1157 nv_wr32(dev, 0x61672c + head, 0x00000000);
1158 nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000001);
1159
1160 /* ??? InfoFrame? */
1161 nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
1162 nv_wr32(dev, 0x6167ac + head, 0x00000010);
1163 nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000001);
1164
1165 /* HDMI_CTRL */
1166 nv_mask(dev, 0x616798 + head, 0x401f007f, 0x40000000 | rekey |
1167 max_ac_packet << 16);
1168
1169 /* NFI, audio doesn't work without it though.. */
1170 nv_mask(dev, 0x616548 + head, 0x00000070, 0x00000000);
1171
1172 nvd0_audio_mode_set(encoder, mode);
1173 }
1174
1175 static void
1176 nvd0_hdmi_disconnect(struct drm_encoder *encoder)
1177 {
1178 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1179 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1180 struct drm_device *dev = encoder->dev;
1181 int head = nv_crtc->index * 0x800;
1182
1183 nvd0_audio_disconnect(encoder);
1184
1185 nv_mask(dev, 0x616798 + head, 0x40000000, 0x00000000);
1186 nv_mask(dev, 0x6167a4 + head, 0x00000001, 0x00000000);
1187 nv_mask(dev, 0x616714 + head, 0x00000001, 0x00000000);
1188 }
1189
1190 /******************************************************************************
1191 * SOR
1192 *****************************************************************************/
1193 static inline u32
1194 nvd0_sor_dp_lane_map(struct drm_device *dev, struct dcb_entry *dcb, u8 lane)
1195 {
1196 static const u8 nvd0[] = { 16, 8, 0, 24 };
1197 return nvd0[lane];
1198 }
1199
1200 static void
1201 nvd0_sor_dp_train_set(struct drm_device *dev, struct dcb_entry *dcb, u8 pattern)
1202 {
1203 const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1204 const u32 loff = (or * 0x800) + (link * 0x80);
1205 nv_mask(dev, 0x61c110 + loff, 0x0f0f0f0f, 0x01010101 * pattern);
1206 }
1207
1208 static void
1209 nvd0_sor_dp_train_adj(struct drm_device *dev, struct dcb_entry *dcb,
1210 u8 lane, u8 swing, u8 preem)
1211 {
1212 const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1213 const u32 loff = (or * 0x800) + (link * 0x80);
1214 u32 shift = nvd0_sor_dp_lane_map(dev, dcb, lane);
1215 u32 mask = 0x000000ff << shift;
1216 u8 *table, *entry, *config = NULL;
1217
1218 switch (swing) {
1219 case 0: preem += 0; break;
1220 case 1: preem += 4; break;
1221 case 2: preem += 7; break;
1222 case 3: preem += 9; break;
1223 }
1224
1225 table = nouveau_dp_bios_data(dev, dcb, &entry);
1226 if (table) {
1227 if (table[0] == 0x30) {
1228 config = entry + table[4];
1229 config += table[5] * preem;
1230 } else
1231 if (table[0] == 0x40) {
1232 config = table + table[1];
1233 config += table[2] * table[3];
1234 config += table[6] * preem;
1235 }
1236 }
1237
1238 if (!config) {
1239 NV_ERROR(dev, "PDISP: unsupported DP table for chipset\n");
1240 return;
1241 }
1242
1243 nv_mask(dev, 0x61c118 + loff, mask, config[1] << shift);
1244 nv_mask(dev, 0x61c120 + loff, mask, config[2] << shift);
1245 nv_mask(dev, 0x61c130 + loff, 0x0000ff00, config[3] << 8);
1246 nv_mask(dev, 0x61c13c + loff, 0x00000000, 0x00000000);
1247 }
1248
1249 static void
1250 nvd0_sor_dp_link_set(struct drm_device *dev, struct dcb_entry *dcb, int crtc,
1251 int link_nr, u32 link_bw, bool enhframe)
1252 {
1253 const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1254 const u32 loff = (or * 0x800) + (link * 0x80);
1255 const u32 soff = (or * 0x800);
1256 u32 dpctrl = nv_rd32(dev, 0x61c10c + loff) & ~0x001f4000;
1257 u32 clksor = nv_rd32(dev, 0x612300 + soff) & ~0x007c0000;
1258 u32 script = 0x0000, lane_mask = 0;
1259 u8 *table, *entry;
1260 int i;
1261
1262 link_bw /= 27000;
1263
1264 table = nouveau_dp_bios_data(dev, dcb, &entry);
1265 if (table) {
1266 if (table[0] == 0x30) entry = ROMPTR(dev, entry[10]);
1267 else if (table[0] == 0x40) entry = ROMPTR(dev, entry[9]);
1268 else entry = NULL;
1269
1270 while (entry) {
1271 if (entry[0] >= link_bw)
1272 break;
1273 entry += 3;
1274 }
1275
1276 nouveau_bios_run_init_table(dev, script, dcb, crtc);
1277 }
1278
1279 clksor |= link_bw << 18;
1280 dpctrl |= ((1 << link_nr) - 1) << 16;
1281 if (enhframe)
1282 dpctrl |= 0x00004000;
1283
1284 for (i = 0; i < link_nr; i++)
1285 lane_mask |= 1 << (nvd0_sor_dp_lane_map(dev, dcb, i) >> 3);
1286
1287 nv_wr32(dev, 0x612300 + soff, clksor);
1288 nv_wr32(dev, 0x61c10c + loff, dpctrl);
1289 nv_mask(dev, 0x61c130 + loff, 0x0000000f, lane_mask);
1290 }
1291
1292 static void
1293 nvd0_sor_dp_link_get(struct drm_device *dev, struct dcb_entry *dcb,
1294 u32 *link_nr, u32 *link_bw)
1295 {
1296 const u32 or = ffs(dcb->or) - 1, link = !(dcb->sorconf.link & 1);
1297 const u32 loff = (or * 0x800) + (link * 0x80);
1298 const u32 soff = (or * 0x800);
1299 u32 dpctrl = nv_rd32(dev, 0x61c10c + loff) & 0x000f0000;
1300 u32 clksor = nv_rd32(dev, 0x612300 + soff);
1301
1302 if (dpctrl > 0x00030000) *link_nr = 4;
1303 else if (dpctrl > 0x00010000) *link_nr = 2;
1304 else *link_nr = 1;
1305
1306 *link_bw = (clksor & 0x007c0000) >> 18;
1307 *link_bw *= 27000;
1308 }
1309
1310 static void
1311 nvd0_sor_dp_calc_tu(struct drm_device *dev, struct dcb_entry *dcb,
1312 u32 crtc, u32 datarate)
1313 {
1314 const u32 symbol = 100000;
1315 const u32 TU = 64;
1316 u32 link_nr, link_bw;
1317 u64 ratio, value;
1318
1319 nvd0_sor_dp_link_get(dev, dcb, &link_nr, &link_bw);
1320
1321 ratio = datarate;
1322 ratio *= symbol;
1323 do_div(ratio, link_nr * link_bw);
1324
1325 value = (symbol - ratio) * TU;
1326 value *= ratio;
1327 do_div(value, symbol);
1328 do_div(value, symbol);
1329
1330 value += 5;
1331 value |= 0x08000000;
1332
1333 nv_wr32(dev, 0x616610 + (crtc * 0x800), value);
1334 }
1335
1336 static void
1337 nvd0_sor_dpms(struct drm_encoder *encoder, int mode)
1338 {
1339 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1340 struct drm_device *dev = encoder->dev;
1341 struct drm_encoder *partner;
1342 int or = nv_encoder->or;
1343 u32 dpms_ctrl;
1344
1345 nv_encoder->last_dpms = mode;
1346
1347 list_for_each_entry(partner, &dev->mode_config.encoder_list, head) {
1348 struct nouveau_encoder *nv_partner = nouveau_encoder(partner);
1349
1350 if (partner->encoder_type != DRM_MODE_ENCODER_TMDS)
1351 continue;
1352
1353 if (nv_partner != nv_encoder &&
1354 nv_partner->dcb->or == nv_encoder->dcb->or) {
1355 if (nv_partner->last_dpms == DRM_MODE_DPMS_ON)
1356 return;
1357 break;
1358 }
1359 }
1360
1361 dpms_ctrl = (mode == DRM_MODE_DPMS_ON);
1362 dpms_ctrl |= 0x80000000;
1363
1364 nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1365 nv_mask(dev, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl);
1366 nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
1367 nv_wait(dev, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000);
1368
1369 if (nv_encoder->dcb->type == OUTPUT_DP) {
1370 struct dp_train_func func = {
1371 .link_set = nvd0_sor_dp_link_set,
1372 .train_set = nvd0_sor_dp_train_set,
1373 .train_adj = nvd0_sor_dp_train_adj
1374 };
1375
1376 nouveau_dp_dpms(encoder, mode, nv_encoder->dp.datarate, &func);
1377 }
1378 }
1379
1380 static bool
1381 nvd0_sor_mode_fixup(struct drm_encoder *encoder,
1382 const struct drm_display_mode *mode,
1383 struct drm_display_mode *adjusted_mode)
1384 {
1385 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1386 struct nouveau_connector *nv_connector;
1387
1388 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1389 if (nv_connector && nv_connector->native_mode) {
1390 if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) {
1391 int id = adjusted_mode->base.id;
1392 *adjusted_mode = *nv_connector->native_mode;
1393 adjusted_mode->base.id = id;
1394 }
1395 }
1396
1397 return true;
1398 }
1399
1400 static void
1401 nvd0_sor_disconnect(struct drm_encoder *encoder)
1402 {
1403 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1404 struct drm_device *dev = encoder->dev;
1405 u32 *push;
1406
1407 if (nv_encoder->crtc) {
1408 nvd0_crtc_prepare(nv_encoder->crtc);
1409
1410 push = evo_wait(dev, EVO_MASTER, 4);
1411 if (push) {
1412 evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1);
1413 evo_data(push, 0x00000000);
1414 evo_mthd(push, 0x0080, 1);
1415 evo_data(push, 0x00000000);
1416 evo_kick(push, dev, EVO_MASTER);
1417 }
1418
1419 nvd0_hdmi_disconnect(encoder);
1420
1421 nv_encoder->crtc = NULL;
1422 nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1423 }
1424 }
1425
1426 static void
1427 nvd0_sor_prepare(struct drm_encoder *encoder)
1428 {
1429 nvd0_sor_disconnect(encoder);
1430 if (nouveau_encoder(encoder)->dcb->type == OUTPUT_DP)
1431 evo_sync(encoder->dev, EVO_MASTER);
1432 }
1433
1434 static void
1435 nvd0_sor_commit(struct drm_encoder *encoder)
1436 {
1437 }
1438
1439 static void
1440 nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *umode,
1441 struct drm_display_mode *mode)
1442 {
1443 struct drm_device *dev = encoder->dev;
1444 struct drm_nouveau_private *dev_priv = dev->dev_private;
1445 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1446 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1447 struct nouveau_connector *nv_connector;
1448 struct nvbios *bios = &dev_priv->vbios;
1449 u32 mode_ctrl = (1 << nv_crtc->index);
1450 u32 syncs, magic, *push;
1451 u32 or_config;
1452
1453 syncs = 0x00000001;
1454 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1455 syncs |= 0x00000008;
1456 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1457 syncs |= 0x00000010;
1458
1459 magic = 0x31ec6000 | (nv_crtc->index << 25);
1460 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1461 magic |= 0x00000001;
1462
1463 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1464 switch (nv_encoder->dcb->type) {
1465 case OUTPUT_TMDS:
1466 if (nv_encoder->dcb->sorconf.link & 1) {
1467 if (mode->clock < 165000)
1468 mode_ctrl |= 0x00000100;
1469 else
1470 mode_ctrl |= 0x00000500;
1471 } else {
1472 mode_ctrl |= 0x00000200;
1473 }
1474
1475 or_config = (mode_ctrl & 0x00000f00) >> 8;
1476 if (mode->clock >= 165000)
1477 or_config |= 0x0100;
1478
1479 nvd0_hdmi_mode_set(encoder, mode);
1480 break;
1481 case OUTPUT_LVDS:
1482 or_config = (mode_ctrl & 0x00000f00) >> 8;
1483 if (bios->fp_no_ddc) {
1484 if (bios->fp.dual_link)
1485 or_config |= 0x0100;
1486 if (bios->fp.if_is_24bit)
1487 or_config |= 0x0200;
1488 } else {
1489 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1490 if (((u8 *)nv_connector->edid)[121] == 2)
1491 or_config |= 0x0100;
1492 } else
1493 if (mode->clock >= bios->fp.duallink_transition_clk) {
1494 or_config |= 0x0100;
1495 }
1496
1497 if (or_config & 0x0100) {
1498 if (bios->fp.strapless_is_24bit & 2)
1499 or_config |= 0x0200;
1500 } else {
1501 if (bios->fp.strapless_is_24bit & 1)
1502 or_config |= 0x0200;
1503 }
1504
1505 if (nv_connector->base.display_info.bpc == 8)
1506 or_config |= 0x0200;
1507
1508 }
1509 break;
1510 case OUTPUT_DP:
1511 if (nv_connector->base.display_info.bpc == 6) {
1512 nv_encoder->dp.datarate = mode->clock * 18 / 8;
1513 syncs |= 0x00000002 << 6;
1514 } else {
1515 nv_encoder->dp.datarate = mode->clock * 24 / 8;
1516 syncs |= 0x00000005 << 6;
1517 }
1518
1519 if (nv_encoder->dcb->sorconf.link & 1)
1520 mode_ctrl |= 0x00000800;
1521 else
1522 mode_ctrl |= 0x00000900;
1523
1524 or_config = (mode_ctrl & 0x00000f00) >> 8;
1525 break;
1526 default:
1527 BUG_ON(1);
1528 break;
1529 }
1530
1531 nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON);
1532
1533 if (nv_encoder->dcb->type == OUTPUT_DP) {
1534 nvd0_sor_dp_calc_tu(dev, nv_encoder->dcb, nv_crtc->index,
1535 nv_encoder->dp.datarate);
1536 }
1537
1538 push = evo_wait(dev, EVO_MASTER, 8);
1539 if (push) {
1540 evo_mthd(push, 0x0404 + (nv_crtc->index * 0x300), 2);
1541 evo_data(push, syncs);
1542 evo_data(push, magic);
1543 evo_mthd(push, 0x0200 + (nv_encoder->or * 0x020), 2);
1544 evo_data(push, mode_ctrl);
1545 evo_data(push, or_config);
1546 evo_kick(push, dev, EVO_MASTER);
1547 }
1548
1549 nv_encoder->crtc = encoder->crtc;
1550 }
1551
1552 static void
1553 nvd0_sor_destroy(struct drm_encoder *encoder)
1554 {
1555 drm_encoder_cleanup(encoder);
1556 kfree(encoder);
1557 }
1558
1559 static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = {
1560 .dpms = nvd0_sor_dpms,
1561 .mode_fixup = nvd0_sor_mode_fixup,
1562 .prepare = nvd0_sor_prepare,
1563 .commit = nvd0_sor_commit,
1564 .mode_set = nvd0_sor_mode_set,
1565 .disable = nvd0_sor_disconnect,
1566 .get_crtc = nvd0_display_crtc_get,
1567 };
1568
1569 static const struct drm_encoder_funcs nvd0_sor_func = {
1570 .destroy = nvd0_sor_destroy,
1571 };
1572
1573 static int
1574 nvd0_sor_create(struct drm_connector *connector, struct dcb_entry *dcbe)
1575 {
1576 struct drm_device *dev = connector->dev;
1577 struct nouveau_encoder *nv_encoder;
1578 struct drm_encoder *encoder;
1579
1580 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1581 if (!nv_encoder)
1582 return -ENOMEM;
1583 nv_encoder->dcb = dcbe;
1584 nv_encoder->or = ffs(dcbe->or) - 1;
1585 nv_encoder->last_dpms = DRM_MODE_DPMS_OFF;
1586
1587 encoder = to_drm_encoder(nv_encoder);
1588 encoder->possible_crtcs = dcbe->heads;
1589 encoder->possible_clones = 0;
1590 drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS);
1591 drm_encoder_helper_add(encoder, &nvd0_sor_hfunc);
1592
1593 drm_mode_connector_attach_encoder(connector, encoder);
1594 return 0;
1595 }
1596
1597 /******************************************************************************
1598 * IRQ
1599 *****************************************************************************/
1600 static struct dcb_entry *
1601 lookup_dcb(struct drm_device *dev, int id, u32 mc)
1602 {
1603 struct drm_nouveau_private *dev_priv = dev->dev_private;
1604 int type, or, i, link = -1;
1605
1606 if (id < 4) {
1607 type = OUTPUT_ANALOG;
1608 or = id;
1609 } else {
1610 switch (mc & 0x00000f00) {
1611 case 0x00000000: link = 0; type = OUTPUT_LVDS; break;
1612 case 0x00000100: link = 0; type = OUTPUT_TMDS; break;
1613 case 0x00000200: link = 1; type = OUTPUT_TMDS; break;
1614 case 0x00000500: link = 0; type = OUTPUT_TMDS; break;
1615 case 0x00000800: link = 0; type = OUTPUT_DP; break;
1616 case 0x00000900: link = 1; type = OUTPUT_DP; break;
1617 default:
1618 NV_ERROR(dev, "PDISP: unknown SOR mc 0x%08x\n", mc);
1619 return NULL;
1620 }
1621
1622 or = id - 4;
1623 }
1624
1625 for (i = 0; i < dev_priv->vbios.dcb.entries; i++) {
1626 struct dcb_entry *dcb = &dev_priv->vbios.dcb.entry[i];
1627 if (dcb->type == type && (dcb->or & (1 << or)) &&
1628 (link < 0 || link == !(dcb->sorconf.link & 1)))
1629 return dcb;
1630 }
1631
1632 NV_ERROR(dev, "PDISP: DCB for %d/0x%08x not found\n", id, mc);
1633 return NULL;
1634 }
1635
1636 static void
1637 nvd0_display_unk1_handler(struct drm_device *dev, u32 crtc, u32 mask)
1638 {
1639 struct dcb_entry *dcb;
1640 int i;
1641
1642 for (i = 0; mask && i < 8; i++) {
1643 u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1644 if (!(mcc & (1 << crtc)))
1645 continue;
1646
1647 dcb = lookup_dcb(dev, i, mcc);
1648 if (!dcb)
1649 continue;
1650
1651 nouveau_bios_run_display_table(dev, 0x0000, -1, dcb, crtc);
1652 }
1653
1654 nv_wr32(dev, 0x6101d4, 0x00000000);
1655 nv_wr32(dev, 0x6109d4, 0x00000000);
1656 nv_wr32(dev, 0x6101d0, 0x80000000);
1657 }
1658
1659 static void
1660 nvd0_display_unk2_handler(struct drm_device *dev, u32 crtc, u32 mask)
1661 {
1662 struct dcb_entry *dcb;
1663 u32 or, tmp, pclk;
1664 int i;
1665
1666 for (i = 0; mask && i < 8; i++) {
1667 u32 mcc = nv_rd32(dev, 0x640180 + (i * 0x20));
1668 if (!(mcc & (1 << crtc)))
1669 continue;
1670
1671 dcb = lookup_dcb(dev, i, mcc);
1672 if (!dcb)
1673 continue;
1674
1675 nouveau_bios_run_display_table(dev, 0x0000, -2, dcb, crtc);
1676 }
1677
1678 pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1679 NV_DEBUG_KMS(dev, "PDISP: crtc %d pclk %d mask 0x%08x\n",
1680 crtc, pclk, mask);
1681 if (pclk && (mask & 0x00010000)) {
1682 nv50_crtc_set_clock(dev, crtc, pclk);
1683 }
1684
1685 for (i = 0; mask && i < 8; i++) {
1686 u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
1687 u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
1688 if (!(mcp & (1 << crtc)))
1689 continue;
1690
1691 dcb = lookup_dcb(dev, i, mcp);
1692 if (!dcb)
1693 continue;
1694 or = ffs(dcb->or) - 1;
1695
1696 nouveau_bios_run_display_table(dev, cfg, pclk, dcb, crtc);
1697
1698 nv_wr32(dev, 0x612200 + (crtc * 0x800), 0x00000000);
1699 switch (dcb->type) {
1700 case OUTPUT_ANALOG:
1701 nv_wr32(dev, 0x612280 + (or * 0x800), 0x00000000);
1702 break;
1703 case OUTPUT_TMDS:
1704 case OUTPUT_LVDS:
1705 case OUTPUT_DP:
1706 if (cfg & 0x00000100)
1707 tmp = 0x00000101;
1708 else
1709 tmp = 0x00000000;
1710
1711 nv_mask(dev, 0x612300 + (or * 0x800), 0x00000707, tmp);
1712 break;
1713 default:
1714 break;
1715 }
1716
1717 break;
1718 }
1719
1720 nv_wr32(dev, 0x6101d4, 0x00000000);
1721 nv_wr32(dev, 0x6109d4, 0x00000000);
1722 nv_wr32(dev, 0x6101d0, 0x80000000);
1723 }
1724
1725 static void
1726 nvd0_display_unk4_handler(struct drm_device *dev, u32 crtc, u32 mask)
1727 {
1728 struct dcb_entry *dcb;
1729 int pclk, i;
1730
1731 pclk = nv_rd32(dev, 0x660450 + (crtc * 0x300)) / 1000;
1732
1733 for (i = 0; mask && i < 8; i++) {
1734 u32 mcp = nv_rd32(dev, 0x660180 + (i * 0x20));
1735 u32 cfg = nv_rd32(dev, 0x660184 + (i * 0x20));
1736 if (!(mcp & (1 << crtc)))
1737 continue;
1738
1739 dcb = lookup_dcb(dev, i, mcp);
1740 if (!dcb)
1741 continue;
1742
1743 nouveau_bios_run_display_table(dev, cfg, -pclk, dcb, crtc);
1744 }
1745
1746 nv_wr32(dev, 0x6101d4, 0x00000000);
1747 nv_wr32(dev, 0x6109d4, 0x00000000);
1748 nv_wr32(dev, 0x6101d0, 0x80000000);
1749 }
1750
1751 static void
1752 nvd0_display_bh(unsigned long data)
1753 {
1754 struct drm_device *dev = (struct drm_device *)data;
1755 struct nvd0_display *disp = nvd0_display(dev);
1756 u32 mask = 0, crtc = ~0;
1757 int i;
1758
1759 if (drm_debug & (DRM_UT_DRIVER | DRM_UT_KMS)) {
1760 NV_INFO(dev, "PDISP: modeset req %d\n", disp->modeset);
1761 NV_INFO(dev, " STAT: 0x%08x 0x%08x 0x%08x\n",
1762 nv_rd32(dev, 0x6101d0),
1763 nv_rd32(dev, 0x6101d4), nv_rd32(dev, 0x6109d4));
1764 for (i = 0; i < 8; i++) {
1765 NV_INFO(dev, " %s%d: 0x%08x 0x%08x\n",
1766 i < 4 ? "DAC" : "SOR", i,
1767 nv_rd32(dev, 0x640180 + (i * 0x20)),
1768 nv_rd32(dev, 0x660180 + (i * 0x20)));
1769 }
1770 }
1771
1772 while (!mask && ++crtc < dev->mode_config.num_crtc)
1773 mask = nv_rd32(dev, 0x6101d4 + (crtc * 0x800));
1774
1775 if (disp->modeset & 0x00000001)
1776 nvd0_display_unk1_handler(dev, crtc, mask);
1777 if (disp->modeset & 0x00000002)
1778 nvd0_display_unk2_handler(dev, crtc, mask);
1779 if (disp->modeset & 0x00000004)
1780 nvd0_display_unk4_handler(dev, crtc, mask);
1781 }
1782
1783 static void
1784 nvd0_display_intr(struct drm_device *dev)
1785 {
1786 struct nvd0_display *disp = nvd0_display(dev);
1787 u32 intr = nv_rd32(dev, 0x610088);
1788 int i;
1789
1790 if (intr & 0x00000001) {
1791 u32 stat = nv_rd32(dev, 0x61008c);
1792 nv_wr32(dev, 0x61008c, stat);
1793 intr &= ~0x00000001;
1794 }
1795
1796 if (intr & 0x00000002) {
1797 u32 stat = nv_rd32(dev, 0x61009c);
1798 int chid = ffs(stat) - 1;
1799 if (chid >= 0) {
1800 u32 mthd = nv_rd32(dev, 0x6101f0 + (chid * 12));
1801 u32 data = nv_rd32(dev, 0x6101f4 + (chid * 12));
1802 u32 unkn = nv_rd32(dev, 0x6101f8 + (chid * 12));
1803
1804 NV_INFO(dev, "EvoCh: chid %d mthd 0x%04x data 0x%08x "
1805 "0x%08x 0x%08x\n",
1806 chid, (mthd & 0x0000ffc), data, mthd, unkn);
1807 nv_wr32(dev, 0x61009c, (1 << chid));
1808 nv_wr32(dev, 0x6101f0 + (chid * 12), 0x90000000);
1809 }
1810
1811 intr &= ~0x00000002;
1812 }
1813
1814 if (intr & 0x00100000) {
1815 u32 stat = nv_rd32(dev, 0x6100ac);
1816
1817 if (stat & 0x00000007) {
1818 disp->modeset = stat;
1819 tasklet_schedule(&disp->tasklet);
1820
1821 nv_wr32(dev, 0x6100ac, (stat & 0x00000007));
1822 stat &= ~0x00000007;
1823 }
1824
1825 if (stat) {
1826 NV_INFO(dev, "PDISP: unknown intr24 0x%08x\n", stat);
1827 nv_wr32(dev, 0x6100ac, stat);
1828 }
1829
1830 intr &= ~0x00100000;
1831 }
1832
1833 for (i = 0; i < dev->mode_config.num_crtc; i++) {
1834 u32 mask = 0x01000000 << i;
1835 if (intr & mask) {
1836 u32 stat = nv_rd32(dev, 0x6100bc + (i * 0x800));
1837 nv_wr32(dev, 0x6100bc + (i * 0x800), stat);
1838 intr &= ~mask;
1839 }
1840 }
1841
1842 if (intr)
1843 NV_INFO(dev, "PDISP: unknown intr 0x%08x\n", intr);
1844 }
1845
1846 /******************************************************************************
1847 * Init
1848 *****************************************************************************/
1849 void
1850 nvd0_display_fini(struct drm_device *dev)
1851 {
1852 int i;
1853
1854 /* fini cursors + overlays + flips */
1855 for (i = 1; i >= 0; i--) {
1856 evo_fini_pio(dev, EVO_CURS(i));
1857 evo_fini_pio(dev, EVO_OIMM(i));
1858 evo_fini_dma(dev, EVO_OVLY(i));
1859 evo_fini_dma(dev, EVO_FLIP(i));
1860 }
1861
1862 /* fini master */
1863 evo_fini_dma(dev, EVO_MASTER);
1864 }
1865
1866 int
1867 nvd0_display_init(struct drm_device *dev)
1868 {
1869 struct nvd0_display *disp = nvd0_display(dev);
1870 int ret, i;
1871 u32 *push;
1872
1873 if (nv_rd32(dev, 0x6100ac) & 0x00000100) {
1874 nv_wr32(dev, 0x6100ac, 0x00000100);
1875 nv_mask(dev, 0x6194e8, 0x00000001, 0x00000000);
1876 if (!nv_wait(dev, 0x6194e8, 0x00000002, 0x00000000)) {
1877 NV_ERROR(dev, "PDISP: 0x6194e8 0x%08x\n",
1878 nv_rd32(dev, 0x6194e8));
1879 return -EBUSY;
1880 }
1881 }
1882
1883 /* nfi what these are exactly, i do know that SOR_MODE_CTRL won't
1884 * work at all unless you do the SOR part below.
1885 */
1886 for (i = 0; i < 3; i++) {
1887 u32 dac = nv_rd32(dev, 0x61a000 + (i * 0x800));
1888 nv_wr32(dev, 0x6101c0 + (i * 0x800), dac);
1889 }
1890
1891 for (i = 0; i < 4; i++) {
1892 u32 sor = nv_rd32(dev, 0x61c000 + (i * 0x800));
1893 nv_wr32(dev, 0x6301c4 + (i * 0x800), sor);
1894 }
1895
1896 for (i = 0; i < dev->mode_config.num_crtc; i++) {
1897 u32 crtc0 = nv_rd32(dev, 0x616104 + (i * 0x800));
1898 u32 crtc1 = nv_rd32(dev, 0x616108 + (i * 0x800));
1899 u32 crtc2 = nv_rd32(dev, 0x61610c + (i * 0x800));
1900 nv_wr32(dev, 0x6101b4 + (i * 0x800), crtc0);
1901 nv_wr32(dev, 0x6101b8 + (i * 0x800), crtc1);
1902 nv_wr32(dev, 0x6101bc + (i * 0x800), crtc2);
1903 }
1904
1905 /* point at our hash table / objects, enable interrupts */
1906 nv_wr32(dev, 0x610010, (disp->mem->vinst >> 8) | 9);
1907 nv_mask(dev, 0x6100b0, 0x00000307, 0x00000307);
1908
1909 /* init master */
1910 ret = evo_init_dma(dev, EVO_MASTER);
1911 if (ret)
1912 goto error;
1913
1914 /* init flips + overlays + cursors */
1915 for (i = 0; i < dev->mode_config.num_crtc; i++) {
1916 if ((ret = evo_init_dma(dev, EVO_FLIP(i))) ||
1917 (ret = evo_init_dma(dev, EVO_OVLY(i))) ||
1918 (ret = evo_init_pio(dev, EVO_OIMM(i))) ||
1919 (ret = evo_init_pio(dev, EVO_CURS(i))))
1920 goto error;
1921 }
1922
1923 push = evo_wait(dev, EVO_MASTER, 32);
1924 if (!push) {
1925 ret = -EBUSY;
1926 goto error;
1927 }
1928 evo_mthd(push, 0x0088, 1);
1929 evo_data(push, NvEvoSync);
1930 evo_mthd(push, 0x0084, 1);
1931 evo_data(push, 0x00000000);
1932 evo_mthd(push, 0x0084, 1);
1933 evo_data(push, 0x80000000);
1934 evo_mthd(push, 0x008c, 1);
1935 evo_data(push, 0x00000000);
1936 evo_kick(push, dev, EVO_MASTER);
1937
1938 error:
1939 if (ret)
1940 nvd0_display_fini(dev);
1941 return ret;
1942 }
1943
1944 void
1945 nvd0_display_destroy(struct drm_device *dev)
1946 {
1947 struct drm_nouveau_private *dev_priv = dev->dev_private;
1948 struct nvd0_display *disp = nvd0_display(dev);
1949 struct pci_dev *pdev = dev->pdev;
1950 int i;
1951
1952 for (i = 0; i < EVO_DMA_NR; i++) {
1953 struct evo *evo = &disp->evo[i];
1954 pci_free_consistent(pdev, PAGE_SIZE, evo->ptr, evo->handle);
1955 }
1956
1957 nouveau_gpuobj_ref(NULL, &disp->mem);
1958 nouveau_bo_unmap(disp->sync);
1959 nouveau_bo_ref(NULL, &disp->sync);
1960 nouveau_irq_unregister(dev, 26);
1961
1962 dev_priv->engine.display.priv = NULL;
1963 kfree(disp);
1964 }
1965
1966 int
1967 nvd0_display_create(struct drm_device *dev)
1968 {
1969 struct drm_nouveau_private *dev_priv = dev->dev_private;
1970 struct nouveau_instmem_engine *pinstmem = &dev_priv->engine.instmem;
1971 struct dcb_table *dcb = &dev_priv->vbios.dcb;
1972 struct drm_connector *connector, *tmp;
1973 struct pci_dev *pdev = dev->pdev;
1974 struct nvd0_display *disp;
1975 struct dcb_entry *dcbe;
1976 int crtcs, ret, i;
1977
1978 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
1979 if (!disp)
1980 return -ENOMEM;
1981 dev_priv->engine.display.priv = disp;
1982
1983 /* create crtc objects to represent the hw heads */
1984 crtcs = nv_rd32(dev, 0x022448);
1985 for (i = 0; i < crtcs; i++) {
1986 ret = nvd0_crtc_create(dev, i);
1987 if (ret)
1988 goto out;
1989 }
1990
1991 /* create encoder/connector objects based on VBIOS DCB table */
1992 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
1993 connector = nouveau_connector_create(dev, dcbe->connector);
1994 if (IS_ERR(connector))
1995 continue;
1996
1997 if (dcbe->location != DCB_LOC_ON_CHIP) {
1998 NV_WARN(dev, "skipping off-chip encoder %d/%d\n",
1999 dcbe->type, ffs(dcbe->or) - 1);
2000 continue;
2001 }
2002
2003 switch (dcbe->type) {
2004 case OUTPUT_TMDS:
2005 case OUTPUT_LVDS:
2006 case OUTPUT_DP:
2007 nvd0_sor_create(connector, dcbe);
2008 break;
2009 case OUTPUT_ANALOG:
2010 nvd0_dac_create(connector, dcbe);
2011 break;
2012 default:
2013 NV_WARN(dev, "skipping unsupported encoder %d/%d\n",
2014 dcbe->type, ffs(dcbe->or) - 1);
2015 continue;
2016 }
2017 }
2018
2019 /* cull any connectors we created that don't have an encoder */
2020 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2021 if (connector->encoder_ids[0])
2022 continue;
2023
2024 NV_WARN(dev, "%s has no encoders, removing\n",
2025 drm_get_connector_name(connector));
2026 connector->funcs->destroy(connector);
2027 }
2028
2029 /* setup interrupt handling */
2030 tasklet_init(&disp->tasklet, nvd0_display_bh, (unsigned long)dev);
2031 nouveau_irq_register(dev, 26, nvd0_display_intr);
2032
2033 /* small shared memory area we use for notifiers and semaphores */
2034 ret = nouveau_bo_new(dev, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2035 0, 0x0000, NULL, &disp->sync);
2036 if (!ret) {
2037 ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM);
2038 if (!ret)
2039 ret = nouveau_bo_map(disp->sync);
2040 if (ret)
2041 nouveau_bo_ref(NULL, &disp->sync);
2042 }
2043
2044 if (ret)
2045 goto out;
2046
2047 /* hash table and dma objects for the memory areas we care about */
2048 ret = nouveau_gpuobj_new(dev, NULL, 0x4000, 0x10000,
2049 NVOBJ_FLAG_ZERO_ALLOC, &disp->mem);
2050 if (ret)
2051 goto out;
2052
2053 /* create evo dma channels */
2054 for (i = 0; i < EVO_DMA_NR; i++) {
2055 struct evo *evo = &disp->evo[i];
2056 u64 offset = disp->sync->bo.offset;
2057 u32 dmao = 0x1000 + (i * 0x100);
2058 u32 hash = 0x0000 + (i * 0x040);
2059
2060 evo->idx = i;
2061 evo->sem.offset = EVO_SYNC(evo->idx, 0x00);
2062 evo->ptr = pci_alloc_consistent(pdev, PAGE_SIZE, &evo->handle);
2063 if (!evo->ptr) {
2064 ret = -ENOMEM;
2065 goto out;
2066 }
2067
2068 nv_wo32(disp->mem, dmao + 0x00, 0x00000049);
2069 nv_wo32(disp->mem, dmao + 0x04, (offset + 0x0000) >> 8);
2070 nv_wo32(disp->mem, dmao + 0x08, (offset + 0x0fff) >> 8);
2071 nv_wo32(disp->mem, dmao + 0x0c, 0x00000000);
2072 nv_wo32(disp->mem, dmao + 0x10, 0x00000000);
2073 nv_wo32(disp->mem, dmao + 0x14, 0x00000000);
2074 nv_wo32(disp->mem, hash + 0x00, NvEvoSync);
2075 nv_wo32(disp->mem, hash + 0x04, 0x00000001 | (i << 27) |
2076 ((dmao + 0x00) << 9));
2077
2078 nv_wo32(disp->mem, dmao + 0x20, 0x00000049);
2079 nv_wo32(disp->mem, dmao + 0x24, 0x00000000);
2080 nv_wo32(disp->mem, dmao + 0x28, (dev_priv->vram_size - 1) >> 8);
2081 nv_wo32(disp->mem, dmao + 0x2c, 0x00000000);
2082 nv_wo32(disp->mem, dmao + 0x30, 0x00000000);
2083 nv_wo32(disp->mem, dmao + 0x34, 0x00000000);
2084 nv_wo32(disp->mem, hash + 0x08, NvEvoVRAM);
2085 nv_wo32(disp->mem, hash + 0x0c, 0x00000001 | (i << 27) |
2086 ((dmao + 0x20) << 9));
2087
2088 nv_wo32(disp->mem, dmao + 0x40, 0x00000009);
2089 nv_wo32(disp->mem, dmao + 0x44, 0x00000000);
2090 nv_wo32(disp->mem, dmao + 0x48, (dev_priv->vram_size - 1) >> 8);
2091 nv_wo32(disp->mem, dmao + 0x4c, 0x00000000);
2092 nv_wo32(disp->mem, dmao + 0x50, 0x00000000);
2093 nv_wo32(disp->mem, dmao + 0x54, 0x00000000);
2094 nv_wo32(disp->mem, hash + 0x10, NvEvoVRAM_LP);
2095 nv_wo32(disp->mem, hash + 0x14, 0x00000001 | (i << 27) |
2096 ((dmao + 0x40) << 9));
2097
2098 nv_wo32(disp->mem, dmao + 0x60, 0x0fe00009);
2099 nv_wo32(disp->mem, dmao + 0x64, 0x00000000);
2100 nv_wo32(disp->mem, dmao + 0x68, (dev_priv->vram_size - 1) >> 8);
2101 nv_wo32(disp->mem, dmao + 0x6c, 0x00000000);
2102 nv_wo32(disp->mem, dmao + 0x70, 0x00000000);
2103 nv_wo32(disp->mem, dmao + 0x74, 0x00000000);
2104 nv_wo32(disp->mem, hash + 0x18, NvEvoFB32);
2105 nv_wo32(disp->mem, hash + 0x1c, 0x00000001 | (i << 27) |
2106 ((dmao + 0x60) << 9));
2107 }
2108
2109 pinstmem->flush(dev);
2110
2111 out:
2112 if (ret)
2113 nvd0_display_destroy(dev);
2114 return ret;
2115 }