Merge branch 'drm-nouveau-next' of git://anongit.freedesktop.org/git/nouveau/linux...
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / gpu / drm / nouveau / nva3_pm.c
1 /*
2 * Copyright 2010 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24
25 #include "drmP.h"
26 #include "nouveau_drm.h"
27 #include "nouveau_bios.h"
28 #include "nouveau_pm.h"
29
30 #include <subdev/bios/pll.h>
31 #include <subdev/bios.h>
32 #include <subdev/clock.h>
33 #include <subdev/timer.h>
34 #include <subdev/fb.h>
35
36 static u32 read_clk(struct drm_device *, int, bool);
37 static u32 read_pll(struct drm_device *, int, u32);
38
39 static u32
40 read_vco(struct drm_device *dev, int clk)
41 {
42 struct nouveau_device *device = nouveau_dev(dev);
43 u32 sctl = nv_rd32(device, 0x4120 + (clk * 4));
44 if ((sctl & 0x00000030) != 0x00000030)
45 return read_pll(dev, 0x41, 0x00e820);
46 return read_pll(dev, 0x42, 0x00e8a0);
47 }
48
49 static u32
50 read_clk(struct drm_device *dev, int clk, bool ignore_en)
51 {
52 struct nouveau_device *device = nouveau_dev(dev);
53 struct nouveau_drm *drm = nouveau_drm(dev);
54 u32 sctl, sdiv, sclk;
55
56 /* refclk for the 0xe8xx plls is a fixed frequency */
57 if (clk >= 0x40) {
58 if (nv_device(drm->device)->chipset == 0xaf) {
59 /* no joke.. seriously.. sigh.. */
60 return nv_rd32(device, 0x00471c) * 1000;
61 }
62
63 return device->crystal;
64 }
65
66 sctl = nv_rd32(device, 0x4120 + (clk * 4));
67 if (!ignore_en && !(sctl & 0x00000100))
68 return 0;
69
70 switch (sctl & 0x00003000) {
71 case 0x00000000:
72 return device->crystal;
73 case 0x00002000:
74 if (sctl & 0x00000040)
75 return 108000;
76 return 100000;
77 case 0x00003000:
78 sclk = read_vco(dev, clk);
79 sdiv = ((sctl & 0x003f0000) >> 16) + 2;
80 return (sclk * 2) / sdiv;
81 default:
82 return 0;
83 }
84 }
85
86 static u32
87 read_pll(struct drm_device *dev, int clk, u32 pll)
88 {
89 struct nouveau_device *device = nouveau_dev(dev);
90 u32 ctrl = nv_rd32(device, pll + 0);
91 u32 sclk = 0, P = 1, N = 1, M = 1;
92
93 if (!(ctrl & 0x00000008)) {
94 if (ctrl & 0x00000001) {
95 u32 coef = nv_rd32(device, pll + 4);
96 M = (coef & 0x000000ff) >> 0;
97 N = (coef & 0x0000ff00) >> 8;
98 P = (coef & 0x003f0000) >> 16;
99
100 /* no post-divider on these.. */
101 if ((pll & 0x00ff00) == 0x00e800)
102 P = 1;
103
104 sclk = read_clk(dev, 0x00 + clk, false);
105 }
106 } else {
107 sclk = read_clk(dev, 0x10 + clk, false);
108 }
109
110 if (M * P)
111 return sclk * N / (M * P);
112 return 0;
113 }
114
115 struct creg {
116 u32 clk;
117 u32 pll;
118 };
119
120 static int
121 calc_clk(struct drm_device *dev, int clk, u32 pll, u32 khz, struct creg *reg)
122 {
123 struct nouveau_drm *drm = nouveau_drm(dev);
124 struct nouveau_device *device = nouveau_dev(dev);
125 struct nouveau_bios *bios = nouveau_bios(device);
126 struct nvbios_pll limits;
127 u32 oclk, sclk, sdiv;
128 int P, N, M, diff;
129 int ret;
130
131 reg->pll = 0;
132 reg->clk = 0;
133 if (!khz) {
134 NV_DEBUG(drm, "no clock for 0x%04x/0x%02x\n", pll, clk);
135 return 0;
136 }
137
138 switch (khz) {
139 case 27000:
140 reg->clk = 0x00000100;
141 return khz;
142 case 100000:
143 reg->clk = 0x00002100;
144 return khz;
145 case 108000:
146 reg->clk = 0x00002140;
147 return khz;
148 default:
149 sclk = read_vco(dev, clk);
150 sdiv = min((sclk * 2) / (khz - 2999), (u32)65);
151 /* if the clock has a PLL attached, and we can get a within
152 * [-2, 3) MHz of a divider, we'll disable the PLL and use
153 * the divider instead.
154 *
155 * divider can go as low as 2, limited here because NVIDIA
156 * and the VBIOS on my NVA8 seem to prefer using the PLL
157 * for 810MHz - is there a good reason?
158 */
159 if (sdiv > 4) {
160 oclk = (sclk * 2) / sdiv;
161 diff = khz - oclk;
162 if (!pll || (diff >= -2000 && diff < 3000)) {
163 reg->clk = (((sdiv - 2) << 16) | 0x00003100);
164 return oclk;
165 }
166 }
167
168 if (!pll) {
169 NV_ERROR(drm, "bad freq %02x: %d %d\n", clk, khz, sclk);
170 return -ERANGE;
171 }
172
173 break;
174 }
175
176 ret = nvbios_pll_parse(bios, pll, &limits);
177 if (ret)
178 return ret;
179
180 limits.refclk = read_clk(dev, clk - 0x10, true);
181 if (!limits.refclk)
182 return -EINVAL;
183
184 ret = nva3_calc_pll(dev, &limits, khz, &N, NULL, &M, &P);
185 if (ret >= 0) {
186 reg->clk = nv_rd32(device, 0x4120 + (clk * 4));
187 reg->pll = (P << 16) | (N << 8) | M;
188 }
189
190 return ret;
191 }
192
193 static void
194 prog_pll(struct drm_device *dev, int clk, u32 pll, struct creg *reg)
195 {
196 struct nouveau_device *device = nouveau_dev(dev);
197 struct nouveau_drm *drm = nouveau_drm(dev);
198 const u32 src0 = 0x004120 + (clk * 4);
199 const u32 src1 = 0x004160 + (clk * 4);
200 const u32 ctrl = pll + 0;
201 const u32 coef = pll + 4;
202
203 if (!reg->clk && !reg->pll) {
204 NV_DEBUG(drm, "no clock for %02x\n", clk);
205 return;
206 }
207
208 if (reg->pll) {
209 nv_mask(device, src0, 0x00000101, 0x00000101);
210 nv_wr32(device, coef, reg->pll);
211 nv_mask(device, ctrl, 0x00000015, 0x00000015);
212 nv_mask(device, ctrl, 0x00000010, 0x00000000);
213 nv_wait(device, ctrl, 0x00020000, 0x00020000);
214 nv_mask(device, ctrl, 0x00000010, 0x00000010);
215 nv_mask(device, ctrl, 0x00000008, 0x00000000);
216 nv_mask(device, src1, 0x00000100, 0x00000000);
217 nv_mask(device, src1, 0x00000001, 0x00000000);
218 } else {
219 nv_mask(device, src1, 0x003f3141, 0x00000101 | reg->clk);
220 nv_mask(device, ctrl, 0x00000018, 0x00000018);
221 udelay(20);
222 nv_mask(device, ctrl, 0x00000001, 0x00000000);
223 nv_mask(device, src0, 0x00000100, 0x00000000);
224 nv_mask(device, src0, 0x00000001, 0x00000000);
225 }
226 }
227
228 static void
229 prog_clk(struct drm_device *dev, int clk, struct creg *reg)
230 {
231 struct nouveau_device *device = nouveau_dev(dev);
232 struct nouveau_drm *drm = nouveau_drm(dev);
233
234 if (!reg->clk) {
235 NV_DEBUG(drm, "no clock for %02x\n", clk);
236 return;
237 }
238
239 nv_mask(device, 0x004120 + (clk * 4), 0x003f3141, 0x00000101 | reg->clk);
240 }
241
242 int
243 nva3_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
244 {
245 perflvl->core = read_pll(dev, 0x00, 0x4200);
246 perflvl->shader = read_pll(dev, 0x01, 0x4220);
247 perflvl->memory = read_pll(dev, 0x02, 0x4000);
248 perflvl->unka0 = read_clk(dev, 0x20, false);
249 perflvl->vdec = read_clk(dev, 0x21, false);
250 perflvl->daemon = read_clk(dev, 0x25, false);
251 perflvl->copy = perflvl->core;
252 return 0;
253 }
254
255 struct nva3_pm_state {
256 struct nouveau_pm_level *perflvl;
257
258 struct creg nclk;
259 struct creg sclk;
260 struct creg vdec;
261 struct creg unka0;
262
263 struct creg mclk;
264 u8 *rammap;
265 u8 rammap_ver;
266 u8 rammap_len;
267 u8 *ramcfg;
268 u8 ramcfg_len;
269 u32 r004018;
270 u32 r100760;
271 };
272
273 void *
274 nva3_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
275 {
276 struct nva3_pm_state *info;
277 u8 ramcfg_cnt;
278 int ret;
279
280 info = kzalloc(sizeof(*info), GFP_KERNEL);
281 if (!info)
282 return ERR_PTR(-ENOMEM);
283
284 ret = calc_clk(dev, 0x10, 0x4200, perflvl->core, &info->nclk);
285 if (ret < 0)
286 goto out;
287
288 ret = calc_clk(dev, 0x11, 0x4220, perflvl->shader, &info->sclk);
289 if (ret < 0)
290 goto out;
291
292 ret = calc_clk(dev, 0x12, 0x4000, perflvl->memory, &info->mclk);
293 if (ret < 0)
294 goto out;
295
296 ret = calc_clk(dev, 0x20, 0x0000, perflvl->unka0, &info->unka0);
297 if (ret < 0)
298 goto out;
299
300 ret = calc_clk(dev, 0x21, 0x0000, perflvl->vdec, &info->vdec);
301 if (ret < 0)
302 goto out;
303
304 info->rammap = nouveau_perf_rammap(dev, perflvl->memory,
305 &info->rammap_ver,
306 &info->rammap_len,
307 &ramcfg_cnt, &info->ramcfg_len);
308 if (info->rammap_ver != 0x10 || info->rammap_len < 5)
309 info->rammap = NULL;
310
311 info->ramcfg = nouveau_perf_ramcfg(dev, perflvl->memory,
312 &info->rammap_ver,
313 &info->ramcfg_len);
314 if (info->rammap_ver != 0x10)
315 info->ramcfg = NULL;
316
317 info->perflvl = perflvl;
318 out:
319 if (ret < 0) {
320 kfree(info);
321 info = ERR_PTR(ret);
322 }
323 return info;
324 }
325
326 static bool
327 nva3_pm_grcp_idle(void *data)
328 {
329 struct drm_device *dev = data;
330 struct nouveau_device *device = nouveau_dev(dev);
331
332 if (!(nv_rd32(device, 0x400304) & 0x00000001))
333 return true;
334 if (nv_rd32(device, 0x400308) == 0x0050001c)
335 return true;
336 return false;
337 }
338
339 static void
340 mclk_precharge(struct nouveau_mem_exec_func *exec)
341 {
342 struct nouveau_device *device = nouveau_dev(exec->dev);
343 nv_wr32(device, 0x1002d4, 0x00000001);
344 }
345
346 static void
347 mclk_refresh(struct nouveau_mem_exec_func *exec)
348 {
349 struct nouveau_device *device = nouveau_dev(exec->dev);
350 nv_wr32(device, 0x1002d0, 0x00000001);
351 }
352
353 static void
354 mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
355 {
356 struct nouveau_device *device = nouveau_dev(exec->dev);
357 nv_wr32(device, 0x100210, enable ? 0x80000000 : 0x00000000);
358 }
359
360 static void
361 mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
362 {
363 struct nouveau_device *device = nouveau_dev(exec->dev);
364 nv_wr32(device, 0x1002dc, enable ? 0x00000001 : 0x00000000);
365 }
366
367 static void
368 mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
369 {
370 struct nouveau_device *device = nouveau_dev(exec->dev);
371 volatile u32 post = nv_rd32(device, 0); (void)post;
372 udelay((nsec + 500) / 1000);
373 }
374
375 static u32
376 mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
377 {
378 struct nouveau_device *device = nouveau_dev(exec->dev);
379 if (mr <= 1)
380 return nv_rd32(device, 0x1002c0 + ((mr - 0) * 4));
381 if (mr <= 3)
382 return nv_rd32(device, 0x1002e0 + ((mr - 2) * 4));
383 return 0;
384 }
385
386 static void
387 mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
388 {
389 struct nouveau_device *device = nouveau_dev(exec->dev);
390 struct nouveau_fb *pfb = nouveau_fb(device);
391 if (mr <= 1) {
392 if (pfb->ram.ranks > 1)
393 nv_wr32(device, 0x1002c8 + ((mr - 0) * 4), data);
394 nv_wr32(device, 0x1002c0 + ((mr - 0) * 4), data);
395 } else
396 if (mr <= 3) {
397 if (pfb->ram.ranks > 1)
398 nv_wr32(device, 0x1002e8 + ((mr - 2) * 4), data);
399 nv_wr32(device, 0x1002e0 + ((mr - 2) * 4), data);
400 }
401 }
402
403 static void
404 mclk_clock_set(struct nouveau_mem_exec_func *exec)
405 {
406 struct nouveau_device *device = nouveau_dev(exec->dev);
407 struct nva3_pm_state *info = exec->priv;
408 u32 ctrl;
409
410 ctrl = nv_rd32(device, 0x004000);
411 if (!(ctrl & 0x00000008) && info->mclk.pll) {
412 nv_wr32(device, 0x004000, (ctrl |= 0x00000008));
413 nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
414 nv_wr32(device, 0x004018, 0x00001000);
415 nv_wr32(device, 0x004000, (ctrl &= ~0x00000001));
416 nv_wr32(device, 0x004004, info->mclk.pll);
417 nv_wr32(device, 0x004000, (ctrl |= 0x00000001));
418 udelay(64);
419 nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
420 udelay(20);
421 } else
422 if (!info->mclk.pll) {
423 nv_mask(device, 0x004168, 0x003f3040, info->mclk.clk);
424 nv_wr32(device, 0x004000, (ctrl |= 0x00000008));
425 nv_mask(device, 0x1110e0, 0x00088000, 0x00088000);
426 nv_wr32(device, 0x004018, 0x0000d000 | info->r004018);
427 }
428
429 if (info->rammap) {
430 if (info->ramcfg && (info->rammap[4] & 0x08)) {
431 u32 unk5a0 = (ROM16(info->ramcfg[5]) << 8) |
432 info->ramcfg[5];
433 u32 unk5a4 = ROM16(info->ramcfg[7]);
434 u32 unk804 = (info->ramcfg[9] & 0xf0) << 16 |
435 (info->ramcfg[3] & 0x0f) << 16 |
436 (info->ramcfg[9] & 0x0f) |
437 0x80000000;
438 nv_wr32(device, 0x1005a0, unk5a0);
439 nv_wr32(device, 0x1005a4, unk5a4);
440 nv_wr32(device, 0x10f804, unk804);
441 nv_mask(device, 0x10053c, 0x00001000, 0x00000000);
442 } else {
443 nv_mask(device, 0x10053c, 0x00001000, 0x00001000);
444 nv_mask(device, 0x10f804, 0x80000000, 0x00000000);
445 nv_mask(device, 0x100760, 0x22222222, info->r100760);
446 nv_mask(device, 0x1007a0, 0x22222222, info->r100760);
447 nv_mask(device, 0x1007e0, 0x22222222, info->r100760);
448 }
449 }
450
451 if (info->mclk.pll) {
452 nv_mask(device, 0x1110e0, 0x00088000, 0x00011000);
453 nv_wr32(device, 0x004000, (ctrl &= ~0x00000008));
454 }
455 }
456
457 static void
458 mclk_timing_set(struct nouveau_mem_exec_func *exec)
459 {
460 struct nouveau_device *device = nouveau_dev(exec->dev);
461 struct nva3_pm_state *info = exec->priv;
462 struct nouveau_pm_level *perflvl = info->perflvl;
463 int i;
464
465 for (i = 0; i < 9; i++)
466 nv_wr32(device, 0x100220 + (i * 4), perflvl->timing.reg[i]);
467
468 if (info->ramcfg) {
469 u32 data = (info->ramcfg[2] & 0x08) ? 0x00000000 : 0x00001000;
470 nv_mask(device, 0x100200, 0x00001000, data);
471 }
472
473 if (info->ramcfg) {
474 u32 unk714 = nv_rd32(device, 0x100714) & ~0xf0000010;
475 u32 unk718 = nv_rd32(device, 0x100718) & ~0x00000100;
476 u32 unk71c = nv_rd32(device, 0x10071c) & ~0x00000100;
477 if ( (info->ramcfg[2] & 0x20))
478 unk714 |= 0xf0000000;
479 if (!(info->ramcfg[2] & 0x04))
480 unk714 |= 0x00000010;
481 nv_wr32(device, 0x100714, unk714);
482
483 if (info->ramcfg[2] & 0x01)
484 unk71c |= 0x00000100;
485 nv_wr32(device, 0x10071c, unk71c);
486
487 if (info->ramcfg[2] & 0x02)
488 unk718 |= 0x00000100;
489 nv_wr32(device, 0x100718, unk718);
490
491 if (info->ramcfg[2] & 0x10)
492 nv_wr32(device, 0x111100, 0x48000000); /*XXX*/
493 }
494 }
495
496 static void
497 prog_mem(struct drm_device *dev, struct nva3_pm_state *info)
498 {
499 struct nouveau_device *device = nouveau_dev(dev);
500 struct nouveau_mem_exec_func exec = {
501 .dev = dev,
502 .precharge = mclk_precharge,
503 .refresh = mclk_refresh,
504 .refresh_auto = mclk_refresh_auto,
505 .refresh_self = mclk_refresh_self,
506 .wait = mclk_wait,
507 .mrg = mclk_mrg,
508 .mrs = mclk_mrs,
509 .clock_set = mclk_clock_set,
510 .timing_set = mclk_timing_set,
511 .priv = info
512 };
513 u32 ctrl;
514
515 /* XXX: where the fuck does 750MHz come from? */
516 if (info->perflvl->memory <= 750000) {
517 info->r004018 = 0x10000000;
518 info->r100760 = 0x22222222;
519 }
520
521 ctrl = nv_rd32(device, 0x004000);
522 if (ctrl & 0x00000008) {
523 if (info->mclk.pll) {
524 nv_mask(device, 0x004128, 0x00000101, 0x00000101);
525 nv_wr32(device, 0x004004, info->mclk.pll);
526 nv_wr32(device, 0x004000, (ctrl |= 0x00000001));
527 nv_wr32(device, 0x004000, (ctrl &= 0xffffffef));
528 nv_wait(device, 0x004000, 0x00020000, 0x00020000);
529 nv_wr32(device, 0x004000, (ctrl |= 0x00000010));
530 nv_wr32(device, 0x004018, 0x00005000 | info->r004018);
531 nv_wr32(device, 0x004000, (ctrl |= 0x00000004));
532 }
533 } else {
534 u32 ssel = 0x00000101;
535 if (info->mclk.clk)
536 ssel |= info->mclk.clk;
537 else
538 ssel |= 0x00080000; /* 324MHz, shouldn't matter... */
539 nv_mask(device, 0x004168, 0x003f3141, ctrl);
540 }
541
542 if (info->ramcfg) {
543 if (info->ramcfg[2] & 0x10) {
544 nv_mask(device, 0x111104, 0x00000600, 0x00000000);
545 } else {
546 nv_mask(device, 0x111100, 0x40000000, 0x40000000);
547 nv_mask(device, 0x111104, 0x00000180, 0x00000000);
548 }
549 }
550 if (info->rammap && !(info->rammap[4] & 0x02))
551 nv_mask(device, 0x100200, 0x00000800, 0x00000000);
552 nv_wr32(device, 0x611200, 0x00003300);
553 if (!(info->ramcfg[2] & 0x10))
554 nv_wr32(device, 0x111100, 0x4c020000); /*XXX*/
555
556 nouveau_mem_exec(&exec, info->perflvl);
557
558 nv_wr32(device, 0x611200, 0x00003330);
559 if (info->rammap && (info->rammap[4] & 0x02))
560 nv_mask(device, 0x100200, 0x00000800, 0x00000800);
561 if (info->ramcfg) {
562 if (info->ramcfg[2] & 0x10) {
563 nv_mask(device, 0x111104, 0x00000180, 0x00000180);
564 nv_mask(device, 0x111100, 0x40000000, 0x00000000);
565 } else {
566 nv_mask(device, 0x111104, 0x00000600, 0x00000600);
567 }
568 }
569
570 if (info->mclk.pll) {
571 nv_mask(device, 0x004168, 0x00000001, 0x00000000);
572 nv_mask(device, 0x004168, 0x00000100, 0x00000000);
573 } else {
574 nv_mask(device, 0x004000, 0x00000001, 0x00000000);
575 nv_mask(device, 0x004128, 0x00000001, 0x00000000);
576 nv_mask(device, 0x004128, 0x00000100, 0x00000000);
577 }
578 }
579
580 int
581 nva3_pm_clocks_set(struct drm_device *dev, void *pre_state)
582 {
583 struct nouveau_device *device = nouveau_dev(dev);
584 struct nouveau_drm *drm = nouveau_drm(dev);
585 struct nva3_pm_state *info = pre_state;
586 int ret = -EAGAIN;
587
588 /* prevent any new grctx switches from starting */
589 nv_wr32(device, 0x400324, 0x00000000);
590 nv_wr32(device, 0x400328, 0x0050001c); /* wait flag 0x1c */
591 /* wait for any pending grctx switches to complete */
592 if (!nv_wait_cb(device, nva3_pm_grcp_idle, dev)) {
593 NV_ERROR(drm, "pm: ctxprog didn't go idle\n");
594 goto cleanup;
595 }
596 /* freeze PFIFO */
597 nv_mask(device, 0x002504, 0x00000001, 0x00000001);
598 if (!nv_wait(device, 0x002504, 0x00000010, 0x00000010)) {
599 NV_ERROR(drm, "pm: fifo didn't go idle\n");
600 goto cleanup;
601 }
602
603 prog_pll(dev, 0x00, 0x004200, &info->nclk);
604 prog_pll(dev, 0x01, 0x004220, &info->sclk);
605 prog_clk(dev, 0x20, &info->unka0);
606 prog_clk(dev, 0x21, &info->vdec);
607
608 if (info->mclk.clk || info->mclk.pll)
609 prog_mem(dev, info);
610
611 ret = 0;
612
613 cleanup:
614 /* unfreeze PFIFO */
615 nv_mask(device, 0x002504, 0x00000001, 0x00000000);
616 /* restore ctxprog to normal */
617 nv_wr32(device, 0x400324, 0x00000000);
618 nv_wr32(device, 0x400328, 0x0070009c); /* set flag 0x1c */
619 /* unblock it if necessary */
620 if (nv_rd32(device, 0x400308) == 0x0050001c)
621 nv_mask(device, 0x400824, 0x10000000, 0x10000000);
622 kfree(info);
623 return ret;
624 }