UAPI: (Scripted) Convert #include "..." to #include <path/...> in drivers/gpu/
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / nouveau / nv04_dfp.c
1 /*
2 * Copyright 2003 NVIDIA, Corporation
3 * Copyright 2006 Dave Airlie
4 * Copyright 2007 Maarten Maathuis
5 * Copyright 2007-2009 Stuart Bennett
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 #include <drm/drmP.h>
28 #include <drm/drm_crtc_helper.h>
29
30 #include "nouveau_drv.h"
31 #include "nouveau_encoder.h"
32 #include "nouveau_connector.h"
33 #include "nouveau_crtc.h"
34 #include "nouveau_hw.h"
35 #include "nvreg.h"
36
37 #include <drm/i2c/sil164.h>
38
39 #define FP_TG_CONTROL_ON (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | \
40 NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS | \
41 NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS)
42 #define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE | \
43 NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE | \
44 NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE)
45
46 static inline bool is_fpc_off(uint32_t fpc)
47 {
48 return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) ==
49 FP_TG_CONTROL_OFF);
50 }
51
52 int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_entry *dcbent)
53 {
54 /* special case of nv_read_tmds to find crtc associated with an output.
55 * this does not give a correct answer for off-chip dvi, but there's no
56 * use for such an answer anyway
57 */
58 int ramdac = (dcbent->or & OUTPUT_C) >> 2;
59
60 NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL,
61 NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4);
62 return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac;
63 }
64
65 void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_entry *dcbent,
66 int head, bool dl)
67 {
68 /* The BIOS scripts don't do this for us, sadly
69 * Luckily we do know the values ;-)
70 *
71 * head < 0 indicates we wish to force a setting with the overrideval
72 * (for VT restore etc.)
73 */
74
75 int ramdac = (dcbent->or & OUTPUT_C) >> 2;
76 uint8_t tmds04 = 0x80;
77
78 if (head != ramdac)
79 tmds04 = 0x88;
80
81 if (dcbent->type == OUTPUT_LVDS)
82 tmds04 |= 0x01;
83
84 nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04);
85
86 if (dl) /* dual link */
87 nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08);
88 }
89
90 void nv04_dfp_disable(struct drm_device *dev, int head)
91 {
92 struct drm_nouveau_private *dev_priv = dev->dev_private;
93 struct nv04_crtc_reg *crtcstate = dev_priv->mode_reg.crtc_reg;
94
95 if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) &
96 FP_TG_CONTROL_ON) {
97 /* digital remnants must be cleaned before new crtc
98 * values programmed. delay is time for the vga stuff
99 * to realise it's in control again
100 */
101 NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL,
102 FP_TG_CONTROL_OFF);
103 msleep(50);
104 }
105 /* don't inadvertently turn it on when state written later */
106 crtcstate[head].fp_control = FP_TG_CONTROL_OFF;
107 crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &=
108 ~NV_CIO_CRE_LCD_ROUTE_MASK;
109 }
110
111 void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode)
112 {
113 struct drm_device *dev = encoder->dev;
114 struct drm_nouveau_private *dev_priv = dev->dev_private;
115 struct drm_crtc *crtc;
116 struct nouveau_crtc *nv_crtc;
117 uint32_t *fpc;
118
119 if (mode == DRM_MODE_DPMS_ON) {
120 nv_crtc = nouveau_crtc(encoder->crtc);
121 fpc = &dev_priv->mode_reg.crtc_reg[nv_crtc->index].fp_control;
122
123 if (is_fpc_off(*fpc)) {
124 /* using saved value is ok, as (is_digital && dpms_on &&
125 * fp_control==OFF) is (at present) *only* true when
126 * fpc's most recent change was by below "off" code
127 */
128 *fpc = nv_crtc->dpms_saved_fp_control;
129 }
130
131 nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index;
132 NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc);
133 } else {
134 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
135 nv_crtc = nouveau_crtc(crtc);
136 fpc = &dev_priv->mode_reg.crtc_reg[nv_crtc->index].fp_control;
137
138 nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index);
139 if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) {
140 nv_crtc->dpms_saved_fp_control = *fpc;
141 /* cut the FP output */
142 *fpc &= ~FP_TG_CONTROL_ON;
143 *fpc |= FP_TG_CONTROL_OFF;
144 NVWriteRAMDAC(dev, nv_crtc->index,
145 NV_PRAMDAC_FP_TG_CONTROL, *fpc);
146 }
147 }
148 }
149 }
150
151 static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder)
152 {
153 struct drm_device *dev = encoder->dev;
154 struct dcb_entry *dcb = nouveau_encoder(encoder)->dcb;
155 struct drm_encoder *slave;
156
157 if (dcb->type != OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP)
158 return NULL;
159
160 /* Some BIOSes (e.g. the one in a Quadro FX1000) report several
161 * TMDS transmitters at the same I2C address, in the same I2C
162 * bus. This can still work because in that case one of them is
163 * always hard-wired to a reasonable configuration using straps,
164 * and the other one needs to be programmed.
165 *
166 * I don't think there's a way to know which is which, even the
167 * blob programs the one exposed via I2C for *both* heads, so
168 * let's do the same.
169 */
170 list_for_each_entry(slave, &dev->mode_config.encoder_list, head) {
171 struct dcb_entry *slave_dcb = nouveau_encoder(slave)->dcb;
172
173 if (slave_dcb->type == OUTPUT_TMDS && get_slave_funcs(slave) &&
174 slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr)
175 return slave;
176 }
177
178 return NULL;
179 }
180
181 static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder,
182 const struct drm_display_mode *mode,
183 struct drm_display_mode *adjusted_mode)
184 {
185 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
186 struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder);
187
188 if (!nv_connector->native_mode ||
189 nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
190 mode->hdisplay > nv_connector->native_mode->hdisplay ||
191 mode->vdisplay > nv_connector->native_mode->vdisplay) {
192 nv_encoder->mode = *adjusted_mode;
193
194 } else {
195 nv_encoder->mode = *nv_connector->native_mode;
196 adjusted_mode->clock = nv_connector->native_mode->clock;
197 }
198
199 return true;
200 }
201
202 static void nv04_dfp_prepare_sel_clk(struct drm_device *dev,
203 struct nouveau_encoder *nv_encoder, int head)
204 {
205 struct drm_nouveau_private *dev_priv = dev->dev_private;
206 struct nv04_mode_state *state = &dev_priv->mode_reg;
207 uint32_t bits1618 = nv_encoder->dcb->or & OUTPUT_A ? 0x10000 : 0x40000;
208
209 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP)
210 return;
211
212 /* SEL_CLK is only used on the primary ramdac
213 * It toggles spread spectrum PLL output and sets the bindings of PLLs
214 * to heads on digital outputs
215 */
216 if (head)
217 state->sel_clk |= bits1618;
218 else
219 state->sel_clk &= ~bits1618;
220
221 /* nv30:
222 * bit 0 NVClk spread spectrum on/off
223 * bit 2 MemClk spread spectrum on/off
224 * bit 4 PixClk1 spread spectrum on/off toggle
225 * bit 6 PixClk2 spread spectrum on/off toggle
226 *
227 * nv40 (observations from bios behaviour and mmio traces):
228 * bits 4&6 as for nv30
229 * bits 5&7 head dependent as for bits 4&6, but do not appear with 4&6;
230 * maybe a different spread mode
231 * bits 8&10 seen on dual-link dvi outputs, purpose unknown (set by POST scripts)
232 * The logic behind turning spread spectrum on/off in the first place,
233 * and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table
234 * entry has the necessary info)
235 */
236 if (nv_encoder->dcb->type == OUTPUT_LVDS && dev_priv->saved_reg.sel_clk & 0xf0) {
237 int shift = (dev_priv->saved_reg.sel_clk & 0x50) ? 0 : 1;
238
239 state->sel_clk &= ~0xf0;
240 state->sel_clk |= (head ? 0x40 : 0x10) << shift;
241 }
242 }
243
244 static void nv04_dfp_prepare(struct drm_encoder *encoder)
245 {
246 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
247 struct drm_encoder_helper_funcs *helper = encoder->helper_private;
248 struct drm_device *dev = encoder->dev;
249 struct drm_nouveau_private *dev_priv = dev->dev_private;
250 int head = nouveau_crtc(encoder->crtc)->index;
251 struct nv04_crtc_reg *crtcstate = dev_priv->mode_reg.crtc_reg;
252 uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX];
253 uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX];
254
255 helper->dpms(encoder, DRM_MODE_DPMS_OFF);
256
257 nv04_dfp_prepare_sel_clk(dev, nv_encoder, head);
258
259 *cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3;
260
261 if (nv_two_heads(dev)) {
262 if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP)
263 *cr_lcd |= head ? 0x0 : 0x8;
264 else {
265 *cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30;
266 if (nv_encoder->dcb->type == OUTPUT_LVDS)
267 *cr_lcd |= 0x30;
268 if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) {
269 /* avoid being connected to both crtcs */
270 *cr_lcd_oth &= ~0x30;
271 NVWriteVgaCrtc(dev, head ^ 1,
272 NV_CIO_CRE_LCD__INDEX,
273 *cr_lcd_oth);
274 }
275 }
276 }
277 }
278
279
280 static void nv04_dfp_mode_set(struct drm_encoder *encoder,
281 struct drm_display_mode *mode,
282 struct drm_display_mode *adjusted_mode)
283 {
284 struct drm_device *dev = encoder->dev;
285 struct drm_nouveau_private *dev_priv = dev->dev_private;
286 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
287 struct nv04_crtc_reg *regp = &dev_priv->mode_reg.crtc_reg[nv_crtc->index];
288 struct nv04_crtc_reg *savep = &dev_priv->saved_reg.crtc_reg[nv_crtc->index];
289 struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc);
290 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
291 struct drm_display_mode *output_mode = &nv_encoder->mode;
292 struct drm_connector *connector = &nv_connector->base;
293 uint32_t mode_ratio, panel_ratio;
294
295 NV_DEBUG_KMS(dev, "Output mode on CRTC %d:\n", nv_crtc->index);
296 drm_mode_debug_printmodeline(output_mode);
297
298 /* Initialize the FP registers in this CRTC. */
299 regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1;
300 regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1;
301 if (!nv_gf4_disp_arch(dev) ||
302 (output_mode->hsync_start - output_mode->hdisplay) >=
303 dev_priv->vbios.digital_min_front_porch)
304 regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay;
305 else
306 regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - dev_priv->vbios.digital_min_front_porch - 1;
307 regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1;
308 regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1;
309 regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew;
310 regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1;
311
312 regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1;
313 regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1;
314 regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1;
315 regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1;
316 regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1;
317 regp->fp_vert_regs[FP_VALID_START] = 0;
318 regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1;
319
320 /* bit26: a bit seen on some g7x, no as yet discernable purpose */
321 regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |
322 (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG));
323 /* Deal with vsync/hsync polarity */
324 /* LVDS screens do set this, but modes with +ve syncs are very rare */
325 if (output_mode->flags & DRM_MODE_FLAG_PVSYNC)
326 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS;
327 if (output_mode->flags & DRM_MODE_FLAG_PHSYNC)
328 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS;
329 /* panel scaling first, as native would get set otherwise */
330 if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
331 nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER) /* panel handles it */
332 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER;
333 else if (adjusted_mode->hdisplay == output_mode->hdisplay &&
334 adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */
335 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE;
336 else /* gpu needs to scale */
337 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE;
338 if (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT)
339 regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12;
340 if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP &&
341 output_mode->clock > 165000)
342 regp->fp_control |= (2 << 24);
343 if (nv_encoder->dcb->type == OUTPUT_LVDS) {
344 bool duallink = false, dummy;
345 if (nv_connector->edid &&
346 nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
347 duallink = (((u8 *)nv_connector->edid)[121] == 2);
348 } else {
349 nouveau_bios_parse_lvds_table(dev, output_mode->clock,
350 &duallink, &dummy);
351 }
352
353 if (duallink)
354 regp->fp_control |= (8 << 28);
355 } else
356 if (output_mode->clock > 165000)
357 regp->fp_control |= (8 << 28);
358
359 regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND |
360 NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND |
361 NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR |
362 NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR |
363 NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED |
364 NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE |
365 NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE;
366
367 /* We want automatic scaling */
368 regp->fp_debug_1 = 0;
369 /* This can override HTOTAL and VTOTAL */
370 regp->fp_debug_2 = 0;
371
372 /* Use 20.12 fixed point format to avoid floats */
373 mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay;
374 panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay;
375 /* if ratios are equal, SCALE_ASPECT will automatically (and correctly)
376 * get treated the same as SCALE_FULLSCREEN */
377 if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT &&
378 mode_ratio != panel_ratio) {
379 uint32_t diff, scale;
380 bool divide_by_2 = nv_gf4_disp_arch(dev);
381
382 if (mode_ratio < panel_ratio) {
383 /* vertical needs to expand to glass size (automatic)
384 * horizontal needs to be scaled at vertical scale factor
385 * to maintain aspect */
386
387 scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay;
388 regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE |
389 XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE);
390
391 /* restrict area of screen used, horizontally */
392 diff = output_mode->hdisplay -
393 output_mode->vdisplay * mode_ratio / (1 << 12);
394 regp->fp_horiz_regs[FP_VALID_START] += diff / 2;
395 regp->fp_horiz_regs[FP_VALID_END] -= diff / 2;
396 }
397
398 if (mode_ratio > panel_ratio) {
399 /* horizontal needs to expand to glass size (automatic)
400 * vertical needs to be scaled at horizontal scale factor
401 * to maintain aspect */
402
403 scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay;
404 regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE |
405 XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE);
406
407 /* restrict area of screen used, vertically */
408 diff = output_mode->vdisplay -
409 (1 << 12) * output_mode->hdisplay / mode_ratio;
410 regp->fp_vert_regs[FP_VALID_START] += diff / 2;
411 regp->fp_vert_regs[FP_VALID_END] -= diff / 2;
412 }
413 }
414
415 /* Output property. */
416 if ((nv_connector->dithering_mode == DITHERING_MODE_ON) ||
417 (nv_connector->dithering_mode == DITHERING_MODE_AUTO &&
418 encoder->crtc->fb->depth > connector->display_info.bpc * 3)) {
419 if (dev_priv->chipset == 0x11)
420 regp->dither = savep->dither | 0x00010000;
421 else {
422 int i;
423 regp->dither = savep->dither | 0x00000001;
424 for (i = 0; i < 3; i++) {
425 regp->dither_regs[i] = 0xe4e4e4e4;
426 regp->dither_regs[i + 3] = 0x44444444;
427 }
428 }
429 } else {
430 if (dev_priv->chipset != 0x11) {
431 /* reset them */
432 int i;
433 for (i = 0; i < 3; i++) {
434 regp->dither_regs[i] = savep->dither_regs[i];
435 regp->dither_regs[i + 3] = savep->dither_regs[i + 3];
436 }
437 }
438 regp->dither = savep->dither;
439 }
440
441 regp->fp_margin_color = 0;
442 }
443
444 static void nv04_dfp_commit(struct drm_encoder *encoder)
445 {
446 struct drm_device *dev = encoder->dev;
447 struct drm_nouveau_private *dev_priv = dev->dev_private;
448 struct drm_encoder_helper_funcs *helper = encoder->helper_private;
449 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
450 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
451 struct dcb_entry *dcbe = nv_encoder->dcb;
452 int head = nouveau_crtc(encoder->crtc)->index;
453 struct drm_encoder *slave_encoder;
454
455 if (dcbe->type == OUTPUT_TMDS)
456 run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock);
457 else if (dcbe->type == OUTPUT_LVDS)
458 call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock);
459
460 /* update fp_control state for any changes made by scripts,
461 * so correct value is written at DPMS on */
462 dev_priv->mode_reg.crtc_reg[head].fp_control =
463 NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
464
465 /* This could use refinement for flatpanels, but it should work this way */
466 if (dev_priv->chipset < 0x44)
467 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000);
468 else
469 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000);
470
471 /* Init external transmitters */
472 slave_encoder = get_tmds_slave(encoder);
473 if (slave_encoder)
474 get_slave_funcs(slave_encoder)->mode_set(
475 slave_encoder, &nv_encoder->mode, &nv_encoder->mode);
476
477 helper->dpms(encoder, DRM_MODE_DPMS_ON);
478
479 NV_INFO(dev, "Output %s is running on CRTC %d using output %c\n",
480 drm_get_connector_name(&nouveau_encoder_connector_get(nv_encoder)->base),
481 nv_crtc->index, '@' + ffs(nv_encoder->dcb->or));
482 }
483
484 static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode)
485 {
486 #ifdef __powerpc__
487 struct drm_device *dev = encoder->dev;
488
489 /* BIOS scripts usually take care of the backlight, thanks
490 * Apple for your consistency.
491 */
492 if (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 ||
493 dev->pci_device == 0x0329) {
494 if (mode == DRM_MODE_DPMS_ON) {
495 nv_mask(dev, NV_PBUS_DEBUG_DUALHEAD_CTL, 0, 1 << 31);
496 nv_mask(dev, NV_PCRTC_GPIO_EXT, 3, 1);
497 } else {
498 nv_mask(dev, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0);
499 nv_mask(dev, NV_PCRTC_GPIO_EXT, 3, 0);
500 }
501 }
502 #endif
503 }
504
505 static inline bool is_powersaving_dpms(int mode)
506 {
507 return (mode != DRM_MODE_DPMS_ON);
508 }
509
510 static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode)
511 {
512 struct drm_device *dev = encoder->dev;
513 struct drm_crtc *crtc = encoder->crtc;
514 struct drm_nouveau_private *dev_priv = dev->dev_private;
515 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
516 bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms);
517
518 if (nv_encoder->last_dpms == mode)
519 return;
520 nv_encoder->last_dpms = mode;
521
522 NV_INFO(dev, "Setting dpms mode %d on lvds encoder (output %d)\n",
523 mode, nv_encoder->dcb->index);
524
525 if (was_powersaving && is_powersaving_dpms(mode))
526 return;
527
528 if (nv_encoder->dcb->lvdsconf.use_power_scripts) {
529 /* when removing an output, crtc may not be set, but PANEL_OFF
530 * must still be run
531 */
532 int head = crtc ? nouveau_crtc(crtc)->index :
533 nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
534
535 if (mode == DRM_MODE_DPMS_ON) {
536 call_lvds_script(dev, nv_encoder->dcb, head,
537 LVDS_PANEL_ON, nv_encoder->mode.clock);
538 } else
539 /* pxclk of 0 is fine for PANEL_OFF, and for a
540 * disconnected LVDS encoder there is no native_mode
541 */
542 call_lvds_script(dev, nv_encoder->dcb, head,
543 LVDS_PANEL_OFF, 0);
544 }
545
546 nv04_dfp_update_backlight(encoder, mode);
547 nv04_dfp_update_fp_control(encoder, mode);
548
549 if (mode == DRM_MODE_DPMS_ON)
550 nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index);
551 else {
552 dev_priv->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
553 dev_priv->mode_reg.sel_clk &= ~0xf0;
554 }
555 NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, dev_priv->mode_reg.sel_clk);
556 }
557
558 static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode)
559 {
560 struct drm_device *dev = encoder->dev;
561 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
562
563 if (nv_encoder->last_dpms == mode)
564 return;
565 nv_encoder->last_dpms = mode;
566
567 NV_INFO(dev, "Setting dpms mode %d on tmds encoder (output %d)\n",
568 mode, nv_encoder->dcb->index);
569
570 nv04_dfp_update_backlight(encoder, mode);
571 nv04_dfp_update_fp_control(encoder, mode);
572 }
573
574 static void nv04_dfp_save(struct drm_encoder *encoder)
575 {
576 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
577 struct drm_device *dev = encoder->dev;
578
579 if (nv_two_heads(dev))
580 nv_encoder->restore.head =
581 nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
582 }
583
584 static void nv04_dfp_restore(struct drm_encoder *encoder)
585 {
586 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
587 struct drm_device *dev = encoder->dev;
588 struct drm_nouveau_private *dev_priv = dev->dev_private;
589 int head = nv_encoder->restore.head;
590
591 if (nv_encoder->dcb->type == OUTPUT_LVDS) {
592 struct nouveau_connector *connector =
593 nouveau_encoder_connector_get(nv_encoder);
594
595 if (connector && connector->native_mode)
596 call_lvds_script(dev, nv_encoder->dcb, head,
597 LVDS_PANEL_ON,
598 connector->native_mode->clock);
599
600 } else if (nv_encoder->dcb->type == OUTPUT_TMDS) {
601 int clock = nouveau_hw_pllvals_to_clk
602 (&dev_priv->saved_reg.crtc_reg[head].pllvals);
603
604 run_tmds_table(dev, nv_encoder->dcb, head, clock);
605 }
606
607 nv_encoder->last_dpms = NV_DPMS_CLEARED;
608 }
609
610 static void nv04_dfp_destroy(struct drm_encoder *encoder)
611 {
612 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
613
614 NV_DEBUG_KMS(encoder->dev, "\n");
615
616 if (get_slave_funcs(encoder))
617 get_slave_funcs(encoder)->destroy(encoder);
618
619 drm_encoder_cleanup(encoder);
620 kfree(nv_encoder);
621 }
622
623 static void nv04_tmds_slave_init(struct drm_encoder *encoder)
624 {
625 struct drm_device *dev = encoder->dev;
626 struct dcb_entry *dcb = nouveau_encoder(encoder)->dcb;
627 struct nouveau_i2c_chan *i2c = nouveau_i2c_find(dev, 2);
628 struct i2c_board_info info[] = {
629 {
630 .type = "sil164",
631 .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38),
632 .platform_data = &(struct sil164_encoder_params) {
633 SIL164_INPUT_EDGE_RISING
634 }
635 },
636 { }
637 };
638 int type;
639
640 if (!nv_gf4_disp_arch(dev) || !i2c ||
641 get_tmds_slave(encoder))
642 return;
643
644 type = nouveau_i2c_identify(dev, "TMDS transmitter", info, NULL, 2);
645 if (type < 0)
646 return;
647
648 drm_i2c_encoder_init(dev, to_encoder_slave(encoder),
649 &i2c->adapter, &info[type]);
650 }
651
652 static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = {
653 .dpms = nv04_lvds_dpms,
654 .save = nv04_dfp_save,
655 .restore = nv04_dfp_restore,
656 .mode_fixup = nv04_dfp_mode_fixup,
657 .prepare = nv04_dfp_prepare,
658 .commit = nv04_dfp_commit,
659 .mode_set = nv04_dfp_mode_set,
660 .detect = NULL,
661 };
662
663 static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = {
664 .dpms = nv04_tmds_dpms,
665 .save = nv04_dfp_save,
666 .restore = nv04_dfp_restore,
667 .mode_fixup = nv04_dfp_mode_fixup,
668 .prepare = nv04_dfp_prepare,
669 .commit = nv04_dfp_commit,
670 .mode_set = nv04_dfp_mode_set,
671 .detect = NULL,
672 };
673
674 static const struct drm_encoder_funcs nv04_dfp_funcs = {
675 .destroy = nv04_dfp_destroy,
676 };
677
678 int
679 nv04_dfp_create(struct drm_connector *connector, struct dcb_entry *entry)
680 {
681 const struct drm_encoder_helper_funcs *helper;
682 struct nouveau_encoder *nv_encoder = NULL;
683 struct drm_encoder *encoder;
684 int type;
685
686 switch (entry->type) {
687 case OUTPUT_TMDS:
688 type = DRM_MODE_ENCODER_TMDS;
689 helper = &nv04_tmds_helper_funcs;
690 break;
691 case OUTPUT_LVDS:
692 type = DRM_MODE_ENCODER_LVDS;
693 helper = &nv04_lvds_helper_funcs;
694 break;
695 default:
696 return -EINVAL;
697 }
698
699 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
700 if (!nv_encoder)
701 return -ENOMEM;
702
703 encoder = to_drm_encoder(nv_encoder);
704
705 nv_encoder->dcb = entry;
706 nv_encoder->or = ffs(entry->or) - 1;
707
708 drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type);
709 drm_encoder_helper_add(encoder, helper);
710
711 encoder->possible_crtcs = entry->heads;
712 encoder->possible_clones = 0;
713
714 if (entry->type == OUTPUT_TMDS &&
715 entry->location != DCB_LOC_ON_CHIP)
716 nv04_tmds_slave_init(encoder);
717
718 drm_mode_connector_attach_encoder(connector, encoder);
719 return 0;
720 }