Merge tag 'fbdev-updates-for-3.5' of git://github.com/schandinat/linux-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / nouveau / nouveau_mem.c
1 /*
2 * Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.
3 * Copyright 2005 Stephane Marchesin
4 *
5 * The Weather Channel (TM) funded Tungsten Graphics to develop the
6 * initial release of the Radeon 8500 driver under the XFree86 license.
7 * This notice must be preserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 *
28 * Authors:
29 * Ben Skeggs <bskeggs@redhat.com>
30 * Roy Spliet <r.spliet@student.tudelft.nl>
31 */
32
33
34 #include "drmP.h"
35 #include "drm.h"
36 #include "drm_sarea.h"
37
38 #include "nouveau_drv.h"
39 #include "nouveau_pm.h"
40 #include "nouveau_mm.h"
41 #include "nouveau_vm.h"
42 #include "nouveau_fifo.h"
43 #include "nouveau_fence.h"
44
45 /*
46 * NV10-NV40 tiling helpers
47 */
48
49 static void
50 nv10_mem_update_tile_region(struct drm_device *dev,
51 struct nouveau_tile_reg *tile, uint32_t addr,
52 uint32_t size, uint32_t pitch, uint32_t flags)
53 {
54 struct drm_nouveau_private *dev_priv = dev->dev_private;
55 struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
56 int i = tile - dev_priv->tile.reg, j;
57 unsigned long save;
58
59 nouveau_fence_unref(&tile->fence);
60
61 if (tile->pitch)
62 pfb->free_tile_region(dev, i);
63
64 if (pitch)
65 pfb->init_tile_region(dev, i, addr, size, pitch, flags);
66
67 spin_lock_irqsave(&dev_priv->context_switch_lock, save);
68 nv_wr32(dev, NV03_PFIFO_CACHES, 0);
69 nv04_fifo_cache_pull(dev, false);
70
71 nouveau_wait_for_idle(dev);
72
73 pfb->set_tile_region(dev, i);
74 for (j = 0; j < NVOBJ_ENGINE_NR; j++) {
75 if (dev_priv->eng[j] && dev_priv->eng[j]->set_tile_region)
76 dev_priv->eng[j]->set_tile_region(dev, i);
77 }
78
79 nv04_fifo_cache_pull(dev, true);
80 nv_wr32(dev, NV03_PFIFO_CACHES, 1);
81 spin_unlock_irqrestore(&dev_priv->context_switch_lock, save);
82 }
83
84 static struct nouveau_tile_reg *
85 nv10_mem_get_tile_region(struct drm_device *dev, int i)
86 {
87 struct drm_nouveau_private *dev_priv = dev->dev_private;
88 struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i];
89
90 spin_lock(&dev_priv->tile.lock);
91
92 if (!tile->used &&
93 (!tile->fence || nouveau_fence_done(tile->fence)))
94 tile->used = true;
95 else
96 tile = NULL;
97
98 spin_unlock(&dev_priv->tile.lock);
99 return tile;
100 }
101
102 void
103 nv10_mem_put_tile_region(struct drm_device *dev, struct nouveau_tile_reg *tile,
104 struct nouveau_fence *fence)
105 {
106 struct drm_nouveau_private *dev_priv = dev->dev_private;
107
108 if (tile) {
109 spin_lock(&dev_priv->tile.lock);
110 if (fence) {
111 /* Mark it as pending. */
112 tile->fence = fence;
113 nouveau_fence_ref(fence);
114 }
115
116 tile->used = false;
117 spin_unlock(&dev_priv->tile.lock);
118 }
119 }
120
121 struct nouveau_tile_reg *
122 nv10_mem_set_tiling(struct drm_device *dev, uint32_t addr, uint32_t size,
123 uint32_t pitch, uint32_t flags)
124 {
125 struct drm_nouveau_private *dev_priv = dev->dev_private;
126 struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
127 struct nouveau_tile_reg *tile, *found = NULL;
128 int i;
129
130 for (i = 0; i < pfb->num_tiles; i++) {
131 tile = nv10_mem_get_tile_region(dev, i);
132
133 if (pitch && !found) {
134 found = tile;
135 continue;
136
137 } else if (tile && tile->pitch) {
138 /* Kill an unused tile region. */
139 nv10_mem_update_tile_region(dev, tile, 0, 0, 0, 0);
140 }
141
142 nv10_mem_put_tile_region(dev, tile, NULL);
143 }
144
145 if (found)
146 nv10_mem_update_tile_region(dev, found, addr, size,
147 pitch, flags);
148 return found;
149 }
150
151 /*
152 * Cleanup everything
153 */
154 void
155 nouveau_mem_vram_fini(struct drm_device *dev)
156 {
157 struct drm_nouveau_private *dev_priv = dev->dev_private;
158
159 ttm_bo_device_release(&dev_priv->ttm.bdev);
160
161 nouveau_ttm_global_release(dev_priv);
162
163 if (dev_priv->fb_mtrr >= 0) {
164 drm_mtrr_del(dev_priv->fb_mtrr,
165 pci_resource_start(dev->pdev, 1),
166 pci_resource_len(dev->pdev, 1), DRM_MTRR_WC);
167 dev_priv->fb_mtrr = -1;
168 }
169 }
170
171 void
172 nouveau_mem_gart_fini(struct drm_device *dev)
173 {
174 nouveau_sgdma_takedown(dev);
175
176 if (drm_core_has_AGP(dev) && dev->agp) {
177 struct drm_agp_mem *entry, *tempe;
178
179 /* Remove AGP resources, but leave dev->agp
180 intact until drv_cleanup is called. */
181 list_for_each_entry_safe(entry, tempe, &dev->agp->memory, head) {
182 if (entry->bound)
183 drm_unbind_agp(entry->memory);
184 drm_free_agp(entry->memory, entry->pages);
185 kfree(entry);
186 }
187 INIT_LIST_HEAD(&dev->agp->memory);
188
189 if (dev->agp->acquired)
190 drm_agp_release(dev);
191
192 dev->agp->acquired = 0;
193 dev->agp->enabled = 0;
194 }
195 }
196
197 bool
198 nouveau_mem_flags_valid(struct drm_device *dev, u32 tile_flags)
199 {
200 if (!(tile_flags & NOUVEAU_GEM_TILE_LAYOUT_MASK))
201 return true;
202
203 return false;
204 }
205
206 #if __OS_HAS_AGP
207 static unsigned long
208 get_agp_mode(struct drm_device *dev, unsigned long mode)
209 {
210 struct drm_nouveau_private *dev_priv = dev->dev_private;
211
212 /*
213 * FW seems to be broken on nv18, it makes the card lock up
214 * randomly.
215 */
216 if (dev_priv->chipset == 0x18)
217 mode &= ~PCI_AGP_COMMAND_FW;
218
219 /*
220 * AGP mode set in the command line.
221 */
222 if (nouveau_agpmode > 0) {
223 bool agpv3 = mode & 0x8;
224 int rate = agpv3 ? nouveau_agpmode / 4 : nouveau_agpmode;
225
226 mode = (mode & ~0x7) | (rate & 0x7);
227 }
228
229 return mode;
230 }
231 #endif
232
233 int
234 nouveau_mem_reset_agp(struct drm_device *dev)
235 {
236 #if __OS_HAS_AGP
237 uint32_t saved_pci_nv_1, pmc_enable;
238 int ret;
239
240 /* First of all, disable fast writes, otherwise if it's
241 * already enabled in the AGP bridge and we disable the card's
242 * AGP controller we might be locking ourselves out of it. */
243 if ((nv_rd32(dev, NV04_PBUS_PCI_NV_19) |
244 dev->agp->mode) & PCI_AGP_COMMAND_FW) {
245 struct drm_agp_info info;
246 struct drm_agp_mode mode;
247
248 ret = drm_agp_info(dev, &info);
249 if (ret)
250 return ret;
251
252 mode.mode = get_agp_mode(dev, info.mode) & ~PCI_AGP_COMMAND_FW;
253 ret = drm_agp_enable(dev, mode);
254 if (ret)
255 return ret;
256 }
257
258 saved_pci_nv_1 = nv_rd32(dev, NV04_PBUS_PCI_NV_1);
259
260 /* clear busmaster bit */
261 nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4);
262 /* disable AGP */
263 nv_wr32(dev, NV04_PBUS_PCI_NV_19, 0);
264
265 /* power cycle pgraph, if enabled */
266 pmc_enable = nv_rd32(dev, NV03_PMC_ENABLE);
267 if (pmc_enable & NV_PMC_ENABLE_PGRAPH) {
268 nv_wr32(dev, NV03_PMC_ENABLE,
269 pmc_enable & ~NV_PMC_ENABLE_PGRAPH);
270 nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) |
271 NV_PMC_ENABLE_PGRAPH);
272 }
273
274 /* and restore (gives effect of resetting AGP) */
275 nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1);
276 #endif
277
278 return 0;
279 }
280
281 int
282 nouveau_mem_init_agp(struct drm_device *dev)
283 {
284 #if __OS_HAS_AGP
285 struct drm_nouveau_private *dev_priv = dev->dev_private;
286 struct drm_agp_info info;
287 struct drm_agp_mode mode;
288 int ret;
289
290 if (!dev->agp->acquired) {
291 ret = drm_agp_acquire(dev);
292 if (ret) {
293 NV_ERROR(dev, "Unable to acquire AGP: %d\n", ret);
294 return ret;
295 }
296 }
297
298 nouveau_mem_reset_agp(dev);
299
300 ret = drm_agp_info(dev, &info);
301 if (ret) {
302 NV_ERROR(dev, "Unable to get AGP info: %d\n", ret);
303 return ret;
304 }
305
306 /* see agp.h for the AGPSTAT_* modes available */
307 mode.mode = get_agp_mode(dev, info.mode);
308 ret = drm_agp_enable(dev, mode);
309 if (ret) {
310 NV_ERROR(dev, "Unable to enable AGP: %d\n", ret);
311 return ret;
312 }
313
314 dev_priv->gart_info.type = NOUVEAU_GART_AGP;
315 dev_priv->gart_info.aper_base = info.aperture_base;
316 dev_priv->gart_info.aper_size = info.aperture_size;
317 #endif
318 return 0;
319 }
320
321 static const struct vram_types {
322 int value;
323 const char *name;
324 } vram_type_map[] = {
325 { NV_MEM_TYPE_STOLEN , "stolen system memory" },
326 { NV_MEM_TYPE_SGRAM , "SGRAM" },
327 { NV_MEM_TYPE_SDRAM , "SDRAM" },
328 { NV_MEM_TYPE_DDR1 , "DDR1" },
329 { NV_MEM_TYPE_DDR2 , "DDR2" },
330 { NV_MEM_TYPE_DDR3 , "DDR3" },
331 { NV_MEM_TYPE_GDDR2 , "GDDR2" },
332 { NV_MEM_TYPE_GDDR3 , "GDDR3" },
333 { NV_MEM_TYPE_GDDR4 , "GDDR4" },
334 { NV_MEM_TYPE_GDDR5 , "GDDR5" },
335 { NV_MEM_TYPE_UNKNOWN, "unknown type" }
336 };
337
338 int
339 nouveau_mem_vram_init(struct drm_device *dev)
340 {
341 struct drm_nouveau_private *dev_priv = dev->dev_private;
342 struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
343 const struct vram_types *vram_type;
344 int ret, dma_bits;
345
346 dma_bits = 32;
347 if (dev_priv->card_type >= NV_50) {
348 if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(40)))
349 dma_bits = 40;
350 } else
351 if (0 && pci_is_pcie(dev->pdev) &&
352 dev_priv->chipset > 0x40 &&
353 dev_priv->chipset != 0x45) {
354 if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(39)))
355 dma_bits = 39;
356 }
357
358 ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
359 if (ret)
360 return ret;
361 ret = pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
362 if (ret) {
363 /* Reset to default value. */
364 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32));
365 }
366
367
368 ret = nouveau_ttm_global_init(dev_priv);
369 if (ret)
370 return ret;
371
372 ret = ttm_bo_device_init(&dev_priv->ttm.bdev,
373 dev_priv->ttm.bo_global_ref.ref.object,
374 &nouveau_bo_driver, DRM_FILE_PAGE_OFFSET,
375 dma_bits <= 32 ? true : false);
376 if (ret) {
377 NV_ERROR(dev, "Error initialising bo driver: %d\n", ret);
378 return ret;
379 }
380
381 vram_type = vram_type_map;
382 while (vram_type->value != NV_MEM_TYPE_UNKNOWN) {
383 if (nouveau_vram_type) {
384 if (!strcasecmp(nouveau_vram_type, vram_type->name))
385 break;
386 dev_priv->vram_type = vram_type->value;
387 } else {
388 if (vram_type->value == dev_priv->vram_type)
389 break;
390 }
391 vram_type++;
392 }
393
394 NV_INFO(dev, "Detected %dMiB VRAM (%s)\n",
395 (int)(dev_priv->vram_size >> 20), vram_type->name);
396 if (dev_priv->vram_sys_base) {
397 NV_INFO(dev, "Stolen system memory at: 0x%010llx\n",
398 dev_priv->vram_sys_base);
399 }
400
401 dev_priv->fb_available_size = dev_priv->vram_size;
402 dev_priv->fb_mappable_pages = dev_priv->fb_available_size;
403 if (dev_priv->fb_mappable_pages > pci_resource_len(dev->pdev, 1))
404 dev_priv->fb_mappable_pages = pci_resource_len(dev->pdev, 1);
405 dev_priv->fb_mappable_pages >>= PAGE_SHIFT;
406
407 dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram;
408 dev_priv->fb_aper_free = dev_priv->fb_available_size;
409
410 /* mappable vram */
411 ret = ttm_bo_init_mm(bdev, TTM_PL_VRAM,
412 dev_priv->fb_available_size >> PAGE_SHIFT);
413 if (ret) {
414 NV_ERROR(dev, "Failed VRAM mm init: %d\n", ret);
415 return ret;
416 }
417
418 if (dev_priv->card_type < NV_50) {
419 ret = nouveau_bo_new(dev, 256*1024, 0, TTM_PL_FLAG_VRAM,
420 0, 0, NULL, &dev_priv->vga_ram);
421 if (ret == 0)
422 ret = nouveau_bo_pin(dev_priv->vga_ram,
423 TTM_PL_FLAG_VRAM);
424
425 if (ret) {
426 NV_WARN(dev, "failed to reserve VGA memory\n");
427 nouveau_bo_ref(NULL, &dev_priv->vga_ram);
428 }
429 }
430
431 dev_priv->fb_mtrr = drm_mtrr_add(pci_resource_start(dev->pdev, 1),
432 pci_resource_len(dev->pdev, 1),
433 DRM_MTRR_WC);
434 return 0;
435 }
436
437 int
438 nouveau_mem_gart_init(struct drm_device *dev)
439 {
440 struct drm_nouveau_private *dev_priv = dev->dev_private;
441 struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
442 int ret;
443
444 dev_priv->gart_info.type = NOUVEAU_GART_NONE;
445
446 #if !defined(__powerpc__) && !defined(__ia64__)
447 if (drm_pci_device_is_agp(dev) && dev->agp && nouveau_agpmode) {
448 ret = nouveau_mem_init_agp(dev);
449 if (ret)
450 NV_ERROR(dev, "Error initialising AGP: %d\n", ret);
451 }
452 #endif
453
454 if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) {
455 ret = nouveau_sgdma_init(dev);
456 if (ret) {
457 NV_ERROR(dev, "Error initialising PCI(E): %d\n", ret);
458 return ret;
459 }
460 }
461
462 NV_INFO(dev, "%d MiB GART (aperture)\n",
463 (int)(dev_priv->gart_info.aper_size >> 20));
464 dev_priv->gart_info.aper_free = dev_priv->gart_info.aper_size;
465
466 ret = ttm_bo_init_mm(bdev, TTM_PL_TT,
467 dev_priv->gart_info.aper_size >> PAGE_SHIFT);
468 if (ret) {
469 NV_ERROR(dev, "Failed TT mm init: %d\n", ret);
470 return ret;
471 }
472
473 return 0;
474 }
475
476 static int
477 nv40_mem_timing_calc(struct drm_device *dev, u32 freq,
478 struct nouveau_pm_tbl_entry *e, u8 len,
479 struct nouveau_pm_memtiming *boot,
480 struct nouveau_pm_memtiming *t)
481 {
482 t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC);
483
484 /* XXX: I don't trust the -1's and +1's... they must come
485 * from somewhere! */
486 t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 |
487 1 << 16 |
488 (e->tWTR + 2 + (t->tCWL - 1)) << 8 |
489 (e->tCL + 2 - (t->tCWL - 1));
490
491 t->reg[2] = 0x20200000 |
492 ((t->tCWL - 1) << 24 |
493 e->tRRD << 16 |
494 e->tRCDWR << 8 |
495 e->tRCDRD);
496
497 NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x\n", t->id,
498 t->reg[0], t->reg[1], t->reg[2]);
499 return 0;
500 }
501
502 static int
503 nv50_mem_timing_calc(struct drm_device *dev, u32 freq,
504 struct nouveau_pm_tbl_entry *e, u8 len,
505 struct nouveau_pm_memtiming *boot,
506 struct nouveau_pm_memtiming *t)
507 {
508 struct drm_nouveau_private *dev_priv = dev->dev_private;
509 struct bit_entry P;
510 uint8_t unk18 = 1, unk20 = 0, unk21 = 0, tmp7_3;
511
512 if (bit_table(dev, 'P', &P))
513 return -EINVAL;
514
515 switch (min(len, (u8) 22)) {
516 case 22:
517 unk21 = e->tUNK_21;
518 case 21:
519 unk20 = e->tUNK_20;
520 case 20:
521 if (e->tCWL > 0)
522 t->tCWL = e->tCWL;
523 case 19:
524 unk18 = e->tUNK_18;
525 break;
526 }
527
528 t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC);
529
530 t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 |
531 max(unk18, (u8) 1) << 16 |
532 (e->tWTR + 2 + (t->tCWL - 1)) << 8;
533
534 t->reg[2] = ((t->tCWL - 1) << 24 |
535 e->tRRD << 16 |
536 e->tRCDWR << 8 |
537 e->tRCDRD);
538
539 t->reg[4] = e->tUNK_13 << 8 | e->tUNK_13;
540
541 t->reg[5] = (e->tRFC << 24 | max(e->tRCDRD, e->tRCDWR) << 16 | e->tRP);
542
543 t->reg[8] = boot->reg[8] & 0xffffff00;
544
545 if (P.version == 1) {
546 t->reg[1] |= (e->tCL + 2 - (t->tCWL - 1));
547
548 t->reg[3] = (0x14 + e->tCL) << 24 |
549 0x16 << 16 |
550 (e->tCL - 1) << 8 |
551 (e->tCL - 1);
552
553 t->reg[4] |= boot->reg[4] & 0xffff0000;
554
555 t->reg[6] = (0x33 - t->tCWL) << 16 |
556 t->tCWL << 8 |
557 (0x2e + e->tCL - t->tCWL);
558
559 t->reg[7] = 0x4000202 | (e->tCL - 1) << 16;
560
561 /* XXX: P.version == 1 only has DDR2 and GDDR3? */
562 if (dev_priv->vram_type == NV_MEM_TYPE_DDR2) {
563 t->reg[5] |= (e->tCL + 3) << 8;
564 t->reg[6] |= (t->tCWL - 2) << 8;
565 t->reg[8] |= (e->tCL - 4);
566 } else {
567 t->reg[5] |= (e->tCL + 2) << 8;
568 t->reg[6] |= t->tCWL << 8;
569 t->reg[8] |= (e->tCL - 2);
570 }
571 } else {
572 t->reg[1] |= (5 + e->tCL - (t->tCWL));
573
574 /* XXX: 0xb? 0x30? */
575 t->reg[3] = (0x30 + e->tCL) << 24 |
576 (boot->reg[3] & 0x00ff0000)|
577 (0xb + e->tCL) << 8 |
578 (e->tCL - 1);
579
580 t->reg[4] |= (unk20 << 24 | unk21 << 16);
581
582 /* XXX: +6? */
583 t->reg[5] |= (t->tCWL + 6) << 8;
584
585 t->reg[6] = (0x5a + e->tCL) << 16 |
586 (6 - e->tCL + t->tCWL) << 8 |
587 (0x50 + e->tCL - t->tCWL);
588
589 tmp7_3 = (boot->reg[7] & 0xff000000) >> 24;
590 t->reg[7] = (tmp7_3 << 24) |
591 ((tmp7_3 - 6 + e->tCL) << 16) |
592 0x202;
593 }
594
595 NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x %08x\n", t->id,
596 t->reg[0], t->reg[1], t->reg[2], t->reg[3]);
597 NV_DEBUG(dev, " 230: %08x %08x %08x %08x\n",
598 t->reg[4], t->reg[5], t->reg[6], t->reg[7]);
599 NV_DEBUG(dev, " 240: %08x\n", t->reg[8]);
600 return 0;
601 }
602
603 static int
604 nvc0_mem_timing_calc(struct drm_device *dev, u32 freq,
605 struct nouveau_pm_tbl_entry *e, u8 len,
606 struct nouveau_pm_memtiming *boot,
607 struct nouveau_pm_memtiming *t)
608 {
609 if (e->tCWL > 0)
610 t->tCWL = e->tCWL;
611
612 t->reg[0] = (e->tRP << 24 | (e->tRAS & 0x7f) << 17 |
613 e->tRFC << 8 | e->tRC);
614
615 t->reg[1] = (boot->reg[1] & 0xff000000) |
616 (e->tRCDWR & 0x0f) << 20 |
617 (e->tRCDRD & 0x0f) << 14 |
618 (t->tCWL << 7) |
619 (e->tCL & 0x0f);
620
621 t->reg[2] = (boot->reg[2] & 0xff0000ff) |
622 e->tWR << 16 | e->tWTR << 8;
623
624 t->reg[3] = (e->tUNK_20 & 0x1f) << 9 |
625 (e->tUNK_21 & 0xf) << 5 |
626 (e->tUNK_13 & 0x1f);
627
628 t->reg[4] = (boot->reg[4] & 0xfff00fff) |
629 (e->tRRD&0x1f) << 15;
630
631 NV_DEBUG(dev, "Entry %d: 290: %08x %08x %08x %08x\n", t->id,
632 t->reg[0], t->reg[1], t->reg[2], t->reg[3]);
633 NV_DEBUG(dev, " 2a0: %08x\n", t->reg[4]);
634 return 0;
635 }
636
637 /**
638 * MR generation methods
639 */
640
641 static int
642 nouveau_mem_ddr2_mr(struct drm_device *dev, u32 freq,
643 struct nouveau_pm_tbl_entry *e, u8 len,
644 struct nouveau_pm_memtiming *boot,
645 struct nouveau_pm_memtiming *t)
646 {
647 t->drive_strength = 0;
648 if (len < 15) {
649 t->odt = boot->odt;
650 } else {
651 t->odt = e->RAM_FT1 & 0x07;
652 }
653
654 if (e->tCL >= NV_MEM_CL_DDR2_MAX) {
655 NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
656 return -ERANGE;
657 }
658
659 if (e->tWR >= NV_MEM_WR_DDR2_MAX) {
660 NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
661 return -ERANGE;
662 }
663
664 if (t->odt > 3) {
665 NV_WARN(dev, "(%u) Invalid odt value, assuming disabled: %x",
666 t->id, t->odt);
667 t->odt = 0;
668 }
669
670 t->mr[0] = (boot->mr[0] & 0x100f) |
671 (e->tCL) << 4 |
672 (e->tWR - 1) << 9;
673 t->mr[1] = (boot->mr[1] & 0x101fbb) |
674 (t->odt & 0x1) << 2 |
675 (t->odt & 0x2) << 5;
676
677 NV_DEBUG(dev, "(%u) MR: %08x", t->id, t->mr[0]);
678 return 0;
679 }
680
681 uint8_t nv_mem_wr_lut_ddr3[NV_MEM_WR_DDR3_MAX] = {
682 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 0, 0};
683
684 static int
685 nouveau_mem_ddr3_mr(struct drm_device *dev, u32 freq,
686 struct nouveau_pm_tbl_entry *e, u8 len,
687 struct nouveau_pm_memtiming *boot,
688 struct nouveau_pm_memtiming *t)
689 {
690 u8 cl = e->tCL - 4;
691
692 t->drive_strength = 0;
693 if (len < 15) {
694 t->odt = boot->odt;
695 } else {
696 t->odt = e->RAM_FT1 & 0x07;
697 }
698
699 if (e->tCL >= NV_MEM_CL_DDR3_MAX || e->tCL < 4) {
700 NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
701 return -ERANGE;
702 }
703
704 if (e->tWR >= NV_MEM_WR_DDR3_MAX || e->tWR < 4) {
705 NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
706 return -ERANGE;
707 }
708
709 if (e->tCWL < 5) {
710 NV_WARN(dev, "(%u) Invalid tCWL: %u", t->id, e->tCWL);
711 return -ERANGE;
712 }
713
714 t->mr[0] = (boot->mr[0] & 0x180b) |
715 /* CAS */
716 (cl & 0x7) << 4 |
717 (cl & 0x8) >> 1 |
718 (nv_mem_wr_lut_ddr3[e->tWR]) << 9;
719 t->mr[1] = (boot->mr[1] & 0x101dbb) |
720 (t->odt & 0x1) << 2 |
721 (t->odt & 0x2) << 5 |
722 (t->odt & 0x4) << 7;
723 t->mr[2] = (boot->mr[2] & 0x20ffb7) | (e->tCWL - 5) << 3;
724
725 NV_DEBUG(dev, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[2]);
726 return 0;
727 }
728
729 uint8_t nv_mem_cl_lut_gddr3[NV_MEM_CL_GDDR3_MAX] = {
730 0, 0, 0, 0, 4, 5, 6, 7, 0, 1, 2, 3, 8, 9, 10, 11};
731 uint8_t nv_mem_wr_lut_gddr3[NV_MEM_WR_GDDR3_MAX] = {
732 0, 0, 0, 0, 0, 2, 3, 8, 9, 10, 11, 0, 0, 1, 1, 0, 3};
733
734 static int
735 nouveau_mem_gddr3_mr(struct drm_device *dev, u32 freq,
736 struct nouveau_pm_tbl_entry *e, u8 len,
737 struct nouveau_pm_memtiming *boot,
738 struct nouveau_pm_memtiming *t)
739 {
740 if (len < 15) {
741 t->drive_strength = boot->drive_strength;
742 t->odt = boot->odt;
743 } else {
744 t->drive_strength = (e->RAM_FT1 & 0x30) >> 4;
745 t->odt = e->RAM_FT1 & 0x07;
746 }
747
748 if (e->tCL >= NV_MEM_CL_GDDR3_MAX) {
749 NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
750 return -ERANGE;
751 }
752
753 if (e->tWR >= NV_MEM_WR_GDDR3_MAX) {
754 NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
755 return -ERANGE;
756 }
757
758 if (t->odt > 3) {
759 NV_WARN(dev, "(%u) Invalid odt value, assuming autocal: %x",
760 t->id, t->odt);
761 t->odt = 0;
762 }
763
764 t->mr[0] = (boot->mr[0] & 0xe0b) |
765 /* CAS */
766 ((nv_mem_cl_lut_gddr3[e->tCL] & 0x7) << 4) |
767 ((nv_mem_cl_lut_gddr3[e->tCL] & 0x8) >> 2);
768 t->mr[1] = (boot->mr[1] & 0x100f40) | t->drive_strength |
769 (t->odt << 2) |
770 (nv_mem_wr_lut_gddr3[e->tWR] & 0xf) << 4;
771 t->mr[2] = boot->mr[2];
772
773 NV_DEBUG(dev, "(%u) MR: %08x %08x %08x", t->id,
774 t->mr[0], t->mr[1], t->mr[2]);
775 return 0;
776 }
777
778 static int
779 nouveau_mem_gddr5_mr(struct drm_device *dev, u32 freq,
780 struct nouveau_pm_tbl_entry *e, u8 len,
781 struct nouveau_pm_memtiming *boot,
782 struct nouveau_pm_memtiming *t)
783 {
784 if (len < 15) {
785 t->drive_strength = boot->drive_strength;
786 t->odt = boot->odt;
787 } else {
788 t->drive_strength = (e->RAM_FT1 & 0x30) >> 4;
789 t->odt = e->RAM_FT1 & 0x03;
790 }
791
792 if (e->tCL >= NV_MEM_CL_GDDR5_MAX) {
793 NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
794 return -ERANGE;
795 }
796
797 if (e->tWR >= NV_MEM_WR_GDDR5_MAX) {
798 NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
799 return -ERANGE;
800 }
801
802 if (t->odt > 3) {
803 NV_WARN(dev, "(%u) Invalid odt value, assuming autocal: %x",
804 t->id, t->odt);
805 t->odt = 0;
806 }
807
808 t->mr[0] = (boot->mr[0] & 0x007) |
809 ((e->tCL - 5) << 3) |
810 ((e->tWR - 4) << 8);
811 t->mr[1] = (boot->mr[1] & 0x1007f0) |
812 t->drive_strength |
813 (t->odt << 2);
814
815 NV_DEBUG(dev, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[1]);
816 return 0;
817 }
818
819 int
820 nouveau_mem_timing_calc(struct drm_device *dev, u32 freq,
821 struct nouveau_pm_memtiming *t)
822 {
823 struct drm_nouveau_private *dev_priv = dev->dev_private;
824 struct nouveau_pm_engine *pm = &dev_priv->engine.pm;
825 struct nouveau_pm_memtiming *boot = &pm->boot.timing;
826 struct nouveau_pm_tbl_entry *e;
827 u8 ver, len, *ptr, *ramcfg;
828 int ret;
829
830 ptr = nouveau_perf_timing(dev, freq, &ver, &len);
831 if (!ptr || ptr[0] == 0x00) {
832 *t = *boot;
833 return 0;
834 }
835 e = (struct nouveau_pm_tbl_entry *)ptr;
836
837 t->tCWL = boot->tCWL;
838
839 switch (dev_priv->card_type) {
840 case NV_40:
841 ret = nv40_mem_timing_calc(dev, freq, e, len, boot, t);
842 break;
843 case NV_50:
844 ret = nv50_mem_timing_calc(dev, freq, e, len, boot, t);
845 break;
846 case NV_C0:
847 case NV_D0:
848 ret = nvc0_mem_timing_calc(dev, freq, e, len, boot, t);
849 break;
850 default:
851 ret = -ENODEV;
852 break;
853 }
854
855 switch (dev_priv->vram_type * !ret) {
856 case NV_MEM_TYPE_GDDR3:
857 ret = nouveau_mem_gddr3_mr(dev, freq, e, len, boot, t);
858 break;
859 case NV_MEM_TYPE_GDDR5:
860 ret = nouveau_mem_gddr5_mr(dev, freq, e, len, boot, t);
861 break;
862 case NV_MEM_TYPE_DDR2:
863 ret = nouveau_mem_ddr2_mr(dev, freq, e, len, boot, t);
864 break;
865 case NV_MEM_TYPE_DDR3:
866 ret = nouveau_mem_ddr3_mr(dev, freq, e, len, boot, t);
867 break;
868 default:
869 ret = -EINVAL;
870 break;
871 }
872
873 ramcfg = nouveau_perf_ramcfg(dev, freq, &ver, &len);
874 if (ramcfg) {
875 int dll_off;
876
877 if (ver == 0x00)
878 dll_off = !!(ramcfg[3] & 0x04);
879 else
880 dll_off = !!(ramcfg[2] & 0x40);
881
882 switch (dev_priv->vram_type) {
883 case NV_MEM_TYPE_GDDR3:
884 t->mr[1] &= ~0x00000040;
885 t->mr[1] |= 0x00000040 * dll_off;
886 break;
887 default:
888 t->mr[1] &= ~0x00000001;
889 t->mr[1] |= 0x00000001 * dll_off;
890 break;
891 }
892 }
893
894 return ret;
895 }
896
897 void
898 nouveau_mem_timing_read(struct drm_device *dev, struct nouveau_pm_memtiming *t)
899 {
900 struct drm_nouveau_private *dev_priv = dev->dev_private;
901 u32 timing_base, timing_regs, mr_base;
902 int i;
903
904 if (dev_priv->card_type >= 0xC0) {
905 timing_base = 0x10f290;
906 mr_base = 0x10f300;
907 } else {
908 timing_base = 0x100220;
909 mr_base = 0x1002c0;
910 }
911
912 t->id = -1;
913
914 switch (dev_priv->card_type) {
915 case NV_50:
916 timing_regs = 9;
917 break;
918 case NV_C0:
919 case NV_D0:
920 timing_regs = 5;
921 break;
922 case NV_30:
923 case NV_40:
924 timing_regs = 3;
925 break;
926 default:
927 timing_regs = 0;
928 return;
929 }
930 for(i = 0; i < timing_regs; i++)
931 t->reg[i] = nv_rd32(dev, timing_base + (0x04 * i));
932
933 t->tCWL = 0;
934 if (dev_priv->card_type < NV_C0) {
935 t->tCWL = ((nv_rd32(dev, 0x100228) & 0x0f000000) >> 24) + 1;
936 } else if (dev_priv->card_type <= NV_D0) {
937 t->tCWL = ((nv_rd32(dev, 0x10f294) & 0x00000f80) >> 7);
938 }
939
940 t->mr[0] = nv_rd32(dev, mr_base);
941 t->mr[1] = nv_rd32(dev, mr_base + 0x04);
942 t->mr[2] = nv_rd32(dev, mr_base + 0x20);
943 t->mr[3] = nv_rd32(dev, mr_base + 0x24);
944
945 t->odt = 0;
946 t->drive_strength = 0;
947
948 switch (dev_priv->vram_type) {
949 case NV_MEM_TYPE_DDR3:
950 t->odt |= (t->mr[1] & 0x200) >> 7;
951 case NV_MEM_TYPE_DDR2:
952 t->odt |= (t->mr[1] & 0x04) >> 2 |
953 (t->mr[1] & 0x40) >> 5;
954 break;
955 case NV_MEM_TYPE_GDDR3:
956 case NV_MEM_TYPE_GDDR5:
957 t->drive_strength = t->mr[1] & 0x03;
958 t->odt = (t->mr[1] & 0x0c) >> 2;
959 break;
960 default:
961 break;
962 }
963 }
964
965 int
966 nouveau_mem_exec(struct nouveau_mem_exec_func *exec,
967 struct nouveau_pm_level *perflvl)
968 {
969 struct drm_nouveau_private *dev_priv = exec->dev->dev_private;
970 struct nouveau_pm_memtiming *info = &perflvl->timing;
971 u32 tMRD = 1000, tCKSRE = 0, tCKSRX = 0, tXS = 0, tDLLK = 0;
972 u32 mr[3] = { info->mr[0], info->mr[1], info->mr[2] };
973 u32 mr1_dlloff;
974
975 switch (dev_priv->vram_type) {
976 case NV_MEM_TYPE_DDR2:
977 tDLLK = 2000;
978 mr1_dlloff = 0x00000001;
979 break;
980 case NV_MEM_TYPE_DDR3:
981 tDLLK = 12000;
982 tCKSRE = 2000;
983 tXS = 1000;
984 mr1_dlloff = 0x00000001;
985 break;
986 case NV_MEM_TYPE_GDDR3:
987 tDLLK = 40000;
988 mr1_dlloff = 0x00000040;
989 break;
990 default:
991 NV_ERROR(exec->dev, "cannot reclock unsupported memtype\n");
992 return -ENODEV;
993 }
994
995 /* fetch current MRs */
996 switch (dev_priv->vram_type) {
997 case NV_MEM_TYPE_GDDR3:
998 case NV_MEM_TYPE_DDR3:
999 mr[2] = exec->mrg(exec, 2);
1000 default:
1001 mr[1] = exec->mrg(exec, 1);
1002 mr[0] = exec->mrg(exec, 0);
1003 break;
1004 }
1005
1006 /* DLL 'on' -> DLL 'off' mode, disable before entering self-refresh */
1007 if (!(mr[1] & mr1_dlloff) && (info->mr[1] & mr1_dlloff)) {
1008 exec->precharge(exec);
1009 exec->mrs (exec, 1, mr[1] | mr1_dlloff);
1010 exec->wait(exec, tMRD);
1011 }
1012
1013 /* enter self-refresh mode */
1014 exec->precharge(exec);
1015 exec->refresh(exec);
1016 exec->refresh(exec);
1017 exec->refresh_auto(exec, false);
1018 exec->refresh_self(exec, true);
1019 exec->wait(exec, tCKSRE);
1020
1021 /* modify input clock frequency */
1022 exec->clock_set(exec);
1023
1024 /* exit self-refresh mode */
1025 exec->wait(exec, tCKSRX);
1026 exec->precharge(exec);
1027 exec->refresh_self(exec, false);
1028 exec->refresh_auto(exec, true);
1029 exec->wait(exec, tXS);
1030 exec->wait(exec, tXS);
1031
1032 /* update MRs */
1033 if (mr[2] != info->mr[2]) {
1034 exec->mrs (exec, 2, info->mr[2]);
1035 exec->wait(exec, tMRD);
1036 }
1037
1038 if (mr[1] != info->mr[1]) {
1039 /* need to keep DLL off until later, at least on GDDR3 */
1040 exec->mrs (exec, 1, info->mr[1] | (mr[1] & mr1_dlloff));
1041 exec->wait(exec, tMRD);
1042 }
1043
1044 if (mr[0] != info->mr[0]) {
1045 exec->mrs (exec, 0, info->mr[0]);
1046 exec->wait(exec, tMRD);
1047 }
1048
1049 /* update PFB timing registers */
1050 exec->timing_set(exec);
1051
1052 /* DLL (enable + ) reset */
1053 if (!(info->mr[1] & mr1_dlloff)) {
1054 if (mr[1] & mr1_dlloff) {
1055 exec->mrs (exec, 1, info->mr[1]);
1056 exec->wait(exec, tMRD);
1057 }
1058 exec->mrs (exec, 0, info->mr[0] | 0x00000100);
1059 exec->wait(exec, tMRD);
1060 exec->mrs (exec, 0, info->mr[0] | 0x00000000);
1061 exec->wait(exec, tMRD);
1062 exec->wait(exec, tDLLK);
1063 if (dev_priv->vram_type == NV_MEM_TYPE_GDDR3)
1064 exec->precharge(exec);
1065 }
1066
1067 return 0;
1068 }
1069
1070 int
1071 nouveau_mem_vbios_type(struct drm_device *dev)
1072 {
1073 struct bit_entry M;
1074 u8 ramcfg = (nv_rd32(dev, 0x101000) & 0x0000003c) >> 2;
1075 if (!bit_table(dev, 'M', &M) || M.version != 2 || M.length < 5) {
1076 u8 *table = ROMPTR(dev, M.data[3]);
1077 if (table && table[0] == 0x10 && ramcfg < table[3]) {
1078 u8 *entry = table + table[1] + (ramcfg * table[2]);
1079 switch (entry[0] & 0x0f) {
1080 case 0: return NV_MEM_TYPE_DDR2;
1081 case 1: return NV_MEM_TYPE_DDR3;
1082 case 2: return NV_MEM_TYPE_GDDR3;
1083 case 3: return NV_MEM_TYPE_GDDR5;
1084 default:
1085 break;
1086 }
1087
1088 }
1089 }
1090 return NV_MEM_TYPE_UNKNOWN;
1091 }
1092
1093 static int
1094 nouveau_vram_manager_init(struct ttm_mem_type_manager *man, unsigned long psize)
1095 {
1096 /* nothing to do */
1097 return 0;
1098 }
1099
1100 static int
1101 nouveau_vram_manager_fini(struct ttm_mem_type_manager *man)
1102 {
1103 /* nothing to do */
1104 return 0;
1105 }
1106
1107 static inline void
1108 nouveau_mem_node_cleanup(struct nouveau_mem *node)
1109 {
1110 if (node->vma[0].node) {
1111 nouveau_vm_unmap(&node->vma[0]);
1112 nouveau_vm_put(&node->vma[0]);
1113 }
1114
1115 if (node->vma[1].node) {
1116 nouveau_vm_unmap(&node->vma[1]);
1117 nouveau_vm_put(&node->vma[1]);
1118 }
1119 }
1120
1121 static void
1122 nouveau_vram_manager_del(struct ttm_mem_type_manager *man,
1123 struct ttm_mem_reg *mem)
1124 {
1125 struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
1126 struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
1127 struct drm_device *dev = dev_priv->dev;
1128
1129 nouveau_mem_node_cleanup(mem->mm_node);
1130 vram->put(dev, (struct nouveau_mem **)&mem->mm_node);
1131 }
1132
1133 static int
1134 nouveau_vram_manager_new(struct ttm_mem_type_manager *man,
1135 struct ttm_buffer_object *bo,
1136 struct ttm_placement *placement,
1137 struct ttm_mem_reg *mem)
1138 {
1139 struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
1140 struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
1141 struct drm_device *dev = dev_priv->dev;
1142 struct nouveau_bo *nvbo = nouveau_bo(bo);
1143 struct nouveau_mem *node;
1144 u32 size_nc = 0;
1145 int ret;
1146
1147 if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG)
1148 size_nc = 1 << nvbo->page_shift;
1149
1150 ret = vram->get(dev, mem->num_pages << PAGE_SHIFT,
1151 mem->page_alignment << PAGE_SHIFT, size_nc,
1152 (nvbo->tile_flags >> 8) & 0x3ff, &node);
1153 if (ret) {
1154 mem->mm_node = NULL;
1155 return (ret == -ENOSPC) ? 0 : ret;
1156 }
1157
1158 node->page_shift = nvbo->page_shift;
1159
1160 mem->mm_node = node;
1161 mem->start = node->offset >> PAGE_SHIFT;
1162 return 0;
1163 }
1164
1165 void
1166 nouveau_vram_manager_debug(struct ttm_mem_type_manager *man, const char *prefix)
1167 {
1168 struct nouveau_mm *mm = man->priv;
1169 struct nouveau_mm_node *r;
1170 u32 total = 0, free = 0;
1171
1172 mutex_lock(&mm->mutex);
1173 list_for_each_entry(r, &mm->nodes, nl_entry) {
1174 printk(KERN_DEBUG "%s %d: 0x%010llx 0x%010llx\n",
1175 prefix, r->type, ((u64)r->offset << 12),
1176 (((u64)r->offset + r->length) << 12));
1177
1178 total += r->length;
1179 if (!r->type)
1180 free += r->length;
1181 }
1182 mutex_unlock(&mm->mutex);
1183
1184 printk(KERN_DEBUG "%s total: 0x%010llx free: 0x%010llx\n",
1185 prefix, (u64)total << 12, (u64)free << 12);
1186 printk(KERN_DEBUG "%s block: 0x%08x\n",
1187 prefix, mm->block_size << 12);
1188 }
1189
1190 const struct ttm_mem_type_manager_func nouveau_vram_manager = {
1191 nouveau_vram_manager_init,
1192 nouveau_vram_manager_fini,
1193 nouveau_vram_manager_new,
1194 nouveau_vram_manager_del,
1195 nouveau_vram_manager_debug
1196 };
1197
1198 static int
1199 nouveau_gart_manager_init(struct ttm_mem_type_manager *man, unsigned long psize)
1200 {
1201 return 0;
1202 }
1203
1204 static int
1205 nouveau_gart_manager_fini(struct ttm_mem_type_manager *man)
1206 {
1207 return 0;
1208 }
1209
1210 static void
1211 nouveau_gart_manager_del(struct ttm_mem_type_manager *man,
1212 struct ttm_mem_reg *mem)
1213 {
1214 nouveau_mem_node_cleanup(mem->mm_node);
1215 kfree(mem->mm_node);
1216 mem->mm_node = NULL;
1217 }
1218
1219 static int
1220 nouveau_gart_manager_new(struct ttm_mem_type_manager *man,
1221 struct ttm_buffer_object *bo,
1222 struct ttm_placement *placement,
1223 struct ttm_mem_reg *mem)
1224 {
1225 struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
1226 struct nouveau_mem *node;
1227
1228 if (unlikely((mem->num_pages << PAGE_SHIFT) >=
1229 dev_priv->gart_info.aper_size))
1230 return -ENOMEM;
1231
1232 node = kzalloc(sizeof(*node), GFP_KERNEL);
1233 if (!node)
1234 return -ENOMEM;
1235 node->page_shift = 12;
1236
1237 mem->mm_node = node;
1238 mem->start = 0;
1239 return 0;
1240 }
1241
1242 void
1243 nouveau_gart_manager_debug(struct ttm_mem_type_manager *man, const char *prefix)
1244 {
1245 }
1246
1247 const struct ttm_mem_type_manager_func nouveau_gart_manager = {
1248 nouveau_gart_manager_init,
1249 nouveau_gart_manager_fini,
1250 nouveau_gart_manager_new,
1251 nouveau_gart_manager_del,
1252 nouveau_gart_manager_debug
1253 };