UAPI: (Scripted) Convert #include "..." to #include <path/...> in drivers/gpu/
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / nouveau / nouveau_mem.c
1 /*
2 * Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.
3 * Copyright 2005 Stephane Marchesin
4 *
5 * The Weather Channel (TM) funded Tungsten Graphics to develop the
6 * initial release of the Radeon 8500 driver under the XFree86 license.
7 * This notice must be preserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 *
28 * Authors:
29 * Ben Skeggs <bskeggs@redhat.com>
30 * Roy Spliet <r.spliet@student.tudelft.nl>
31 */
32
33
34 #include <drm/drmP.h>
35
36 #include "nouveau_drv.h"
37 #include "nouveau_pm.h"
38 #include "nouveau_mm.h"
39 #include "nouveau_vm.h"
40 #include "nouveau_fifo.h"
41 #include "nouveau_fence.h"
42
43 /*
44 * NV10-NV40 tiling helpers
45 */
46
47 static void
48 nv10_mem_update_tile_region(struct drm_device *dev,
49 struct nouveau_tile_reg *tile, uint32_t addr,
50 uint32_t size, uint32_t pitch, uint32_t flags)
51 {
52 struct drm_nouveau_private *dev_priv = dev->dev_private;
53 struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
54 int i = tile - dev_priv->tile.reg, j;
55 unsigned long save;
56
57 nouveau_fence_unref(&tile->fence);
58
59 if (tile->pitch)
60 pfb->free_tile_region(dev, i);
61
62 if (pitch)
63 pfb->init_tile_region(dev, i, addr, size, pitch, flags);
64
65 spin_lock_irqsave(&dev_priv->context_switch_lock, save);
66 nv_wr32(dev, NV03_PFIFO_CACHES, 0);
67 nv04_fifo_cache_pull(dev, false);
68
69 nouveau_wait_for_idle(dev);
70
71 pfb->set_tile_region(dev, i);
72 for (j = 0; j < NVOBJ_ENGINE_NR; j++) {
73 if (dev_priv->eng[j] && dev_priv->eng[j]->set_tile_region)
74 dev_priv->eng[j]->set_tile_region(dev, i);
75 }
76
77 nv04_fifo_cache_pull(dev, true);
78 nv_wr32(dev, NV03_PFIFO_CACHES, 1);
79 spin_unlock_irqrestore(&dev_priv->context_switch_lock, save);
80 }
81
82 static struct nouveau_tile_reg *
83 nv10_mem_get_tile_region(struct drm_device *dev, int i)
84 {
85 struct drm_nouveau_private *dev_priv = dev->dev_private;
86 struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i];
87
88 spin_lock(&dev_priv->tile.lock);
89
90 if (!tile->used &&
91 (!tile->fence || nouveau_fence_done(tile->fence)))
92 tile->used = true;
93 else
94 tile = NULL;
95
96 spin_unlock(&dev_priv->tile.lock);
97 return tile;
98 }
99
100 void
101 nv10_mem_put_tile_region(struct drm_device *dev, struct nouveau_tile_reg *tile,
102 struct nouveau_fence *fence)
103 {
104 struct drm_nouveau_private *dev_priv = dev->dev_private;
105
106 if (tile) {
107 spin_lock(&dev_priv->tile.lock);
108 if (fence) {
109 /* Mark it as pending. */
110 tile->fence = fence;
111 nouveau_fence_ref(fence);
112 }
113
114 tile->used = false;
115 spin_unlock(&dev_priv->tile.lock);
116 }
117 }
118
119 struct nouveau_tile_reg *
120 nv10_mem_set_tiling(struct drm_device *dev, uint32_t addr, uint32_t size,
121 uint32_t pitch, uint32_t flags)
122 {
123 struct drm_nouveau_private *dev_priv = dev->dev_private;
124 struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
125 struct nouveau_tile_reg *tile, *found = NULL;
126 int i;
127
128 for (i = 0; i < pfb->num_tiles; i++) {
129 tile = nv10_mem_get_tile_region(dev, i);
130
131 if (pitch && !found) {
132 found = tile;
133 continue;
134
135 } else if (tile && tile->pitch) {
136 /* Kill an unused tile region. */
137 nv10_mem_update_tile_region(dev, tile, 0, 0, 0, 0);
138 }
139
140 nv10_mem_put_tile_region(dev, tile, NULL);
141 }
142
143 if (found)
144 nv10_mem_update_tile_region(dev, found, addr, size,
145 pitch, flags);
146 return found;
147 }
148
149 /*
150 * Cleanup everything
151 */
152 void
153 nouveau_mem_vram_fini(struct drm_device *dev)
154 {
155 struct drm_nouveau_private *dev_priv = dev->dev_private;
156
157 ttm_bo_device_release(&dev_priv->ttm.bdev);
158
159 nouveau_ttm_global_release(dev_priv);
160
161 if (dev_priv->fb_mtrr >= 0) {
162 drm_mtrr_del(dev_priv->fb_mtrr,
163 pci_resource_start(dev->pdev, 1),
164 pci_resource_len(dev->pdev, 1), DRM_MTRR_WC);
165 dev_priv->fb_mtrr = -1;
166 }
167 }
168
169 void
170 nouveau_mem_gart_fini(struct drm_device *dev)
171 {
172 nouveau_sgdma_takedown(dev);
173
174 if (drm_core_has_AGP(dev) && dev->agp) {
175 struct drm_agp_mem *entry, *tempe;
176
177 /* Remove AGP resources, but leave dev->agp
178 intact until drv_cleanup is called. */
179 list_for_each_entry_safe(entry, tempe, &dev->agp->memory, head) {
180 if (entry->bound)
181 drm_unbind_agp(entry->memory);
182 drm_free_agp(entry->memory, entry->pages);
183 kfree(entry);
184 }
185 INIT_LIST_HEAD(&dev->agp->memory);
186
187 if (dev->agp->acquired)
188 drm_agp_release(dev);
189
190 dev->agp->acquired = 0;
191 dev->agp->enabled = 0;
192 }
193 }
194
195 bool
196 nouveau_mem_flags_valid(struct drm_device *dev, u32 tile_flags)
197 {
198 if (!(tile_flags & NOUVEAU_GEM_TILE_LAYOUT_MASK))
199 return true;
200
201 return false;
202 }
203
204 #if __OS_HAS_AGP
205 static unsigned long
206 get_agp_mode(struct drm_device *dev, unsigned long mode)
207 {
208 struct drm_nouveau_private *dev_priv = dev->dev_private;
209
210 /*
211 * FW seems to be broken on nv18, it makes the card lock up
212 * randomly.
213 */
214 if (dev_priv->chipset == 0x18)
215 mode &= ~PCI_AGP_COMMAND_FW;
216
217 /*
218 * AGP mode set in the command line.
219 */
220 if (nouveau_agpmode > 0) {
221 bool agpv3 = mode & 0x8;
222 int rate = agpv3 ? nouveau_agpmode / 4 : nouveau_agpmode;
223
224 mode = (mode & ~0x7) | (rate & 0x7);
225 }
226
227 return mode;
228 }
229 #endif
230
231 int
232 nouveau_mem_reset_agp(struct drm_device *dev)
233 {
234 #if __OS_HAS_AGP
235 uint32_t saved_pci_nv_1, pmc_enable;
236 int ret;
237
238 /* First of all, disable fast writes, otherwise if it's
239 * already enabled in the AGP bridge and we disable the card's
240 * AGP controller we might be locking ourselves out of it. */
241 if ((nv_rd32(dev, NV04_PBUS_PCI_NV_19) |
242 dev->agp->mode) & PCI_AGP_COMMAND_FW) {
243 struct drm_agp_info info;
244 struct drm_agp_mode mode;
245
246 ret = drm_agp_info(dev, &info);
247 if (ret)
248 return ret;
249
250 mode.mode = get_agp_mode(dev, info.mode) & ~PCI_AGP_COMMAND_FW;
251 ret = drm_agp_enable(dev, mode);
252 if (ret)
253 return ret;
254 }
255
256 saved_pci_nv_1 = nv_rd32(dev, NV04_PBUS_PCI_NV_1);
257
258 /* clear busmaster bit */
259 nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4);
260 /* disable AGP */
261 nv_wr32(dev, NV04_PBUS_PCI_NV_19, 0);
262
263 /* power cycle pgraph, if enabled */
264 pmc_enable = nv_rd32(dev, NV03_PMC_ENABLE);
265 if (pmc_enable & NV_PMC_ENABLE_PGRAPH) {
266 nv_wr32(dev, NV03_PMC_ENABLE,
267 pmc_enable & ~NV_PMC_ENABLE_PGRAPH);
268 nv_wr32(dev, NV03_PMC_ENABLE, nv_rd32(dev, NV03_PMC_ENABLE) |
269 NV_PMC_ENABLE_PGRAPH);
270 }
271
272 /* and restore (gives effect of resetting AGP) */
273 nv_wr32(dev, NV04_PBUS_PCI_NV_1, saved_pci_nv_1);
274 #endif
275
276 return 0;
277 }
278
279 int
280 nouveau_mem_init_agp(struct drm_device *dev)
281 {
282 #if __OS_HAS_AGP
283 struct drm_nouveau_private *dev_priv = dev->dev_private;
284 struct drm_agp_info info;
285 struct drm_agp_mode mode;
286 int ret;
287
288 if (!dev->agp->acquired) {
289 ret = drm_agp_acquire(dev);
290 if (ret) {
291 NV_ERROR(dev, "Unable to acquire AGP: %d\n", ret);
292 return ret;
293 }
294 }
295
296 nouveau_mem_reset_agp(dev);
297
298 ret = drm_agp_info(dev, &info);
299 if (ret) {
300 NV_ERROR(dev, "Unable to get AGP info: %d\n", ret);
301 return ret;
302 }
303
304 /* see agp.h for the AGPSTAT_* modes available */
305 mode.mode = get_agp_mode(dev, info.mode);
306 ret = drm_agp_enable(dev, mode);
307 if (ret) {
308 NV_ERROR(dev, "Unable to enable AGP: %d\n", ret);
309 return ret;
310 }
311
312 dev_priv->gart_info.type = NOUVEAU_GART_AGP;
313 dev_priv->gart_info.aper_base = info.aperture_base;
314 dev_priv->gart_info.aper_size = info.aperture_size;
315 #endif
316 return 0;
317 }
318
319 static const struct vram_types {
320 int value;
321 const char *name;
322 } vram_type_map[] = {
323 { NV_MEM_TYPE_STOLEN , "stolen system memory" },
324 { NV_MEM_TYPE_SGRAM , "SGRAM" },
325 { NV_MEM_TYPE_SDRAM , "SDRAM" },
326 { NV_MEM_TYPE_DDR1 , "DDR1" },
327 { NV_MEM_TYPE_DDR2 , "DDR2" },
328 { NV_MEM_TYPE_DDR3 , "DDR3" },
329 { NV_MEM_TYPE_GDDR2 , "GDDR2" },
330 { NV_MEM_TYPE_GDDR3 , "GDDR3" },
331 { NV_MEM_TYPE_GDDR4 , "GDDR4" },
332 { NV_MEM_TYPE_GDDR5 , "GDDR5" },
333 { NV_MEM_TYPE_UNKNOWN, "unknown type" }
334 };
335
336 int
337 nouveau_mem_vram_init(struct drm_device *dev)
338 {
339 struct drm_nouveau_private *dev_priv = dev->dev_private;
340 struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
341 const struct vram_types *vram_type;
342 int ret, dma_bits;
343
344 dma_bits = 32;
345 if (dev_priv->card_type >= NV_50) {
346 if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(40)))
347 dma_bits = 40;
348 } else
349 if (0 && pci_is_pcie(dev->pdev) &&
350 dev_priv->chipset > 0x40 &&
351 dev_priv->chipset != 0x45) {
352 if (pci_dma_supported(dev->pdev, DMA_BIT_MASK(39)))
353 dma_bits = 39;
354 }
355
356 ret = pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
357 if (ret)
358 return ret;
359 ret = pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(dma_bits));
360 if (ret) {
361 /* Reset to default value. */
362 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(32));
363 }
364
365
366 ret = nouveau_ttm_global_init(dev_priv);
367 if (ret)
368 return ret;
369
370 ret = ttm_bo_device_init(&dev_priv->ttm.bdev,
371 dev_priv->ttm.bo_global_ref.ref.object,
372 &nouveau_bo_driver, DRM_FILE_PAGE_OFFSET,
373 dma_bits <= 32 ? true : false);
374 if (ret) {
375 NV_ERROR(dev, "Error initialising bo driver: %d\n", ret);
376 return ret;
377 }
378
379 vram_type = vram_type_map;
380 while (vram_type->value != NV_MEM_TYPE_UNKNOWN) {
381 if (nouveau_vram_type) {
382 if (!strcasecmp(nouveau_vram_type, vram_type->name))
383 break;
384 dev_priv->vram_type = vram_type->value;
385 } else {
386 if (vram_type->value == dev_priv->vram_type)
387 break;
388 }
389 vram_type++;
390 }
391
392 NV_INFO(dev, "Detected %dMiB VRAM (%s)\n",
393 (int)(dev_priv->vram_size >> 20), vram_type->name);
394 if (dev_priv->vram_sys_base) {
395 NV_INFO(dev, "Stolen system memory at: 0x%010llx\n",
396 dev_priv->vram_sys_base);
397 }
398
399 dev_priv->fb_available_size = dev_priv->vram_size;
400 dev_priv->fb_mappable_pages = dev_priv->fb_available_size;
401 if (dev_priv->fb_mappable_pages > pci_resource_len(dev->pdev, 1))
402 dev_priv->fb_mappable_pages = pci_resource_len(dev->pdev, 1);
403 dev_priv->fb_mappable_pages >>= PAGE_SHIFT;
404
405 dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram;
406 dev_priv->fb_aper_free = dev_priv->fb_available_size;
407
408 /* mappable vram */
409 ret = ttm_bo_init_mm(bdev, TTM_PL_VRAM,
410 dev_priv->fb_available_size >> PAGE_SHIFT);
411 if (ret) {
412 NV_ERROR(dev, "Failed VRAM mm init: %d\n", ret);
413 return ret;
414 }
415
416 if (dev_priv->card_type < NV_50) {
417 ret = nouveau_bo_new(dev, 256*1024, 0, TTM_PL_FLAG_VRAM,
418 0, 0, NULL, &dev_priv->vga_ram);
419 if (ret == 0)
420 ret = nouveau_bo_pin(dev_priv->vga_ram,
421 TTM_PL_FLAG_VRAM);
422
423 if (ret) {
424 NV_WARN(dev, "failed to reserve VGA memory\n");
425 nouveau_bo_ref(NULL, &dev_priv->vga_ram);
426 }
427 }
428
429 dev_priv->fb_mtrr = drm_mtrr_add(pci_resource_start(dev->pdev, 1),
430 pci_resource_len(dev->pdev, 1),
431 DRM_MTRR_WC);
432 return 0;
433 }
434
435 int
436 nouveau_mem_gart_init(struct drm_device *dev)
437 {
438 struct drm_nouveau_private *dev_priv = dev->dev_private;
439 struct ttm_bo_device *bdev = &dev_priv->ttm.bdev;
440 int ret;
441
442 dev_priv->gart_info.type = NOUVEAU_GART_NONE;
443
444 #if !defined(__powerpc__) && !defined(__ia64__)
445 if (drm_pci_device_is_agp(dev) && dev->agp && nouveau_agpmode) {
446 ret = nouveau_mem_init_agp(dev);
447 if (ret)
448 NV_ERROR(dev, "Error initialising AGP: %d\n", ret);
449 }
450 #endif
451
452 if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) {
453 ret = nouveau_sgdma_init(dev);
454 if (ret) {
455 NV_ERROR(dev, "Error initialising PCI(E): %d\n", ret);
456 return ret;
457 }
458 }
459
460 NV_INFO(dev, "%d MiB GART (aperture)\n",
461 (int)(dev_priv->gart_info.aper_size >> 20));
462 dev_priv->gart_info.aper_free = dev_priv->gart_info.aper_size;
463
464 ret = ttm_bo_init_mm(bdev, TTM_PL_TT,
465 dev_priv->gart_info.aper_size >> PAGE_SHIFT);
466 if (ret) {
467 NV_ERROR(dev, "Failed TT mm init: %d\n", ret);
468 return ret;
469 }
470
471 return 0;
472 }
473
474 static int
475 nv40_mem_timing_calc(struct drm_device *dev, u32 freq,
476 struct nouveau_pm_tbl_entry *e, u8 len,
477 struct nouveau_pm_memtiming *boot,
478 struct nouveau_pm_memtiming *t)
479 {
480 t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC);
481
482 /* XXX: I don't trust the -1's and +1's... they must come
483 * from somewhere! */
484 t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 |
485 1 << 16 |
486 (e->tWTR + 2 + (t->tCWL - 1)) << 8 |
487 (e->tCL + 2 - (t->tCWL - 1));
488
489 t->reg[2] = 0x20200000 |
490 ((t->tCWL - 1) << 24 |
491 e->tRRD << 16 |
492 e->tRCDWR << 8 |
493 e->tRCDRD);
494
495 NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x\n", t->id,
496 t->reg[0], t->reg[1], t->reg[2]);
497 return 0;
498 }
499
500 static int
501 nv50_mem_timing_calc(struct drm_device *dev, u32 freq,
502 struct nouveau_pm_tbl_entry *e, u8 len,
503 struct nouveau_pm_memtiming *boot,
504 struct nouveau_pm_memtiming *t)
505 {
506 struct drm_nouveau_private *dev_priv = dev->dev_private;
507 struct bit_entry P;
508 uint8_t unk18 = 1, unk20 = 0, unk21 = 0, tmp7_3;
509
510 if (bit_table(dev, 'P', &P))
511 return -EINVAL;
512
513 switch (min(len, (u8) 22)) {
514 case 22:
515 unk21 = e->tUNK_21;
516 case 21:
517 unk20 = e->tUNK_20;
518 case 20:
519 if (e->tCWL > 0)
520 t->tCWL = e->tCWL;
521 case 19:
522 unk18 = e->tUNK_18;
523 break;
524 }
525
526 t->reg[0] = (e->tRP << 24 | e->tRAS << 16 | e->tRFC << 8 | e->tRC);
527
528 t->reg[1] = (e->tWR + 2 + (t->tCWL - 1)) << 24 |
529 max(unk18, (u8) 1) << 16 |
530 (e->tWTR + 2 + (t->tCWL - 1)) << 8;
531
532 t->reg[2] = ((t->tCWL - 1) << 24 |
533 e->tRRD << 16 |
534 e->tRCDWR << 8 |
535 e->tRCDRD);
536
537 t->reg[4] = e->tUNK_13 << 8 | e->tUNK_13;
538
539 t->reg[5] = (e->tRFC << 24 | max(e->tRCDRD, e->tRCDWR) << 16 | e->tRP);
540
541 t->reg[8] = boot->reg[8] & 0xffffff00;
542
543 if (P.version == 1) {
544 t->reg[1] |= (e->tCL + 2 - (t->tCWL - 1));
545
546 t->reg[3] = (0x14 + e->tCL) << 24 |
547 0x16 << 16 |
548 (e->tCL - 1) << 8 |
549 (e->tCL - 1);
550
551 t->reg[4] |= boot->reg[4] & 0xffff0000;
552
553 t->reg[6] = (0x33 - t->tCWL) << 16 |
554 t->tCWL << 8 |
555 (0x2e + e->tCL - t->tCWL);
556
557 t->reg[7] = 0x4000202 | (e->tCL - 1) << 16;
558
559 /* XXX: P.version == 1 only has DDR2 and GDDR3? */
560 if (dev_priv->vram_type == NV_MEM_TYPE_DDR2) {
561 t->reg[5] |= (e->tCL + 3) << 8;
562 t->reg[6] |= (t->tCWL - 2) << 8;
563 t->reg[8] |= (e->tCL - 4);
564 } else {
565 t->reg[5] |= (e->tCL + 2) << 8;
566 t->reg[6] |= t->tCWL << 8;
567 t->reg[8] |= (e->tCL - 2);
568 }
569 } else {
570 t->reg[1] |= (5 + e->tCL - (t->tCWL));
571
572 /* XXX: 0xb? 0x30? */
573 t->reg[3] = (0x30 + e->tCL) << 24 |
574 (boot->reg[3] & 0x00ff0000)|
575 (0xb + e->tCL) << 8 |
576 (e->tCL - 1);
577
578 t->reg[4] |= (unk20 << 24 | unk21 << 16);
579
580 /* XXX: +6? */
581 t->reg[5] |= (t->tCWL + 6) << 8;
582
583 t->reg[6] = (0x5a + e->tCL) << 16 |
584 (6 - e->tCL + t->tCWL) << 8 |
585 (0x50 + e->tCL - t->tCWL);
586
587 tmp7_3 = (boot->reg[7] & 0xff000000) >> 24;
588 t->reg[7] = (tmp7_3 << 24) |
589 ((tmp7_3 - 6 + e->tCL) << 16) |
590 0x202;
591 }
592
593 NV_DEBUG(dev, "Entry %d: 220: %08x %08x %08x %08x\n", t->id,
594 t->reg[0], t->reg[1], t->reg[2], t->reg[3]);
595 NV_DEBUG(dev, " 230: %08x %08x %08x %08x\n",
596 t->reg[4], t->reg[5], t->reg[6], t->reg[7]);
597 NV_DEBUG(dev, " 240: %08x\n", t->reg[8]);
598 return 0;
599 }
600
601 static int
602 nvc0_mem_timing_calc(struct drm_device *dev, u32 freq,
603 struct nouveau_pm_tbl_entry *e, u8 len,
604 struct nouveau_pm_memtiming *boot,
605 struct nouveau_pm_memtiming *t)
606 {
607 if (e->tCWL > 0)
608 t->tCWL = e->tCWL;
609
610 t->reg[0] = (e->tRP << 24 | (e->tRAS & 0x7f) << 17 |
611 e->tRFC << 8 | e->tRC);
612
613 t->reg[1] = (boot->reg[1] & 0xff000000) |
614 (e->tRCDWR & 0x0f) << 20 |
615 (e->tRCDRD & 0x0f) << 14 |
616 (t->tCWL << 7) |
617 (e->tCL & 0x0f);
618
619 t->reg[2] = (boot->reg[2] & 0xff0000ff) |
620 e->tWR << 16 | e->tWTR << 8;
621
622 t->reg[3] = (e->tUNK_20 & 0x1f) << 9 |
623 (e->tUNK_21 & 0xf) << 5 |
624 (e->tUNK_13 & 0x1f);
625
626 t->reg[4] = (boot->reg[4] & 0xfff00fff) |
627 (e->tRRD&0x1f) << 15;
628
629 NV_DEBUG(dev, "Entry %d: 290: %08x %08x %08x %08x\n", t->id,
630 t->reg[0], t->reg[1], t->reg[2], t->reg[3]);
631 NV_DEBUG(dev, " 2a0: %08x\n", t->reg[4]);
632 return 0;
633 }
634
635 /**
636 * MR generation methods
637 */
638
639 static int
640 nouveau_mem_ddr2_mr(struct drm_device *dev, u32 freq,
641 struct nouveau_pm_tbl_entry *e, u8 len,
642 struct nouveau_pm_memtiming *boot,
643 struct nouveau_pm_memtiming *t)
644 {
645 t->drive_strength = 0;
646 if (len < 15) {
647 t->odt = boot->odt;
648 } else {
649 t->odt = e->RAM_FT1 & 0x07;
650 }
651
652 if (e->tCL >= NV_MEM_CL_DDR2_MAX) {
653 NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
654 return -ERANGE;
655 }
656
657 if (e->tWR >= NV_MEM_WR_DDR2_MAX) {
658 NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
659 return -ERANGE;
660 }
661
662 if (t->odt > 3) {
663 NV_WARN(dev, "(%u) Invalid odt value, assuming disabled: %x",
664 t->id, t->odt);
665 t->odt = 0;
666 }
667
668 t->mr[0] = (boot->mr[0] & 0x100f) |
669 (e->tCL) << 4 |
670 (e->tWR - 1) << 9;
671 t->mr[1] = (boot->mr[1] & 0x101fbb) |
672 (t->odt & 0x1) << 2 |
673 (t->odt & 0x2) << 5;
674
675 NV_DEBUG(dev, "(%u) MR: %08x", t->id, t->mr[0]);
676 return 0;
677 }
678
679 uint8_t nv_mem_wr_lut_ddr3[NV_MEM_WR_DDR3_MAX] = {
680 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 6, 6, 7, 7, 0, 0};
681
682 static int
683 nouveau_mem_ddr3_mr(struct drm_device *dev, u32 freq,
684 struct nouveau_pm_tbl_entry *e, u8 len,
685 struct nouveau_pm_memtiming *boot,
686 struct nouveau_pm_memtiming *t)
687 {
688 u8 cl = e->tCL - 4;
689
690 t->drive_strength = 0;
691 if (len < 15) {
692 t->odt = boot->odt;
693 } else {
694 t->odt = e->RAM_FT1 & 0x07;
695 }
696
697 if (e->tCL >= NV_MEM_CL_DDR3_MAX || e->tCL < 4) {
698 NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
699 return -ERANGE;
700 }
701
702 if (e->tWR >= NV_MEM_WR_DDR3_MAX || e->tWR < 4) {
703 NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
704 return -ERANGE;
705 }
706
707 if (e->tCWL < 5) {
708 NV_WARN(dev, "(%u) Invalid tCWL: %u", t->id, e->tCWL);
709 return -ERANGE;
710 }
711
712 t->mr[0] = (boot->mr[0] & 0x180b) |
713 /* CAS */
714 (cl & 0x7) << 4 |
715 (cl & 0x8) >> 1 |
716 (nv_mem_wr_lut_ddr3[e->tWR]) << 9;
717 t->mr[1] = (boot->mr[1] & 0x101dbb) |
718 (t->odt & 0x1) << 2 |
719 (t->odt & 0x2) << 5 |
720 (t->odt & 0x4) << 7;
721 t->mr[2] = (boot->mr[2] & 0x20ffb7) | (e->tCWL - 5) << 3;
722
723 NV_DEBUG(dev, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[2]);
724 return 0;
725 }
726
727 uint8_t nv_mem_cl_lut_gddr3[NV_MEM_CL_GDDR3_MAX] = {
728 0, 0, 0, 0, 4, 5, 6, 7, 0, 1, 2, 3, 8, 9, 10, 11};
729 uint8_t nv_mem_wr_lut_gddr3[NV_MEM_WR_GDDR3_MAX] = {
730 0, 0, 0, 0, 0, 2, 3, 8, 9, 10, 11, 0, 0, 1, 1, 0, 3};
731
732 static int
733 nouveau_mem_gddr3_mr(struct drm_device *dev, u32 freq,
734 struct nouveau_pm_tbl_entry *e, u8 len,
735 struct nouveau_pm_memtiming *boot,
736 struct nouveau_pm_memtiming *t)
737 {
738 if (len < 15) {
739 t->drive_strength = boot->drive_strength;
740 t->odt = boot->odt;
741 } else {
742 t->drive_strength = (e->RAM_FT1 & 0x30) >> 4;
743 t->odt = e->RAM_FT1 & 0x07;
744 }
745
746 if (e->tCL >= NV_MEM_CL_GDDR3_MAX) {
747 NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
748 return -ERANGE;
749 }
750
751 if (e->tWR >= NV_MEM_WR_GDDR3_MAX) {
752 NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
753 return -ERANGE;
754 }
755
756 if (t->odt > 3) {
757 NV_WARN(dev, "(%u) Invalid odt value, assuming autocal: %x",
758 t->id, t->odt);
759 t->odt = 0;
760 }
761
762 t->mr[0] = (boot->mr[0] & 0xe0b) |
763 /* CAS */
764 ((nv_mem_cl_lut_gddr3[e->tCL] & 0x7) << 4) |
765 ((nv_mem_cl_lut_gddr3[e->tCL] & 0x8) >> 2);
766 t->mr[1] = (boot->mr[1] & 0x100f40) | t->drive_strength |
767 (t->odt << 2) |
768 (nv_mem_wr_lut_gddr3[e->tWR] & 0xf) << 4;
769 t->mr[2] = boot->mr[2];
770
771 NV_DEBUG(dev, "(%u) MR: %08x %08x %08x", t->id,
772 t->mr[0], t->mr[1], t->mr[2]);
773 return 0;
774 }
775
776 static int
777 nouveau_mem_gddr5_mr(struct drm_device *dev, u32 freq,
778 struct nouveau_pm_tbl_entry *e, u8 len,
779 struct nouveau_pm_memtiming *boot,
780 struct nouveau_pm_memtiming *t)
781 {
782 if (len < 15) {
783 t->drive_strength = boot->drive_strength;
784 t->odt = boot->odt;
785 } else {
786 t->drive_strength = (e->RAM_FT1 & 0x30) >> 4;
787 t->odt = e->RAM_FT1 & 0x03;
788 }
789
790 if (e->tCL >= NV_MEM_CL_GDDR5_MAX) {
791 NV_WARN(dev, "(%u) Invalid tCL: %u", t->id, e->tCL);
792 return -ERANGE;
793 }
794
795 if (e->tWR >= NV_MEM_WR_GDDR5_MAX) {
796 NV_WARN(dev, "(%u) Invalid tWR: %u", t->id, e->tWR);
797 return -ERANGE;
798 }
799
800 if (t->odt > 3) {
801 NV_WARN(dev, "(%u) Invalid odt value, assuming autocal: %x",
802 t->id, t->odt);
803 t->odt = 0;
804 }
805
806 t->mr[0] = (boot->mr[0] & 0x007) |
807 ((e->tCL - 5) << 3) |
808 ((e->tWR - 4) << 8);
809 t->mr[1] = (boot->mr[1] & 0x1007f0) |
810 t->drive_strength |
811 (t->odt << 2);
812
813 NV_DEBUG(dev, "(%u) MR: %08x %08x", t->id, t->mr[0], t->mr[1]);
814 return 0;
815 }
816
817 int
818 nouveau_mem_timing_calc(struct drm_device *dev, u32 freq,
819 struct nouveau_pm_memtiming *t)
820 {
821 struct drm_nouveau_private *dev_priv = dev->dev_private;
822 struct nouveau_pm_engine *pm = &dev_priv->engine.pm;
823 struct nouveau_pm_memtiming *boot = &pm->boot.timing;
824 struct nouveau_pm_tbl_entry *e;
825 u8 ver, len, *ptr, *ramcfg;
826 int ret;
827
828 ptr = nouveau_perf_timing(dev, freq, &ver, &len);
829 if (!ptr || ptr[0] == 0x00) {
830 *t = *boot;
831 return 0;
832 }
833 e = (struct nouveau_pm_tbl_entry *)ptr;
834
835 t->tCWL = boot->tCWL;
836
837 switch (dev_priv->card_type) {
838 case NV_40:
839 ret = nv40_mem_timing_calc(dev, freq, e, len, boot, t);
840 break;
841 case NV_50:
842 ret = nv50_mem_timing_calc(dev, freq, e, len, boot, t);
843 break;
844 case NV_C0:
845 case NV_D0:
846 ret = nvc0_mem_timing_calc(dev, freq, e, len, boot, t);
847 break;
848 default:
849 ret = -ENODEV;
850 break;
851 }
852
853 switch (dev_priv->vram_type * !ret) {
854 case NV_MEM_TYPE_GDDR3:
855 ret = nouveau_mem_gddr3_mr(dev, freq, e, len, boot, t);
856 break;
857 case NV_MEM_TYPE_GDDR5:
858 ret = nouveau_mem_gddr5_mr(dev, freq, e, len, boot, t);
859 break;
860 case NV_MEM_TYPE_DDR2:
861 ret = nouveau_mem_ddr2_mr(dev, freq, e, len, boot, t);
862 break;
863 case NV_MEM_TYPE_DDR3:
864 ret = nouveau_mem_ddr3_mr(dev, freq, e, len, boot, t);
865 break;
866 default:
867 ret = -EINVAL;
868 break;
869 }
870
871 ramcfg = nouveau_perf_ramcfg(dev, freq, &ver, &len);
872 if (ramcfg) {
873 int dll_off;
874
875 if (ver == 0x00)
876 dll_off = !!(ramcfg[3] & 0x04);
877 else
878 dll_off = !!(ramcfg[2] & 0x40);
879
880 switch (dev_priv->vram_type) {
881 case NV_MEM_TYPE_GDDR3:
882 t->mr[1] &= ~0x00000040;
883 t->mr[1] |= 0x00000040 * dll_off;
884 break;
885 default:
886 t->mr[1] &= ~0x00000001;
887 t->mr[1] |= 0x00000001 * dll_off;
888 break;
889 }
890 }
891
892 return ret;
893 }
894
895 void
896 nouveau_mem_timing_read(struct drm_device *dev, struct nouveau_pm_memtiming *t)
897 {
898 struct drm_nouveau_private *dev_priv = dev->dev_private;
899 u32 timing_base, timing_regs, mr_base;
900 int i;
901
902 if (dev_priv->card_type >= 0xC0) {
903 timing_base = 0x10f290;
904 mr_base = 0x10f300;
905 } else {
906 timing_base = 0x100220;
907 mr_base = 0x1002c0;
908 }
909
910 t->id = -1;
911
912 switch (dev_priv->card_type) {
913 case NV_50:
914 timing_regs = 9;
915 break;
916 case NV_C0:
917 case NV_D0:
918 timing_regs = 5;
919 break;
920 case NV_30:
921 case NV_40:
922 timing_regs = 3;
923 break;
924 default:
925 timing_regs = 0;
926 return;
927 }
928 for(i = 0; i < timing_regs; i++)
929 t->reg[i] = nv_rd32(dev, timing_base + (0x04 * i));
930
931 t->tCWL = 0;
932 if (dev_priv->card_type < NV_C0) {
933 t->tCWL = ((nv_rd32(dev, 0x100228) & 0x0f000000) >> 24) + 1;
934 } else if (dev_priv->card_type <= NV_D0) {
935 t->tCWL = ((nv_rd32(dev, 0x10f294) & 0x00000f80) >> 7);
936 }
937
938 t->mr[0] = nv_rd32(dev, mr_base);
939 t->mr[1] = nv_rd32(dev, mr_base + 0x04);
940 t->mr[2] = nv_rd32(dev, mr_base + 0x20);
941 t->mr[3] = nv_rd32(dev, mr_base + 0x24);
942
943 t->odt = 0;
944 t->drive_strength = 0;
945
946 switch (dev_priv->vram_type) {
947 case NV_MEM_TYPE_DDR3:
948 t->odt |= (t->mr[1] & 0x200) >> 7;
949 case NV_MEM_TYPE_DDR2:
950 t->odt |= (t->mr[1] & 0x04) >> 2 |
951 (t->mr[1] & 0x40) >> 5;
952 break;
953 case NV_MEM_TYPE_GDDR3:
954 case NV_MEM_TYPE_GDDR5:
955 t->drive_strength = t->mr[1] & 0x03;
956 t->odt = (t->mr[1] & 0x0c) >> 2;
957 break;
958 default:
959 break;
960 }
961 }
962
963 int
964 nouveau_mem_exec(struct nouveau_mem_exec_func *exec,
965 struct nouveau_pm_level *perflvl)
966 {
967 struct drm_nouveau_private *dev_priv = exec->dev->dev_private;
968 struct nouveau_pm_memtiming *info = &perflvl->timing;
969 u32 tMRD = 1000, tCKSRE = 0, tCKSRX = 0, tXS = 0, tDLLK = 0;
970 u32 mr[3] = { info->mr[0], info->mr[1], info->mr[2] };
971 u32 mr1_dlloff;
972
973 switch (dev_priv->vram_type) {
974 case NV_MEM_TYPE_DDR2:
975 tDLLK = 2000;
976 mr1_dlloff = 0x00000001;
977 break;
978 case NV_MEM_TYPE_DDR3:
979 tDLLK = 12000;
980 tCKSRE = 2000;
981 tXS = 1000;
982 mr1_dlloff = 0x00000001;
983 break;
984 case NV_MEM_TYPE_GDDR3:
985 tDLLK = 40000;
986 mr1_dlloff = 0x00000040;
987 break;
988 default:
989 NV_ERROR(exec->dev, "cannot reclock unsupported memtype\n");
990 return -ENODEV;
991 }
992
993 /* fetch current MRs */
994 switch (dev_priv->vram_type) {
995 case NV_MEM_TYPE_GDDR3:
996 case NV_MEM_TYPE_DDR3:
997 mr[2] = exec->mrg(exec, 2);
998 default:
999 mr[1] = exec->mrg(exec, 1);
1000 mr[0] = exec->mrg(exec, 0);
1001 break;
1002 }
1003
1004 /* DLL 'on' -> DLL 'off' mode, disable before entering self-refresh */
1005 if (!(mr[1] & mr1_dlloff) && (info->mr[1] & mr1_dlloff)) {
1006 exec->precharge(exec);
1007 exec->mrs (exec, 1, mr[1] | mr1_dlloff);
1008 exec->wait(exec, tMRD);
1009 }
1010
1011 /* enter self-refresh mode */
1012 exec->precharge(exec);
1013 exec->refresh(exec);
1014 exec->refresh(exec);
1015 exec->refresh_auto(exec, false);
1016 exec->refresh_self(exec, true);
1017 exec->wait(exec, tCKSRE);
1018
1019 /* modify input clock frequency */
1020 exec->clock_set(exec);
1021
1022 /* exit self-refresh mode */
1023 exec->wait(exec, tCKSRX);
1024 exec->precharge(exec);
1025 exec->refresh_self(exec, false);
1026 exec->refresh_auto(exec, true);
1027 exec->wait(exec, tXS);
1028 exec->wait(exec, tXS);
1029
1030 /* update MRs */
1031 if (mr[2] != info->mr[2]) {
1032 exec->mrs (exec, 2, info->mr[2]);
1033 exec->wait(exec, tMRD);
1034 }
1035
1036 if (mr[1] != info->mr[1]) {
1037 /* need to keep DLL off until later, at least on GDDR3 */
1038 exec->mrs (exec, 1, info->mr[1] | (mr[1] & mr1_dlloff));
1039 exec->wait(exec, tMRD);
1040 }
1041
1042 if (mr[0] != info->mr[0]) {
1043 exec->mrs (exec, 0, info->mr[0]);
1044 exec->wait(exec, tMRD);
1045 }
1046
1047 /* update PFB timing registers */
1048 exec->timing_set(exec);
1049
1050 /* DLL (enable + ) reset */
1051 if (!(info->mr[1] & mr1_dlloff)) {
1052 if (mr[1] & mr1_dlloff) {
1053 exec->mrs (exec, 1, info->mr[1]);
1054 exec->wait(exec, tMRD);
1055 }
1056 exec->mrs (exec, 0, info->mr[0] | 0x00000100);
1057 exec->wait(exec, tMRD);
1058 exec->mrs (exec, 0, info->mr[0] | 0x00000000);
1059 exec->wait(exec, tMRD);
1060 exec->wait(exec, tDLLK);
1061 if (dev_priv->vram_type == NV_MEM_TYPE_GDDR3)
1062 exec->precharge(exec);
1063 }
1064
1065 return 0;
1066 }
1067
1068 int
1069 nouveau_mem_vbios_type(struct drm_device *dev)
1070 {
1071 struct bit_entry M;
1072 u8 ramcfg = (nv_rd32(dev, 0x101000) & 0x0000003c) >> 2;
1073 if (!bit_table(dev, 'M', &M) || M.version != 2 || M.length < 5) {
1074 u8 *table = ROMPTR(dev, M.data[3]);
1075 if (table && table[0] == 0x10 && ramcfg < table[3]) {
1076 u8 *entry = table + table[1] + (ramcfg * table[2]);
1077 switch (entry[0] & 0x0f) {
1078 case 0: return NV_MEM_TYPE_DDR2;
1079 case 1: return NV_MEM_TYPE_DDR3;
1080 case 2: return NV_MEM_TYPE_GDDR3;
1081 case 3: return NV_MEM_TYPE_GDDR5;
1082 default:
1083 break;
1084 }
1085
1086 }
1087 }
1088 return NV_MEM_TYPE_UNKNOWN;
1089 }
1090
1091 static int
1092 nouveau_vram_manager_init(struct ttm_mem_type_manager *man, unsigned long psize)
1093 {
1094 /* nothing to do */
1095 return 0;
1096 }
1097
1098 static int
1099 nouveau_vram_manager_fini(struct ttm_mem_type_manager *man)
1100 {
1101 /* nothing to do */
1102 return 0;
1103 }
1104
1105 static inline void
1106 nouveau_mem_node_cleanup(struct nouveau_mem *node)
1107 {
1108 if (node->vma[0].node) {
1109 nouveau_vm_unmap(&node->vma[0]);
1110 nouveau_vm_put(&node->vma[0]);
1111 }
1112
1113 if (node->vma[1].node) {
1114 nouveau_vm_unmap(&node->vma[1]);
1115 nouveau_vm_put(&node->vma[1]);
1116 }
1117 }
1118
1119 static void
1120 nouveau_vram_manager_del(struct ttm_mem_type_manager *man,
1121 struct ttm_mem_reg *mem)
1122 {
1123 struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
1124 struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
1125 struct drm_device *dev = dev_priv->dev;
1126
1127 nouveau_mem_node_cleanup(mem->mm_node);
1128 vram->put(dev, (struct nouveau_mem **)&mem->mm_node);
1129 }
1130
1131 static int
1132 nouveau_vram_manager_new(struct ttm_mem_type_manager *man,
1133 struct ttm_buffer_object *bo,
1134 struct ttm_placement *placement,
1135 struct ttm_mem_reg *mem)
1136 {
1137 struct drm_nouveau_private *dev_priv = nouveau_bdev(man->bdev);
1138 struct nouveau_vram_engine *vram = &dev_priv->engine.vram;
1139 struct drm_device *dev = dev_priv->dev;
1140 struct nouveau_bo *nvbo = nouveau_bo(bo);
1141 struct nouveau_mem *node;
1142 u32 size_nc = 0;
1143 int ret;
1144
1145 if (nvbo->tile_flags & NOUVEAU_GEM_TILE_NONCONTIG)
1146 size_nc = 1 << nvbo->page_shift;
1147
1148 ret = vram->get(dev, mem->num_pages << PAGE_SHIFT,
1149 mem->page_alignment << PAGE_SHIFT, size_nc,
1150 (nvbo->tile_flags >> 8) & 0x3ff, &node);
1151 if (ret) {
1152 mem->mm_node = NULL;
1153 return (ret == -ENOSPC) ? 0 : ret;
1154 }
1155
1156 node->page_shift = nvbo->page_shift;
1157
1158 mem->mm_node = node;
1159 mem->start = node->offset >> PAGE_SHIFT;
1160 return 0;
1161 }
1162
1163 void
1164 nouveau_vram_manager_debug(struct ttm_mem_type_manager *man, const char *prefix)
1165 {
1166 struct nouveau_mm *mm = man->priv;
1167 struct nouveau_mm_node *r;
1168 u32 total = 0, free = 0;
1169
1170 mutex_lock(&mm->mutex);
1171 list_for_each_entry(r, &mm->nodes, nl_entry) {
1172 printk(KERN_DEBUG "%s %d: 0x%010llx 0x%010llx\n",
1173 prefix, r->type, ((u64)r->offset << 12),
1174 (((u64)r->offset + r->length) << 12));
1175
1176 total += r->length;
1177 if (!r->type)
1178 free += r->length;
1179 }
1180 mutex_unlock(&mm->mutex);
1181
1182 printk(KERN_DEBUG "%s total: 0x%010llx free: 0x%010llx\n",
1183 prefix, (u64)total << 12, (u64)free << 12);
1184 printk(KERN_DEBUG "%s block: 0x%08x\n",
1185 prefix, mm->block_size << 12);
1186 }
1187
1188 const struct ttm_mem_type_manager_func nouveau_vram_manager = {
1189 nouveau_vram_manager_init,
1190 nouveau_vram_manager_fini,
1191 nouveau_vram_manager_new,
1192 nouveau_vram_manager_del,
1193 nouveau_vram_manager_debug
1194 };
1195
1196 static int
1197 nouveau_gart_manager_init(struct ttm_mem_type_manager *man, unsigned long psize)
1198 {
1199 return 0;
1200 }
1201
1202 static int
1203 nouveau_gart_manager_fini(struct ttm_mem_type_manager *man)
1204 {
1205 return 0;
1206 }
1207
1208 static void
1209 nouveau_gart_manager_del(struct ttm_mem_type_manager *man,
1210 struct ttm_mem_reg *mem)
1211 {
1212 nouveau_mem_node_cleanup(mem->mm_node);
1213 kfree(mem->mm_node);
1214 mem->mm_node = NULL;
1215 }
1216
1217 static int
1218 nouveau_gart_manager_new(struct ttm_mem_type_manager *man,
1219 struct ttm_buffer_object *bo,
1220 struct ttm_placement *placement,
1221 struct ttm_mem_reg *mem)
1222 {
1223 struct drm_nouveau_private *dev_priv = nouveau_bdev(bo->bdev);
1224 struct nouveau_mem *node;
1225
1226 if (unlikely((mem->num_pages << PAGE_SHIFT) >=
1227 dev_priv->gart_info.aper_size))
1228 return -ENOMEM;
1229
1230 node = kzalloc(sizeof(*node), GFP_KERNEL);
1231 if (!node)
1232 return -ENOMEM;
1233 node->page_shift = 12;
1234
1235 mem->mm_node = node;
1236 mem->start = 0;
1237 return 0;
1238 }
1239
1240 void
1241 nouveau_gart_manager_debug(struct ttm_mem_type_manager *man, const char *prefix)
1242 {
1243 }
1244
1245 const struct ttm_mem_type_manager_func nouveau_gart_manager = {
1246 nouveau_gart_manager_init,
1247 nouveau_gart_manager_fini,
1248 nouveau_gart_manager_new,
1249 nouveau_gart_manager_del,
1250 nouveau_gart_manager_debug
1251 };