Merge branch 'linus' into timers/core
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / mgag200 / mgag200_mode.c
1 /*
2 * Copyright 2010 Matt Turner.
3 * Copyright 2012 Red Hat
4 *
5 * This file is subject to the terms and conditions of the GNU General
6 * Public License version 2. See the file COPYING in the main
7 * directory of this archive for more details.
8 *
9 * Authors: Matthew Garrett
10 * Matt Turner
11 * Dave Airlie
12 */
13
14 #include <linux/delay.h>
15
16 #include <drm/drmP.h>
17 #include <drm/drm_crtc_helper.h>
18
19 #include "mgag200_drv.h"
20
21 #define MGAG200_LUT_SIZE 256
22
23 /*
24 * This file contains setup code for the CRTC.
25 */
26
27 static void mga_crtc_load_lut(struct drm_crtc *crtc)
28 {
29 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
30 struct drm_device *dev = crtc->dev;
31 struct mga_device *mdev = dev->dev_private;
32 int i;
33
34 if (!crtc->enabled)
35 return;
36
37 WREG8(DAC_INDEX + MGA1064_INDEX, 0);
38
39 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
40 /* VGA registers */
41 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
42 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
43 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
44 }
45 }
46
47 static inline void mga_wait_vsync(struct mga_device *mdev)
48 {
49 unsigned int count = 0;
50 unsigned int status = 0;
51
52 do {
53 status = RREG32(MGAREG_Status);
54 count++;
55 } while ((status & 0x08) && (count < 250000));
56 count = 0;
57 status = 0;
58 do {
59 status = RREG32(MGAREG_Status);
60 count++;
61 } while (!(status & 0x08) && (count < 250000));
62 }
63
64 static inline void mga_wait_busy(struct mga_device *mdev)
65 {
66 unsigned int count = 0;
67 unsigned int status = 0;
68 do {
69 status = RREG8(MGAREG_Status + 2);
70 count++;
71 } while ((status & 0x01) && (count < 500000));
72 }
73
74 /*
75 * The core passes the desired mode to the CRTC code to see whether any
76 * CRTC-specific modifications need to be made to it. We're in a position
77 * to just pass that straight through, so this does nothing
78 */
79 static bool mga_crtc_mode_fixup(struct drm_crtc *crtc,
80 const struct drm_display_mode *mode,
81 struct drm_display_mode *adjusted_mode)
82 {
83 return true;
84 }
85
86 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
87 {
88 unsigned int vcomax, vcomin, pllreffreq;
89 unsigned int delta, tmpdelta, permitteddelta;
90 unsigned int testp, testm, testn;
91 unsigned int p, m, n;
92 unsigned int computed;
93
94 m = n = p = 0;
95 vcomax = 320000;
96 vcomin = 160000;
97 pllreffreq = 25000;
98
99 delta = 0xffffffff;
100 permitteddelta = clock * 5 / 1000;
101
102 for (testp = 8; testp > 0; testp /= 2) {
103 if (clock * testp > vcomax)
104 continue;
105 if (clock * testp < vcomin)
106 continue;
107
108 for (testn = 17; testn < 256; testn++) {
109 for (testm = 1; testm < 32; testm++) {
110 computed = (pllreffreq * testn) /
111 (testm * testp);
112 if (computed > clock)
113 tmpdelta = computed - clock;
114 else
115 tmpdelta = clock - computed;
116 if (tmpdelta < delta) {
117 delta = tmpdelta;
118 m = testm - 1;
119 n = testn - 1;
120 p = testp - 1;
121 }
122 }
123 }
124 }
125
126 if (delta > permitteddelta) {
127 printk(KERN_WARNING "PLL delta too large\n");
128 return 1;
129 }
130
131 WREG_DAC(MGA1064_PIX_PLLC_M, m);
132 WREG_DAC(MGA1064_PIX_PLLC_N, n);
133 WREG_DAC(MGA1064_PIX_PLLC_P, p);
134 return 0;
135 }
136
137 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
138 {
139 unsigned int vcomax, vcomin, pllreffreq;
140 unsigned int delta, tmpdelta, permitteddelta;
141 unsigned int testp, testm, testn;
142 unsigned int p, m, n;
143 unsigned int computed;
144 int i, j, tmpcount, vcount;
145 bool pll_locked = false;
146 u8 tmp;
147
148 m = n = p = 0;
149 vcomax = 550000;
150 vcomin = 150000;
151 pllreffreq = 48000;
152
153 delta = 0xffffffff;
154 permitteddelta = clock * 5 / 1000;
155
156 for (testp = 1; testp < 9; testp++) {
157 if (clock * testp > vcomax)
158 continue;
159 if (clock * testp < vcomin)
160 continue;
161
162 for (testm = 1; testm < 17; testm++) {
163 for (testn = 1; testn < 151; testn++) {
164 computed = (pllreffreq * testn) /
165 (testm * testp);
166 if (computed > clock)
167 tmpdelta = computed - clock;
168 else
169 tmpdelta = clock - computed;
170 if (tmpdelta < delta) {
171 delta = tmpdelta;
172 n = testn - 1;
173 m = (testm - 1) | ((n >> 1) & 0x80);
174 p = testp - 1;
175 }
176 }
177 }
178 }
179
180 for (i = 0; i <= 32 && pll_locked == false; i++) {
181 if (i > 0) {
182 WREG8(MGAREG_CRTC_INDEX, 0x1e);
183 tmp = RREG8(MGAREG_CRTC_DATA);
184 if (tmp < 0xff)
185 WREG8(MGAREG_CRTC_DATA, tmp+1);
186 }
187
188 /* set pixclkdis to 1 */
189 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
190 tmp = RREG8(DAC_DATA);
191 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
192 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
193
194 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
195 tmp = RREG8(DAC_DATA);
196 tmp |= MGA1064_REMHEADCTL_CLKDIS;
197 WREG_DAC(MGA1064_REMHEADCTL, tmp);
198
199 /* select PLL Set C */
200 tmp = RREG8(MGAREG_MEM_MISC_READ);
201 tmp |= 0x3 << 2;
202 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
203
204 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
205 tmp = RREG8(DAC_DATA);
206 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
207 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
208
209 udelay(500);
210
211 /* reset the PLL */
212 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
213 tmp = RREG8(DAC_DATA);
214 tmp &= ~0x04;
215 WREG_DAC(MGA1064_VREF_CTL, tmp);
216
217 udelay(50);
218
219 /* program pixel pll register */
220 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
221 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
222 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
223
224 udelay(50);
225
226 /* turn pll on */
227 WREG8(DAC_INDEX, MGA1064_VREF_CTL);
228 tmp = RREG8(DAC_DATA);
229 tmp |= 0x04;
230 WREG_DAC(MGA1064_VREF_CTL, tmp);
231
232 udelay(500);
233
234 /* select the pixel pll */
235 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
236 tmp = RREG8(DAC_DATA);
237 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
238 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
239 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
240
241 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
242 tmp = RREG8(DAC_DATA);
243 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
244 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
245 WREG_DAC(MGA1064_REMHEADCTL, tmp);
246
247 /* reset dotclock rate bit */
248 WREG8(MGAREG_SEQ_INDEX, 1);
249 tmp = RREG8(MGAREG_SEQ_DATA);
250 tmp &= ~0x8;
251 WREG8(MGAREG_SEQ_DATA, tmp);
252
253 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
254 tmp = RREG8(DAC_DATA);
255 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
256 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
257
258 vcount = RREG8(MGAREG_VCOUNT);
259
260 for (j = 0; j < 30 && pll_locked == false; j++) {
261 tmpcount = RREG8(MGAREG_VCOUNT);
262 if (tmpcount < vcount)
263 vcount = 0;
264 if ((tmpcount - vcount) > 2)
265 pll_locked = true;
266 else
267 udelay(5);
268 }
269 }
270 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
271 tmp = RREG8(DAC_DATA);
272 tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
273 WREG_DAC(MGA1064_REMHEADCTL, tmp);
274 return 0;
275 }
276
277 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
278 {
279 unsigned int vcomax, vcomin, pllreffreq;
280 unsigned int delta, tmpdelta, permitteddelta;
281 unsigned int testp, testm, testn;
282 unsigned int p, m, n;
283 unsigned int computed;
284 u8 tmp;
285
286 m = n = p = 0;
287 vcomax = 550000;
288 vcomin = 150000;
289 pllreffreq = 50000;
290
291 delta = 0xffffffff;
292 permitteddelta = clock * 5 / 1000;
293
294 for (testp = 16; testp > 0; testp--) {
295 if (clock * testp > vcomax)
296 continue;
297 if (clock * testp < vcomin)
298 continue;
299
300 for (testn = 1; testn < 257; testn++) {
301 for (testm = 1; testm < 17; testm++) {
302 computed = (pllreffreq * testn) /
303 (testm * testp);
304 if (computed > clock)
305 tmpdelta = computed - clock;
306 else
307 tmpdelta = clock - computed;
308 if (tmpdelta < delta) {
309 delta = tmpdelta;
310 n = testn - 1;
311 m = testm - 1;
312 p = testp - 1;
313 }
314 }
315 }
316 }
317
318 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
319 tmp = RREG8(DAC_DATA);
320 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
321 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
322
323 tmp = RREG8(MGAREG_MEM_MISC_READ);
324 tmp |= 0x3 << 2;
325 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
326
327 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
328 tmp = RREG8(DAC_DATA);
329 WREG_DAC(MGA1064_PIX_PLL_STAT, tmp & ~0x40);
330
331 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
332 tmp = RREG8(DAC_DATA);
333 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
334 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
335
336 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
337 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
338 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
339
340 udelay(50);
341
342 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
343 tmp = RREG8(DAC_DATA);
344 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
345 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
346
347 udelay(500);
348
349 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
350 tmp = RREG8(DAC_DATA);
351 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
352 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
353 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
354
355 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
356 tmp = RREG8(DAC_DATA);
357 WREG_DAC(MGA1064_PIX_PLL_STAT, tmp | 0x40);
358
359 tmp = RREG8(MGAREG_MEM_MISC_READ);
360 tmp |= (0x3 << 2);
361 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
362
363 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
364 tmp = RREG8(DAC_DATA);
365 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
366 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
367
368 return 0;
369 }
370
371 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
372 {
373 unsigned int vcomax, vcomin, pllreffreq;
374 unsigned int delta, tmpdelta, permitteddelta;
375 unsigned int testp, testm, testn;
376 unsigned int p, m, n;
377 unsigned int computed;
378 int i, j, tmpcount, vcount;
379 u8 tmp;
380 bool pll_locked = false;
381
382 m = n = p = 0;
383 vcomax = 800000;
384 vcomin = 400000;
385 pllreffreq = 33333;
386
387 delta = 0xffffffff;
388 permitteddelta = clock * 5 / 1000;
389
390 for (testp = 16; testp > 0; testp >>= 1) {
391 if (clock * testp > vcomax)
392 continue;
393 if (clock * testp < vcomin)
394 continue;
395
396 for (testm = 1; testm < 33; testm++) {
397 for (testn = 17; testn < 257; testn++) {
398 computed = (pllreffreq * testn) /
399 (testm * testp);
400 if (computed > clock)
401 tmpdelta = computed - clock;
402 else
403 tmpdelta = clock - computed;
404 if (tmpdelta < delta) {
405 delta = tmpdelta;
406 n = testn - 1;
407 m = (testm - 1);
408 p = testp - 1;
409 }
410 if ((clock * testp) >= 600000)
411 p |= 0x80;
412 }
413 }
414 }
415 for (i = 0; i <= 32 && pll_locked == false; i++) {
416 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
417 tmp = RREG8(DAC_DATA);
418 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
419 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
420
421 tmp = RREG8(MGAREG_MEM_MISC_READ);
422 tmp |= 0x3 << 2;
423 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
424
425 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
426 tmp = RREG8(DAC_DATA);
427 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
428 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
429
430 udelay(500);
431
432 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
433 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
434 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
435
436 udelay(500);
437
438 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
439 tmp = RREG8(DAC_DATA);
440 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
441 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
442 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
443
444 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
445 tmp = RREG8(DAC_DATA);
446 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
447 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
448 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
449
450 vcount = RREG8(MGAREG_VCOUNT);
451
452 for (j = 0; j < 30 && pll_locked == false; j++) {
453 tmpcount = RREG8(MGAREG_VCOUNT);
454 if (tmpcount < vcount)
455 vcount = 0;
456 if ((tmpcount - vcount) > 2)
457 pll_locked = true;
458 else
459 udelay(5);
460 }
461 }
462
463 return 0;
464 }
465
466 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
467 {
468 unsigned int vcomax, vcomin, pllreffreq;
469 unsigned int delta, tmpdelta;
470 int testr, testn, testm, testo;
471 unsigned int p, m, n;
472 unsigned int computed, vco;
473 int tmp;
474 const unsigned int m_div_val[] = { 1, 2, 4, 8 };
475
476 m = n = p = 0;
477 vcomax = 1488000;
478 vcomin = 1056000;
479 pllreffreq = 48000;
480
481 delta = 0xffffffff;
482
483 for (testr = 0; testr < 4; testr++) {
484 if (delta == 0)
485 break;
486 for (testn = 5; testn < 129; testn++) {
487 if (delta == 0)
488 break;
489 for (testm = 3; testm >= 0; testm--) {
490 if (delta == 0)
491 break;
492 for (testo = 5; testo < 33; testo++) {
493 vco = pllreffreq * (testn + 1) /
494 (testr + 1);
495 if (vco < vcomin)
496 continue;
497 if (vco > vcomax)
498 continue;
499 computed = vco / (m_div_val[testm] * (testo + 1));
500 if (computed > clock)
501 tmpdelta = computed - clock;
502 else
503 tmpdelta = clock - computed;
504 if (tmpdelta < delta) {
505 delta = tmpdelta;
506 m = testm | (testo << 3);
507 n = testn;
508 p = testr | (testr << 3);
509 }
510 }
511 }
512 }
513 }
514
515 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
516 tmp = RREG8(DAC_DATA);
517 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
518 WREG_DAC(MGA1064_PIX_CLK_CTL_CLK_DIS, tmp);
519
520 WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
521 tmp = RREG8(DAC_DATA);
522 tmp |= MGA1064_REMHEADCTL_CLKDIS;
523 WREG_DAC(MGA1064_REMHEADCTL, tmp);
524
525 tmp = RREG8(MGAREG_MEM_MISC_READ);
526 tmp |= (0x3<<2) | 0xc0;
527 WREG8(MGAREG_MEM_MISC_WRITE, tmp);
528
529 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
530 tmp = RREG8(DAC_DATA);
531 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
532 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
533 WREG_DAC(MGA1064_PIX_CLK_CTL, tmp);
534
535 udelay(500);
536
537 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
538 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
539 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
540
541 udelay(50);
542
543 return 0;
544 }
545
546 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
547 {
548 switch(mdev->type) {
549 case G200_SE_A:
550 case G200_SE_B:
551 return mga_g200se_set_plls(mdev, clock);
552 break;
553 case G200_WB:
554 return mga_g200wb_set_plls(mdev, clock);
555 break;
556 case G200_EV:
557 return mga_g200ev_set_plls(mdev, clock);
558 break;
559 case G200_EH:
560 return mga_g200eh_set_plls(mdev, clock);
561 break;
562 case G200_ER:
563 return mga_g200er_set_plls(mdev, clock);
564 break;
565 }
566 return 0;
567 }
568
569 static void mga_g200wb_prepare(struct drm_crtc *crtc)
570 {
571 struct mga_device *mdev = crtc->dev->dev_private;
572 u8 tmp;
573 int iter_max;
574
575 /* 1- The first step is to warn the BMC of an upcoming mode change.
576 * We are putting the misc<0> to output.*/
577
578 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
579 tmp = RREG8(DAC_DATA);
580 tmp |= 0x10;
581 WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
582
583 /* we are putting a 1 on the misc<0> line */
584 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
585 tmp = RREG8(DAC_DATA);
586 tmp |= 0x10;
587 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
588
589 /* 2- Second step to mask and further scan request
590 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
591 */
592 WREG8(DAC_INDEX, MGA1064_SPAREREG);
593 tmp = RREG8(DAC_DATA);
594 tmp |= 0x80;
595 WREG_DAC(MGA1064_SPAREREG, tmp);
596
597 /* 3a- the third step is to verifu if there is an active scan
598 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
599 */
600 iter_max = 300;
601 while (!(tmp & 0x1) && iter_max) {
602 WREG8(DAC_INDEX, MGA1064_SPAREREG);
603 tmp = RREG8(DAC_DATA);
604 udelay(1000);
605 iter_max--;
606 }
607
608 /* 3b- this step occurs only if the remove is actually scanning
609 * we are waiting for the end of the frame which is a 1 on
610 * remvsyncsts (XSPAREREG<1>)
611 */
612 if (iter_max) {
613 iter_max = 300;
614 while ((tmp & 0x2) && iter_max) {
615 WREG8(DAC_INDEX, MGA1064_SPAREREG);
616 tmp = RREG8(DAC_DATA);
617 udelay(1000);
618 iter_max--;
619 }
620 }
621 }
622
623 static void mga_g200wb_commit(struct drm_crtc *crtc)
624 {
625 u8 tmp;
626 struct mga_device *mdev = crtc->dev->dev_private;
627
628 /* 1- The first step is to ensure that the vrsten and hrsten are set */
629 WREG8(MGAREG_CRTCEXT_INDEX, 1);
630 tmp = RREG8(MGAREG_CRTCEXT_DATA);
631 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
632
633 /* 2- second step is to assert the rstlvl2 */
634 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
635 tmp = RREG8(DAC_DATA);
636 tmp |= 0x8;
637 WREG8(DAC_DATA, tmp);
638
639 /* wait 10 us */
640 udelay(10);
641
642 /* 3- deassert rstlvl2 */
643 tmp &= ~0x08;
644 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
645 WREG8(DAC_DATA, tmp);
646
647 /* 4- remove mask of scan request */
648 WREG8(DAC_INDEX, MGA1064_SPAREREG);
649 tmp = RREG8(DAC_DATA);
650 tmp &= ~0x80;
651 WREG8(DAC_DATA, tmp);
652
653 /* 5- put back a 0 on the misc<0> line */
654 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
655 tmp = RREG8(DAC_DATA);
656 tmp &= ~0x10;
657 WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
658 }
659
660
661 void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
662 {
663 struct mga_device *mdev = crtc->dev->dev_private;
664 u32 addr;
665 int count;
666
667 while (RREG8(0x1fda) & 0x08);
668 while (!(RREG8(0x1fda) & 0x08));
669
670 count = RREG8(MGAREG_VCOUNT) + 2;
671 while (RREG8(MGAREG_VCOUNT) < count);
672
673 addr = offset >> 2;
674 WREG_CRT(0x0d, (u8)(addr & 0xff));
675 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
676 WREG_CRT(0xaf, (u8)(addr >> 16) & 0xf);
677 }
678
679
680 /* ast is different - we will force move buffers out of VRAM */
681 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
682 struct drm_framebuffer *fb,
683 int x, int y, int atomic)
684 {
685 struct mga_device *mdev = crtc->dev->dev_private;
686 struct drm_gem_object *obj;
687 struct mga_framebuffer *mga_fb;
688 struct mgag200_bo *bo;
689 int ret;
690 u64 gpu_addr;
691
692 /* push the previous fb to system ram */
693 if (!atomic && fb) {
694 mga_fb = to_mga_framebuffer(fb);
695 obj = mga_fb->obj;
696 bo = gem_to_mga_bo(obj);
697 ret = mgag200_bo_reserve(bo, false);
698 if (ret)
699 return ret;
700 mgag200_bo_push_sysram(bo);
701 mgag200_bo_unreserve(bo);
702 }
703
704 mga_fb = to_mga_framebuffer(crtc->fb);
705 obj = mga_fb->obj;
706 bo = gem_to_mga_bo(obj);
707
708 ret = mgag200_bo_reserve(bo, false);
709 if (ret)
710 return ret;
711
712 ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
713 if (ret) {
714 mgag200_bo_unreserve(bo);
715 return ret;
716 }
717
718 if (&mdev->mfbdev->mfb == mga_fb) {
719 /* if pushing console in kmap it */
720 ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
721 if (ret)
722 DRM_ERROR("failed to kmap fbcon\n");
723
724 }
725 mgag200_bo_unreserve(bo);
726
727 DRM_INFO("mga base %llx\n", gpu_addr);
728
729 mga_set_start_address(crtc, (u32)gpu_addr);
730
731 return 0;
732 }
733
734 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
735 struct drm_framebuffer *old_fb)
736 {
737 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
738 }
739
740 static int mga_crtc_mode_set(struct drm_crtc *crtc,
741 struct drm_display_mode *mode,
742 struct drm_display_mode *adjusted_mode,
743 int x, int y, struct drm_framebuffer *old_fb)
744 {
745 struct drm_device *dev = crtc->dev;
746 struct mga_device *mdev = dev->dev_private;
747 int hdisplay, hsyncstart, hsyncend, htotal;
748 int vdisplay, vsyncstart, vsyncend, vtotal;
749 int pitch;
750 int option = 0, option2 = 0;
751 int i;
752 unsigned char misc = 0;
753 unsigned char ext_vga[6];
754 u8 bppshift;
755
756 static unsigned char dacvalue[] = {
757 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0,
758 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0,
759 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0,
760 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
761 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
762 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40,
763 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
764 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
765 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0,
766 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0
767 };
768
769 bppshift = mdev->bpp_shifts[(crtc->fb->bits_per_pixel >> 3) - 1];
770
771 switch (mdev->type) {
772 case G200_SE_A:
773 case G200_SE_B:
774 dacvalue[MGA1064_VREF_CTL] = 0x03;
775 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
776 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
777 MGA1064_MISC_CTL_VGA8 |
778 MGA1064_MISC_CTL_DAC_RAM_CS;
779 if (mdev->has_sdram)
780 option = 0x40049120;
781 else
782 option = 0x4004d120;
783 option2 = 0x00008000;
784 break;
785 case G200_WB:
786 dacvalue[MGA1064_VREF_CTL] = 0x07;
787 option = 0x41049120;
788 option2 = 0x0000b000;
789 break;
790 case G200_EV:
791 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
792 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
793 MGA1064_MISC_CTL_DAC_RAM_CS;
794 option = 0x00000120;
795 option2 = 0x0000b000;
796 break;
797 case G200_EH:
798 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
799 MGA1064_MISC_CTL_DAC_RAM_CS;
800 option = 0x00000120;
801 option2 = 0x0000b000;
802 break;
803 case G200_ER:
804 break;
805 }
806
807 switch (crtc->fb->bits_per_pixel) {
808 case 8:
809 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
810 break;
811 case 16:
812 if (crtc->fb->depth == 15)
813 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
814 else
815 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
816 break;
817 case 24:
818 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
819 break;
820 case 32:
821 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
822 break;
823 }
824
825 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
826 misc |= 0x40;
827 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
828 misc |= 0x80;
829
830
831 for (i = 0; i < sizeof(dacvalue); i++) {
832 if ((i <= 0x03) ||
833 (i == 0x07) ||
834 (i == 0x0b) ||
835 (i == 0x0f) ||
836 ((i >= 0x13) && (i <= 0x17)) ||
837 (i == 0x1b) ||
838 (i == 0x1c) ||
839 ((i >= 0x1f) && (i <= 0x29)) ||
840 ((i >= 0x30) && (i <= 0x37)))
841 continue;
842 if (IS_G200_SE(mdev) &&
843 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
844 continue;
845 if ((mdev->type == G200_EV || mdev->type == G200_WB || mdev->type == G200_EH) &&
846 (i >= 0x44) && (i <= 0x4e))
847 continue;
848
849 WREG_DAC(i, dacvalue[i]);
850 }
851
852 if (mdev->type == G200_ER)
853 WREG_DAC(0x90, 0);
854
855 if (option)
856 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
857 if (option2)
858 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
859
860 WREG_SEQ(2, 0xf);
861 WREG_SEQ(3, 0);
862 WREG_SEQ(4, 0xe);
863
864 pitch = crtc->fb->pitches[0] / (crtc->fb->bits_per_pixel / 8);
865 if (crtc->fb->bits_per_pixel == 24)
866 pitch = pitch >> (4 - bppshift);
867 else
868 pitch = pitch >> (4 - bppshift);
869
870 hdisplay = mode->hdisplay / 8 - 1;
871 hsyncstart = mode->hsync_start / 8 - 1;
872 hsyncend = mode->hsync_end / 8 - 1;
873 htotal = mode->htotal / 8 - 1;
874
875 /* Work around hardware quirk */
876 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
877 htotal++;
878
879 vdisplay = mode->vdisplay - 1;
880 vsyncstart = mode->vsync_start - 1;
881 vsyncend = mode->vsync_end - 1;
882 vtotal = mode->vtotal - 2;
883
884 WREG_GFX(0, 0);
885 WREG_GFX(1, 0);
886 WREG_GFX(2, 0);
887 WREG_GFX(3, 0);
888 WREG_GFX(4, 0);
889 WREG_GFX(5, 0x40);
890 WREG_GFX(6, 0x5);
891 WREG_GFX(7, 0xf);
892 WREG_GFX(8, 0xf);
893
894 WREG_CRT(0, htotal - 4);
895 WREG_CRT(1, hdisplay);
896 WREG_CRT(2, hdisplay);
897 WREG_CRT(3, (htotal & 0x1F) | 0x80);
898 WREG_CRT(4, hsyncstart);
899 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
900 WREG_CRT(6, vtotal & 0xFF);
901 WREG_CRT(7, ((vtotal & 0x100) >> 8) |
902 ((vdisplay & 0x100) >> 7) |
903 ((vsyncstart & 0x100) >> 6) |
904 ((vdisplay & 0x100) >> 5) |
905 ((vdisplay & 0x100) >> 4) | /* linecomp */
906 ((vtotal & 0x200) >> 4)|
907 ((vdisplay & 0x200) >> 3) |
908 ((vsyncstart & 0x200) >> 2));
909 WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
910 ((vdisplay & 0x200) >> 3));
911 WREG_CRT(10, 0);
912 WREG_CRT(11, 0);
913 WREG_CRT(12, 0);
914 WREG_CRT(13, 0);
915 WREG_CRT(14, 0);
916 WREG_CRT(15, 0);
917 WREG_CRT(16, vsyncstart & 0xFF);
918 WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
919 WREG_CRT(18, vdisplay & 0xFF);
920 WREG_CRT(19, pitch & 0xFF);
921 WREG_CRT(20, 0);
922 WREG_CRT(21, vdisplay & 0xFF);
923 WREG_CRT(22, (vtotal + 1) & 0xFF);
924 WREG_CRT(23, 0xc3);
925 WREG_CRT(24, vdisplay & 0xFF);
926
927 ext_vga[0] = 0;
928 ext_vga[5] = 0;
929
930 /* TODO interlace */
931
932 ext_vga[0] |= (pitch & 0x300) >> 4;
933 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
934 ((hdisplay & 0x100) >> 7) |
935 ((hsyncstart & 0x100) >> 6) |
936 (htotal & 0x40);
937 ext_vga[2] = ((vtotal & 0xc00) >> 10) |
938 ((vdisplay & 0x400) >> 8) |
939 ((vdisplay & 0xc00) >> 7) |
940 ((vsyncstart & 0xc00) >> 5) |
941 ((vdisplay & 0x400) >> 3);
942 if (crtc->fb->bits_per_pixel == 24)
943 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
944 else
945 ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
946 ext_vga[4] = 0;
947 if (mdev->type == G200_WB)
948 ext_vga[1] |= 0x88;
949
950 /* Set pixel clocks */
951 misc = 0x2d;
952 WREG8(MGA_MISC_OUT, misc);
953
954 mga_crtc_set_plls(mdev, mode->clock);
955
956 for (i = 0; i < 6; i++) {
957 WREG_ECRT(i, ext_vga[i]);
958 }
959
960 if (mdev->type == G200_ER)
961 WREG_ECRT(0x24, 0x5);
962
963 if (mdev->type == G200_EV) {
964 WREG_ECRT(6, 0);
965 }
966
967 WREG_ECRT(0, ext_vga[0]);
968 /* Enable mga pixel clock */
969 misc = 0x2d;
970
971 WREG8(MGA_MISC_OUT, misc);
972
973 if (adjusted_mode)
974 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
975
976 mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
977
978 /* reset tagfifo */
979 if (mdev->type == G200_ER) {
980 u32 mem_ctl = RREG32(MGAREG_MEMCTL);
981 u8 seq1;
982
983 /* screen off */
984 WREG8(MGAREG_SEQ_INDEX, 0x01);
985 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
986 WREG8(MGAREG_SEQ_DATA, seq1);
987
988 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
989 udelay(1000);
990 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
991
992 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
993 }
994
995
996 if (IS_G200_SE(mdev)) {
997 if (mdev->reg_1e24 >= 0x02) {
998 u8 hi_pri_lvl;
999 u32 bpp;
1000 u32 mb;
1001
1002 if (crtc->fb->bits_per_pixel > 16)
1003 bpp = 32;
1004 else if (crtc->fb->bits_per_pixel > 8)
1005 bpp = 16;
1006 else
1007 bpp = 8;
1008
1009 mb = (mode->clock * bpp) / 1000;
1010 if (mb > 3100)
1011 hi_pri_lvl = 0;
1012 else if (mb > 2600)
1013 hi_pri_lvl = 1;
1014 else if (mb > 1900)
1015 hi_pri_lvl = 2;
1016 else if (mb > 1160)
1017 hi_pri_lvl = 3;
1018 else if (mb > 440)
1019 hi_pri_lvl = 4;
1020 else
1021 hi_pri_lvl = 5;
1022
1023 WREG8(0x1fde, 0x06);
1024 WREG8(0x1fdf, hi_pri_lvl);
1025 } else {
1026 if (mdev->reg_1e24 >= 0x01)
1027 WREG8(0x1fdf, 0x03);
1028 else
1029 WREG8(0x1fdf, 0x04);
1030 }
1031 }
1032 return 0;
1033 }
1034
1035 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1036 static int mga_suspend(struct drm_crtc *crtc)
1037 {
1038 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1039 struct drm_device *dev = crtc->dev;
1040 struct mga_device *mdev = dev->dev_private;
1041 struct pci_dev *pdev = dev->pdev;
1042 int option;
1043
1044 if (mdev->suspended)
1045 return 0;
1046
1047 WREG_SEQ(1, 0x20);
1048 WREG_ECRT(1, 0x30);
1049 /* Disable the pixel clock */
1050 WREG_DAC(0x1a, 0x05);
1051 /* Power down the DAC */
1052 WREG_DAC(0x1e, 0x18);
1053 /* Power down the pixel PLL */
1054 WREG_DAC(0x1a, 0x0d);
1055
1056 /* Disable PLLs and clocks */
1057 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1058 option &= ~(0x1F8024);
1059 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1060 pci_set_power_state(pdev, PCI_D3hot);
1061 pci_disable_device(pdev);
1062
1063 mdev->suspended = true;
1064
1065 return 0;
1066 }
1067
1068 static int mga_resume(struct drm_crtc *crtc)
1069 {
1070 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1071 struct drm_device *dev = crtc->dev;
1072 struct mga_device *mdev = dev->dev_private;
1073 struct pci_dev *pdev = dev->pdev;
1074 int option;
1075
1076 if (!mdev->suspended)
1077 return 0;
1078
1079 pci_set_power_state(pdev, PCI_D0);
1080 pci_enable_device(pdev);
1081
1082 /* Disable sysclk */
1083 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1084 option &= ~(0x4);
1085 pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1086
1087 mdev->suspended = false;
1088
1089 return 0;
1090 }
1091
1092 #endif
1093
1094 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1095 {
1096 struct drm_device *dev = crtc->dev;
1097 struct mga_device *mdev = dev->dev_private;
1098 u8 seq1 = 0, crtcext1 = 0;
1099
1100 switch (mode) {
1101 case DRM_MODE_DPMS_ON:
1102 seq1 = 0;
1103 crtcext1 = 0;
1104 mga_crtc_load_lut(crtc);
1105 break;
1106 case DRM_MODE_DPMS_STANDBY:
1107 seq1 = 0x20;
1108 crtcext1 = 0x10;
1109 break;
1110 case DRM_MODE_DPMS_SUSPEND:
1111 seq1 = 0x20;
1112 crtcext1 = 0x20;
1113 break;
1114 case DRM_MODE_DPMS_OFF:
1115 seq1 = 0x20;
1116 crtcext1 = 0x30;
1117 break;
1118 }
1119
1120 #if 0
1121 if (mode == DRM_MODE_DPMS_OFF) {
1122 mga_suspend(crtc);
1123 }
1124 #endif
1125 WREG8(MGAREG_SEQ_INDEX, 0x01);
1126 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1127 mga_wait_vsync(mdev);
1128 mga_wait_busy(mdev);
1129 WREG8(MGAREG_SEQ_DATA, seq1);
1130 msleep(20);
1131 WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1132 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1133 WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1134
1135 #if 0
1136 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1137 mga_resume(crtc);
1138 drm_helper_resume_force_mode(dev);
1139 }
1140 #endif
1141 }
1142
1143 /*
1144 * This is called before a mode is programmed. A typical use might be to
1145 * enable DPMS during the programming to avoid seeing intermediate stages,
1146 * but that's not relevant to us
1147 */
1148 static void mga_crtc_prepare(struct drm_crtc *crtc)
1149 {
1150 struct drm_device *dev = crtc->dev;
1151 struct mga_device *mdev = dev->dev_private;
1152 u8 tmp;
1153
1154 /* mga_resume(crtc);*/
1155
1156 WREG8(MGAREG_CRTC_INDEX, 0x11);
1157 tmp = RREG8(MGAREG_CRTC_DATA);
1158 WREG_CRT(0x11, tmp | 0x80);
1159
1160 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1161 WREG_SEQ(0, 1);
1162 msleep(50);
1163 WREG_SEQ(1, 0x20);
1164 msleep(20);
1165 } else {
1166 WREG8(MGAREG_SEQ_INDEX, 0x1);
1167 tmp = RREG8(MGAREG_SEQ_DATA);
1168
1169 /* start sync reset */
1170 WREG_SEQ(0, 1);
1171 WREG_SEQ(1, tmp | 0x20);
1172 }
1173
1174 if (mdev->type == G200_WB)
1175 mga_g200wb_prepare(crtc);
1176
1177 WREG_CRT(17, 0);
1178 }
1179
1180 /*
1181 * This is called after a mode is programmed. It should reverse anything done
1182 * by the prepare function
1183 */
1184 static void mga_crtc_commit(struct drm_crtc *crtc)
1185 {
1186 struct drm_device *dev = crtc->dev;
1187 struct mga_device *mdev = dev->dev_private;
1188 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1189 u8 tmp;
1190
1191 if (mdev->type == G200_WB)
1192 mga_g200wb_commit(crtc);
1193
1194 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1195 msleep(50);
1196 WREG_SEQ(1, 0x0);
1197 msleep(20);
1198 WREG_SEQ(0, 0x3);
1199 } else {
1200 WREG8(MGAREG_SEQ_INDEX, 0x1);
1201 tmp = RREG8(MGAREG_SEQ_DATA);
1202
1203 tmp &= ~0x20;
1204 WREG_SEQ(0x1, tmp);
1205 WREG_SEQ(0, 3);
1206 }
1207 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1208 }
1209
1210 /*
1211 * The core can pass us a set of gamma values to program. We actually only
1212 * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1213 * but it's a requirement that we provide the function
1214 */
1215 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1216 u16 *blue, uint32_t start, uint32_t size)
1217 {
1218 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1219 int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size;
1220 int i;
1221
1222 for (i = start; i < end; i++) {
1223 mga_crtc->lut_r[i] = red[i] >> 8;
1224 mga_crtc->lut_g[i] = green[i] >> 8;
1225 mga_crtc->lut_b[i] = blue[i] >> 8;
1226 }
1227 mga_crtc_load_lut(crtc);
1228 }
1229
1230 /* Simple cleanup function */
1231 static void mga_crtc_destroy(struct drm_crtc *crtc)
1232 {
1233 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1234
1235 drm_crtc_cleanup(crtc);
1236 kfree(mga_crtc);
1237 }
1238
1239 /* These provide the minimum set of functions required to handle a CRTC */
1240 static const struct drm_crtc_funcs mga_crtc_funcs = {
1241 .gamma_set = mga_crtc_gamma_set,
1242 .set_config = drm_crtc_helper_set_config,
1243 .destroy = mga_crtc_destroy,
1244 };
1245
1246 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1247 .dpms = mga_crtc_dpms,
1248 .mode_fixup = mga_crtc_mode_fixup,
1249 .mode_set = mga_crtc_mode_set,
1250 .mode_set_base = mga_crtc_mode_set_base,
1251 .prepare = mga_crtc_prepare,
1252 .commit = mga_crtc_commit,
1253 .load_lut = mga_crtc_load_lut,
1254 };
1255
1256 /* CRTC setup */
1257 static void mga_crtc_init(struct drm_device *dev)
1258 {
1259 struct mga_device *mdev = dev->dev_private;
1260 struct mga_crtc *mga_crtc;
1261 int i;
1262
1263 mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1264 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1265 GFP_KERNEL);
1266
1267 if (mga_crtc == NULL)
1268 return;
1269
1270 drm_crtc_init(dev, &mga_crtc->base, &mga_crtc_funcs);
1271
1272 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1273 mdev->mode_info.crtc = mga_crtc;
1274
1275 for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1276 mga_crtc->lut_r[i] = i;
1277 mga_crtc->lut_g[i] = i;
1278 mga_crtc->lut_b[i] = i;
1279 }
1280
1281 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1282 }
1283
1284 /** Sets the color ramps on behalf of fbcon */
1285 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1286 u16 blue, int regno)
1287 {
1288 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1289
1290 mga_crtc->lut_r[regno] = red >> 8;
1291 mga_crtc->lut_g[regno] = green >> 8;
1292 mga_crtc->lut_b[regno] = blue >> 8;
1293 }
1294
1295 /** Gets the color ramps on behalf of fbcon */
1296 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1297 u16 *blue, int regno)
1298 {
1299 struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1300
1301 *red = (u16)mga_crtc->lut_r[regno] << 8;
1302 *green = (u16)mga_crtc->lut_g[regno] << 8;
1303 *blue = (u16)mga_crtc->lut_b[regno] << 8;
1304 }
1305
1306 /*
1307 * The encoder comes after the CRTC in the output pipeline, but before
1308 * the connector. It's responsible for ensuring that the digital
1309 * stream is appropriately converted into the output format. Setup is
1310 * very simple in this case - all we have to do is inform qemu of the
1311 * colour depth in order to ensure that it displays appropriately
1312 */
1313
1314 /*
1315 * These functions are analagous to those in the CRTC code, but are intended
1316 * to handle any encoder-specific limitations
1317 */
1318 static bool mga_encoder_mode_fixup(struct drm_encoder *encoder,
1319 const struct drm_display_mode *mode,
1320 struct drm_display_mode *adjusted_mode)
1321 {
1322 return true;
1323 }
1324
1325 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1326 struct drm_display_mode *mode,
1327 struct drm_display_mode *adjusted_mode)
1328 {
1329
1330 }
1331
1332 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1333 {
1334 return;
1335 }
1336
1337 static void mga_encoder_prepare(struct drm_encoder *encoder)
1338 {
1339 }
1340
1341 static void mga_encoder_commit(struct drm_encoder *encoder)
1342 {
1343 }
1344
1345 void mga_encoder_destroy(struct drm_encoder *encoder)
1346 {
1347 struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1348 drm_encoder_cleanup(encoder);
1349 kfree(mga_encoder);
1350 }
1351
1352 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1353 .dpms = mga_encoder_dpms,
1354 .mode_fixup = mga_encoder_mode_fixup,
1355 .mode_set = mga_encoder_mode_set,
1356 .prepare = mga_encoder_prepare,
1357 .commit = mga_encoder_commit,
1358 };
1359
1360 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1361 .destroy = mga_encoder_destroy,
1362 };
1363
1364 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1365 {
1366 struct drm_encoder *encoder;
1367 struct mga_encoder *mga_encoder;
1368
1369 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1370 if (!mga_encoder)
1371 return NULL;
1372
1373 encoder = &mga_encoder->base;
1374 encoder->possible_crtcs = 0x1;
1375
1376 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1377 DRM_MODE_ENCODER_DAC);
1378 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1379
1380 return encoder;
1381 }
1382
1383
1384 static int mga_vga_get_modes(struct drm_connector *connector)
1385 {
1386 struct mga_connector *mga_connector = to_mga_connector(connector);
1387 struct edid *edid;
1388 int ret = 0;
1389
1390 edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1391 if (edid) {
1392 drm_mode_connector_update_edid_property(connector, edid);
1393 ret = drm_add_edid_modes(connector, edid);
1394 kfree(edid);
1395 }
1396 return ret;
1397 }
1398
1399 static int mga_vga_mode_valid(struct drm_connector *connector,
1400 struct drm_display_mode *mode)
1401 {
1402 struct drm_device *dev = connector->dev;
1403 struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1404 struct mga_fbdev *mfbdev = mdev->mfbdev;
1405 struct drm_fb_helper *fb_helper = &mfbdev->helper;
1406 struct drm_fb_helper_connector *fb_helper_conn = NULL;
1407 int bpp = 32;
1408 int i = 0;
1409
1410 /* FIXME: Add bandwidth and g200se limitations */
1411
1412 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1413 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1414 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1415 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1416 return MODE_BAD;
1417 }
1418
1419 /* Validate the mode input by the user */
1420 for (i = 0; i < fb_helper->connector_count; i++) {
1421 if (fb_helper->connector_info[i]->connector == connector) {
1422 /* Found the helper for this connector */
1423 fb_helper_conn = fb_helper->connector_info[i];
1424 if (fb_helper_conn->cmdline_mode.specified) {
1425 if (fb_helper_conn->cmdline_mode.bpp_specified) {
1426 bpp = fb_helper_conn->cmdline_mode.bpp;
1427 }
1428 }
1429 }
1430 }
1431
1432 if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1433 if (fb_helper_conn)
1434 fb_helper_conn->cmdline_mode.specified = false;
1435 return MODE_BAD;
1436 }
1437
1438 return MODE_OK;
1439 }
1440
1441 struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1442 *connector)
1443 {
1444 int enc_id = connector->encoder_ids[0];
1445 struct drm_mode_object *obj;
1446 struct drm_encoder *encoder;
1447
1448 /* pick the encoder ids */
1449 if (enc_id) {
1450 obj =
1451 drm_mode_object_find(connector->dev, enc_id,
1452 DRM_MODE_OBJECT_ENCODER);
1453 if (!obj)
1454 return NULL;
1455 encoder = obj_to_encoder(obj);
1456 return encoder;
1457 }
1458 return NULL;
1459 }
1460
1461 static enum drm_connector_status mga_vga_detect(struct drm_connector
1462 *connector, bool force)
1463 {
1464 return connector_status_connected;
1465 }
1466
1467 static void mga_connector_destroy(struct drm_connector *connector)
1468 {
1469 struct mga_connector *mga_connector = to_mga_connector(connector);
1470 mgag200_i2c_destroy(mga_connector->i2c);
1471 drm_connector_cleanup(connector);
1472 kfree(connector);
1473 }
1474
1475 struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1476 .get_modes = mga_vga_get_modes,
1477 .mode_valid = mga_vga_mode_valid,
1478 .best_encoder = mga_connector_best_encoder,
1479 };
1480
1481 struct drm_connector_funcs mga_vga_connector_funcs = {
1482 .dpms = drm_helper_connector_dpms,
1483 .detect = mga_vga_detect,
1484 .fill_modes = drm_helper_probe_single_connector_modes,
1485 .destroy = mga_connector_destroy,
1486 };
1487
1488 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1489 {
1490 struct drm_connector *connector;
1491 struct mga_connector *mga_connector;
1492
1493 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1494 if (!mga_connector)
1495 return NULL;
1496
1497 connector = &mga_connector->base;
1498
1499 drm_connector_init(dev, connector,
1500 &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1501
1502 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1503
1504 mga_connector->i2c = mgag200_i2c_create(dev);
1505 if (!mga_connector->i2c)
1506 DRM_ERROR("failed to add ddc bus\n");
1507
1508 return connector;
1509 }
1510
1511
1512 int mgag200_modeset_init(struct mga_device *mdev)
1513 {
1514 struct drm_encoder *encoder;
1515 struct drm_connector *connector;
1516 int ret;
1517
1518 mdev->mode_info.mode_config_initialized = true;
1519
1520 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1521 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1522
1523 mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1524
1525 mga_crtc_init(mdev->dev);
1526
1527 encoder = mga_encoder_init(mdev->dev);
1528 if (!encoder) {
1529 DRM_ERROR("mga_encoder_init failed\n");
1530 return -1;
1531 }
1532
1533 connector = mga_vga_init(mdev->dev);
1534 if (!connector) {
1535 DRM_ERROR("mga_vga_init failed\n");
1536 return -1;
1537 }
1538
1539 drm_mode_connector_attach_encoder(connector, encoder);
1540
1541 ret = mgag200_fbdev_init(mdev);
1542 if (ret) {
1543 DRM_ERROR("mga_fbdev_init failed\n");
1544 return ret;
1545 }
1546
1547 return 0;
1548 }
1549
1550 void mgag200_modeset_fini(struct mga_device *mdev)
1551 {
1552
1553 }