Merge tag 'drm-intel-next-2015-04-23-fixed' of git://anongit.freedesktop.org/drm...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193 const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194 ppgtt->pdp.page_directory[n]->daddr : \
195 ppgtt->scratch_pd->daddr; \
196 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201 ADVANCED_CONTEXT = 0,
202 LEGACY_CONTEXT,
203 ADVANCED_AD_CONTEXT,
204 LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208 FAULT_AND_HANG = 0,
209 FAULT_AND_HALT, /* Debug only */
210 FAULT_AND_STREAM,
211 FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214
215 static int intel_lr_context_pin(struct intel_engine_cs *ring,
216 struct intel_context *ctx);
217
218 /**
219 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220 * @dev: DRM device.
221 * @enable_execlists: value of i915.enable_execlists module parameter.
222 *
223 * Only certain platforms support Execlists (the prerequisites being
224 * support for Logical Ring Contexts and Aliasing PPGTT or better).
225 *
226 * Return: 1 if Execlists is supported and has to be enabled.
227 */
228 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229 {
230 WARN_ON(i915.enable_ppgtt == -1);
231
232 if (INTEL_INFO(dev)->gen >= 9)
233 return 1;
234
235 if (enable_execlists == 0)
236 return 0;
237
238 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239 i915.use_mmio_flip >= 0)
240 return 1;
241
242 return 0;
243 }
244
245 /**
246 * intel_execlists_ctx_id() - get the Execlists Context ID
247 * @ctx_obj: Logical Ring Context backing object.
248 *
249 * Do not confuse with ctx->id! Unfortunately we have a name overload
250 * here: the old context ID we pass to userspace as a handler so that
251 * they can refer to a context, and the new context ID we pass to the
252 * ELSP so that the GPU can inform us of the context status via
253 * interrupts.
254 *
255 * Return: 20-bits globally unique context ID.
256 */
257 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258 {
259 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260
261 /* LRCA is required to be 4K aligned so the more significant 20 bits
262 * are globally unique */
263 return lrca >> 12;
264 }
265
266 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
267 struct drm_i915_gem_object *ctx_obj)
268 {
269 struct drm_device *dev = ring->dev;
270 uint64_t desc;
271 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275 desc = GEN8_CTX_VALID;
276 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277 if (IS_GEN8(ctx_obj->base.dev))
278 desc |= GEN8_CTX_L3LLC_COHERENT;
279 desc |= GEN8_CTX_PRIVILEGE;
280 desc |= lrca;
281 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283 /* TODO: WaDisableLiteRestore when we start using semaphore
284 * signalling between Command Streamers */
285 /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288 if (IS_GEN9(dev) &&
289 INTEL_REVID(dev) <= SKL_REVID_B0 &&
290 (ring->id == BCS || ring->id == VCS ||
291 ring->id == VECS || ring->id == VCS2))
292 desc |= GEN8_CTX_FORCE_RESTORE;
293
294 return desc;
295 }
296
297 static void execlists_elsp_write(struct intel_engine_cs *ring,
298 struct drm_i915_gem_object *ctx_obj0,
299 struct drm_i915_gem_object *ctx_obj1)
300 {
301 struct drm_device *dev = ring->dev;
302 struct drm_i915_private *dev_priv = dev->dev_private;
303 uint64_t temp = 0;
304 uint32_t desc[4];
305
306 /* XXX: You must always write both descriptors in the order below. */
307 if (ctx_obj1)
308 temp = execlists_ctx_descriptor(ring, ctx_obj1);
309 else
310 temp = 0;
311 desc[1] = (u32)(temp >> 32);
312 desc[0] = (u32)temp;
313
314 temp = execlists_ctx_descriptor(ring, ctx_obj0);
315 desc[3] = (u32)(temp >> 32);
316 desc[2] = (u32)temp;
317
318 spin_lock(&dev_priv->uncore.lock);
319 intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
320 I915_WRITE_FW(RING_ELSP(ring), desc[1]);
321 I915_WRITE_FW(RING_ELSP(ring), desc[0]);
322 I915_WRITE_FW(RING_ELSP(ring), desc[3]);
323
324 /* The context is automatically loaded after the following */
325 I915_WRITE_FW(RING_ELSP(ring), desc[2]);
326
327 /* ELSP is a wo register, so use another nearby reg for posting instead */
328 POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
329 intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
330 spin_unlock(&dev_priv->uncore.lock);
331 }
332
333 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
334 struct drm_i915_gem_object *ring_obj,
335 struct i915_hw_ppgtt *ppgtt,
336 u32 tail)
337 {
338 struct page *page;
339 uint32_t *reg_state;
340
341 page = i915_gem_object_get_page(ctx_obj, 1);
342 reg_state = kmap_atomic(page);
343
344 reg_state[CTX_RING_TAIL+1] = tail;
345 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
346
347 /* True PPGTT with dynamic page allocation: update PDP registers and
348 * point the unallocated PDPs to the scratch page
349 */
350 if (ppgtt) {
351 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355 }
356
357 kunmap_atomic(reg_state);
358
359 return 0;
360 }
361
362 static void execlists_submit_contexts(struct intel_engine_cs *ring,
363 struct intel_context *to0, u32 tail0,
364 struct intel_context *to1, u32 tail1)
365 {
366 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
367 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
368 struct drm_i915_gem_object *ctx_obj1 = NULL;
369 struct intel_ringbuffer *ringbuf1 = NULL;
370
371 BUG_ON(!ctx_obj0);
372 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
373 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
374
375 execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
376
377 if (to1) {
378 ringbuf1 = to1->engine[ring->id].ringbuf;
379 ctx_obj1 = to1->engine[ring->id].state;
380 BUG_ON(!ctx_obj1);
381 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
382 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
383
384 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
385 }
386
387 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
388 }
389
390 static void execlists_context_unqueue(struct intel_engine_cs *ring)
391 {
392 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
393 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
394
395 assert_spin_locked(&ring->execlist_lock);
396
397 if (list_empty(&ring->execlist_queue))
398 return;
399
400 /* Try to read in pairs */
401 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
402 execlist_link) {
403 if (!req0) {
404 req0 = cursor;
405 } else if (req0->ctx == cursor->ctx) {
406 /* Same ctx: ignore first request, as second request
407 * will update tail past first request's workload */
408 cursor->elsp_submitted = req0->elsp_submitted;
409 list_del(&req0->execlist_link);
410 list_add_tail(&req0->execlist_link,
411 &ring->execlist_retired_req_list);
412 req0 = cursor;
413 } else {
414 req1 = cursor;
415 break;
416 }
417 }
418
419 if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
420 /*
421 * WaIdleLiteRestore: make sure we never cause a lite
422 * restore with HEAD==TAIL
423 */
424 if (req0 && req0->elsp_submitted) {
425 /*
426 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
427 * as we resubmit the request. See gen8_emit_request()
428 * for where we prepare the padding after the end of the
429 * request.
430 */
431 struct intel_ringbuffer *ringbuf;
432
433 ringbuf = req0->ctx->engine[ring->id].ringbuf;
434 req0->tail += 8;
435 req0->tail &= ringbuf->size - 1;
436 }
437 }
438
439 WARN_ON(req1 && req1->elsp_submitted);
440
441 execlists_submit_contexts(ring, req0->ctx, req0->tail,
442 req1 ? req1->ctx : NULL,
443 req1 ? req1->tail : 0);
444
445 req0->elsp_submitted++;
446 if (req1)
447 req1->elsp_submitted++;
448 }
449
450 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
451 u32 request_id)
452 {
453 struct drm_i915_gem_request *head_req;
454
455 assert_spin_locked(&ring->execlist_lock);
456
457 head_req = list_first_entry_or_null(&ring->execlist_queue,
458 struct drm_i915_gem_request,
459 execlist_link);
460
461 if (head_req != NULL) {
462 struct drm_i915_gem_object *ctx_obj =
463 head_req->ctx->engine[ring->id].state;
464 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
465 WARN(head_req->elsp_submitted == 0,
466 "Never submitted head request\n");
467
468 if (--head_req->elsp_submitted <= 0) {
469 list_del(&head_req->execlist_link);
470 list_add_tail(&head_req->execlist_link,
471 &ring->execlist_retired_req_list);
472 return true;
473 }
474 }
475 }
476
477 return false;
478 }
479
480 /**
481 * intel_lrc_irq_handler() - handle Context Switch interrupts
482 * @ring: Engine Command Streamer to handle.
483 *
484 * Check the unread Context Status Buffers and manage the submission of new
485 * contexts to the ELSP accordingly.
486 */
487 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
488 {
489 struct drm_i915_private *dev_priv = ring->dev->dev_private;
490 u32 status_pointer;
491 u8 read_pointer;
492 u8 write_pointer;
493 u32 status;
494 u32 status_id;
495 u32 submit_contexts = 0;
496
497 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
498
499 read_pointer = ring->next_context_status_buffer;
500 write_pointer = status_pointer & 0x07;
501 if (read_pointer > write_pointer)
502 write_pointer += 6;
503
504 spin_lock(&ring->execlist_lock);
505
506 while (read_pointer < write_pointer) {
507 read_pointer++;
508 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
509 (read_pointer % 6) * 8);
510 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
511 (read_pointer % 6) * 8 + 4);
512
513 if (status & GEN8_CTX_STATUS_PREEMPTED) {
514 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
515 if (execlists_check_remove_request(ring, status_id))
516 WARN(1, "Lite Restored request removed from queue\n");
517 } else
518 WARN(1, "Preemption without Lite Restore\n");
519 }
520
521 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
522 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
523 if (execlists_check_remove_request(ring, status_id))
524 submit_contexts++;
525 }
526 }
527
528 if (submit_contexts != 0)
529 execlists_context_unqueue(ring);
530
531 spin_unlock(&ring->execlist_lock);
532
533 WARN(submit_contexts > 2, "More than two context complete events?\n");
534 ring->next_context_status_buffer = write_pointer % 6;
535
536 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
537 ((u32)ring->next_context_status_buffer & 0x07) << 8);
538 }
539
540 static int execlists_context_queue(struct intel_engine_cs *ring,
541 struct intel_context *to,
542 u32 tail,
543 struct drm_i915_gem_request *request)
544 {
545 struct drm_i915_gem_request *cursor;
546 int num_elements = 0;
547
548 if (to != ring->default_context)
549 intel_lr_context_pin(ring, to);
550
551 if (!request) {
552 /*
553 * If there isn't a request associated with this submission,
554 * create one as a temporary holder.
555 */
556 request = kzalloc(sizeof(*request), GFP_KERNEL);
557 if (request == NULL)
558 return -ENOMEM;
559 request->ring = ring;
560 request->ctx = to;
561 kref_init(&request->ref);
562 i915_gem_context_reference(request->ctx);
563 } else {
564 i915_gem_request_reference(request);
565 WARN_ON(to != request->ctx);
566 }
567 request->tail = tail;
568
569 spin_lock_irq(&ring->execlist_lock);
570
571 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
572 if (++num_elements > 2)
573 break;
574
575 if (num_elements > 2) {
576 struct drm_i915_gem_request *tail_req;
577
578 tail_req = list_last_entry(&ring->execlist_queue,
579 struct drm_i915_gem_request,
580 execlist_link);
581
582 if (to == tail_req->ctx) {
583 WARN(tail_req->elsp_submitted != 0,
584 "More than 2 already-submitted reqs queued\n");
585 list_del(&tail_req->execlist_link);
586 list_add_tail(&tail_req->execlist_link,
587 &ring->execlist_retired_req_list);
588 }
589 }
590
591 list_add_tail(&request->execlist_link, &ring->execlist_queue);
592 if (num_elements == 0)
593 execlists_context_unqueue(ring);
594
595 spin_unlock_irq(&ring->execlist_lock);
596
597 return 0;
598 }
599
600 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
601 struct intel_context *ctx)
602 {
603 struct intel_engine_cs *ring = ringbuf->ring;
604 uint32_t flush_domains;
605 int ret;
606
607 flush_domains = 0;
608 if (ring->gpu_caches_dirty)
609 flush_domains = I915_GEM_GPU_DOMAINS;
610
611 ret = ring->emit_flush(ringbuf, ctx,
612 I915_GEM_GPU_DOMAINS, flush_domains);
613 if (ret)
614 return ret;
615
616 ring->gpu_caches_dirty = false;
617 return 0;
618 }
619
620 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
621 struct intel_context *ctx,
622 struct list_head *vmas)
623 {
624 struct intel_engine_cs *ring = ringbuf->ring;
625 struct i915_vma *vma;
626 uint32_t flush_domains = 0;
627 bool flush_chipset = false;
628 int ret;
629
630 list_for_each_entry(vma, vmas, exec_list) {
631 struct drm_i915_gem_object *obj = vma->obj;
632
633 ret = i915_gem_object_sync(obj, ring);
634 if (ret)
635 return ret;
636
637 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
638 flush_chipset |= i915_gem_clflush_object(obj, false);
639
640 flush_domains |= obj->base.write_domain;
641 }
642
643 if (flush_domains & I915_GEM_DOMAIN_GTT)
644 wmb();
645
646 /* Unconditionally invalidate gpu caches and ensure that we do flush
647 * any residual writes from the previous batch.
648 */
649 return logical_ring_invalidate_all_caches(ringbuf, ctx);
650 }
651
652 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
653 struct intel_context *ctx)
654 {
655 int ret;
656
657 if (ctx != request->ring->default_context) {
658 ret = intel_lr_context_pin(request->ring, ctx);
659 if (ret)
660 return ret;
661 }
662
663 request->ringbuf = ctx->engine[request->ring->id].ringbuf;
664 request->ctx = ctx;
665 i915_gem_context_reference(request->ctx);
666
667 return 0;
668 }
669
670 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
671 struct intel_context *ctx,
672 int bytes)
673 {
674 struct intel_engine_cs *ring = ringbuf->ring;
675 struct drm_i915_gem_request *request;
676 int ret, new_space;
677
678 if (intel_ring_space(ringbuf) >= bytes)
679 return 0;
680
681 list_for_each_entry(request, &ring->request_list, list) {
682 /*
683 * The request queue is per-engine, so can contain requests
684 * from multiple ringbuffers. Here, we must ignore any that
685 * aren't from the ringbuffer we're considering.
686 */
687 struct intel_context *ctx = request->ctx;
688 if (ctx->engine[ring->id].ringbuf != ringbuf)
689 continue;
690
691 /* Would completion of this request free enough space? */
692 new_space = __intel_ring_space(request->postfix, ringbuf->tail,
693 ringbuf->size);
694 if (new_space >= bytes)
695 break;
696 }
697
698 if (WARN_ON(&request->list == &ring->request_list))
699 return -ENOSPC;
700
701 ret = i915_wait_request(request);
702 if (ret)
703 return ret;
704
705 i915_gem_retire_requests_ring(ring);
706
707 WARN_ON(intel_ring_space(ringbuf) < new_space);
708
709 return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
710 }
711
712 /*
713 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
714 * @ringbuf: Logical Ringbuffer to advance.
715 *
716 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
717 * really happens during submission is that the context and current tail will be placed
718 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
719 * point, the tail *inside* the context is updated and the ELSP written to.
720 */
721 static void
722 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
723 struct intel_context *ctx,
724 struct drm_i915_gem_request *request)
725 {
726 struct intel_engine_cs *ring = ringbuf->ring;
727
728 intel_logical_ring_advance(ringbuf);
729
730 if (intel_ring_stopped(ring))
731 return;
732
733 execlists_context_queue(ring, ctx, ringbuf->tail, request);
734 }
735
736 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
737 struct intel_context *ctx)
738 {
739 uint32_t __iomem *virt;
740 int rem = ringbuf->size - ringbuf->tail;
741
742 if (ringbuf->space < rem) {
743 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
744
745 if (ret)
746 return ret;
747 }
748
749 virt = ringbuf->virtual_start + ringbuf->tail;
750 rem /= 4;
751 while (rem--)
752 iowrite32(MI_NOOP, virt++);
753
754 ringbuf->tail = 0;
755 intel_ring_update_space(ringbuf);
756
757 return 0;
758 }
759
760 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
761 struct intel_context *ctx, int bytes)
762 {
763 int ret;
764
765 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
766 ret = logical_ring_wrap_buffer(ringbuf, ctx);
767 if (unlikely(ret))
768 return ret;
769 }
770
771 if (unlikely(ringbuf->space < bytes)) {
772 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
773 if (unlikely(ret))
774 return ret;
775 }
776
777 return 0;
778 }
779
780 /**
781 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
782 *
783 * @ringbuf: Logical ringbuffer.
784 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
785 *
786 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
787 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
788 * and also preallocates a request (every workload submission is still mediated through
789 * requests, same as it did with legacy ringbuffer submission).
790 *
791 * Return: non-zero if the ringbuffer is not ready to be written to.
792 */
793 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
794 struct intel_context *ctx, int num_dwords)
795 {
796 struct intel_engine_cs *ring = ringbuf->ring;
797 struct drm_device *dev = ring->dev;
798 struct drm_i915_private *dev_priv = dev->dev_private;
799 int ret;
800
801 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
802 dev_priv->mm.interruptible);
803 if (ret)
804 return ret;
805
806 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
807 if (ret)
808 return ret;
809
810 /* Preallocate the olr before touching the ring */
811 ret = i915_gem_request_alloc(ring, ctx);
812 if (ret)
813 return ret;
814
815 ringbuf->space -= num_dwords * sizeof(uint32_t);
816 return 0;
817 }
818
819 /**
820 * execlists_submission() - submit a batchbuffer for execution, Execlists style
821 * @dev: DRM device.
822 * @file: DRM file.
823 * @ring: Engine Command Streamer to submit to.
824 * @ctx: Context to employ for this submission.
825 * @args: execbuffer call arguments.
826 * @vmas: list of vmas.
827 * @batch_obj: the batchbuffer to submit.
828 * @exec_start: batchbuffer start virtual address pointer.
829 * @dispatch_flags: translated execbuffer call flags.
830 *
831 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
832 * away the submission details of the execbuffer ioctl call.
833 *
834 * Return: non-zero if the submission fails.
835 */
836 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
837 struct intel_engine_cs *ring,
838 struct intel_context *ctx,
839 struct drm_i915_gem_execbuffer2 *args,
840 struct list_head *vmas,
841 struct drm_i915_gem_object *batch_obj,
842 u64 exec_start, u32 dispatch_flags)
843 {
844 struct drm_i915_private *dev_priv = dev->dev_private;
845 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
846 int instp_mode;
847 u32 instp_mask;
848 int ret;
849
850 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
851 instp_mask = I915_EXEC_CONSTANTS_MASK;
852 switch (instp_mode) {
853 case I915_EXEC_CONSTANTS_REL_GENERAL:
854 case I915_EXEC_CONSTANTS_ABSOLUTE:
855 case I915_EXEC_CONSTANTS_REL_SURFACE:
856 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
857 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
858 return -EINVAL;
859 }
860
861 if (instp_mode != dev_priv->relative_constants_mode) {
862 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
863 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
864 return -EINVAL;
865 }
866
867 /* The HW changed the meaning on this bit on gen6 */
868 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
869 }
870 break;
871 default:
872 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
873 return -EINVAL;
874 }
875
876 if (args->num_cliprects != 0) {
877 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
878 return -EINVAL;
879 } else {
880 if (args->DR4 == 0xffffffff) {
881 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
882 args->DR4 = 0;
883 }
884
885 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
886 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
887 return -EINVAL;
888 }
889 }
890
891 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
892 DRM_DEBUG("sol reset is gen7 only\n");
893 return -EINVAL;
894 }
895
896 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
897 if (ret)
898 return ret;
899
900 if (ring == &dev_priv->ring[RCS] &&
901 instp_mode != dev_priv->relative_constants_mode) {
902 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
903 if (ret)
904 return ret;
905
906 intel_logical_ring_emit(ringbuf, MI_NOOP);
907 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
908 intel_logical_ring_emit(ringbuf, INSTPM);
909 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
910 intel_logical_ring_advance(ringbuf);
911
912 dev_priv->relative_constants_mode = instp_mode;
913 }
914
915 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
916 if (ret)
917 return ret;
918
919 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
920
921 i915_gem_execbuffer_move_to_active(vmas, ring);
922 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
923
924 return 0;
925 }
926
927 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
928 {
929 struct drm_i915_gem_request *req, *tmp;
930 struct list_head retired_list;
931
932 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
933 if (list_empty(&ring->execlist_retired_req_list))
934 return;
935
936 INIT_LIST_HEAD(&retired_list);
937 spin_lock_irq(&ring->execlist_lock);
938 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
939 spin_unlock_irq(&ring->execlist_lock);
940
941 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
942 struct intel_context *ctx = req->ctx;
943 struct drm_i915_gem_object *ctx_obj =
944 ctx->engine[ring->id].state;
945
946 if (ctx_obj && (ctx != ring->default_context))
947 intel_lr_context_unpin(ring, ctx);
948 list_del(&req->execlist_link);
949 i915_gem_request_unreference(req);
950 }
951 }
952
953 void intel_logical_ring_stop(struct intel_engine_cs *ring)
954 {
955 struct drm_i915_private *dev_priv = ring->dev->dev_private;
956 int ret;
957
958 if (!intel_ring_initialized(ring))
959 return;
960
961 ret = intel_ring_idle(ring);
962 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
963 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
964 ring->name, ret);
965
966 /* TODO: Is this correct with Execlists enabled? */
967 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
968 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
969 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
970 return;
971 }
972 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
973 }
974
975 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
976 struct intel_context *ctx)
977 {
978 struct intel_engine_cs *ring = ringbuf->ring;
979 int ret;
980
981 if (!ring->gpu_caches_dirty)
982 return 0;
983
984 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
985 if (ret)
986 return ret;
987
988 ring->gpu_caches_dirty = false;
989 return 0;
990 }
991
992 static int intel_lr_context_pin(struct intel_engine_cs *ring,
993 struct intel_context *ctx)
994 {
995 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
996 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
997 int ret = 0;
998
999 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1000 if (ctx->engine[ring->id].pin_count++ == 0) {
1001 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1002 GEN8_LR_CONTEXT_ALIGN, 0);
1003 if (ret)
1004 goto reset_pin_count;
1005
1006 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1007 if (ret)
1008 goto unpin_ctx_obj;
1009 }
1010
1011 return ret;
1012
1013 unpin_ctx_obj:
1014 i915_gem_object_ggtt_unpin(ctx_obj);
1015 reset_pin_count:
1016 ctx->engine[ring->id].pin_count = 0;
1017
1018 return ret;
1019 }
1020
1021 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1022 struct intel_context *ctx)
1023 {
1024 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1025 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1026
1027 if (ctx_obj) {
1028 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1029 if (--ctx->engine[ring->id].pin_count == 0) {
1030 intel_unpin_ringbuffer_obj(ringbuf);
1031 i915_gem_object_ggtt_unpin(ctx_obj);
1032 }
1033 }
1034 }
1035
1036 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1037 struct intel_context *ctx)
1038 {
1039 int ret, i;
1040 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1041 struct drm_device *dev = ring->dev;
1042 struct drm_i915_private *dev_priv = dev->dev_private;
1043 struct i915_workarounds *w = &dev_priv->workarounds;
1044
1045 if (WARN_ON_ONCE(w->count == 0))
1046 return 0;
1047
1048 ring->gpu_caches_dirty = true;
1049 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1050 if (ret)
1051 return ret;
1052
1053 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1054 if (ret)
1055 return ret;
1056
1057 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1058 for (i = 0; i < w->count; i++) {
1059 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1060 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1061 }
1062 intel_logical_ring_emit(ringbuf, MI_NOOP);
1063
1064 intel_logical_ring_advance(ringbuf);
1065
1066 ring->gpu_caches_dirty = true;
1067 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1068 if (ret)
1069 return ret;
1070
1071 return 0;
1072 }
1073
1074 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1075 {
1076 struct drm_device *dev = ring->dev;
1077 struct drm_i915_private *dev_priv = dev->dev_private;
1078
1079 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1080 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1081
1082 I915_WRITE(RING_MODE_GEN7(ring),
1083 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1084 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1085 POSTING_READ(RING_MODE_GEN7(ring));
1086 ring->next_context_status_buffer = 0;
1087 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1088
1089 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1090
1091 return 0;
1092 }
1093
1094 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1095 {
1096 struct drm_device *dev = ring->dev;
1097 struct drm_i915_private *dev_priv = dev->dev_private;
1098 int ret;
1099
1100 ret = gen8_init_common_ring(ring);
1101 if (ret)
1102 return ret;
1103
1104 /* We need to disable the AsyncFlip performance optimisations in order
1105 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1106 * programmed to '1' on all products.
1107 *
1108 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1109 */
1110 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1111
1112 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1113
1114 return init_workarounds_ring(ring);
1115 }
1116
1117 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1118 {
1119 int ret;
1120
1121 ret = gen8_init_common_ring(ring);
1122 if (ret)
1123 return ret;
1124
1125 return init_workarounds_ring(ring);
1126 }
1127
1128 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1129 struct intel_context *ctx,
1130 u64 offset, unsigned dispatch_flags)
1131 {
1132 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1133 int ret;
1134
1135 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1136 if (ret)
1137 return ret;
1138
1139 /* FIXME(BDW): Address space and security selectors. */
1140 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1141 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1142 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1143 intel_logical_ring_emit(ringbuf, MI_NOOP);
1144 intel_logical_ring_advance(ringbuf);
1145
1146 return 0;
1147 }
1148
1149 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1150 {
1151 struct drm_device *dev = ring->dev;
1152 struct drm_i915_private *dev_priv = dev->dev_private;
1153 unsigned long flags;
1154
1155 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1156 return false;
1157
1158 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1159 if (ring->irq_refcount++ == 0) {
1160 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1161 POSTING_READ(RING_IMR(ring->mmio_base));
1162 }
1163 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1164
1165 return true;
1166 }
1167
1168 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1169 {
1170 struct drm_device *dev = ring->dev;
1171 struct drm_i915_private *dev_priv = dev->dev_private;
1172 unsigned long flags;
1173
1174 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1175 if (--ring->irq_refcount == 0) {
1176 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1177 POSTING_READ(RING_IMR(ring->mmio_base));
1178 }
1179 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1180 }
1181
1182 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1183 struct intel_context *ctx,
1184 u32 invalidate_domains,
1185 u32 unused)
1186 {
1187 struct intel_engine_cs *ring = ringbuf->ring;
1188 struct drm_device *dev = ring->dev;
1189 struct drm_i915_private *dev_priv = dev->dev_private;
1190 uint32_t cmd;
1191 int ret;
1192
1193 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1194 if (ret)
1195 return ret;
1196
1197 cmd = MI_FLUSH_DW + 1;
1198
1199 /* We always require a command barrier so that subsequent
1200 * commands, such as breadcrumb interrupts, are strictly ordered
1201 * wrt the contents of the write cache being flushed to memory
1202 * (and thus being coherent from the CPU).
1203 */
1204 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1205
1206 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1207 cmd |= MI_INVALIDATE_TLB;
1208 if (ring == &dev_priv->ring[VCS])
1209 cmd |= MI_INVALIDATE_BSD;
1210 }
1211
1212 intel_logical_ring_emit(ringbuf, cmd);
1213 intel_logical_ring_emit(ringbuf,
1214 I915_GEM_HWS_SCRATCH_ADDR |
1215 MI_FLUSH_DW_USE_GTT);
1216 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1217 intel_logical_ring_emit(ringbuf, 0); /* value */
1218 intel_logical_ring_advance(ringbuf);
1219
1220 return 0;
1221 }
1222
1223 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1224 struct intel_context *ctx,
1225 u32 invalidate_domains,
1226 u32 flush_domains)
1227 {
1228 struct intel_engine_cs *ring = ringbuf->ring;
1229 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1230 bool vf_flush_wa;
1231 u32 flags = 0;
1232 int ret;
1233
1234 flags |= PIPE_CONTROL_CS_STALL;
1235
1236 if (flush_domains) {
1237 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1238 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1239 }
1240
1241 if (invalidate_domains) {
1242 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1243 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1244 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1245 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1246 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1247 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1248 flags |= PIPE_CONTROL_QW_WRITE;
1249 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1250 }
1251
1252 /*
1253 * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1254 * control.
1255 */
1256 vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1257 flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1258
1259 ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
1260 if (ret)
1261 return ret;
1262
1263 if (vf_flush_wa) {
1264 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1265 intel_logical_ring_emit(ringbuf, 0);
1266 intel_logical_ring_emit(ringbuf, 0);
1267 intel_logical_ring_emit(ringbuf, 0);
1268 intel_logical_ring_emit(ringbuf, 0);
1269 intel_logical_ring_emit(ringbuf, 0);
1270 }
1271
1272 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1273 intel_logical_ring_emit(ringbuf, flags);
1274 intel_logical_ring_emit(ringbuf, scratch_addr);
1275 intel_logical_ring_emit(ringbuf, 0);
1276 intel_logical_ring_emit(ringbuf, 0);
1277 intel_logical_ring_emit(ringbuf, 0);
1278 intel_logical_ring_advance(ringbuf);
1279
1280 return 0;
1281 }
1282
1283 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1284 {
1285 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1286 }
1287
1288 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1289 {
1290 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1291 }
1292
1293 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1294 struct drm_i915_gem_request *request)
1295 {
1296 struct intel_engine_cs *ring = ringbuf->ring;
1297 u32 cmd;
1298 int ret;
1299
1300 /*
1301 * Reserve space for 2 NOOPs at the end of each request to be
1302 * used as a workaround for not being allowed to do lite
1303 * restore with HEAD==TAIL (WaIdleLiteRestore).
1304 */
1305 ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1306 if (ret)
1307 return ret;
1308
1309 cmd = MI_STORE_DWORD_IMM_GEN4;
1310 cmd |= MI_GLOBAL_GTT;
1311
1312 intel_logical_ring_emit(ringbuf, cmd);
1313 intel_logical_ring_emit(ringbuf,
1314 (ring->status_page.gfx_addr +
1315 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1316 intel_logical_ring_emit(ringbuf, 0);
1317 intel_logical_ring_emit(ringbuf,
1318 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1319 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1320 intel_logical_ring_emit(ringbuf, MI_NOOP);
1321 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1322
1323 /*
1324 * Here we add two extra NOOPs as padding to avoid
1325 * lite restore of a context with HEAD==TAIL.
1326 */
1327 intel_logical_ring_emit(ringbuf, MI_NOOP);
1328 intel_logical_ring_emit(ringbuf, MI_NOOP);
1329 intel_logical_ring_advance(ringbuf);
1330
1331 return 0;
1332 }
1333
1334 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1335 struct intel_context *ctx)
1336 {
1337 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1338 struct render_state so;
1339 struct drm_i915_file_private *file_priv = ctx->file_priv;
1340 struct drm_file *file = file_priv ? file_priv->file : NULL;
1341 int ret;
1342
1343 ret = i915_gem_render_state_prepare(ring, &so);
1344 if (ret)
1345 return ret;
1346
1347 if (so.rodata == NULL)
1348 return 0;
1349
1350 ret = ring->emit_bb_start(ringbuf,
1351 ctx,
1352 so.ggtt_offset,
1353 I915_DISPATCH_SECURE);
1354 if (ret)
1355 goto out;
1356
1357 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1358
1359 ret = __i915_add_request(ring, file, so.obj);
1360 /* intel_logical_ring_add_request moves object to inactive if it
1361 * fails */
1362 out:
1363 i915_gem_render_state_fini(&so);
1364 return ret;
1365 }
1366
1367 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1368 struct intel_context *ctx)
1369 {
1370 int ret;
1371
1372 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1373 if (ret)
1374 return ret;
1375
1376 return intel_lr_context_render_state_init(ring, ctx);
1377 }
1378
1379 /**
1380 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1381 *
1382 * @ring: Engine Command Streamer.
1383 *
1384 */
1385 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1386 {
1387 struct drm_i915_private *dev_priv;
1388
1389 if (!intel_ring_initialized(ring))
1390 return;
1391
1392 dev_priv = ring->dev->dev_private;
1393
1394 intel_logical_ring_stop(ring);
1395 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1396 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1397
1398 if (ring->cleanup)
1399 ring->cleanup(ring);
1400
1401 i915_cmd_parser_fini_ring(ring);
1402 i915_gem_batch_pool_fini(&ring->batch_pool);
1403
1404 if (ring->status_page.obj) {
1405 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1406 ring->status_page.obj = NULL;
1407 }
1408 }
1409
1410 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1411 {
1412 int ret;
1413
1414 /* Intentionally left blank. */
1415 ring->buffer = NULL;
1416
1417 ring->dev = dev;
1418 INIT_LIST_HEAD(&ring->active_list);
1419 INIT_LIST_HEAD(&ring->request_list);
1420 i915_gem_batch_pool_init(dev, &ring->batch_pool);
1421 init_waitqueue_head(&ring->irq_queue);
1422
1423 INIT_LIST_HEAD(&ring->execlist_queue);
1424 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1425 spin_lock_init(&ring->execlist_lock);
1426
1427 ret = i915_cmd_parser_init_ring(ring);
1428 if (ret)
1429 return ret;
1430
1431 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1432
1433 return ret;
1434 }
1435
1436 static int logical_render_ring_init(struct drm_device *dev)
1437 {
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1440 int ret;
1441
1442 ring->name = "render ring";
1443 ring->id = RCS;
1444 ring->mmio_base = RENDER_RING_BASE;
1445 ring->irq_enable_mask =
1446 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1447 ring->irq_keep_mask =
1448 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1449 if (HAS_L3_DPF(dev))
1450 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1451
1452 if (INTEL_INFO(dev)->gen >= 9)
1453 ring->init_hw = gen9_init_render_ring;
1454 else
1455 ring->init_hw = gen8_init_render_ring;
1456 ring->init_context = gen8_init_rcs_context;
1457 ring->cleanup = intel_fini_pipe_control;
1458 ring->get_seqno = gen8_get_seqno;
1459 ring->set_seqno = gen8_set_seqno;
1460 ring->emit_request = gen8_emit_request;
1461 ring->emit_flush = gen8_emit_flush_render;
1462 ring->irq_get = gen8_logical_ring_get_irq;
1463 ring->irq_put = gen8_logical_ring_put_irq;
1464 ring->emit_bb_start = gen8_emit_bb_start;
1465
1466 ring->dev = dev;
1467 ret = logical_ring_init(dev, ring);
1468 if (ret)
1469 return ret;
1470
1471 return intel_init_pipe_control(ring);
1472 }
1473
1474 static int logical_bsd_ring_init(struct drm_device *dev)
1475 {
1476 struct drm_i915_private *dev_priv = dev->dev_private;
1477 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1478
1479 ring->name = "bsd ring";
1480 ring->id = VCS;
1481 ring->mmio_base = GEN6_BSD_RING_BASE;
1482 ring->irq_enable_mask =
1483 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1484 ring->irq_keep_mask =
1485 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1486
1487 ring->init_hw = gen8_init_common_ring;
1488 ring->get_seqno = gen8_get_seqno;
1489 ring->set_seqno = gen8_set_seqno;
1490 ring->emit_request = gen8_emit_request;
1491 ring->emit_flush = gen8_emit_flush;
1492 ring->irq_get = gen8_logical_ring_get_irq;
1493 ring->irq_put = gen8_logical_ring_put_irq;
1494 ring->emit_bb_start = gen8_emit_bb_start;
1495
1496 return logical_ring_init(dev, ring);
1497 }
1498
1499 static int logical_bsd2_ring_init(struct drm_device *dev)
1500 {
1501 struct drm_i915_private *dev_priv = dev->dev_private;
1502 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1503
1504 ring->name = "bds2 ring";
1505 ring->id = VCS2;
1506 ring->mmio_base = GEN8_BSD2_RING_BASE;
1507 ring->irq_enable_mask =
1508 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1509 ring->irq_keep_mask =
1510 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1511
1512 ring->init_hw = gen8_init_common_ring;
1513 ring->get_seqno = gen8_get_seqno;
1514 ring->set_seqno = gen8_set_seqno;
1515 ring->emit_request = gen8_emit_request;
1516 ring->emit_flush = gen8_emit_flush;
1517 ring->irq_get = gen8_logical_ring_get_irq;
1518 ring->irq_put = gen8_logical_ring_put_irq;
1519 ring->emit_bb_start = gen8_emit_bb_start;
1520
1521 return logical_ring_init(dev, ring);
1522 }
1523
1524 static int logical_blt_ring_init(struct drm_device *dev)
1525 {
1526 struct drm_i915_private *dev_priv = dev->dev_private;
1527 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1528
1529 ring->name = "blitter ring";
1530 ring->id = BCS;
1531 ring->mmio_base = BLT_RING_BASE;
1532 ring->irq_enable_mask =
1533 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1534 ring->irq_keep_mask =
1535 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1536
1537 ring->init_hw = gen8_init_common_ring;
1538 ring->get_seqno = gen8_get_seqno;
1539 ring->set_seqno = gen8_set_seqno;
1540 ring->emit_request = gen8_emit_request;
1541 ring->emit_flush = gen8_emit_flush;
1542 ring->irq_get = gen8_logical_ring_get_irq;
1543 ring->irq_put = gen8_logical_ring_put_irq;
1544 ring->emit_bb_start = gen8_emit_bb_start;
1545
1546 return logical_ring_init(dev, ring);
1547 }
1548
1549 static int logical_vebox_ring_init(struct drm_device *dev)
1550 {
1551 struct drm_i915_private *dev_priv = dev->dev_private;
1552 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1553
1554 ring->name = "video enhancement ring";
1555 ring->id = VECS;
1556 ring->mmio_base = VEBOX_RING_BASE;
1557 ring->irq_enable_mask =
1558 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1559 ring->irq_keep_mask =
1560 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1561
1562 ring->init_hw = gen8_init_common_ring;
1563 ring->get_seqno = gen8_get_seqno;
1564 ring->set_seqno = gen8_set_seqno;
1565 ring->emit_request = gen8_emit_request;
1566 ring->emit_flush = gen8_emit_flush;
1567 ring->irq_get = gen8_logical_ring_get_irq;
1568 ring->irq_put = gen8_logical_ring_put_irq;
1569 ring->emit_bb_start = gen8_emit_bb_start;
1570
1571 return logical_ring_init(dev, ring);
1572 }
1573
1574 /**
1575 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1576 * @dev: DRM device.
1577 *
1578 * This function inits the engines for an Execlists submission style (the equivalent in the
1579 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1580 * those engines that are present in the hardware.
1581 *
1582 * Return: non-zero if the initialization failed.
1583 */
1584 int intel_logical_rings_init(struct drm_device *dev)
1585 {
1586 struct drm_i915_private *dev_priv = dev->dev_private;
1587 int ret;
1588
1589 ret = logical_render_ring_init(dev);
1590 if (ret)
1591 return ret;
1592
1593 if (HAS_BSD(dev)) {
1594 ret = logical_bsd_ring_init(dev);
1595 if (ret)
1596 goto cleanup_render_ring;
1597 }
1598
1599 if (HAS_BLT(dev)) {
1600 ret = logical_blt_ring_init(dev);
1601 if (ret)
1602 goto cleanup_bsd_ring;
1603 }
1604
1605 if (HAS_VEBOX(dev)) {
1606 ret = logical_vebox_ring_init(dev);
1607 if (ret)
1608 goto cleanup_blt_ring;
1609 }
1610
1611 if (HAS_BSD2(dev)) {
1612 ret = logical_bsd2_ring_init(dev);
1613 if (ret)
1614 goto cleanup_vebox_ring;
1615 }
1616
1617 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1618 if (ret)
1619 goto cleanup_bsd2_ring;
1620
1621 return 0;
1622
1623 cleanup_bsd2_ring:
1624 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1625 cleanup_vebox_ring:
1626 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1627 cleanup_blt_ring:
1628 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1629 cleanup_bsd_ring:
1630 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1631 cleanup_render_ring:
1632 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1633
1634 return ret;
1635 }
1636
1637 static u32
1638 make_rpcs(struct drm_device *dev)
1639 {
1640 u32 rpcs = 0;
1641
1642 /*
1643 * No explicit RPCS request is needed to ensure full
1644 * slice/subslice/EU enablement prior to Gen9.
1645 */
1646 if (INTEL_INFO(dev)->gen < 9)
1647 return 0;
1648
1649 /*
1650 * Starting in Gen9, render power gating can leave
1651 * slice/subslice/EU in a partially enabled state. We
1652 * must make an explicit request through RPCS for full
1653 * enablement.
1654 */
1655 if (INTEL_INFO(dev)->has_slice_pg) {
1656 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1657 rpcs |= INTEL_INFO(dev)->slice_total <<
1658 GEN8_RPCS_S_CNT_SHIFT;
1659 rpcs |= GEN8_RPCS_ENABLE;
1660 }
1661
1662 if (INTEL_INFO(dev)->has_subslice_pg) {
1663 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1664 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1665 GEN8_RPCS_SS_CNT_SHIFT;
1666 rpcs |= GEN8_RPCS_ENABLE;
1667 }
1668
1669 if (INTEL_INFO(dev)->has_eu_pg) {
1670 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1671 GEN8_RPCS_EU_MIN_SHIFT;
1672 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1673 GEN8_RPCS_EU_MAX_SHIFT;
1674 rpcs |= GEN8_RPCS_ENABLE;
1675 }
1676
1677 return rpcs;
1678 }
1679
1680 static int
1681 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1682 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1683 {
1684 struct drm_device *dev = ring->dev;
1685 struct drm_i915_private *dev_priv = dev->dev_private;
1686 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1687 struct page *page;
1688 uint32_t *reg_state;
1689 int ret;
1690
1691 if (!ppgtt)
1692 ppgtt = dev_priv->mm.aliasing_ppgtt;
1693
1694 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1695 if (ret) {
1696 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1697 return ret;
1698 }
1699
1700 ret = i915_gem_object_get_pages(ctx_obj);
1701 if (ret) {
1702 DRM_DEBUG_DRIVER("Could not get object pages\n");
1703 return ret;
1704 }
1705
1706 i915_gem_object_pin_pages(ctx_obj);
1707
1708 /* The second page of the context object contains some fields which must
1709 * be set up prior to the first execution. */
1710 page = i915_gem_object_get_page(ctx_obj, 1);
1711 reg_state = kmap_atomic(page);
1712
1713 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1714 * commands followed by (reg, value) pairs. The values we are setting here are
1715 * only for the first context restore: on a subsequent save, the GPU will
1716 * recreate this batchbuffer with new values (including all the missing
1717 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1718 if (ring->id == RCS)
1719 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1720 else
1721 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1722 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1723 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1724 reg_state[CTX_CONTEXT_CONTROL+1] =
1725 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1726 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1727 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1728 reg_state[CTX_RING_HEAD+1] = 0;
1729 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1730 reg_state[CTX_RING_TAIL+1] = 0;
1731 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1732 /* Ring buffer start address is not known until the buffer is pinned.
1733 * It is written to the context image in execlists_update_context()
1734 */
1735 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1736 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1737 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1738 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1739 reg_state[CTX_BB_HEAD_U+1] = 0;
1740 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1741 reg_state[CTX_BB_HEAD_L+1] = 0;
1742 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1743 reg_state[CTX_BB_STATE+1] = (1<<5);
1744 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1745 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1746 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1747 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1748 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1749 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1750 if (ring->id == RCS) {
1751 /* TODO: according to BSpec, the register state context
1752 * for CHV does not have these. OTOH, these registers do
1753 * exist in CHV. I'm waiting for a clarification */
1754 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1755 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1756 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1757 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1758 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1759 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1760 }
1761 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1762 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1763 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1764 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1765 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1766 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1767 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1768 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1769 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1770 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1771 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1772 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1773
1774 /* With dynamic page allocation, PDPs may not be allocated at this point,
1775 * Point the unallocated PDPs to the scratch page
1776 */
1777 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
1778 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
1779 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
1780 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
1781 if (ring->id == RCS) {
1782 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1783 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1784 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1785 }
1786
1787 kunmap_atomic(reg_state);
1788
1789 ctx_obj->dirty = 1;
1790 set_page_dirty(page);
1791 i915_gem_object_unpin_pages(ctx_obj);
1792
1793 return 0;
1794 }
1795
1796 /**
1797 * intel_lr_context_free() - free the LRC specific bits of a context
1798 * @ctx: the LR context to free.
1799 *
1800 * The real context freeing is done in i915_gem_context_free: this only
1801 * takes care of the bits that are LRC related: the per-engine backing
1802 * objects and the logical ringbuffer.
1803 */
1804 void intel_lr_context_free(struct intel_context *ctx)
1805 {
1806 int i;
1807
1808 for (i = 0; i < I915_NUM_RINGS; i++) {
1809 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1810
1811 if (ctx_obj) {
1812 struct intel_ringbuffer *ringbuf =
1813 ctx->engine[i].ringbuf;
1814 struct intel_engine_cs *ring = ringbuf->ring;
1815
1816 if (ctx == ring->default_context) {
1817 intel_unpin_ringbuffer_obj(ringbuf);
1818 i915_gem_object_ggtt_unpin(ctx_obj);
1819 }
1820 WARN_ON(ctx->engine[ring->id].pin_count);
1821 intel_destroy_ringbuffer_obj(ringbuf);
1822 kfree(ringbuf);
1823 drm_gem_object_unreference(&ctx_obj->base);
1824 }
1825 }
1826 }
1827
1828 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1829 {
1830 int ret = 0;
1831
1832 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1833
1834 switch (ring->id) {
1835 case RCS:
1836 if (INTEL_INFO(ring->dev)->gen >= 9)
1837 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1838 else
1839 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1840 break;
1841 case VCS:
1842 case BCS:
1843 case VECS:
1844 case VCS2:
1845 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1846 break;
1847 }
1848
1849 return ret;
1850 }
1851
1852 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1853 struct drm_i915_gem_object *default_ctx_obj)
1854 {
1855 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1856
1857 /* The status page is offset 0 from the default context object
1858 * in LRC mode. */
1859 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1860 ring->status_page.page_addr =
1861 kmap(sg_page(default_ctx_obj->pages->sgl));
1862 ring->status_page.obj = default_ctx_obj;
1863
1864 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1865 (u32)ring->status_page.gfx_addr);
1866 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1867 }
1868
1869 /**
1870 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1871 * @ctx: LR context to create.
1872 * @ring: engine to be used with the context.
1873 *
1874 * This function can be called more than once, with different engines, if we plan
1875 * to use the context with them. The context backing objects and the ringbuffers
1876 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1877 * the creation is a deferred call: it's better to make sure first that we need to use
1878 * a given ring with the context.
1879 *
1880 * Return: non-zero on error.
1881 */
1882 int intel_lr_context_deferred_create(struct intel_context *ctx,
1883 struct intel_engine_cs *ring)
1884 {
1885 const bool is_global_default_ctx = (ctx == ring->default_context);
1886 struct drm_device *dev = ring->dev;
1887 struct drm_i915_gem_object *ctx_obj;
1888 uint32_t context_size;
1889 struct intel_ringbuffer *ringbuf;
1890 int ret;
1891
1892 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1893 WARN_ON(ctx->engine[ring->id].state);
1894
1895 context_size = round_up(get_lr_context_size(ring), 4096);
1896
1897 ctx_obj = i915_gem_alloc_object(dev, context_size);
1898 if (IS_ERR(ctx_obj)) {
1899 ret = PTR_ERR(ctx_obj);
1900 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1901 return ret;
1902 }
1903
1904 if (is_global_default_ctx) {
1905 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1906 if (ret) {
1907 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1908 ret);
1909 drm_gem_object_unreference(&ctx_obj->base);
1910 return ret;
1911 }
1912 }
1913
1914 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1915 if (!ringbuf) {
1916 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1917 ring->name);
1918 ret = -ENOMEM;
1919 goto error_unpin_ctx;
1920 }
1921
1922 ringbuf->ring = ring;
1923
1924 ringbuf->size = 32 * PAGE_SIZE;
1925 ringbuf->effective_size = ringbuf->size;
1926 ringbuf->head = 0;
1927 ringbuf->tail = 0;
1928 ringbuf->last_retired_head = -1;
1929 intel_ring_update_space(ringbuf);
1930
1931 if (ringbuf->obj == NULL) {
1932 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1933 if (ret) {
1934 DRM_DEBUG_DRIVER(
1935 "Failed to allocate ringbuffer obj %s: %d\n",
1936 ring->name, ret);
1937 goto error_free_rbuf;
1938 }
1939
1940 if (is_global_default_ctx) {
1941 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1942 if (ret) {
1943 DRM_ERROR(
1944 "Failed to pin and map ringbuffer %s: %d\n",
1945 ring->name, ret);
1946 goto error_destroy_rbuf;
1947 }
1948 }
1949
1950 }
1951
1952 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1953 if (ret) {
1954 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1955 goto error;
1956 }
1957
1958 ctx->engine[ring->id].ringbuf = ringbuf;
1959 ctx->engine[ring->id].state = ctx_obj;
1960
1961 if (ctx == ring->default_context)
1962 lrc_setup_hardware_status_page(ring, ctx_obj);
1963 else if (ring->id == RCS && !ctx->rcs_initialized) {
1964 if (ring->init_context) {
1965 ret = ring->init_context(ring, ctx);
1966 if (ret) {
1967 DRM_ERROR("ring init context: %d\n", ret);
1968 ctx->engine[ring->id].ringbuf = NULL;
1969 ctx->engine[ring->id].state = NULL;
1970 goto error;
1971 }
1972 }
1973
1974 ctx->rcs_initialized = true;
1975 }
1976
1977 return 0;
1978
1979 error:
1980 if (is_global_default_ctx)
1981 intel_unpin_ringbuffer_obj(ringbuf);
1982 error_destroy_rbuf:
1983 intel_destroy_ringbuffer_obj(ringbuf);
1984 error_free_rbuf:
1985 kfree(ringbuf);
1986 error_unpin_ctx:
1987 if (is_global_default_ctx)
1988 i915_gem_object_ggtt_unpin(ctx_obj);
1989 drm_gem_object_unreference(&ctx_obj->base);
1990 return ret;
1991 }
1992
1993 void intel_lr_context_reset(struct drm_device *dev,
1994 struct intel_context *ctx)
1995 {
1996 struct drm_i915_private *dev_priv = dev->dev_private;
1997 struct intel_engine_cs *ring;
1998 int i;
1999
2000 for_each_ring(ring, dev_priv, i) {
2001 struct drm_i915_gem_object *ctx_obj =
2002 ctx->engine[ring->id].state;
2003 struct intel_ringbuffer *ringbuf =
2004 ctx->engine[ring->id].ringbuf;
2005 uint32_t *reg_state;
2006 struct page *page;
2007
2008 if (!ctx_obj)
2009 continue;
2010
2011 if (i915_gem_object_get_pages(ctx_obj)) {
2012 WARN(1, "Failed get_pages for context obj\n");
2013 continue;
2014 }
2015 page = i915_gem_object_get_page(ctx_obj, 1);
2016 reg_state = kmap_atomic(page);
2017
2018 reg_state[CTX_RING_HEAD+1] = 0;
2019 reg_state[CTX_RING_TAIL+1] = 0;
2020
2021 kunmap_atomic(reg_state);
2022
2023 ringbuf->head = 0;
2024 ringbuf->tail = 0;
2025 }
2026 }