Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / intel_fbc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * DOC: Frame Buffer Compression (FBC)
26 *
27 * FBC tries to save memory bandwidth (and so power consumption) by
28 * compressing the amount of memory used by the display. It is total
29 * transparent to user space and completely handled in the kernel.
30 *
31 * The benefits of FBC are mostly visible with solid backgrounds and
32 * variation-less patterns. It comes from keeping the memory footprint small
33 * and having fewer memory pages opened and accessed for refreshing the display.
34 *
35 * i915 is responsible to reserve stolen memory for FBC and configure its
36 * offset on proper registers. The hardware takes care of all
37 * compress/decompress. However there are many known cases where we have to
38 * forcibly disable it to allow proper screen updates.
39 */
40
41 #include "intel_drv.h"
42 #include "i915_drv.h"
43
44 static inline bool fbc_supported(struct drm_i915_private *dev_priv)
45 {
46 return HAS_FBC(dev_priv);
47 }
48
49 static inline bool fbc_on_pipe_a_only(struct drm_i915_private *dev_priv)
50 {
51 return IS_HASWELL(dev_priv) || INTEL_GEN(dev_priv) >= 8;
52 }
53
54 static inline bool fbc_on_plane_a_only(struct drm_i915_private *dev_priv)
55 {
56 return INTEL_GEN(dev_priv) < 4;
57 }
58
59 static inline bool no_fbc_on_multiple_pipes(struct drm_i915_private *dev_priv)
60 {
61 return INTEL_GEN(dev_priv) <= 3;
62 }
63
64 /*
65 * In some platforms where the CRTC's x:0/y:0 coordinates doesn't match the
66 * frontbuffer's x:0/y:0 coordinates we lie to the hardware about the plane's
67 * origin so the x and y offsets can actually fit the registers. As a
68 * consequence, the fence doesn't really start exactly at the display plane
69 * address we program because it starts at the real start of the buffer, so we
70 * have to take this into consideration here.
71 */
72 static unsigned int get_crtc_fence_y_offset(struct intel_crtc *crtc)
73 {
74 return crtc->base.y - crtc->adjusted_y;
75 }
76
77 /*
78 * For SKL+, the plane source size used by the hardware is based on the value we
79 * write to the PLANE_SIZE register. For BDW-, the hardware looks at the value
80 * we wrote to PIPESRC.
81 */
82 static void intel_fbc_get_plane_source_size(struct intel_fbc_state_cache *cache,
83 int *width, int *height)
84 {
85 int w, h;
86
87 if (drm_rotation_90_or_270(cache->plane.rotation)) {
88 w = cache->plane.src_h;
89 h = cache->plane.src_w;
90 } else {
91 w = cache->plane.src_w;
92 h = cache->plane.src_h;
93 }
94
95 if (width)
96 *width = w;
97 if (height)
98 *height = h;
99 }
100
101 static int intel_fbc_calculate_cfb_size(struct drm_i915_private *dev_priv,
102 struct intel_fbc_state_cache *cache)
103 {
104 int lines;
105
106 intel_fbc_get_plane_source_size(cache, NULL, &lines);
107 if (INTEL_GEN(dev_priv) == 7)
108 lines = min(lines, 2048);
109 else if (INTEL_GEN(dev_priv) >= 8)
110 lines = min(lines, 2560);
111
112 /* Hardware needs the full buffer stride, not just the active area. */
113 return lines * cache->fb.stride;
114 }
115
116 static void i8xx_fbc_deactivate(struct drm_i915_private *dev_priv)
117 {
118 u32 fbc_ctl;
119
120 /* Disable compression */
121 fbc_ctl = I915_READ(FBC_CONTROL);
122 if ((fbc_ctl & FBC_CTL_EN) == 0)
123 return;
124
125 fbc_ctl &= ~FBC_CTL_EN;
126 I915_WRITE(FBC_CONTROL, fbc_ctl);
127
128 /* Wait for compressing bit to clear */
129 if (intel_wait_for_register(dev_priv,
130 FBC_STATUS, FBC_STAT_COMPRESSING, 0,
131 10)) {
132 DRM_DEBUG_KMS("FBC idle timed out\n");
133 return;
134 }
135 }
136
137 static void i8xx_fbc_activate(struct drm_i915_private *dev_priv)
138 {
139 struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
140 int cfb_pitch;
141 int i;
142 u32 fbc_ctl;
143
144 /* Note: fbc.threshold == 1 for i8xx */
145 cfb_pitch = params->cfb_size / FBC_LL_SIZE;
146 if (params->fb.stride < cfb_pitch)
147 cfb_pitch = params->fb.stride;
148
149 /* FBC_CTL wants 32B or 64B units */
150 if (IS_GEN2(dev_priv))
151 cfb_pitch = (cfb_pitch / 32) - 1;
152 else
153 cfb_pitch = (cfb_pitch / 64) - 1;
154
155 /* Clear old tags */
156 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
157 I915_WRITE(FBC_TAG(i), 0);
158
159 if (IS_GEN4(dev_priv)) {
160 u32 fbc_ctl2;
161
162 /* Set it up... */
163 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
164 fbc_ctl2 |= FBC_CTL_PLANE(params->crtc.plane);
165 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
166 I915_WRITE(FBC_FENCE_OFF, params->crtc.fence_y_offset);
167 }
168
169 /* enable it... */
170 fbc_ctl = I915_READ(FBC_CONTROL);
171 fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
172 fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
173 if (IS_I945GM(dev_priv))
174 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
175 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
176 fbc_ctl |= params->vma->fence->id;
177 I915_WRITE(FBC_CONTROL, fbc_ctl);
178 }
179
180 static bool i8xx_fbc_is_active(struct drm_i915_private *dev_priv)
181 {
182 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
183 }
184
185 static void g4x_fbc_activate(struct drm_i915_private *dev_priv)
186 {
187 struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
188 u32 dpfc_ctl;
189
190 dpfc_ctl = DPFC_CTL_PLANE(params->crtc.plane) | DPFC_SR_EN;
191 if (drm_format_plane_cpp(params->fb.pixel_format, 0) == 2)
192 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
193 else
194 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
195
196 if (params->vma->fence) {
197 dpfc_ctl |= DPFC_CTL_FENCE_EN | params->vma->fence->id;
198 I915_WRITE(DPFC_FENCE_YOFF, params->crtc.fence_y_offset);
199 } else {
200 I915_WRITE(DPFC_FENCE_YOFF, 0);
201 }
202
203 /* enable it... */
204 I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
205 }
206
207 static void g4x_fbc_deactivate(struct drm_i915_private *dev_priv)
208 {
209 u32 dpfc_ctl;
210
211 /* Disable compression */
212 dpfc_ctl = I915_READ(DPFC_CONTROL);
213 if (dpfc_ctl & DPFC_CTL_EN) {
214 dpfc_ctl &= ~DPFC_CTL_EN;
215 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
216 }
217 }
218
219 static bool g4x_fbc_is_active(struct drm_i915_private *dev_priv)
220 {
221 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
222 }
223
224 /* This function forces a CFB recompression through the nuke operation. */
225 static void intel_fbc_recompress(struct drm_i915_private *dev_priv)
226 {
227 I915_WRITE(MSG_FBC_REND_STATE, FBC_REND_NUKE);
228 POSTING_READ(MSG_FBC_REND_STATE);
229 }
230
231 static void ilk_fbc_activate(struct drm_i915_private *dev_priv)
232 {
233 struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
234 u32 dpfc_ctl;
235 int threshold = dev_priv->fbc.threshold;
236
237 dpfc_ctl = DPFC_CTL_PLANE(params->crtc.plane);
238 if (drm_format_plane_cpp(params->fb.pixel_format, 0) == 2)
239 threshold++;
240
241 switch (threshold) {
242 case 4:
243 case 3:
244 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
245 break;
246 case 2:
247 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
248 break;
249 case 1:
250 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
251 break;
252 }
253
254 if (params->vma->fence) {
255 dpfc_ctl |= DPFC_CTL_FENCE_EN;
256 if (IS_GEN5(dev_priv))
257 dpfc_ctl |= params->vma->fence->id;
258 if (IS_GEN6(dev_priv)) {
259 I915_WRITE(SNB_DPFC_CTL_SA,
260 SNB_CPU_FENCE_ENABLE |
261 params->vma->fence->id);
262 I915_WRITE(DPFC_CPU_FENCE_OFFSET,
263 params->crtc.fence_y_offset);
264 }
265 } else {
266 if (IS_GEN6(dev_priv)) {
267 I915_WRITE(SNB_DPFC_CTL_SA, 0);
268 I915_WRITE(DPFC_CPU_FENCE_OFFSET, 0);
269 }
270 }
271
272 I915_WRITE(ILK_DPFC_FENCE_YOFF, params->crtc.fence_y_offset);
273 I915_WRITE(ILK_FBC_RT_BASE,
274 i915_ggtt_offset(params->vma) | ILK_FBC_RT_VALID);
275 /* enable it... */
276 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
277
278 intel_fbc_recompress(dev_priv);
279 }
280
281 static void ilk_fbc_deactivate(struct drm_i915_private *dev_priv)
282 {
283 u32 dpfc_ctl;
284
285 /* Disable compression */
286 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
287 if (dpfc_ctl & DPFC_CTL_EN) {
288 dpfc_ctl &= ~DPFC_CTL_EN;
289 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
290 }
291 }
292
293 static bool ilk_fbc_is_active(struct drm_i915_private *dev_priv)
294 {
295 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
296 }
297
298 static void gen7_fbc_activate(struct drm_i915_private *dev_priv)
299 {
300 struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
301 u32 dpfc_ctl;
302 int threshold = dev_priv->fbc.threshold;
303
304 dpfc_ctl = 0;
305 if (IS_IVYBRIDGE(dev_priv))
306 dpfc_ctl |= IVB_DPFC_CTL_PLANE(params->crtc.plane);
307
308 if (drm_format_plane_cpp(params->fb.pixel_format, 0) == 2)
309 threshold++;
310
311 switch (threshold) {
312 case 4:
313 case 3:
314 dpfc_ctl |= DPFC_CTL_LIMIT_4X;
315 break;
316 case 2:
317 dpfc_ctl |= DPFC_CTL_LIMIT_2X;
318 break;
319 case 1:
320 dpfc_ctl |= DPFC_CTL_LIMIT_1X;
321 break;
322 }
323
324 if (params->vma->fence) {
325 dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
326 I915_WRITE(SNB_DPFC_CTL_SA,
327 SNB_CPU_FENCE_ENABLE |
328 params->vma->fence->id);
329 I915_WRITE(DPFC_CPU_FENCE_OFFSET, params->crtc.fence_y_offset);
330 } else {
331 I915_WRITE(SNB_DPFC_CTL_SA,0);
332 I915_WRITE(DPFC_CPU_FENCE_OFFSET, 0);
333 }
334
335 if (dev_priv->fbc.false_color)
336 dpfc_ctl |= FBC_CTL_FALSE_COLOR;
337
338 if (IS_IVYBRIDGE(dev_priv)) {
339 /* WaFbcAsynchFlipDisableFbcQueue:ivb */
340 I915_WRITE(ILK_DISPLAY_CHICKEN1,
341 I915_READ(ILK_DISPLAY_CHICKEN1) |
342 ILK_FBCQ_DIS);
343 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
344 /* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
345 I915_WRITE(CHICKEN_PIPESL_1(params->crtc.pipe),
346 I915_READ(CHICKEN_PIPESL_1(params->crtc.pipe)) |
347 HSW_FBCQ_DIS);
348 }
349
350 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
351
352 intel_fbc_recompress(dev_priv);
353 }
354
355 static bool intel_fbc_hw_is_active(struct drm_i915_private *dev_priv)
356 {
357 if (INTEL_GEN(dev_priv) >= 5)
358 return ilk_fbc_is_active(dev_priv);
359 else if (IS_GM45(dev_priv))
360 return g4x_fbc_is_active(dev_priv);
361 else
362 return i8xx_fbc_is_active(dev_priv);
363 }
364
365 static void intel_fbc_hw_activate(struct drm_i915_private *dev_priv)
366 {
367 struct intel_fbc *fbc = &dev_priv->fbc;
368
369 fbc->active = true;
370
371 if (INTEL_GEN(dev_priv) >= 7)
372 gen7_fbc_activate(dev_priv);
373 else if (INTEL_GEN(dev_priv) >= 5)
374 ilk_fbc_activate(dev_priv);
375 else if (IS_GM45(dev_priv))
376 g4x_fbc_activate(dev_priv);
377 else
378 i8xx_fbc_activate(dev_priv);
379 }
380
381 static void intel_fbc_hw_deactivate(struct drm_i915_private *dev_priv)
382 {
383 struct intel_fbc *fbc = &dev_priv->fbc;
384
385 fbc->active = false;
386
387 if (INTEL_GEN(dev_priv) >= 5)
388 ilk_fbc_deactivate(dev_priv);
389 else if (IS_GM45(dev_priv))
390 g4x_fbc_deactivate(dev_priv);
391 else
392 i8xx_fbc_deactivate(dev_priv);
393 }
394
395 /**
396 * intel_fbc_is_active - Is FBC active?
397 * @dev_priv: i915 device instance
398 *
399 * This function is used to verify the current state of FBC.
400 *
401 * FIXME: This should be tracked in the plane config eventually
402 * instead of queried at runtime for most callers.
403 */
404 bool intel_fbc_is_active(struct drm_i915_private *dev_priv)
405 {
406 return dev_priv->fbc.active;
407 }
408
409 static void intel_fbc_work_fn(struct work_struct *__work)
410 {
411 struct drm_i915_private *dev_priv =
412 container_of(__work, struct drm_i915_private, fbc.work.work);
413 struct intel_fbc *fbc = &dev_priv->fbc;
414 struct intel_fbc_work *work = &fbc->work;
415 struct intel_crtc *crtc = fbc->crtc;
416 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[crtc->pipe];
417
418 if (drm_crtc_vblank_get(&crtc->base)) {
419 DRM_ERROR("vblank not available for FBC on pipe %c\n",
420 pipe_name(crtc->pipe));
421
422 mutex_lock(&fbc->lock);
423 work->scheduled = false;
424 mutex_unlock(&fbc->lock);
425 return;
426 }
427
428 retry:
429 /* Delay the actual enabling to let pageflipping cease and the
430 * display to settle before starting the compression. Note that
431 * this delay also serves a second purpose: it allows for a
432 * vblank to pass after disabling the FBC before we attempt
433 * to modify the control registers.
434 *
435 * WaFbcWaitForVBlankBeforeEnable:ilk,snb
436 *
437 * It is also worth mentioning that since work->scheduled_vblank can be
438 * updated multiple times by the other threads, hitting the timeout is
439 * not an error condition. We'll just end up hitting the "goto retry"
440 * case below.
441 */
442 wait_event_timeout(vblank->queue,
443 drm_crtc_vblank_count(&crtc->base) != work->scheduled_vblank,
444 msecs_to_jiffies(50));
445
446 mutex_lock(&fbc->lock);
447
448 /* Were we cancelled? */
449 if (!work->scheduled)
450 goto out;
451
452 /* Were we delayed again while this function was sleeping? */
453 if (drm_crtc_vblank_count(&crtc->base) == work->scheduled_vblank) {
454 mutex_unlock(&fbc->lock);
455 goto retry;
456 }
457
458 intel_fbc_hw_activate(dev_priv);
459
460 work->scheduled = false;
461
462 out:
463 mutex_unlock(&fbc->lock);
464 drm_crtc_vblank_put(&crtc->base);
465 }
466
467 static void intel_fbc_schedule_activation(struct intel_crtc *crtc)
468 {
469 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
470 struct intel_fbc *fbc = &dev_priv->fbc;
471 struct intel_fbc_work *work = &fbc->work;
472
473 WARN_ON(!mutex_is_locked(&fbc->lock));
474
475 if (drm_crtc_vblank_get(&crtc->base)) {
476 DRM_ERROR("vblank not available for FBC on pipe %c\n",
477 pipe_name(crtc->pipe));
478 return;
479 }
480
481 /* It is useless to call intel_fbc_cancel_work() or cancel_work() in
482 * this function since we're not releasing fbc.lock, so it won't have an
483 * opportunity to grab it to discover that it was cancelled. So we just
484 * update the expected jiffy count. */
485 work->scheduled = true;
486 work->scheduled_vblank = drm_crtc_vblank_count(&crtc->base);
487 drm_crtc_vblank_put(&crtc->base);
488
489 schedule_work(&work->work);
490 }
491
492 static void intel_fbc_deactivate(struct drm_i915_private *dev_priv)
493 {
494 struct intel_fbc *fbc = &dev_priv->fbc;
495
496 WARN_ON(!mutex_is_locked(&fbc->lock));
497
498 /* Calling cancel_work() here won't help due to the fact that the work
499 * function grabs fbc->lock. Just set scheduled to false so the work
500 * function can know it was cancelled. */
501 fbc->work.scheduled = false;
502
503 if (fbc->active)
504 intel_fbc_hw_deactivate(dev_priv);
505 }
506
507 static bool multiple_pipes_ok(struct intel_crtc *crtc,
508 struct intel_plane_state *plane_state)
509 {
510 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
511 struct intel_fbc *fbc = &dev_priv->fbc;
512 enum pipe pipe = crtc->pipe;
513
514 /* Don't even bother tracking anything we don't need. */
515 if (!no_fbc_on_multiple_pipes(dev_priv))
516 return true;
517
518 if (plane_state->base.visible)
519 fbc->visible_pipes_mask |= (1 << pipe);
520 else
521 fbc->visible_pipes_mask &= ~(1 << pipe);
522
523 return (fbc->visible_pipes_mask & ~(1 << pipe)) != 0;
524 }
525
526 static int find_compression_threshold(struct drm_i915_private *dev_priv,
527 struct drm_mm_node *node,
528 int size,
529 int fb_cpp)
530 {
531 struct i915_ggtt *ggtt = &dev_priv->ggtt;
532 int compression_threshold = 1;
533 int ret;
534 u64 end;
535
536 /* The FBC hardware for BDW/SKL doesn't have access to the stolen
537 * reserved range size, so it always assumes the maximum (8mb) is used.
538 * If we enable FBC using a CFB on that memory range we'll get FIFO
539 * underruns, even if that range is not reserved by the BIOS. */
540 if (IS_BROADWELL(dev_priv) ||
541 IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
542 end = ggtt->stolen_size - 8 * 1024 * 1024;
543 else
544 end = ggtt->stolen_usable_size;
545
546 /* HACK: This code depends on what we will do in *_enable_fbc. If that
547 * code changes, this code needs to change as well.
548 *
549 * The enable_fbc code will attempt to use one of our 2 compression
550 * thresholds, therefore, in that case, we only have 1 resort.
551 */
552
553 /* Try to over-allocate to reduce reallocations and fragmentation. */
554 ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size <<= 1,
555 4096, 0, end);
556 if (ret == 0)
557 return compression_threshold;
558
559 again:
560 /* HW's ability to limit the CFB is 1:4 */
561 if (compression_threshold > 4 ||
562 (fb_cpp == 2 && compression_threshold == 2))
563 return 0;
564
565 ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size >>= 1,
566 4096, 0, end);
567 if (ret && INTEL_GEN(dev_priv) <= 4) {
568 return 0;
569 } else if (ret) {
570 compression_threshold <<= 1;
571 goto again;
572 } else {
573 return compression_threshold;
574 }
575 }
576
577 static int intel_fbc_alloc_cfb(struct intel_crtc *crtc)
578 {
579 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
580 struct intel_fbc *fbc = &dev_priv->fbc;
581 struct drm_mm_node *uninitialized_var(compressed_llb);
582 int size, fb_cpp, ret;
583
584 WARN_ON(drm_mm_node_allocated(&fbc->compressed_fb));
585
586 size = intel_fbc_calculate_cfb_size(dev_priv, &fbc->state_cache);
587 fb_cpp = drm_format_plane_cpp(fbc->state_cache.fb.pixel_format, 0);
588
589 ret = find_compression_threshold(dev_priv, &fbc->compressed_fb,
590 size, fb_cpp);
591 if (!ret)
592 goto err_llb;
593 else if (ret > 1) {
594 DRM_INFO("Reducing the compressed framebuffer size. This may lead to less power savings than a non-reduced-size. Try to increase stolen memory size if available in BIOS.\n");
595
596 }
597
598 fbc->threshold = ret;
599
600 if (INTEL_GEN(dev_priv) >= 5)
601 I915_WRITE(ILK_DPFC_CB_BASE, fbc->compressed_fb.start);
602 else if (IS_GM45(dev_priv)) {
603 I915_WRITE(DPFC_CB_BASE, fbc->compressed_fb.start);
604 } else {
605 compressed_llb = kzalloc(sizeof(*compressed_llb), GFP_KERNEL);
606 if (!compressed_llb)
607 goto err_fb;
608
609 ret = i915_gem_stolen_insert_node(dev_priv, compressed_llb,
610 4096, 4096);
611 if (ret)
612 goto err_fb;
613
614 fbc->compressed_llb = compressed_llb;
615
616 I915_WRITE(FBC_CFB_BASE,
617 dev_priv->mm.stolen_base + fbc->compressed_fb.start);
618 I915_WRITE(FBC_LL_BASE,
619 dev_priv->mm.stolen_base + compressed_llb->start);
620 }
621
622 DRM_DEBUG_KMS("reserved %llu bytes of contiguous stolen space for FBC, threshold: %d\n",
623 fbc->compressed_fb.size, fbc->threshold);
624
625 return 0;
626
627 err_fb:
628 kfree(compressed_llb);
629 i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb);
630 err_llb:
631 pr_info_once("drm: not enough stolen space for compressed buffer (need %d more bytes), disabling. Hint: you may be able to increase stolen memory size in the BIOS to avoid this.\n", size);
632 return -ENOSPC;
633 }
634
635 static void __intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv)
636 {
637 struct intel_fbc *fbc = &dev_priv->fbc;
638
639 if (drm_mm_node_allocated(&fbc->compressed_fb))
640 i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb);
641
642 if (fbc->compressed_llb) {
643 i915_gem_stolen_remove_node(dev_priv, fbc->compressed_llb);
644 kfree(fbc->compressed_llb);
645 }
646 }
647
648 void intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv)
649 {
650 struct intel_fbc *fbc = &dev_priv->fbc;
651
652 if (!fbc_supported(dev_priv))
653 return;
654
655 mutex_lock(&fbc->lock);
656 __intel_fbc_cleanup_cfb(dev_priv);
657 mutex_unlock(&fbc->lock);
658 }
659
660 static bool stride_is_valid(struct drm_i915_private *dev_priv,
661 unsigned int stride)
662 {
663 /* These should have been caught earlier. */
664 WARN_ON(stride < 512);
665 WARN_ON((stride & (64 - 1)) != 0);
666
667 /* Below are the additional FBC restrictions. */
668
669 if (IS_GEN2(dev_priv) || IS_GEN3(dev_priv))
670 return stride == 4096 || stride == 8192;
671
672 if (IS_GEN4(dev_priv) && !IS_G4X(dev_priv) && stride < 2048)
673 return false;
674
675 if (stride > 16384)
676 return false;
677
678 return true;
679 }
680
681 static bool pixel_format_is_valid(struct drm_i915_private *dev_priv,
682 uint32_t pixel_format)
683 {
684 switch (pixel_format) {
685 case DRM_FORMAT_XRGB8888:
686 case DRM_FORMAT_XBGR8888:
687 return true;
688 case DRM_FORMAT_XRGB1555:
689 case DRM_FORMAT_RGB565:
690 /* 16bpp not supported on gen2 */
691 if (IS_GEN2(dev_priv))
692 return false;
693 /* WaFbcOnly1to1Ratio:ctg */
694 if (IS_G4X(dev_priv))
695 return false;
696 return true;
697 default:
698 return false;
699 }
700 }
701
702 /*
703 * For some reason, the hardware tracking starts looking at whatever we
704 * programmed as the display plane base address register. It does not look at
705 * the X and Y offset registers. That's why we look at the crtc->adjusted{x,y}
706 * variables instead of just looking at the pipe/plane size.
707 */
708 static bool intel_fbc_hw_tracking_covers_screen(struct intel_crtc *crtc)
709 {
710 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
711 struct intel_fbc *fbc = &dev_priv->fbc;
712 unsigned int effective_w, effective_h, max_w, max_h;
713
714 if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) {
715 max_w = 4096;
716 max_h = 4096;
717 } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
718 max_w = 4096;
719 max_h = 2048;
720 } else {
721 max_w = 2048;
722 max_h = 1536;
723 }
724
725 intel_fbc_get_plane_source_size(&fbc->state_cache, &effective_w,
726 &effective_h);
727 effective_w += crtc->adjusted_x;
728 effective_h += crtc->adjusted_y;
729
730 return effective_w <= max_w && effective_h <= max_h;
731 }
732
733 static void intel_fbc_update_state_cache(struct intel_crtc *crtc,
734 struct intel_crtc_state *crtc_state,
735 struct intel_plane_state *plane_state)
736 {
737 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
738 struct intel_fbc *fbc = &dev_priv->fbc;
739 struct intel_fbc_state_cache *cache = &fbc->state_cache;
740 struct drm_framebuffer *fb = plane_state->base.fb;
741
742 cache->vma = NULL;
743
744 cache->crtc.mode_flags = crtc_state->base.adjusted_mode.flags;
745 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
746 cache->crtc.hsw_bdw_pixel_rate =
747 ilk_pipe_pixel_rate(crtc_state);
748
749 cache->plane.rotation = plane_state->base.rotation;
750 cache->plane.src_w = drm_rect_width(&plane_state->base.src) >> 16;
751 cache->plane.src_h = drm_rect_height(&plane_state->base.src) >> 16;
752 cache->plane.visible = plane_state->base.visible;
753
754 if (!cache->plane.visible)
755 return;
756
757 cache->fb.pixel_format = fb->pixel_format;
758 cache->fb.stride = fb->pitches[0];
759
760 cache->vma = plane_state->vma;
761 }
762
763 static bool intel_fbc_can_activate(struct intel_crtc *crtc)
764 {
765 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
766 struct intel_fbc *fbc = &dev_priv->fbc;
767 struct intel_fbc_state_cache *cache = &fbc->state_cache;
768
769 /* We don't need to use a state cache here since this information is
770 * global for all CRTC.
771 */
772 if (fbc->underrun_detected) {
773 fbc->no_fbc_reason = "underrun detected";
774 return false;
775 }
776
777 if (!cache->vma) {
778 fbc->no_fbc_reason = "primary plane not visible";
779 return false;
780 }
781
782 if ((cache->crtc.mode_flags & DRM_MODE_FLAG_INTERLACE) ||
783 (cache->crtc.mode_flags & DRM_MODE_FLAG_DBLSCAN)) {
784 fbc->no_fbc_reason = "incompatible mode";
785 return false;
786 }
787
788 if (!intel_fbc_hw_tracking_covers_screen(crtc)) {
789 fbc->no_fbc_reason = "mode too large for compression";
790 return false;
791 }
792
793 /* The use of a CPU fence is mandatory in order to detect writes
794 * by the CPU to the scanout and trigger updates to the FBC.
795 *
796 * Note that is possible for a tiled surface to be unmappable (and
797 * so have no fence associated with it) due to aperture constaints
798 * at the time of pinning.
799 */
800 if (!cache->vma->fence) {
801 fbc->no_fbc_reason = "framebuffer not tiled or fenced";
802 return false;
803 }
804 if (INTEL_GEN(dev_priv) <= 4 && !IS_G4X(dev_priv) &&
805 cache->plane.rotation != DRM_ROTATE_0) {
806 fbc->no_fbc_reason = "rotation unsupported";
807 return false;
808 }
809
810 if (!stride_is_valid(dev_priv, cache->fb.stride)) {
811 fbc->no_fbc_reason = "framebuffer stride not supported";
812 return false;
813 }
814
815 if (!pixel_format_is_valid(dev_priv, cache->fb.pixel_format)) {
816 fbc->no_fbc_reason = "pixel format is invalid";
817 return false;
818 }
819
820 /* WaFbcExceedCdClockThreshold:hsw,bdw */
821 if ((IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) &&
822 cache->crtc.hsw_bdw_pixel_rate >= dev_priv->cdclk_freq * 95 / 100) {
823 fbc->no_fbc_reason = "pixel rate is too big";
824 return false;
825 }
826
827 /* It is possible for the required CFB size change without a
828 * crtc->disable + crtc->enable since it is possible to change the
829 * stride without triggering a full modeset. Since we try to
830 * over-allocate the CFB, there's a chance we may keep FBC enabled even
831 * if this happens, but if we exceed the current CFB size we'll have to
832 * disable FBC. Notice that it would be possible to disable FBC, wait
833 * for a frame, free the stolen node, then try to reenable FBC in case
834 * we didn't get any invalidate/deactivate calls, but this would require
835 * a lot of tracking just for a specific case. If we conclude it's an
836 * important case, we can implement it later. */
837 if (intel_fbc_calculate_cfb_size(dev_priv, &fbc->state_cache) >
838 fbc->compressed_fb.size * fbc->threshold) {
839 fbc->no_fbc_reason = "CFB requirements changed";
840 return false;
841 }
842
843 return true;
844 }
845
846 static bool intel_fbc_can_enable(struct drm_i915_private *dev_priv)
847 {
848 struct intel_fbc *fbc = &dev_priv->fbc;
849
850 if (intel_vgpu_active(dev_priv)) {
851 fbc->no_fbc_reason = "VGPU is active";
852 return false;
853 }
854
855 if (!i915.enable_fbc) {
856 fbc->no_fbc_reason = "disabled per module param or by default";
857 return false;
858 }
859
860 if (fbc->underrun_detected) {
861 fbc->no_fbc_reason = "underrun detected";
862 return false;
863 }
864
865 return true;
866 }
867
868 static void intel_fbc_get_reg_params(struct intel_crtc *crtc,
869 struct intel_fbc_reg_params *params)
870 {
871 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
872 struct intel_fbc *fbc = &dev_priv->fbc;
873 struct intel_fbc_state_cache *cache = &fbc->state_cache;
874
875 /* Since all our fields are integer types, use memset here so the
876 * comparison function can rely on memcmp because the padding will be
877 * zero. */
878 memset(params, 0, sizeof(*params));
879
880 params->vma = cache->vma;
881
882 params->crtc.pipe = crtc->pipe;
883 params->crtc.plane = crtc->plane;
884 params->crtc.fence_y_offset = get_crtc_fence_y_offset(crtc);
885
886 params->fb.pixel_format = cache->fb.pixel_format;
887 params->fb.stride = cache->fb.stride;
888
889 params->cfb_size = intel_fbc_calculate_cfb_size(dev_priv, cache);
890 }
891
892 static bool intel_fbc_reg_params_equal(struct intel_fbc_reg_params *params1,
893 struct intel_fbc_reg_params *params2)
894 {
895 /* We can use this since intel_fbc_get_reg_params() does a memset. */
896 return memcmp(params1, params2, sizeof(*params1)) == 0;
897 }
898
899 void intel_fbc_pre_update(struct intel_crtc *crtc,
900 struct intel_crtc_state *crtc_state,
901 struct intel_plane_state *plane_state)
902 {
903 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
904 struct intel_fbc *fbc = &dev_priv->fbc;
905
906 if (!fbc_supported(dev_priv))
907 return;
908
909 mutex_lock(&fbc->lock);
910
911 if (!multiple_pipes_ok(crtc, plane_state)) {
912 fbc->no_fbc_reason = "more than one pipe active";
913 goto deactivate;
914 }
915
916 if (!fbc->enabled || fbc->crtc != crtc)
917 goto unlock;
918
919 intel_fbc_update_state_cache(crtc, crtc_state, plane_state);
920
921 deactivate:
922 intel_fbc_deactivate(dev_priv);
923 unlock:
924 mutex_unlock(&fbc->lock);
925 }
926
927 static void __intel_fbc_post_update(struct intel_crtc *crtc)
928 {
929 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
930 struct intel_fbc *fbc = &dev_priv->fbc;
931 struct intel_fbc_reg_params old_params;
932
933 WARN_ON(!mutex_is_locked(&fbc->lock));
934
935 if (!fbc->enabled || fbc->crtc != crtc)
936 return;
937
938 if (!intel_fbc_can_activate(crtc)) {
939 WARN_ON(fbc->active);
940 return;
941 }
942
943 old_params = fbc->params;
944 intel_fbc_get_reg_params(crtc, &fbc->params);
945
946 /* If the scanout has not changed, don't modify the FBC settings.
947 * Note that we make the fundamental assumption that the fb->obj
948 * cannot be unpinned (and have its GTT offset and fence revoked)
949 * without first being decoupled from the scanout and FBC disabled.
950 */
951 if (fbc->active &&
952 intel_fbc_reg_params_equal(&old_params, &fbc->params))
953 return;
954
955 intel_fbc_deactivate(dev_priv);
956 intel_fbc_schedule_activation(crtc);
957 fbc->no_fbc_reason = "FBC enabled (active or scheduled)";
958 }
959
960 void intel_fbc_post_update(struct intel_crtc *crtc)
961 {
962 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
963 struct intel_fbc *fbc = &dev_priv->fbc;
964
965 if (!fbc_supported(dev_priv))
966 return;
967
968 mutex_lock(&fbc->lock);
969 __intel_fbc_post_update(crtc);
970 mutex_unlock(&fbc->lock);
971 }
972
973 static unsigned int intel_fbc_get_frontbuffer_bit(struct intel_fbc *fbc)
974 {
975 if (fbc->enabled)
976 return to_intel_plane(fbc->crtc->base.primary)->frontbuffer_bit;
977 else
978 return fbc->possible_framebuffer_bits;
979 }
980
981 void intel_fbc_invalidate(struct drm_i915_private *dev_priv,
982 unsigned int frontbuffer_bits,
983 enum fb_op_origin origin)
984 {
985 struct intel_fbc *fbc = &dev_priv->fbc;
986
987 if (!fbc_supported(dev_priv))
988 return;
989
990 if (origin == ORIGIN_GTT || origin == ORIGIN_FLIP)
991 return;
992
993 mutex_lock(&fbc->lock);
994
995 fbc->busy_bits |= intel_fbc_get_frontbuffer_bit(fbc) & frontbuffer_bits;
996
997 if (fbc->enabled && fbc->busy_bits)
998 intel_fbc_deactivate(dev_priv);
999
1000 mutex_unlock(&fbc->lock);
1001 }
1002
1003 void intel_fbc_flush(struct drm_i915_private *dev_priv,
1004 unsigned int frontbuffer_bits, enum fb_op_origin origin)
1005 {
1006 struct intel_fbc *fbc = &dev_priv->fbc;
1007
1008 if (!fbc_supported(dev_priv))
1009 return;
1010
1011 mutex_lock(&fbc->lock);
1012
1013 fbc->busy_bits &= ~frontbuffer_bits;
1014
1015 if (origin == ORIGIN_GTT || origin == ORIGIN_FLIP)
1016 goto out;
1017
1018 if (!fbc->busy_bits && fbc->enabled &&
1019 (frontbuffer_bits & intel_fbc_get_frontbuffer_bit(fbc))) {
1020 if (fbc->active)
1021 intel_fbc_recompress(dev_priv);
1022 else
1023 __intel_fbc_post_update(fbc->crtc);
1024 }
1025
1026 out:
1027 mutex_unlock(&fbc->lock);
1028 }
1029
1030 /**
1031 * intel_fbc_choose_crtc - select a CRTC to enable FBC on
1032 * @dev_priv: i915 device instance
1033 * @state: the atomic state structure
1034 *
1035 * This function looks at the proposed state for CRTCs and planes, then chooses
1036 * which pipe is going to have FBC by setting intel_crtc_state->enable_fbc to
1037 * true.
1038 *
1039 * Later, intel_fbc_enable is going to look for state->enable_fbc and then maybe
1040 * enable FBC for the chosen CRTC. If it does, it will set dev_priv->fbc.crtc.
1041 */
1042 void intel_fbc_choose_crtc(struct drm_i915_private *dev_priv,
1043 struct drm_atomic_state *state)
1044 {
1045 struct intel_fbc *fbc = &dev_priv->fbc;
1046 struct drm_plane *plane;
1047 struct drm_plane_state *plane_state;
1048 bool crtc_chosen = false;
1049 int i;
1050
1051 mutex_lock(&fbc->lock);
1052
1053 /* Does this atomic commit involve the CRTC currently tied to FBC? */
1054 if (fbc->crtc &&
1055 !drm_atomic_get_existing_crtc_state(state, &fbc->crtc->base))
1056 goto out;
1057
1058 if (!intel_fbc_can_enable(dev_priv))
1059 goto out;
1060
1061 /* Simply choose the first CRTC that is compatible and has a visible
1062 * plane. We could go for fancier schemes such as checking the plane
1063 * size, but this would just affect the few platforms that don't tie FBC
1064 * to pipe or plane A. */
1065 for_each_plane_in_state(state, plane, plane_state, i) {
1066 struct intel_plane_state *intel_plane_state =
1067 to_intel_plane_state(plane_state);
1068 struct intel_crtc_state *intel_crtc_state;
1069 struct intel_crtc *crtc = to_intel_crtc(plane_state->crtc);
1070
1071 if (!intel_plane_state->base.visible)
1072 continue;
1073
1074 if (fbc_on_pipe_a_only(dev_priv) && crtc->pipe != PIPE_A)
1075 continue;
1076
1077 if (fbc_on_plane_a_only(dev_priv) && crtc->plane != PLANE_A)
1078 continue;
1079
1080 intel_crtc_state = to_intel_crtc_state(
1081 drm_atomic_get_existing_crtc_state(state, &crtc->base));
1082
1083 intel_crtc_state->enable_fbc = true;
1084 crtc_chosen = true;
1085 break;
1086 }
1087
1088 if (!crtc_chosen)
1089 fbc->no_fbc_reason = "no suitable CRTC for FBC";
1090
1091 out:
1092 mutex_unlock(&fbc->lock);
1093 }
1094
1095 /**
1096 * intel_fbc_enable: tries to enable FBC on the CRTC
1097 * @crtc: the CRTC
1098 * @crtc_state: corresponding &drm_crtc_state for @crtc
1099 * @plane_state: corresponding &drm_plane_state for the primary plane of @crtc
1100 *
1101 * This function checks if the given CRTC was chosen for FBC, then enables it if
1102 * possible. Notice that it doesn't activate FBC. It is valid to call
1103 * intel_fbc_enable multiple times for the same pipe without an
1104 * intel_fbc_disable in the middle, as long as it is deactivated.
1105 */
1106 void intel_fbc_enable(struct intel_crtc *crtc,
1107 struct intel_crtc_state *crtc_state,
1108 struct intel_plane_state *plane_state)
1109 {
1110 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1111 struct intel_fbc *fbc = &dev_priv->fbc;
1112
1113 if (!fbc_supported(dev_priv))
1114 return;
1115
1116 mutex_lock(&fbc->lock);
1117
1118 if (fbc->enabled) {
1119 WARN_ON(fbc->crtc == NULL);
1120 if (fbc->crtc == crtc) {
1121 WARN_ON(!crtc_state->enable_fbc);
1122 WARN_ON(fbc->active);
1123 }
1124 goto out;
1125 }
1126
1127 if (!crtc_state->enable_fbc)
1128 goto out;
1129
1130 WARN_ON(fbc->active);
1131 WARN_ON(fbc->crtc != NULL);
1132
1133 intel_fbc_update_state_cache(crtc, crtc_state, plane_state);
1134 if (intel_fbc_alloc_cfb(crtc)) {
1135 fbc->no_fbc_reason = "not enough stolen memory";
1136 goto out;
1137 }
1138
1139 DRM_DEBUG_KMS("Enabling FBC on pipe %c\n", pipe_name(crtc->pipe));
1140 fbc->no_fbc_reason = "FBC enabled but not active yet\n";
1141
1142 fbc->enabled = true;
1143 fbc->crtc = crtc;
1144 out:
1145 mutex_unlock(&fbc->lock);
1146 }
1147
1148 /**
1149 * __intel_fbc_disable - disable FBC
1150 * @dev_priv: i915 device instance
1151 *
1152 * This is the low level function that actually disables FBC. Callers should
1153 * grab the FBC lock.
1154 */
1155 static void __intel_fbc_disable(struct drm_i915_private *dev_priv)
1156 {
1157 struct intel_fbc *fbc = &dev_priv->fbc;
1158 struct intel_crtc *crtc = fbc->crtc;
1159
1160 WARN_ON(!mutex_is_locked(&fbc->lock));
1161 WARN_ON(!fbc->enabled);
1162 WARN_ON(fbc->active);
1163 WARN_ON(crtc->active);
1164
1165 DRM_DEBUG_KMS("Disabling FBC on pipe %c\n", pipe_name(crtc->pipe));
1166
1167 __intel_fbc_cleanup_cfb(dev_priv);
1168
1169 fbc->enabled = false;
1170 fbc->crtc = NULL;
1171 }
1172
1173 /**
1174 * intel_fbc_disable - disable FBC if it's associated with crtc
1175 * @crtc: the CRTC
1176 *
1177 * This function disables FBC if it's associated with the provided CRTC.
1178 */
1179 void intel_fbc_disable(struct intel_crtc *crtc)
1180 {
1181 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1182 struct intel_fbc *fbc = &dev_priv->fbc;
1183
1184 if (!fbc_supported(dev_priv))
1185 return;
1186
1187 mutex_lock(&fbc->lock);
1188 if (fbc->crtc == crtc)
1189 __intel_fbc_disable(dev_priv);
1190 mutex_unlock(&fbc->lock);
1191
1192 cancel_work_sync(&fbc->work.work);
1193 }
1194
1195 /**
1196 * intel_fbc_global_disable - globally disable FBC
1197 * @dev_priv: i915 device instance
1198 *
1199 * This function disables FBC regardless of which CRTC is associated with it.
1200 */
1201 void intel_fbc_global_disable(struct drm_i915_private *dev_priv)
1202 {
1203 struct intel_fbc *fbc = &dev_priv->fbc;
1204
1205 if (!fbc_supported(dev_priv))
1206 return;
1207
1208 mutex_lock(&fbc->lock);
1209 if (fbc->enabled)
1210 __intel_fbc_disable(dev_priv);
1211 mutex_unlock(&fbc->lock);
1212
1213 cancel_work_sync(&fbc->work.work);
1214 }
1215
1216 static void intel_fbc_underrun_work_fn(struct work_struct *work)
1217 {
1218 struct drm_i915_private *dev_priv =
1219 container_of(work, struct drm_i915_private, fbc.underrun_work);
1220 struct intel_fbc *fbc = &dev_priv->fbc;
1221
1222 mutex_lock(&fbc->lock);
1223
1224 /* Maybe we were scheduled twice. */
1225 if (fbc->underrun_detected)
1226 goto out;
1227
1228 DRM_DEBUG_KMS("Disabling FBC due to FIFO underrun.\n");
1229 fbc->underrun_detected = true;
1230
1231 intel_fbc_deactivate(dev_priv);
1232 out:
1233 mutex_unlock(&fbc->lock);
1234 }
1235
1236 /**
1237 * intel_fbc_handle_fifo_underrun_irq - disable FBC when we get a FIFO underrun
1238 * @dev_priv: i915 device instance
1239 *
1240 * Without FBC, most underruns are harmless and don't really cause too many
1241 * problems, except for an annoying message on dmesg. With FBC, underruns can
1242 * become black screens or even worse, especially when paired with bad
1243 * watermarks. So in order for us to be on the safe side, completely disable FBC
1244 * in case we ever detect a FIFO underrun on any pipe. An underrun on any pipe
1245 * already suggests that watermarks may be bad, so try to be as safe as
1246 * possible.
1247 *
1248 * This function is called from the IRQ handler.
1249 */
1250 void intel_fbc_handle_fifo_underrun_irq(struct drm_i915_private *dev_priv)
1251 {
1252 struct intel_fbc *fbc = &dev_priv->fbc;
1253
1254 if (!fbc_supported(dev_priv))
1255 return;
1256
1257 /* There's no guarantee that underrun_detected won't be set to true
1258 * right after this check and before the work is scheduled, but that's
1259 * not a problem since we'll check it again under the work function
1260 * while FBC is locked. This check here is just to prevent us from
1261 * unnecessarily scheduling the work, and it relies on the fact that we
1262 * never switch underrun_detect back to false after it's true. */
1263 if (READ_ONCE(fbc->underrun_detected))
1264 return;
1265
1266 schedule_work(&fbc->underrun_work);
1267 }
1268
1269 /**
1270 * intel_fbc_init_pipe_state - initialize FBC's CRTC visibility tracking
1271 * @dev_priv: i915 device instance
1272 *
1273 * The FBC code needs to track CRTC visibility since the older platforms can't
1274 * have FBC enabled while multiple pipes are used. This function does the
1275 * initial setup at driver load to make sure FBC is matching the real hardware.
1276 */
1277 void intel_fbc_init_pipe_state(struct drm_i915_private *dev_priv)
1278 {
1279 struct intel_crtc *crtc;
1280
1281 /* Don't even bother tracking anything if we don't need. */
1282 if (!no_fbc_on_multiple_pipes(dev_priv))
1283 return;
1284
1285 for_each_intel_crtc(&dev_priv->drm, crtc)
1286 if (intel_crtc_active(crtc) &&
1287 to_intel_plane_state(crtc->base.primary->state)->base.visible)
1288 dev_priv->fbc.visible_pipes_mask |= (1 << crtc->pipe);
1289 }
1290
1291 /*
1292 * The DDX driver changes its behavior depending on the value it reads from
1293 * i915.enable_fbc, so sanitize it by translating the default value into either
1294 * 0 or 1 in order to allow it to know what's going on.
1295 *
1296 * Notice that this is done at driver initialization and we still allow user
1297 * space to change the value during runtime without sanitizing it again. IGT
1298 * relies on being able to change i915.enable_fbc at runtime.
1299 */
1300 static int intel_sanitize_fbc_option(struct drm_i915_private *dev_priv)
1301 {
1302 if (i915.enable_fbc >= 0)
1303 return !!i915.enable_fbc;
1304
1305 if (!HAS_FBC(dev_priv))
1306 return 0;
1307
1308 if (IS_BROADWELL(dev_priv))
1309 return 1;
1310
1311 return 0;
1312 }
1313
1314 static bool need_fbc_vtd_wa(struct drm_i915_private *dev_priv)
1315 {
1316 #ifdef CONFIG_INTEL_IOMMU
1317 /* WaFbcTurnOffFbcWhenHyperVisorIsUsed:skl,bxt */
1318 if (intel_iommu_gfx_mapped &&
1319 (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv))) {
1320 DRM_INFO("Disabling framebuffer compression (FBC) to prevent screen flicker with VT-d enabled\n");
1321 return true;
1322 }
1323 #endif
1324
1325 return false;
1326 }
1327
1328 /**
1329 * intel_fbc_init - Initialize FBC
1330 * @dev_priv: the i915 device
1331 *
1332 * This function might be called during PM init process.
1333 */
1334 void intel_fbc_init(struct drm_i915_private *dev_priv)
1335 {
1336 struct intel_fbc *fbc = &dev_priv->fbc;
1337 enum pipe pipe;
1338
1339 INIT_WORK(&fbc->work.work, intel_fbc_work_fn);
1340 INIT_WORK(&fbc->underrun_work, intel_fbc_underrun_work_fn);
1341 mutex_init(&fbc->lock);
1342 fbc->enabled = false;
1343 fbc->active = false;
1344 fbc->work.scheduled = false;
1345
1346 if (need_fbc_vtd_wa(dev_priv))
1347 mkwrite_device_info(dev_priv)->has_fbc = false;
1348
1349 i915.enable_fbc = intel_sanitize_fbc_option(dev_priv);
1350 DRM_DEBUG_KMS("Sanitized enable_fbc value: %d\n", i915.enable_fbc);
1351
1352 if (!HAS_FBC(dev_priv)) {
1353 fbc->no_fbc_reason = "unsupported by this chipset";
1354 return;
1355 }
1356
1357 for_each_pipe(dev_priv, pipe) {
1358 fbc->possible_framebuffer_bits |=
1359 INTEL_FRONTBUFFER_PRIMARY(pipe);
1360
1361 if (fbc_on_pipe_a_only(dev_priv))
1362 break;
1363 }
1364
1365 /* This value was pulled out of someone's hat */
1366 if (INTEL_GEN(dev_priv) <= 4 && !IS_GM45(dev_priv))
1367 I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
1368
1369 /* We still don't have any sort of hardware state readout for FBC, so
1370 * deactivate it in case the BIOS activated it to make sure software
1371 * matches the hardware state. */
1372 if (intel_fbc_hw_is_active(dev_priv))
1373 intel_fbc_hw_deactivate(dev_priv);
1374 }