Merge remote-tracking branch 'asoc/fix/ux500' into asoc-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41 /**
42 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
43 * @intel_dp: DP struct
44 *
45 * If a CPU or PCH DP output is attached to an eDP panel, this function
46 * will return true, and false otherwise.
47 */
48 static bool is_edp(struct intel_dp *intel_dp)
49 {
50 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
51
52 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
53 }
54
55 /**
56 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
57 * @intel_dp: DP struct
58 *
59 * Returns true if the given DP struct corresponds to a PCH DP port attached
60 * to an eDP panel, false otherwise. Helpful for determining whether we
61 * may need FDI resources for a given DP output or not.
62 */
63 static bool is_pch_edp(struct intel_dp *intel_dp)
64 {
65 return intel_dp->is_pch_edp;
66 }
67
68 /**
69 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
70 * @intel_dp: DP struct
71 *
72 * Returns true if the given DP struct corresponds to a CPU eDP port.
73 */
74 static bool is_cpu_edp(struct intel_dp *intel_dp)
75 {
76 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
77 }
78
79 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
80 {
81 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
82
83 return intel_dig_port->base.base.dev;
84 }
85
86 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
87 {
88 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
89 }
90
91 /**
92 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
93 * @encoder: DRM encoder
94 *
95 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
96 * by intel_display.c.
97 */
98 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
99 {
100 struct intel_dp *intel_dp;
101
102 if (!encoder)
103 return false;
104
105 intel_dp = enc_to_intel_dp(encoder);
106
107 return is_pch_edp(intel_dp);
108 }
109
110 static void intel_dp_link_down(struct intel_dp *intel_dp);
111
112 static int
113 intel_dp_max_link_bw(struct intel_dp *intel_dp)
114 {
115 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
116
117 switch (max_link_bw) {
118 case DP_LINK_BW_1_62:
119 case DP_LINK_BW_2_7:
120 break;
121 default:
122 max_link_bw = DP_LINK_BW_1_62;
123 break;
124 }
125 return max_link_bw;
126 }
127
128 /*
129 * The units on the numbers in the next two are... bizarre. Examples will
130 * make it clearer; this one parallels an example in the eDP spec.
131 *
132 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
133 *
134 * 270000 * 1 * 8 / 10 == 216000
135 *
136 * The actual data capacity of that configuration is 2.16Gbit/s, so the
137 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
138 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
139 * 119000. At 18bpp that's 2142000 kilobits per second.
140 *
141 * Thus the strange-looking division by 10 in intel_dp_link_required, to
142 * get the result in decakilobits instead of kilobits.
143 */
144
145 static int
146 intel_dp_link_required(int pixel_clock, int bpp)
147 {
148 return (pixel_clock * bpp + 9) / 10;
149 }
150
151 static int
152 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
153 {
154 return (max_link_clock * max_lanes * 8) / 10;
155 }
156
157 static int
158 intel_dp_mode_valid(struct drm_connector *connector,
159 struct drm_display_mode *mode)
160 {
161 struct intel_dp *intel_dp = intel_attached_dp(connector);
162 struct intel_connector *intel_connector = to_intel_connector(connector);
163 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
164 int target_clock = mode->clock;
165 int max_rate, mode_rate, max_lanes, max_link_clock;
166
167 if (is_edp(intel_dp) && fixed_mode) {
168 if (mode->hdisplay > fixed_mode->hdisplay)
169 return MODE_PANEL;
170
171 if (mode->vdisplay > fixed_mode->vdisplay)
172 return MODE_PANEL;
173
174 target_clock = fixed_mode->clock;
175 }
176
177 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
178 max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
179
180 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
181 mode_rate = intel_dp_link_required(target_clock, 18);
182
183 if (mode_rate > max_rate)
184 return MODE_CLOCK_HIGH;
185
186 if (mode->clock < 10000)
187 return MODE_CLOCK_LOW;
188
189 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
190 return MODE_H_ILLEGAL;
191
192 return MODE_OK;
193 }
194
195 static uint32_t
196 pack_aux(uint8_t *src, int src_bytes)
197 {
198 int i;
199 uint32_t v = 0;
200
201 if (src_bytes > 4)
202 src_bytes = 4;
203 for (i = 0; i < src_bytes; i++)
204 v |= ((uint32_t) src[i]) << ((3-i) * 8);
205 return v;
206 }
207
208 static void
209 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
210 {
211 int i;
212 if (dst_bytes > 4)
213 dst_bytes = 4;
214 for (i = 0; i < dst_bytes; i++)
215 dst[i] = src >> ((3-i) * 8);
216 }
217
218 /* hrawclock is 1/4 the FSB frequency */
219 static int
220 intel_hrawclk(struct drm_device *dev)
221 {
222 struct drm_i915_private *dev_priv = dev->dev_private;
223 uint32_t clkcfg;
224
225 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
226 if (IS_VALLEYVIEW(dev))
227 return 200;
228
229 clkcfg = I915_READ(CLKCFG);
230 switch (clkcfg & CLKCFG_FSB_MASK) {
231 case CLKCFG_FSB_400:
232 return 100;
233 case CLKCFG_FSB_533:
234 return 133;
235 case CLKCFG_FSB_667:
236 return 166;
237 case CLKCFG_FSB_800:
238 return 200;
239 case CLKCFG_FSB_1067:
240 return 266;
241 case CLKCFG_FSB_1333:
242 return 333;
243 /* these two are just a guess; one of them might be right */
244 case CLKCFG_FSB_1600:
245 case CLKCFG_FSB_1600_ALT:
246 return 400;
247 default:
248 return 133;
249 }
250 }
251
252 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
253 {
254 struct drm_device *dev = intel_dp_to_dev(intel_dp);
255 struct drm_i915_private *dev_priv = dev->dev_private;
256 u32 pp_stat_reg;
257
258 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
259 return (I915_READ(pp_stat_reg) & PP_ON) != 0;
260 }
261
262 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
263 {
264 struct drm_device *dev = intel_dp_to_dev(intel_dp);
265 struct drm_i915_private *dev_priv = dev->dev_private;
266 u32 pp_ctrl_reg;
267
268 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
269 return (I915_READ(pp_ctrl_reg) & EDP_FORCE_VDD) != 0;
270 }
271
272 static void
273 intel_dp_check_edp(struct intel_dp *intel_dp)
274 {
275 struct drm_device *dev = intel_dp_to_dev(intel_dp);
276 struct drm_i915_private *dev_priv = dev->dev_private;
277 u32 pp_stat_reg, pp_ctrl_reg;
278
279 if (!is_edp(intel_dp))
280 return;
281
282 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
283 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
284
285 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
286 WARN(1, "eDP powered off while attempting aux channel communication.\n");
287 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
288 I915_READ(pp_stat_reg),
289 I915_READ(pp_ctrl_reg));
290 }
291 }
292
293 static uint32_t
294 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
295 {
296 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
297 struct drm_device *dev = intel_dig_port->base.base.dev;
298 struct drm_i915_private *dev_priv = dev->dev_private;
299 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
300 uint32_t status;
301 bool done;
302
303 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
304 if (has_aux_irq)
305 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
306 msecs_to_jiffies(10));
307 else
308 done = wait_for_atomic(C, 10) == 0;
309 if (!done)
310 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
311 has_aux_irq);
312 #undef C
313
314 return status;
315 }
316
317 static int
318 intel_dp_aux_ch(struct intel_dp *intel_dp,
319 uint8_t *send, int send_bytes,
320 uint8_t *recv, int recv_size)
321 {
322 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
323 struct drm_device *dev = intel_dig_port->base.base.dev;
324 struct drm_i915_private *dev_priv = dev->dev_private;
325 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
326 uint32_t ch_data = ch_ctl + 4;
327 int i, ret, recv_bytes;
328 uint32_t status;
329 uint32_t aux_clock_divider;
330 int try, precharge;
331 bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
332
333 /* dp aux is extremely sensitive to irq latency, hence request the
334 * lowest possible wakeup latency and so prevent the cpu from going into
335 * deep sleep states.
336 */
337 pm_qos_update_request(&dev_priv->pm_qos, 0);
338
339 intel_dp_check_edp(intel_dp);
340 /* The clock divider is based off the hrawclk,
341 * and would like to run at 2MHz. So, take the
342 * hrawclk value and divide by 2 and use that
343 *
344 * Note that PCH attached eDP panels should use a 125MHz input
345 * clock divider.
346 */
347 if (is_cpu_edp(intel_dp)) {
348 if (HAS_DDI(dev))
349 aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
350 else if (IS_VALLEYVIEW(dev))
351 aux_clock_divider = 100;
352 else if (IS_GEN6(dev) || IS_GEN7(dev))
353 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
354 else
355 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
356 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
357 /* Workaround for non-ULT HSW */
358 aux_clock_divider = 74;
359 } else if (HAS_PCH_SPLIT(dev)) {
360 aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
361 } else {
362 aux_clock_divider = intel_hrawclk(dev) / 2;
363 }
364
365 if (IS_GEN6(dev))
366 precharge = 3;
367 else
368 precharge = 5;
369
370 /* Try to wait for any previous AUX channel activity */
371 for (try = 0; try < 3; try++) {
372 status = I915_READ_NOTRACE(ch_ctl);
373 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
374 break;
375 msleep(1);
376 }
377
378 if (try == 3) {
379 WARN(1, "dp_aux_ch not started status 0x%08x\n",
380 I915_READ(ch_ctl));
381 ret = -EBUSY;
382 goto out;
383 }
384
385 /* Must try at least 3 times according to DP spec */
386 for (try = 0; try < 5; try++) {
387 /* Load the send data into the aux channel data registers */
388 for (i = 0; i < send_bytes; i += 4)
389 I915_WRITE(ch_data + i,
390 pack_aux(send + i, send_bytes - i));
391
392 /* Send the command and wait for it to complete */
393 I915_WRITE(ch_ctl,
394 DP_AUX_CH_CTL_SEND_BUSY |
395 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
396 DP_AUX_CH_CTL_TIME_OUT_400us |
397 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
398 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
399 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
400 DP_AUX_CH_CTL_DONE |
401 DP_AUX_CH_CTL_TIME_OUT_ERROR |
402 DP_AUX_CH_CTL_RECEIVE_ERROR);
403
404 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
405
406 /* Clear done status and any errors */
407 I915_WRITE(ch_ctl,
408 status |
409 DP_AUX_CH_CTL_DONE |
410 DP_AUX_CH_CTL_TIME_OUT_ERROR |
411 DP_AUX_CH_CTL_RECEIVE_ERROR);
412
413 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
414 DP_AUX_CH_CTL_RECEIVE_ERROR))
415 continue;
416 if (status & DP_AUX_CH_CTL_DONE)
417 break;
418 }
419
420 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
421 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
422 ret = -EBUSY;
423 goto out;
424 }
425
426 /* Check for timeout or receive error.
427 * Timeouts occur when the sink is not connected
428 */
429 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
430 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
431 ret = -EIO;
432 goto out;
433 }
434
435 /* Timeouts occur when the device isn't connected, so they're
436 * "normal" -- don't fill the kernel log with these */
437 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
438 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
439 ret = -ETIMEDOUT;
440 goto out;
441 }
442
443 /* Unload any bytes sent back from the other side */
444 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
445 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
446 if (recv_bytes > recv_size)
447 recv_bytes = recv_size;
448
449 for (i = 0; i < recv_bytes; i += 4)
450 unpack_aux(I915_READ(ch_data + i),
451 recv + i, recv_bytes - i);
452
453 ret = recv_bytes;
454 out:
455 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
456
457 return ret;
458 }
459
460 /* Write data to the aux channel in native mode */
461 static int
462 intel_dp_aux_native_write(struct intel_dp *intel_dp,
463 uint16_t address, uint8_t *send, int send_bytes)
464 {
465 int ret;
466 uint8_t msg[20];
467 int msg_bytes;
468 uint8_t ack;
469
470 intel_dp_check_edp(intel_dp);
471 if (send_bytes > 16)
472 return -1;
473 msg[0] = AUX_NATIVE_WRITE << 4;
474 msg[1] = address >> 8;
475 msg[2] = address & 0xff;
476 msg[3] = send_bytes - 1;
477 memcpy(&msg[4], send, send_bytes);
478 msg_bytes = send_bytes + 4;
479 for (;;) {
480 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
481 if (ret < 0)
482 return ret;
483 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
484 break;
485 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
486 udelay(100);
487 else
488 return -EIO;
489 }
490 return send_bytes;
491 }
492
493 /* Write a single byte to the aux channel in native mode */
494 static int
495 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
496 uint16_t address, uint8_t byte)
497 {
498 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
499 }
500
501 /* read bytes from a native aux channel */
502 static int
503 intel_dp_aux_native_read(struct intel_dp *intel_dp,
504 uint16_t address, uint8_t *recv, int recv_bytes)
505 {
506 uint8_t msg[4];
507 int msg_bytes;
508 uint8_t reply[20];
509 int reply_bytes;
510 uint8_t ack;
511 int ret;
512
513 intel_dp_check_edp(intel_dp);
514 msg[0] = AUX_NATIVE_READ << 4;
515 msg[1] = address >> 8;
516 msg[2] = address & 0xff;
517 msg[3] = recv_bytes - 1;
518
519 msg_bytes = 4;
520 reply_bytes = recv_bytes + 1;
521
522 for (;;) {
523 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
524 reply, reply_bytes);
525 if (ret == 0)
526 return -EPROTO;
527 if (ret < 0)
528 return ret;
529 ack = reply[0];
530 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
531 memcpy(recv, reply + 1, ret - 1);
532 return ret - 1;
533 }
534 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
535 udelay(100);
536 else
537 return -EIO;
538 }
539 }
540
541 static int
542 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
543 uint8_t write_byte, uint8_t *read_byte)
544 {
545 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
546 struct intel_dp *intel_dp = container_of(adapter,
547 struct intel_dp,
548 adapter);
549 uint16_t address = algo_data->address;
550 uint8_t msg[5];
551 uint8_t reply[2];
552 unsigned retry;
553 int msg_bytes;
554 int reply_bytes;
555 int ret;
556
557 intel_dp_check_edp(intel_dp);
558 /* Set up the command byte */
559 if (mode & MODE_I2C_READ)
560 msg[0] = AUX_I2C_READ << 4;
561 else
562 msg[0] = AUX_I2C_WRITE << 4;
563
564 if (!(mode & MODE_I2C_STOP))
565 msg[0] |= AUX_I2C_MOT << 4;
566
567 msg[1] = address >> 8;
568 msg[2] = address;
569
570 switch (mode) {
571 case MODE_I2C_WRITE:
572 msg[3] = 0;
573 msg[4] = write_byte;
574 msg_bytes = 5;
575 reply_bytes = 1;
576 break;
577 case MODE_I2C_READ:
578 msg[3] = 0;
579 msg_bytes = 4;
580 reply_bytes = 2;
581 break;
582 default:
583 msg_bytes = 3;
584 reply_bytes = 1;
585 break;
586 }
587
588 for (retry = 0; retry < 5; retry++) {
589 ret = intel_dp_aux_ch(intel_dp,
590 msg, msg_bytes,
591 reply, reply_bytes);
592 if (ret < 0) {
593 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
594 return ret;
595 }
596
597 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
598 case AUX_NATIVE_REPLY_ACK:
599 /* I2C-over-AUX Reply field is only valid
600 * when paired with AUX ACK.
601 */
602 break;
603 case AUX_NATIVE_REPLY_NACK:
604 DRM_DEBUG_KMS("aux_ch native nack\n");
605 return -EREMOTEIO;
606 case AUX_NATIVE_REPLY_DEFER:
607 udelay(100);
608 continue;
609 default:
610 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
611 reply[0]);
612 return -EREMOTEIO;
613 }
614
615 switch (reply[0] & AUX_I2C_REPLY_MASK) {
616 case AUX_I2C_REPLY_ACK:
617 if (mode == MODE_I2C_READ) {
618 *read_byte = reply[1];
619 }
620 return reply_bytes - 1;
621 case AUX_I2C_REPLY_NACK:
622 DRM_DEBUG_KMS("aux_i2c nack\n");
623 return -EREMOTEIO;
624 case AUX_I2C_REPLY_DEFER:
625 DRM_DEBUG_KMS("aux_i2c defer\n");
626 udelay(100);
627 break;
628 default:
629 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
630 return -EREMOTEIO;
631 }
632 }
633
634 DRM_ERROR("too many retries, giving up\n");
635 return -EREMOTEIO;
636 }
637
638 static int
639 intel_dp_i2c_init(struct intel_dp *intel_dp,
640 struct intel_connector *intel_connector, const char *name)
641 {
642 int ret;
643
644 DRM_DEBUG_KMS("i2c_init %s\n", name);
645 intel_dp->algo.running = false;
646 intel_dp->algo.address = 0;
647 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
648
649 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
650 intel_dp->adapter.owner = THIS_MODULE;
651 intel_dp->adapter.class = I2C_CLASS_DDC;
652 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
653 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
654 intel_dp->adapter.algo_data = &intel_dp->algo;
655 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
656
657 ironlake_edp_panel_vdd_on(intel_dp);
658 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
659 ironlake_edp_panel_vdd_off(intel_dp, false);
660 return ret;
661 }
662
663 bool
664 intel_dp_compute_config(struct intel_encoder *encoder,
665 struct intel_crtc_config *pipe_config)
666 {
667 struct drm_device *dev = encoder->base.dev;
668 struct drm_i915_private *dev_priv = dev->dev_private;
669 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
670 struct drm_display_mode *mode = &pipe_config->requested_mode;
671 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
672 struct intel_connector *intel_connector = intel_dp->attached_connector;
673 int lane_count, clock;
674 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
675 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
676 int bpp, mode_rate;
677 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
678 int target_clock, link_avail, link_clock;
679
680 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && !is_cpu_edp(intel_dp))
681 pipe_config->has_pch_encoder = true;
682
683 pipe_config->has_dp_encoder = true;
684
685 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
686 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
687 adjusted_mode);
688 intel_pch_panel_fitting(dev,
689 intel_connector->panel.fitting_mode,
690 mode, adjusted_mode);
691 }
692 /* We need to take the panel's fixed mode into account. */
693 target_clock = adjusted_mode->clock;
694
695 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
696 return false;
697
698 DRM_DEBUG_KMS("DP link computation with max lane count %i "
699 "max bw %02x pixel clock %iKHz\n",
700 max_lane_count, bws[max_clock], adjusted_mode->clock);
701
702 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
703 * bpc in between. */
704 bpp = min_t(int, 8*3, pipe_config->pipe_bpp);
705 for (; bpp >= 6*3; bpp -= 2*3) {
706 mode_rate = intel_dp_link_required(target_clock, bpp);
707
708 for (clock = 0; clock <= max_clock; clock++) {
709 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
710 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
711 link_avail = intel_dp_max_data_rate(link_clock,
712 lane_count);
713
714 if (mode_rate <= link_avail) {
715 goto found;
716 }
717 }
718 }
719 }
720
721 return false;
722
723 found:
724 if (intel_dp->color_range_auto) {
725 /*
726 * See:
727 * CEA-861-E - 5.1 Default Encoding Parameters
728 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
729 */
730 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
731 intel_dp->color_range = DP_COLOR_RANGE_16_235;
732 else
733 intel_dp->color_range = 0;
734 }
735
736 if (intel_dp->color_range)
737 pipe_config->limited_color_range = true;
738
739 intel_dp->link_bw = bws[clock];
740 intel_dp->lane_count = lane_count;
741 adjusted_mode->clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
742 pipe_config->pixel_target_clock = target_clock;
743
744 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
745 intel_dp->link_bw, intel_dp->lane_count,
746 adjusted_mode->clock, bpp);
747 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
748 mode_rate, link_avail);
749
750 intel_link_compute_m_n(bpp, lane_count,
751 target_clock, adjusted_mode->clock,
752 &pipe_config->dp_m_n);
753
754 /*
755 * XXX: We have a strange regression where using the vbt edp bpp value
756 * for the link bw computation results in black screens, the panel only
757 * works when we do the computation at the usual 24bpp (but still
758 * requires us to use 18bpp). Until that's fully debugged, stay
759 * bug-for-bug compatible with the old code.
760 */
761 if (is_edp(intel_dp) && dev_priv->edp.bpp) {
762 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n",
763 bpp, dev_priv->edp.bpp);
764 bpp = min_t(int, bpp, dev_priv->edp.bpp);
765 }
766 pipe_config->pipe_bpp = bpp;
767
768 return true;
769 }
770
771 void intel_dp_init_link_config(struct intel_dp *intel_dp)
772 {
773 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
774 intel_dp->link_configuration[0] = intel_dp->link_bw;
775 intel_dp->link_configuration[1] = intel_dp->lane_count;
776 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
777 /*
778 * Check for DPCD version > 1.1 and enhanced framing support
779 */
780 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
781 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
782 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
783 }
784 }
785
786 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
787 {
788 struct drm_device *dev = crtc->dev;
789 struct drm_i915_private *dev_priv = dev->dev_private;
790 u32 dpa_ctl;
791
792 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
793 dpa_ctl = I915_READ(DP_A);
794 dpa_ctl &= ~DP_PLL_FREQ_MASK;
795
796 if (clock < 200000) {
797 /* For a long time we've carried around a ILK-DevA w/a for the
798 * 160MHz clock. If we're really unlucky, it's still required.
799 */
800 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
801 dpa_ctl |= DP_PLL_FREQ_160MHZ;
802 } else {
803 dpa_ctl |= DP_PLL_FREQ_270MHZ;
804 }
805
806 I915_WRITE(DP_A, dpa_ctl);
807
808 POSTING_READ(DP_A);
809 udelay(500);
810 }
811
812 static void
813 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
814 struct drm_display_mode *adjusted_mode)
815 {
816 struct drm_device *dev = encoder->dev;
817 struct drm_i915_private *dev_priv = dev->dev_private;
818 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
819 struct drm_crtc *crtc = encoder->crtc;
820 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
821
822 /*
823 * There are four kinds of DP registers:
824 *
825 * IBX PCH
826 * SNB CPU
827 * IVB CPU
828 * CPT PCH
829 *
830 * IBX PCH and CPU are the same for almost everything,
831 * except that the CPU DP PLL is configured in this
832 * register
833 *
834 * CPT PCH is quite different, having many bits moved
835 * to the TRANS_DP_CTL register instead. That
836 * configuration happens (oddly) in ironlake_pch_enable
837 */
838
839 /* Preserve the BIOS-computed detected bit. This is
840 * supposed to be read-only.
841 */
842 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
843
844 /* Handle DP bits in common between all three register formats */
845 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
846
847 switch (intel_dp->lane_count) {
848 case 1:
849 intel_dp->DP |= DP_PORT_WIDTH_1;
850 break;
851 case 2:
852 intel_dp->DP |= DP_PORT_WIDTH_2;
853 break;
854 case 4:
855 intel_dp->DP |= DP_PORT_WIDTH_4;
856 break;
857 }
858 if (intel_dp->has_audio) {
859 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
860 pipe_name(intel_crtc->pipe));
861 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
862 intel_write_eld(encoder, adjusted_mode);
863 }
864
865 intel_dp_init_link_config(intel_dp);
866
867 /* Split out the IBX/CPU vs CPT settings */
868
869 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
870 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
871 intel_dp->DP |= DP_SYNC_HS_HIGH;
872 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
873 intel_dp->DP |= DP_SYNC_VS_HIGH;
874 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
875
876 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
877 intel_dp->DP |= DP_ENHANCED_FRAMING;
878
879 intel_dp->DP |= intel_crtc->pipe << 29;
880
881 /* don't miss out required setting for eDP */
882 if (adjusted_mode->clock < 200000)
883 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
884 else
885 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
886 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
887 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
888 intel_dp->DP |= intel_dp->color_range;
889
890 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
891 intel_dp->DP |= DP_SYNC_HS_HIGH;
892 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
893 intel_dp->DP |= DP_SYNC_VS_HIGH;
894 intel_dp->DP |= DP_LINK_TRAIN_OFF;
895
896 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
897 intel_dp->DP |= DP_ENHANCED_FRAMING;
898
899 if (intel_crtc->pipe == 1)
900 intel_dp->DP |= DP_PIPEB_SELECT;
901
902 if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
903 /* don't miss out required setting for eDP */
904 if (adjusted_mode->clock < 200000)
905 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
906 else
907 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
908 }
909 } else {
910 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
911 }
912
913 if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev))
914 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
915 }
916
917 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
918 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
919
920 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
921 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
922
923 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
924 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
925
926 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
927 u32 mask,
928 u32 value)
929 {
930 struct drm_device *dev = intel_dp_to_dev(intel_dp);
931 struct drm_i915_private *dev_priv = dev->dev_private;
932 u32 pp_stat_reg, pp_ctrl_reg;
933
934 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
935 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
936
937 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
938 mask, value,
939 I915_READ(pp_stat_reg),
940 I915_READ(pp_ctrl_reg));
941
942 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
943 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
944 I915_READ(pp_stat_reg),
945 I915_READ(pp_ctrl_reg));
946 }
947 }
948
949 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
950 {
951 DRM_DEBUG_KMS("Wait for panel power on\n");
952 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
953 }
954
955 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
956 {
957 DRM_DEBUG_KMS("Wait for panel power off time\n");
958 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
959 }
960
961 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
962 {
963 DRM_DEBUG_KMS("Wait for panel power cycle\n");
964 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
965 }
966
967
968 /* Read the current pp_control value, unlocking the register if it
969 * is locked
970 */
971
972 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
973 {
974 struct drm_device *dev = intel_dp_to_dev(intel_dp);
975 struct drm_i915_private *dev_priv = dev->dev_private;
976 u32 control;
977 u32 pp_ctrl_reg;
978
979 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
980 control = I915_READ(pp_ctrl_reg);
981
982 control &= ~PANEL_UNLOCK_MASK;
983 control |= PANEL_UNLOCK_REGS;
984 return control;
985 }
986
987 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
988 {
989 struct drm_device *dev = intel_dp_to_dev(intel_dp);
990 struct drm_i915_private *dev_priv = dev->dev_private;
991 u32 pp;
992 u32 pp_stat_reg, pp_ctrl_reg;
993
994 if (!is_edp(intel_dp))
995 return;
996 DRM_DEBUG_KMS("Turn eDP VDD on\n");
997
998 WARN(intel_dp->want_panel_vdd,
999 "eDP VDD already requested on\n");
1000
1001 intel_dp->want_panel_vdd = true;
1002
1003 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1004 DRM_DEBUG_KMS("eDP VDD already on\n");
1005 return;
1006 }
1007
1008 if (!ironlake_edp_have_panel_power(intel_dp))
1009 ironlake_wait_panel_power_cycle(intel_dp);
1010
1011 pp = ironlake_get_pp_control(intel_dp);
1012 pp |= EDP_FORCE_VDD;
1013
1014 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1015 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1016
1017 I915_WRITE(pp_ctrl_reg, pp);
1018 POSTING_READ(pp_ctrl_reg);
1019 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1020 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1021 /*
1022 * If the panel wasn't on, delay before accessing aux channel
1023 */
1024 if (!ironlake_edp_have_panel_power(intel_dp)) {
1025 DRM_DEBUG_KMS("eDP was not running\n");
1026 msleep(intel_dp->panel_power_up_delay);
1027 }
1028 }
1029
1030 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1031 {
1032 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1033 struct drm_i915_private *dev_priv = dev->dev_private;
1034 u32 pp;
1035 u32 pp_stat_reg, pp_ctrl_reg;
1036
1037 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1038
1039 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1040 pp = ironlake_get_pp_control(intel_dp);
1041 pp &= ~EDP_FORCE_VDD;
1042
1043 pp_stat_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_STATUS : PCH_PP_STATUS;
1044 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1045
1046 I915_WRITE(pp_ctrl_reg, pp);
1047 POSTING_READ(pp_ctrl_reg);
1048
1049 /* Make sure sequencer is idle before allowing subsequent activity */
1050 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1051 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1052 msleep(intel_dp->panel_power_down_delay);
1053 }
1054 }
1055
1056 static void ironlake_panel_vdd_work(struct work_struct *__work)
1057 {
1058 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1059 struct intel_dp, panel_vdd_work);
1060 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1061
1062 mutex_lock(&dev->mode_config.mutex);
1063 ironlake_panel_vdd_off_sync(intel_dp);
1064 mutex_unlock(&dev->mode_config.mutex);
1065 }
1066
1067 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1068 {
1069 if (!is_edp(intel_dp))
1070 return;
1071
1072 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1073 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1074
1075 intel_dp->want_panel_vdd = false;
1076
1077 if (sync) {
1078 ironlake_panel_vdd_off_sync(intel_dp);
1079 } else {
1080 /*
1081 * Queue the timer to fire a long
1082 * time from now (relative to the power down delay)
1083 * to keep the panel power up across a sequence of operations
1084 */
1085 schedule_delayed_work(&intel_dp->panel_vdd_work,
1086 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1087 }
1088 }
1089
1090 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1091 {
1092 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1093 struct drm_i915_private *dev_priv = dev->dev_private;
1094 u32 pp;
1095 u32 pp_ctrl_reg;
1096
1097 if (!is_edp(intel_dp))
1098 return;
1099
1100 DRM_DEBUG_KMS("Turn eDP power on\n");
1101
1102 if (ironlake_edp_have_panel_power(intel_dp)) {
1103 DRM_DEBUG_KMS("eDP power already on\n");
1104 return;
1105 }
1106
1107 ironlake_wait_panel_power_cycle(intel_dp);
1108
1109 pp = ironlake_get_pp_control(intel_dp);
1110 if (IS_GEN5(dev)) {
1111 /* ILK workaround: disable reset around power sequence */
1112 pp &= ~PANEL_POWER_RESET;
1113 I915_WRITE(PCH_PP_CONTROL, pp);
1114 POSTING_READ(PCH_PP_CONTROL);
1115 }
1116
1117 pp |= POWER_TARGET_ON;
1118 if (!IS_GEN5(dev))
1119 pp |= PANEL_POWER_RESET;
1120
1121 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1122
1123 I915_WRITE(pp_ctrl_reg, pp);
1124 POSTING_READ(pp_ctrl_reg);
1125
1126 ironlake_wait_panel_on(intel_dp);
1127
1128 if (IS_GEN5(dev)) {
1129 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1130 I915_WRITE(PCH_PP_CONTROL, pp);
1131 POSTING_READ(PCH_PP_CONTROL);
1132 }
1133 }
1134
1135 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1136 {
1137 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1138 struct drm_i915_private *dev_priv = dev->dev_private;
1139 u32 pp;
1140 u32 pp_ctrl_reg;
1141
1142 if (!is_edp(intel_dp))
1143 return;
1144
1145 DRM_DEBUG_KMS("Turn eDP power off\n");
1146
1147 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1148
1149 pp = ironlake_get_pp_control(intel_dp);
1150 /* We need to switch off panel power _and_ force vdd, for otherwise some
1151 * panels get very unhappy and cease to work. */
1152 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1153
1154 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1155
1156 I915_WRITE(pp_ctrl_reg, pp);
1157 POSTING_READ(pp_ctrl_reg);
1158
1159 intel_dp->want_panel_vdd = false;
1160
1161 ironlake_wait_panel_off(intel_dp);
1162 }
1163
1164 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1165 {
1166 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1167 struct drm_device *dev = intel_dig_port->base.base.dev;
1168 struct drm_i915_private *dev_priv = dev->dev_private;
1169 int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1170 u32 pp;
1171 u32 pp_ctrl_reg;
1172
1173 if (!is_edp(intel_dp))
1174 return;
1175
1176 DRM_DEBUG_KMS("\n");
1177 /*
1178 * If we enable the backlight right away following a panel power
1179 * on, we may see slight flicker as the panel syncs with the eDP
1180 * link. So delay a bit to make sure the image is solid before
1181 * allowing it to appear.
1182 */
1183 msleep(intel_dp->backlight_on_delay);
1184 pp = ironlake_get_pp_control(intel_dp);
1185 pp |= EDP_BLC_ENABLE;
1186
1187 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1188
1189 I915_WRITE(pp_ctrl_reg, pp);
1190 POSTING_READ(pp_ctrl_reg);
1191
1192 intel_panel_enable_backlight(dev, pipe);
1193 }
1194
1195 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1196 {
1197 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1198 struct drm_i915_private *dev_priv = dev->dev_private;
1199 u32 pp;
1200 u32 pp_ctrl_reg;
1201
1202 if (!is_edp(intel_dp))
1203 return;
1204
1205 intel_panel_disable_backlight(dev);
1206
1207 DRM_DEBUG_KMS("\n");
1208 pp = ironlake_get_pp_control(intel_dp);
1209 pp &= ~EDP_BLC_ENABLE;
1210
1211 pp_ctrl_reg = IS_VALLEYVIEW(dev) ? PIPEA_PP_CONTROL : PCH_PP_CONTROL;
1212
1213 I915_WRITE(pp_ctrl_reg, pp);
1214 POSTING_READ(pp_ctrl_reg);
1215 msleep(intel_dp->backlight_off_delay);
1216 }
1217
1218 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1219 {
1220 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1221 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1222 struct drm_device *dev = crtc->dev;
1223 struct drm_i915_private *dev_priv = dev->dev_private;
1224 u32 dpa_ctl;
1225
1226 assert_pipe_disabled(dev_priv,
1227 to_intel_crtc(crtc)->pipe);
1228
1229 DRM_DEBUG_KMS("\n");
1230 dpa_ctl = I915_READ(DP_A);
1231 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1232 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1233
1234 /* We don't adjust intel_dp->DP while tearing down the link, to
1235 * facilitate link retraining (e.g. after hotplug). Hence clear all
1236 * enable bits here to ensure that we don't enable too much. */
1237 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1238 intel_dp->DP |= DP_PLL_ENABLE;
1239 I915_WRITE(DP_A, intel_dp->DP);
1240 POSTING_READ(DP_A);
1241 udelay(200);
1242 }
1243
1244 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1245 {
1246 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1247 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1248 struct drm_device *dev = crtc->dev;
1249 struct drm_i915_private *dev_priv = dev->dev_private;
1250 u32 dpa_ctl;
1251
1252 assert_pipe_disabled(dev_priv,
1253 to_intel_crtc(crtc)->pipe);
1254
1255 dpa_ctl = I915_READ(DP_A);
1256 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1257 "dp pll off, should be on\n");
1258 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1259
1260 /* We can't rely on the value tracked for the DP register in
1261 * intel_dp->DP because link_down must not change that (otherwise link
1262 * re-training will fail. */
1263 dpa_ctl &= ~DP_PLL_ENABLE;
1264 I915_WRITE(DP_A, dpa_ctl);
1265 POSTING_READ(DP_A);
1266 udelay(200);
1267 }
1268
1269 /* If the sink supports it, try to set the power state appropriately */
1270 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1271 {
1272 int ret, i;
1273
1274 /* Should have a valid DPCD by this point */
1275 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1276 return;
1277
1278 if (mode != DRM_MODE_DPMS_ON) {
1279 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1280 DP_SET_POWER_D3);
1281 if (ret != 1)
1282 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1283 } else {
1284 /*
1285 * When turning on, we need to retry for 1ms to give the sink
1286 * time to wake up.
1287 */
1288 for (i = 0; i < 3; i++) {
1289 ret = intel_dp_aux_native_write_1(intel_dp,
1290 DP_SET_POWER,
1291 DP_SET_POWER_D0);
1292 if (ret == 1)
1293 break;
1294 msleep(1);
1295 }
1296 }
1297 }
1298
1299 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1300 enum pipe *pipe)
1301 {
1302 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1303 struct drm_device *dev = encoder->base.dev;
1304 struct drm_i915_private *dev_priv = dev->dev_private;
1305 u32 tmp = I915_READ(intel_dp->output_reg);
1306
1307 if (!(tmp & DP_PORT_EN))
1308 return false;
1309
1310 if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1311 *pipe = PORT_TO_PIPE_CPT(tmp);
1312 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
1313 *pipe = PORT_TO_PIPE(tmp);
1314 } else {
1315 u32 trans_sel;
1316 u32 trans_dp;
1317 int i;
1318
1319 switch (intel_dp->output_reg) {
1320 case PCH_DP_B:
1321 trans_sel = TRANS_DP_PORT_SEL_B;
1322 break;
1323 case PCH_DP_C:
1324 trans_sel = TRANS_DP_PORT_SEL_C;
1325 break;
1326 case PCH_DP_D:
1327 trans_sel = TRANS_DP_PORT_SEL_D;
1328 break;
1329 default:
1330 return true;
1331 }
1332
1333 for_each_pipe(i) {
1334 trans_dp = I915_READ(TRANS_DP_CTL(i));
1335 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1336 *pipe = i;
1337 return true;
1338 }
1339 }
1340
1341 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1342 intel_dp->output_reg);
1343 }
1344
1345 return true;
1346 }
1347
1348 static void intel_disable_dp(struct intel_encoder *encoder)
1349 {
1350 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1351
1352 /* Make sure the panel is off before trying to change the mode. But also
1353 * ensure that we have vdd while we switch off the panel. */
1354 ironlake_edp_panel_vdd_on(intel_dp);
1355 ironlake_edp_backlight_off(intel_dp);
1356 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1357 ironlake_edp_panel_off(intel_dp);
1358
1359 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1360 if (!is_cpu_edp(intel_dp))
1361 intel_dp_link_down(intel_dp);
1362 }
1363
1364 static void intel_post_disable_dp(struct intel_encoder *encoder)
1365 {
1366 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1367 struct drm_device *dev = encoder->base.dev;
1368
1369 if (is_cpu_edp(intel_dp)) {
1370 intel_dp_link_down(intel_dp);
1371 if (!IS_VALLEYVIEW(dev))
1372 ironlake_edp_pll_off(intel_dp);
1373 }
1374 }
1375
1376 static void intel_enable_dp(struct intel_encoder *encoder)
1377 {
1378 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1379 struct drm_device *dev = encoder->base.dev;
1380 struct drm_i915_private *dev_priv = dev->dev_private;
1381 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1382
1383 if (WARN_ON(dp_reg & DP_PORT_EN))
1384 return;
1385
1386 ironlake_edp_panel_vdd_on(intel_dp);
1387 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1388 intel_dp_start_link_train(intel_dp);
1389 ironlake_edp_panel_on(intel_dp);
1390 ironlake_edp_panel_vdd_off(intel_dp, true);
1391 intel_dp_complete_link_train(intel_dp);
1392 ironlake_edp_backlight_on(intel_dp);
1393 }
1394
1395 static void intel_pre_enable_dp(struct intel_encoder *encoder)
1396 {
1397 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1398 struct drm_device *dev = encoder->base.dev;
1399
1400 if (is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev))
1401 ironlake_edp_pll_on(intel_dp);
1402 }
1403
1404 /*
1405 * Native read with retry for link status and receiver capability reads for
1406 * cases where the sink may still be asleep.
1407 */
1408 static bool
1409 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1410 uint8_t *recv, int recv_bytes)
1411 {
1412 int ret, i;
1413
1414 /*
1415 * Sinks are *supposed* to come up within 1ms from an off state,
1416 * but we're also supposed to retry 3 times per the spec.
1417 */
1418 for (i = 0; i < 3; i++) {
1419 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1420 recv_bytes);
1421 if (ret == recv_bytes)
1422 return true;
1423 msleep(1);
1424 }
1425
1426 return false;
1427 }
1428
1429 /*
1430 * Fetch AUX CH registers 0x202 - 0x207 which contain
1431 * link status information
1432 */
1433 static bool
1434 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1435 {
1436 return intel_dp_aux_native_read_retry(intel_dp,
1437 DP_LANE0_1_STATUS,
1438 link_status,
1439 DP_LINK_STATUS_SIZE);
1440 }
1441
1442 #if 0
1443 static char *voltage_names[] = {
1444 "0.4V", "0.6V", "0.8V", "1.2V"
1445 };
1446 static char *pre_emph_names[] = {
1447 "0dB", "3.5dB", "6dB", "9.5dB"
1448 };
1449 static char *link_train_names[] = {
1450 "pattern 1", "pattern 2", "idle", "off"
1451 };
1452 #endif
1453
1454 /*
1455 * These are source-specific values; current Intel hardware supports
1456 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1457 */
1458
1459 static uint8_t
1460 intel_dp_voltage_max(struct intel_dp *intel_dp)
1461 {
1462 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1463
1464 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1465 return DP_TRAIN_VOLTAGE_SWING_800;
1466 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1467 return DP_TRAIN_VOLTAGE_SWING_1200;
1468 else
1469 return DP_TRAIN_VOLTAGE_SWING_800;
1470 }
1471
1472 static uint8_t
1473 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1474 {
1475 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1476
1477 if (HAS_DDI(dev)) {
1478 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1479 case DP_TRAIN_VOLTAGE_SWING_400:
1480 return DP_TRAIN_PRE_EMPHASIS_9_5;
1481 case DP_TRAIN_VOLTAGE_SWING_600:
1482 return DP_TRAIN_PRE_EMPHASIS_6;
1483 case DP_TRAIN_VOLTAGE_SWING_800:
1484 return DP_TRAIN_PRE_EMPHASIS_3_5;
1485 case DP_TRAIN_VOLTAGE_SWING_1200:
1486 default:
1487 return DP_TRAIN_PRE_EMPHASIS_0;
1488 }
1489 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1490 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1491 case DP_TRAIN_VOLTAGE_SWING_400:
1492 return DP_TRAIN_PRE_EMPHASIS_6;
1493 case DP_TRAIN_VOLTAGE_SWING_600:
1494 case DP_TRAIN_VOLTAGE_SWING_800:
1495 return DP_TRAIN_PRE_EMPHASIS_3_5;
1496 default:
1497 return DP_TRAIN_PRE_EMPHASIS_0;
1498 }
1499 } else {
1500 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1501 case DP_TRAIN_VOLTAGE_SWING_400:
1502 return DP_TRAIN_PRE_EMPHASIS_6;
1503 case DP_TRAIN_VOLTAGE_SWING_600:
1504 return DP_TRAIN_PRE_EMPHASIS_6;
1505 case DP_TRAIN_VOLTAGE_SWING_800:
1506 return DP_TRAIN_PRE_EMPHASIS_3_5;
1507 case DP_TRAIN_VOLTAGE_SWING_1200:
1508 default:
1509 return DP_TRAIN_PRE_EMPHASIS_0;
1510 }
1511 }
1512 }
1513
1514 static void
1515 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1516 {
1517 uint8_t v = 0;
1518 uint8_t p = 0;
1519 int lane;
1520 uint8_t voltage_max;
1521 uint8_t preemph_max;
1522
1523 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1524 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
1525 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
1526
1527 if (this_v > v)
1528 v = this_v;
1529 if (this_p > p)
1530 p = this_p;
1531 }
1532
1533 voltage_max = intel_dp_voltage_max(intel_dp);
1534 if (v >= voltage_max)
1535 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1536
1537 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1538 if (p >= preemph_max)
1539 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1540
1541 for (lane = 0; lane < 4; lane++)
1542 intel_dp->train_set[lane] = v | p;
1543 }
1544
1545 static uint32_t
1546 intel_gen4_signal_levels(uint8_t train_set)
1547 {
1548 uint32_t signal_levels = 0;
1549
1550 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1551 case DP_TRAIN_VOLTAGE_SWING_400:
1552 default:
1553 signal_levels |= DP_VOLTAGE_0_4;
1554 break;
1555 case DP_TRAIN_VOLTAGE_SWING_600:
1556 signal_levels |= DP_VOLTAGE_0_6;
1557 break;
1558 case DP_TRAIN_VOLTAGE_SWING_800:
1559 signal_levels |= DP_VOLTAGE_0_8;
1560 break;
1561 case DP_TRAIN_VOLTAGE_SWING_1200:
1562 signal_levels |= DP_VOLTAGE_1_2;
1563 break;
1564 }
1565 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1566 case DP_TRAIN_PRE_EMPHASIS_0:
1567 default:
1568 signal_levels |= DP_PRE_EMPHASIS_0;
1569 break;
1570 case DP_TRAIN_PRE_EMPHASIS_3_5:
1571 signal_levels |= DP_PRE_EMPHASIS_3_5;
1572 break;
1573 case DP_TRAIN_PRE_EMPHASIS_6:
1574 signal_levels |= DP_PRE_EMPHASIS_6;
1575 break;
1576 case DP_TRAIN_PRE_EMPHASIS_9_5:
1577 signal_levels |= DP_PRE_EMPHASIS_9_5;
1578 break;
1579 }
1580 return signal_levels;
1581 }
1582
1583 /* Gen6's DP voltage swing and pre-emphasis control */
1584 static uint32_t
1585 intel_gen6_edp_signal_levels(uint8_t train_set)
1586 {
1587 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1588 DP_TRAIN_PRE_EMPHASIS_MASK);
1589 switch (signal_levels) {
1590 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1591 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1592 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1593 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1594 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1595 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1596 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1597 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1598 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1599 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1600 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1601 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1602 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1603 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1604 default:
1605 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1606 "0x%x\n", signal_levels);
1607 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1608 }
1609 }
1610
1611 /* Gen7's DP voltage swing and pre-emphasis control */
1612 static uint32_t
1613 intel_gen7_edp_signal_levels(uint8_t train_set)
1614 {
1615 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1616 DP_TRAIN_PRE_EMPHASIS_MASK);
1617 switch (signal_levels) {
1618 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1619 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1620 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1621 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1622 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1623 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1624
1625 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1626 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1627 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1628 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1629
1630 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1631 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1632 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1633 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1634
1635 default:
1636 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1637 "0x%x\n", signal_levels);
1638 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1639 }
1640 }
1641
1642 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
1643 static uint32_t
1644 intel_hsw_signal_levels(uint8_t train_set)
1645 {
1646 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1647 DP_TRAIN_PRE_EMPHASIS_MASK);
1648 switch (signal_levels) {
1649 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1650 return DDI_BUF_EMP_400MV_0DB_HSW;
1651 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1652 return DDI_BUF_EMP_400MV_3_5DB_HSW;
1653 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1654 return DDI_BUF_EMP_400MV_6DB_HSW;
1655 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
1656 return DDI_BUF_EMP_400MV_9_5DB_HSW;
1657
1658 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1659 return DDI_BUF_EMP_600MV_0DB_HSW;
1660 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1661 return DDI_BUF_EMP_600MV_3_5DB_HSW;
1662 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1663 return DDI_BUF_EMP_600MV_6DB_HSW;
1664
1665 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1666 return DDI_BUF_EMP_800MV_0DB_HSW;
1667 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1668 return DDI_BUF_EMP_800MV_3_5DB_HSW;
1669 default:
1670 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1671 "0x%x\n", signal_levels);
1672 return DDI_BUF_EMP_400MV_0DB_HSW;
1673 }
1674 }
1675
1676 /* Properly updates "DP" with the correct signal levels. */
1677 static void
1678 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
1679 {
1680 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1681 struct drm_device *dev = intel_dig_port->base.base.dev;
1682 uint32_t signal_levels, mask;
1683 uint8_t train_set = intel_dp->train_set[0];
1684
1685 if (HAS_DDI(dev)) {
1686 signal_levels = intel_hsw_signal_levels(train_set);
1687 mask = DDI_BUF_EMP_MASK;
1688 } else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
1689 signal_levels = intel_gen7_edp_signal_levels(train_set);
1690 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
1691 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1692 signal_levels = intel_gen6_edp_signal_levels(train_set);
1693 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
1694 } else {
1695 signal_levels = intel_gen4_signal_levels(train_set);
1696 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
1697 }
1698
1699 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
1700
1701 *DP = (*DP & ~mask) | signal_levels;
1702 }
1703
1704 static bool
1705 intel_dp_set_link_train(struct intel_dp *intel_dp,
1706 uint32_t dp_reg_value,
1707 uint8_t dp_train_pat)
1708 {
1709 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1710 struct drm_device *dev = intel_dig_port->base.base.dev;
1711 struct drm_i915_private *dev_priv = dev->dev_private;
1712 enum port port = intel_dig_port->port;
1713 int ret;
1714 uint32_t temp;
1715
1716 if (HAS_DDI(dev)) {
1717 temp = I915_READ(DP_TP_CTL(port));
1718
1719 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
1720 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
1721 else
1722 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
1723
1724 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1725 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1726 case DP_TRAINING_PATTERN_DISABLE:
1727
1728 if (port != PORT_A) {
1729 temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
1730 I915_WRITE(DP_TP_CTL(port), temp);
1731
1732 if (wait_for((I915_READ(DP_TP_STATUS(port)) &
1733 DP_TP_STATUS_IDLE_DONE), 1))
1734 DRM_ERROR("Timed out waiting for DP idle patterns\n");
1735
1736 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
1737 }
1738
1739 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
1740
1741 break;
1742 case DP_TRAINING_PATTERN_1:
1743 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
1744 break;
1745 case DP_TRAINING_PATTERN_2:
1746 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
1747 break;
1748 case DP_TRAINING_PATTERN_3:
1749 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
1750 break;
1751 }
1752 I915_WRITE(DP_TP_CTL(port), temp);
1753
1754 } else if (HAS_PCH_CPT(dev) &&
1755 (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1756 dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
1757
1758 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1759 case DP_TRAINING_PATTERN_DISABLE:
1760 dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
1761 break;
1762 case DP_TRAINING_PATTERN_1:
1763 dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
1764 break;
1765 case DP_TRAINING_PATTERN_2:
1766 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1767 break;
1768 case DP_TRAINING_PATTERN_3:
1769 DRM_ERROR("DP training pattern 3 not supported\n");
1770 dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
1771 break;
1772 }
1773
1774 } else {
1775 dp_reg_value &= ~DP_LINK_TRAIN_MASK;
1776
1777 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
1778 case DP_TRAINING_PATTERN_DISABLE:
1779 dp_reg_value |= DP_LINK_TRAIN_OFF;
1780 break;
1781 case DP_TRAINING_PATTERN_1:
1782 dp_reg_value |= DP_LINK_TRAIN_PAT_1;
1783 break;
1784 case DP_TRAINING_PATTERN_2:
1785 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1786 break;
1787 case DP_TRAINING_PATTERN_3:
1788 DRM_ERROR("DP training pattern 3 not supported\n");
1789 dp_reg_value |= DP_LINK_TRAIN_PAT_2;
1790 break;
1791 }
1792 }
1793
1794 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1795 POSTING_READ(intel_dp->output_reg);
1796
1797 intel_dp_aux_native_write_1(intel_dp,
1798 DP_TRAINING_PATTERN_SET,
1799 dp_train_pat);
1800
1801 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
1802 DP_TRAINING_PATTERN_DISABLE) {
1803 ret = intel_dp_aux_native_write(intel_dp,
1804 DP_TRAINING_LANE0_SET,
1805 intel_dp->train_set,
1806 intel_dp->lane_count);
1807 if (ret != intel_dp->lane_count)
1808 return false;
1809 }
1810
1811 return true;
1812 }
1813
1814 /* Enable corresponding port and start training pattern 1 */
1815 void
1816 intel_dp_start_link_train(struct intel_dp *intel_dp)
1817 {
1818 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
1819 struct drm_device *dev = encoder->dev;
1820 int i;
1821 uint8_t voltage;
1822 bool clock_recovery = false;
1823 int voltage_tries, loop_tries;
1824 uint32_t DP = intel_dp->DP;
1825
1826 if (HAS_DDI(dev))
1827 intel_ddi_prepare_link_retrain(encoder);
1828
1829 /* Write the link configuration data */
1830 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1831 intel_dp->link_configuration,
1832 DP_LINK_CONFIGURATION_SIZE);
1833
1834 DP |= DP_PORT_EN;
1835
1836 memset(intel_dp->train_set, 0, 4);
1837 voltage = 0xff;
1838 voltage_tries = 0;
1839 loop_tries = 0;
1840 clock_recovery = false;
1841 for (;;) {
1842 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1843 uint8_t link_status[DP_LINK_STATUS_SIZE];
1844
1845 intel_dp_set_signal_levels(intel_dp, &DP);
1846
1847 /* Set training pattern 1 */
1848 if (!intel_dp_set_link_train(intel_dp, DP,
1849 DP_TRAINING_PATTERN_1 |
1850 DP_LINK_SCRAMBLING_DISABLE))
1851 break;
1852
1853 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
1854 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1855 DRM_ERROR("failed to get link status\n");
1856 break;
1857 }
1858
1859 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1860 DRM_DEBUG_KMS("clock recovery OK\n");
1861 clock_recovery = true;
1862 break;
1863 }
1864
1865 /* Check to see if we've tried the max voltage */
1866 for (i = 0; i < intel_dp->lane_count; i++)
1867 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1868 break;
1869 if (i == intel_dp->lane_count) {
1870 ++loop_tries;
1871 if (loop_tries == 5) {
1872 DRM_DEBUG_KMS("too many full retries, give up\n");
1873 break;
1874 }
1875 memset(intel_dp->train_set, 0, 4);
1876 voltage_tries = 0;
1877 continue;
1878 }
1879
1880 /* Check to see if we've tried the same voltage 5 times */
1881 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1882 ++voltage_tries;
1883 if (voltage_tries == 5) {
1884 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1885 break;
1886 }
1887 } else
1888 voltage_tries = 0;
1889 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1890
1891 /* Compute new intel_dp->train_set as requested by target */
1892 intel_get_adjust_train(intel_dp, link_status);
1893 }
1894
1895 intel_dp->DP = DP;
1896 }
1897
1898 void
1899 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1900 {
1901 bool channel_eq = false;
1902 int tries, cr_tries;
1903 uint32_t DP = intel_dp->DP;
1904
1905 /* channel equalization */
1906 tries = 0;
1907 cr_tries = 0;
1908 channel_eq = false;
1909 for (;;) {
1910 uint8_t link_status[DP_LINK_STATUS_SIZE];
1911
1912 if (cr_tries > 5) {
1913 DRM_ERROR("failed to train DP, aborting\n");
1914 intel_dp_link_down(intel_dp);
1915 break;
1916 }
1917
1918 intel_dp_set_signal_levels(intel_dp, &DP);
1919
1920 /* channel eq pattern */
1921 if (!intel_dp_set_link_train(intel_dp, DP,
1922 DP_TRAINING_PATTERN_2 |
1923 DP_LINK_SCRAMBLING_DISABLE))
1924 break;
1925
1926 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
1927 if (!intel_dp_get_link_status(intel_dp, link_status))
1928 break;
1929
1930 /* Make sure clock is still ok */
1931 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1932 intel_dp_start_link_train(intel_dp);
1933 cr_tries++;
1934 continue;
1935 }
1936
1937 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
1938 channel_eq = true;
1939 break;
1940 }
1941
1942 /* Try 5 times, then try clock recovery if that fails */
1943 if (tries > 5) {
1944 intel_dp_link_down(intel_dp);
1945 intel_dp_start_link_train(intel_dp);
1946 tries = 0;
1947 cr_tries++;
1948 continue;
1949 }
1950
1951 /* Compute new intel_dp->train_set as requested by target */
1952 intel_get_adjust_train(intel_dp, link_status);
1953 ++tries;
1954 }
1955
1956 if (channel_eq)
1957 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
1958
1959 intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
1960 }
1961
1962 static void
1963 intel_dp_link_down(struct intel_dp *intel_dp)
1964 {
1965 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1966 struct drm_device *dev = intel_dig_port->base.base.dev;
1967 struct drm_i915_private *dev_priv = dev->dev_private;
1968 struct intel_crtc *intel_crtc =
1969 to_intel_crtc(intel_dig_port->base.base.crtc);
1970 uint32_t DP = intel_dp->DP;
1971
1972 /*
1973 * DDI code has a strict mode set sequence and we should try to respect
1974 * it, otherwise we might hang the machine in many different ways. So we
1975 * really should be disabling the port only on a complete crtc_disable
1976 * sequence. This function is just called under two conditions on DDI
1977 * code:
1978 * - Link train failed while doing crtc_enable, and on this case we
1979 * really should respect the mode set sequence and wait for a
1980 * crtc_disable.
1981 * - Someone turned the monitor off and intel_dp_check_link_status
1982 * called us. We don't need to disable the whole port on this case, so
1983 * when someone turns the monitor on again,
1984 * intel_ddi_prepare_link_retrain will take care of redoing the link
1985 * train.
1986 */
1987 if (HAS_DDI(dev))
1988 return;
1989
1990 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
1991 return;
1992
1993 DRM_DEBUG_KMS("\n");
1994
1995 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1996 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1997 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1998 } else {
1999 DP &= ~DP_LINK_TRAIN_MASK;
2000 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2001 }
2002 POSTING_READ(intel_dp->output_reg);
2003
2004 /* We don't really know why we're doing this */
2005 intel_wait_for_vblank(dev, intel_crtc->pipe);
2006
2007 if (HAS_PCH_IBX(dev) &&
2008 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2009 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2010
2011 /* Hardware workaround: leaving our transcoder select
2012 * set to transcoder B while it's off will prevent the
2013 * corresponding HDMI output on transcoder A.
2014 *
2015 * Combine this with another hardware workaround:
2016 * transcoder select bit can only be cleared while the
2017 * port is enabled.
2018 */
2019 DP &= ~DP_PIPEB_SELECT;
2020 I915_WRITE(intel_dp->output_reg, DP);
2021
2022 /* Changes to enable or select take place the vblank
2023 * after being written.
2024 */
2025 if (WARN_ON(crtc == NULL)) {
2026 /* We should never try to disable a port without a crtc
2027 * attached. For paranoia keep the code around for a
2028 * bit. */
2029 POSTING_READ(intel_dp->output_reg);
2030 msleep(50);
2031 } else
2032 intel_wait_for_vblank(dev, intel_crtc->pipe);
2033 }
2034
2035 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2036 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2037 POSTING_READ(intel_dp->output_reg);
2038 msleep(intel_dp->panel_power_down_delay);
2039 }
2040
2041 static bool
2042 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2043 {
2044 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2045
2046 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2047 sizeof(intel_dp->dpcd)) == 0)
2048 return false; /* aux transfer failed */
2049
2050 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2051 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2052 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2053
2054 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2055 return false; /* DPCD not present */
2056
2057 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2058 DP_DWN_STRM_PORT_PRESENT))
2059 return true; /* native DP sink */
2060
2061 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2062 return true; /* no per-port downstream info */
2063
2064 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2065 intel_dp->downstream_ports,
2066 DP_MAX_DOWNSTREAM_PORTS) == 0)
2067 return false; /* downstream port status fetch failed */
2068
2069 return true;
2070 }
2071
2072 static void
2073 intel_dp_probe_oui(struct intel_dp *intel_dp)
2074 {
2075 u8 buf[3];
2076
2077 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2078 return;
2079
2080 ironlake_edp_panel_vdd_on(intel_dp);
2081
2082 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2083 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2084 buf[0], buf[1], buf[2]);
2085
2086 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2087 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2088 buf[0], buf[1], buf[2]);
2089
2090 ironlake_edp_panel_vdd_off(intel_dp, false);
2091 }
2092
2093 static bool
2094 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2095 {
2096 int ret;
2097
2098 ret = intel_dp_aux_native_read_retry(intel_dp,
2099 DP_DEVICE_SERVICE_IRQ_VECTOR,
2100 sink_irq_vector, 1);
2101 if (!ret)
2102 return false;
2103
2104 return true;
2105 }
2106
2107 static void
2108 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2109 {
2110 /* NAK by default */
2111 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2112 }
2113
2114 /*
2115 * According to DP spec
2116 * 5.1.2:
2117 * 1. Read DPCD
2118 * 2. Configure link according to Receiver Capabilities
2119 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2120 * 4. Check link status on receipt of hot-plug interrupt
2121 */
2122
2123 void
2124 intel_dp_check_link_status(struct intel_dp *intel_dp)
2125 {
2126 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2127 u8 sink_irq_vector;
2128 u8 link_status[DP_LINK_STATUS_SIZE];
2129
2130 if (!intel_encoder->connectors_active)
2131 return;
2132
2133 if (WARN_ON(!intel_encoder->base.crtc))
2134 return;
2135
2136 /* Try to read receiver status if the link appears to be up */
2137 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2138 intel_dp_link_down(intel_dp);
2139 return;
2140 }
2141
2142 /* Now read the DPCD to see if it's actually running */
2143 if (!intel_dp_get_dpcd(intel_dp)) {
2144 intel_dp_link_down(intel_dp);
2145 return;
2146 }
2147
2148 /* Try to read the source of the interrupt */
2149 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2150 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2151 /* Clear interrupt source */
2152 intel_dp_aux_native_write_1(intel_dp,
2153 DP_DEVICE_SERVICE_IRQ_VECTOR,
2154 sink_irq_vector);
2155
2156 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2157 intel_dp_handle_test_request(intel_dp);
2158 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2159 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2160 }
2161
2162 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2163 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2164 drm_get_encoder_name(&intel_encoder->base));
2165 intel_dp_start_link_train(intel_dp);
2166 intel_dp_complete_link_train(intel_dp);
2167 }
2168 }
2169
2170 /* XXX this is probably wrong for multiple downstream ports */
2171 static enum drm_connector_status
2172 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2173 {
2174 uint8_t *dpcd = intel_dp->dpcd;
2175 bool hpd;
2176 uint8_t type;
2177
2178 if (!intel_dp_get_dpcd(intel_dp))
2179 return connector_status_disconnected;
2180
2181 /* if there's no downstream port, we're done */
2182 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2183 return connector_status_connected;
2184
2185 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2186 hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
2187 if (hpd) {
2188 uint8_t reg;
2189 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2190 &reg, 1))
2191 return connector_status_unknown;
2192 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2193 : connector_status_disconnected;
2194 }
2195
2196 /* If no HPD, poke DDC gently */
2197 if (drm_probe_ddc(&intel_dp->adapter))
2198 return connector_status_connected;
2199
2200 /* Well we tried, say unknown for unreliable port types */
2201 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2202 if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
2203 return connector_status_unknown;
2204
2205 /* Anything else is out of spec, warn and ignore */
2206 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2207 return connector_status_disconnected;
2208 }
2209
2210 static enum drm_connector_status
2211 ironlake_dp_detect(struct intel_dp *intel_dp)
2212 {
2213 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2214 struct drm_i915_private *dev_priv = dev->dev_private;
2215 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2216 enum drm_connector_status status;
2217
2218 /* Can't disconnect eDP, but you can close the lid... */
2219 if (is_edp(intel_dp)) {
2220 status = intel_panel_detect(dev);
2221 if (status == connector_status_unknown)
2222 status = connector_status_connected;
2223 return status;
2224 }
2225
2226 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2227 return connector_status_disconnected;
2228
2229 return intel_dp_detect_dpcd(intel_dp);
2230 }
2231
2232 static enum drm_connector_status
2233 g4x_dp_detect(struct intel_dp *intel_dp)
2234 {
2235 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2236 struct drm_i915_private *dev_priv = dev->dev_private;
2237 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2238 uint32_t bit;
2239
2240 /* Can't disconnect eDP, but you can close the lid... */
2241 if (is_edp(intel_dp)) {
2242 enum drm_connector_status status;
2243
2244 status = intel_panel_detect(dev);
2245 if (status == connector_status_unknown)
2246 status = connector_status_connected;
2247 return status;
2248 }
2249
2250 switch (intel_dig_port->port) {
2251 case PORT_B:
2252 bit = PORTB_HOTPLUG_LIVE_STATUS;
2253 break;
2254 case PORT_C:
2255 bit = PORTC_HOTPLUG_LIVE_STATUS;
2256 break;
2257 case PORT_D:
2258 bit = PORTD_HOTPLUG_LIVE_STATUS;
2259 break;
2260 default:
2261 return connector_status_unknown;
2262 }
2263
2264 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2265 return connector_status_disconnected;
2266
2267 return intel_dp_detect_dpcd(intel_dp);
2268 }
2269
2270 static struct edid *
2271 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2272 {
2273 struct intel_connector *intel_connector = to_intel_connector(connector);
2274
2275 /* use cached edid if we have one */
2276 if (intel_connector->edid) {
2277 struct edid *edid;
2278 int size;
2279
2280 /* invalid edid */
2281 if (IS_ERR(intel_connector->edid))
2282 return NULL;
2283
2284 size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
2285 edid = kmalloc(size, GFP_KERNEL);
2286 if (!edid)
2287 return NULL;
2288
2289 memcpy(edid, intel_connector->edid, size);
2290 return edid;
2291 }
2292
2293 return drm_get_edid(connector, adapter);
2294 }
2295
2296 static int
2297 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2298 {
2299 struct intel_connector *intel_connector = to_intel_connector(connector);
2300
2301 /* use cached edid if we have one */
2302 if (intel_connector->edid) {
2303 /* invalid edid */
2304 if (IS_ERR(intel_connector->edid))
2305 return 0;
2306
2307 return intel_connector_update_modes(connector,
2308 intel_connector->edid);
2309 }
2310
2311 return intel_ddc_get_modes(connector, adapter);
2312 }
2313
2314 static enum drm_connector_status
2315 intel_dp_detect(struct drm_connector *connector, bool force)
2316 {
2317 struct intel_dp *intel_dp = intel_attached_dp(connector);
2318 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2319 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2320 struct drm_device *dev = connector->dev;
2321 enum drm_connector_status status;
2322 struct edid *edid = NULL;
2323
2324 intel_dp->has_audio = false;
2325
2326 if (HAS_PCH_SPLIT(dev))
2327 status = ironlake_dp_detect(intel_dp);
2328 else
2329 status = g4x_dp_detect(intel_dp);
2330
2331 if (status != connector_status_connected)
2332 return status;
2333
2334 intel_dp_probe_oui(intel_dp);
2335
2336 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2337 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2338 } else {
2339 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2340 if (edid) {
2341 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2342 kfree(edid);
2343 }
2344 }
2345
2346 if (intel_encoder->type != INTEL_OUTPUT_EDP)
2347 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2348 return connector_status_connected;
2349 }
2350
2351 static int intel_dp_get_modes(struct drm_connector *connector)
2352 {
2353 struct intel_dp *intel_dp = intel_attached_dp(connector);
2354 struct intel_connector *intel_connector = to_intel_connector(connector);
2355 struct drm_device *dev = connector->dev;
2356 int ret;
2357
2358 /* We should parse the EDID data and find out if it has an audio sink
2359 */
2360
2361 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2362 if (ret)
2363 return ret;
2364
2365 /* if eDP has no EDID, fall back to fixed mode */
2366 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2367 struct drm_display_mode *mode;
2368 mode = drm_mode_duplicate(dev,
2369 intel_connector->panel.fixed_mode);
2370 if (mode) {
2371 drm_mode_probed_add(connector, mode);
2372 return 1;
2373 }
2374 }
2375 return 0;
2376 }
2377
2378 static bool
2379 intel_dp_detect_audio(struct drm_connector *connector)
2380 {
2381 struct intel_dp *intel_dp = intel_attached_dp(connector);
2382 struct edid *edid;
2383 bool has_audio = false;
2384
2385 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2386 if (edid) {
2387 has_audio = drm_detect_monitor_audio(edid);
2388 kfree(edid);
2389 }
2390
2391 return has_audio;
2392 }
2393
2394 static int
2395 intel_dp_set_property(struct drm_connector *connector,
2396 struct drm_property *property,
2397 uint64_t val)
2398 {
2399 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2400 struct intel_connector *intel_connector = to_intel_connector(connector);
2401 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
2402 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2403 int ret;
2404
2405 ret = drm_object_property_set_value(&connector->base, property, val);
2406 if (ret)
2407 return ret;
2408
2409 if (property == dev_priv->force_audio_property) {
2410 int i = val;
2411 bool has_audio;
2412
2413 if (i == intel_dp->force_audio)
2414 return 0;
2415
2416 intel_dp->force_audio = i;
2417
2418 if (i == HDMI_AUDIO_AUTO)
2419 has_audio = intel_dp_detect_audio(connector);
2420 else
2421 has_audio = (i == HDMI_AUDIO_ON);
2422
2423 if (has_audio == intel_dp->has_audio)
2424 return 0;
2425
2426 intel_dp->has_audio = has_audio;
2427 goto done;
2428 }
2429
2430 if (property == dev_priv->broadcast_rgb_property) {
2431 bool old_auto = intel_dp->color_range_auto;
2432 uint32_t old_range = intel_dp->color_range;
2433
2434 switch (val) {
2435 case INTEL_BROADCAST_RGB_AUTO:
2436 intel_dp->color_range_auto = true;
2437 break;
2438 case INTEL_BROADCAST_RGB_FULL:
2439 intel_dp->color_range_auto = false;
2440 intel_dp->color_range = 0;
2441 break;
2442 case INTEL_BROADCAST_RGB_LIMITED:
2443 intel_dp->color_range_auto = false;
2444 intel_dp->color_range = DP_COLOR_RANGE_16_235;
2445 break;
2446 default:
2447 return -EINVAL;
2448 }
2449
2450 if (old_auto == intel_dp->color_range_auto &&
2451 old_range == intel_dp->color_range)
2452 return 0;
2453
2454 goto done;
2455 }
2456
2457 if (is_edp(intel_dp) &&
2458 property == connector->dev->mode_config.scaling_mode_property) {
2459 if (val == DRM_MODE_SCALE_NONE) {
2460 DRM_DEBUG_KMS("no scaling not supported\n");
2461 return -EINVAL;
2462 }
2463
2464 if (intel_connector->panel.fitting_mode == val) {
2465 /* the eDP scaling property is not changed */
2466 return 0;
2467 }
2468 intel_connector->panel.fitting_mode = val;
2469
2470 goto done;
2471 }
2472
2473 return -EINVAL;
2474
2475 done:
2476 if (intel_encoder->base.crtc)
2477 intel_crtc_restore_mode(intel_encoder->base.crtc);
2478
2479 return 0;
2480 }
2481
2482 static void
2483 intel_dp_destroy(struct drm_connector *connector)
2484 {
2485 struct intel_dp *intel_dp = intel_attached_dp(connector);
2486 struct intel_connector *intel_connector = to_intel_connector(connector);
2487
2488 if (!IS_ERR_OR_NULL(intel_connector->edid))
2489 kfree(intel_connector->edid);
2490
2491 if (is_edp(intel_dp))
2492 intel_panel_fini(&intel_connector->panel);
2493
2494 drm_sysfs_connector_remove(connector);
2495 drm_connector_cleanup(connector);
2496 kfree(connector);
2497 }
2498
2499 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2500 {
2501 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2502 struct intel_dp *intel_dp = &intel_dig_port->dp;
2503 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2504
2505 i2c_del_adapter(&intel_dp->adapter);
2506 drm_encoder_cleanup(encoder);
2507 if (is_edp(intel_dp)) {
2508 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2509 mutex_lock(&dev->mode_config.mutex);
2510 ironlake_panel_vdd_off_sync(intel_dp);
2511 mutex_unlock(&dev->mode_config.mutex);
2512 }
2513 kfree(intel_dig_port);
2514 }
2515
2516 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2517 .mode_set = intel_dp_mode_set,
2518 };
2519
2520 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2521 .dpms = intel_connector_dpms,
2522 .detect = intel_dp_detect,
2523 .fill_modes = drm_helper_probe_single_connector_modes,
2524 .set_property = intel_dp_set_property,
2525 .destroy = intel_dp_destroy,
2526 };
2527
2528 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2529 .get_modes = intel_dp_get_modes,
2530 .mode_valid = intel_dp_mode_valid,
2531 .best_encoder = intel_best_encoder,
2532 };
2533
2534 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2535 .destroy = intel_dp_encoder_destroy,
2536 };
2537
2538 static void
2539 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2540 {
2541 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2542
2543 intel_dp_check_link_status(intel_dp);
2544 }
2545
2546 /* Return which DP Port should be selected for Transcoder DP control */
2547 int
2548 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2549 {
2550 struct drm_device *dev = crtc->dev;
2551 struct intel_encoder *intel_encoder;
2552 struct intel_dp *intel_dp;
2553
2554 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2555 intel_dp = enc_to_intel_dp(&intel_encoder->base);
2556
2557 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2558 intel_encoder->type == INTEL_OUTPUT_EDP)
2559 return intel_dp->output_reg;
2560 }
2561
2562 return -1;
2563 }
2564
2565 /* check the VBT to see whether the eDP is on DP-D port */
2566 bool intel_dpd_is_edp(struct drm_device *dev)
2567 {
2568 struct drm_i915_private *dev_priv = dev->dev_private;
2569 struct child_device_config *p_child;
2570 int i;
2571
2572 if (!dev_priv->child_dev_num)
2573 return false;
2574
2575 for (i = 0; i < dev_priv->child_dev_num; i++) {
2576 p_child = dev_priv->child_dev + i;
2577
2578 if (p_child->dvo_port == PORT_IDPD &&
2579 p_child->device_type == DEVICE_TYPE_eDP)
2580 return true;
2581 }
2582 return false;
2583 }
2584
2585 static void
2586 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2587 {
2588 struct intel_connector *intel_connector = to_intel_connector(connector);
2589
2590 intel_attach_force_audio_property(connector);
2591 intel_attach_broadcast_rgb_property(connector);
2592 intel_dp->color_range_auto = true;
2593
2594 if (is_edp(intel_dp)) {
2595 drm_mode_create_scaling_mode_property(connector->dev);
2596 drm_object_attach_property(
2597 &connector->base,
2598 connector->dev->mode_config.scaling_mode_property,
2599 DRM_MODE_SCALE_ASPECT);
2600 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
2601 }
2602 }
2603
2604 static void
2605 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
2606 struct intel_dp *intel_dp,
2607 struct edp_power_seq *out)
2608 {
2609 struct drm_i915_private *dev_priv = dev->dev_private;
2610 struct edp_power_seq cur, vbt, spec, final;
2611 u32 pp_on, pp_off, pp_div, pp;
2612 int pp_control_reg, pp_on_reg, pp_off_reg, pp_div_reg;
2613
2614 if (HAS_PCH_SPLIT(dev)) {
2615 pp_control_reg = PCH_PP_CONTROL;
2616 pp_on_reg = PCH_PP_ON_DELAYS;
2617 pp_off_reg = PCH_PP_OFF_DELAYS;
2618 pp_div_reg = PCH_PP_DIVISOR;
2619 } else {
2620 pp_control_reg = PIPEA_PP_CONTROL;
2621 pp_on_reg = PIPEA_PP_ON_DELAYS;
2622 pp_off_reg = PIPEA_PP_OFF_DELAYS;
2623 pp_div_reg = PIPEA_PP_DIVISOR;
2624 }
2625
2626 /* Workaround: Need to write PP_CONTROL with the unlock key as
2627 * the very first thing. */
2628 pp = ironlake_get_pp_control(intel_dp);
2629 I915_WRITE(pp_control_reg, pp);
2630
2631 pp_on = I915_READ(pp_on_reg);
2632 pp_off = I915_READ(pp_off_reg);
2633 pp_div = I915_READ(pp_div_reg);
2634
2635 /* Pull timing values out of registers */
2636 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2637 PANEL_POWER_UP_DELAY_SHIFT;
2638
2639 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2640 PANEL_LIGHT_ON_DELAY_SHIFT;
2641
2642 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2643 PANEL_LIGHT_OFF_DELAY_SHIFT;
2644
2645 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2646 PANEL_POWER_DOWN_DELAY_SHIFT;
2647
2648 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2649 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2650
2651 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2652 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2653
2654 vbt = dev_priv->edp.pps;
2655
2656 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
2657 * our hw here, which are all in 100usec. */
2658 spec.t1_t3 = 210 * 10;
2659 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
2660 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
2661 spec.t10 = 500 * 10;
2662 /* This one is special and actually in units of 100ms, but zero
2663 * based in the hw (so we need to add 100 ms). But the sw vbt
2664 * table multiplies it with 1000 to make it in units of 100usec,
2665 * too. */
2666 spec.t11_t12 = (510 + 100) * 10;
2667
2668 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2669 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2670
2671 /* Use the max of the register settings and vbt. If both are
2672 * unset, fall back to the spec limits. */
2673 #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
2674 spec.field : \
2675 max(cur.field, vbt.field))
2676 assign_final(t1_t3);
2677 assign_final(t8);
2678 assign_final(t9);
2679 assign_final(t10);
2680 assign_final(t11_t12);
2681 #undef assign_final
2682
2683 #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
2684 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2685 intel_dp->backlight_on_delay = get_delay(t8);
2686 intel_dp->backlight_off_delay = get_delay(t9);
2687 intel_dp->panel_power_down_delay = get_delay(t10);
2688 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2689 #undef get_delay
2690
2691 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2692 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2693 intel_dp->panel_power_cycle_delay);
2694
2695 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2696 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2697
2698 if (out)
2699 *out = final;
2700 }
2701
2702 static void
2703 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
2704 struct intel_dp *intel_dp,
2705 struct edp_power_seq *seq)
2706 {
2707 struct drm_i915_private *dev_priv = dev->dev_private;
2708 u32 pp_on, pp_off, pp_div, port_sel = 0;
2709 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
2710 int pp_on_reg, pp_off_reg, pp_div_reg;
2711
2712 if (HAS_PCH_SPLIT(dev)) {
2713 pp_on_reg = PCH_PP_ON_DELAYS;
2714 pp_off_reg = PCH_PP_OFF_DELAYS;
2715 pp_div_reg = PCH_PP_DIVISOR;
2716 } else {
2717 pp_on_reg = PIPEA_PP_ON_DELAYS;
2718 pp_off_reg = PIPEA_PP_OFF_DELAYS;
2719 pp_div_reg = PIPEA_PP_DIVISOR;
2720 }
2721
2722 if (IS_VALLEYVIEW(dev))
2723 port_sel = I915_READ(pp_on_reg) & 0xc0000000;
2724
2725 /* And finally store the new values in the power sequencer. */
2726 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
2727 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
2728 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
2729 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
2730 /* Compute the divisor for the pp clock, simply match the Bspec
2731 * formula. */
2732 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
2733 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
2734 << PANEL_POWER_CYCLE_DELAY_SHIFT);
2735
2736 /* Haswell doesn't have any port selection bits for the panel
2737 * power sequencer any more. */
2738 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
2739 if (is_cpu_edp(intel_dp))
2740 port_sel = PANEL_POWER_PORT_DP_A;
2741 else
2742 port_sel = PANEL_POWER_PORT_DP_D;
2743 }
2744
2745 pp_on |= port_sel;
2746
2747 I915_WRITE(pp_on_reg, pp_on);
2748 I915_WRITE(pp_off_reg, pp_off);
2749 I915_WRITE(pp_div_reg, pp_div);
2750
2751 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
2752 I915_READ(pp_on_reg),
2753 I915_READ(pp_off_reg),
2754 I915_READ(pp_div_reg));
2755 }
2756
2757 void
2758 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
2759 struct intel_connector *intel_connector)
2760 {
2761 struct drm_connector *connector = &intel_connector->base;
2762 struct intel_dp *intel_dp = &intel_dig_port->dp;
2763 struct intel_encoder *intel_encoder = &intel_dig_port->base;
2764 struct drm_device *dev = intel_encoder->base.dev;
2765 struct drm_i915_private *dev_priv = dev->dev_private;
2766 struct drm_display_mode *fixed_mode = NULL;
2767 struct edp_power_seq power_seq = { 0 };
2768 enum port port = intel_dig_port->port;
2769 const char *name = NULL;
2770 int type;
2771
2772 /* Preserve the current hw state. */
2773 intel_dp->DP = I915_READ(intel_dp->output_reg);
2774 intel_dp->attached_connector = intel_connector;
2775
2776 if (HAS_PCH_SPLIT(dev) && port == PORT_D)
2777 if (intel_dpd_is_edp(dev))
2778 intel_dp->is_pch_edp = true;
2779
2780 /*
2781 * FIXME : We need to initialize built-in panels before external panels.
2782 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
2783 */
2784 if (IS_VALLEYVIEW(dev) && port == PORT_C) {
2785 type = DRM_MODE_CONNECTOR_eDP;
2786 intel_encoder->type = INTEL_OUTPUT_EDP;
2787 } else if (port == PORT_A || is_pch_edp(intel_dp)) {
2788 type = DRM_MODE_CONNECTOR_eDP;
2789 intel_encoder->type = INTEL_OUTPUT_EDP;
2790 } else {
2791 /* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
2792 * DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
2793 * rewrite it.
2794 */
2795 type = DRM_MODE_CONNECTOR_DisplayPort;
2796 }
2797
2798 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2799 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2800
2801 connector->interlace_allowed = true;
2802 connector->doublescan_allowed = 0;
2803
2804 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2805 ironlake_panel_vdd_work);
2806
2807 intel_connector_attach_encoder(intel_connector, intel_encoder);
2808 drm_sysfs_connector_add(connector);
2809
2810 if (HAS_DDI(dev))
2811 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2812 else
2813 intel_connector->get_hw_state = intel_connector_get_hw_state;
2814
2815 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
2816 if (HAS_DDI(dev)) {
2817 switch (intel_dig_port->port) {
2818 case PORT_A:
2819 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
2820 break;
2821 case PORT_B:
2822 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
2823 break;
2824 case PORT_C:
2825 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
2826 break;
2827 case PORT_D:
2828 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
2829 break;
2830 default:
2831 BUG();
2832 }
2833 }
2834
2835 /* Set up the DDC bus. */
2836 switch (port) {
2837 case PORT_A:
2838 intel_encoder->hpd_pin = HPD_PORT_A;
2839 name = "DPDDC-A";
2840 break;
2841 case PORT_B:
2842 intel_encoder->hpd_pin = HPD_PORT_B;
2843 name = "DPDDC-B";
2844 break;
2845 case PORT_C:
2846 intel_encoder->hpd_pin = HPD_PORT_C;
2847 name = "DPDDC-C";
2848 break;
2849 case PORT_D:
2850 intel_encoder->hpd_pin = HPD_PORT_D;
2851 name = "DPDDC-D";
2852 break;
2853 default:
2854 BUG();
2855 }
2856
2857 if (is_edp(intel_dp))
2858 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
2859
2860 intel_dp_i2c_init(intel_dp, intel_connector, name);
2861
2862 /* Cache DPCD and EDID for edp. */
2863 if (is_edp(intel_dp)) {
2864 bool ret;
2865 struct drm_display_mode *scan;
2866 struct edid *edid;
2867
2868 ironlake_edp_panel_vdd_on(intel_dp);
2869 ret = intel_dp_get_dpcd(intel_dp);
2870 ironlake_edp_panel_vdd_off(intel_dp, false);
2871
2872 if (ret) {
2873 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2874 dev_priv->no_aux_handshake =
2875 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2876 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2877 } else {
2878 /* if this fails, presume the device is a ghost */
2879 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2880 intel_dp_encoder_destroy(&intel_encoder->base);
2881 intel_dp_destroy(connector);
2882 return;
2883 }
2884
2885 /* We now know it's not a ghost, init power sequence regs. */
2886 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
2887 &power_seq);
2888
2889 ironlake_edp_panel_vdd_on(intel_dp);
2890 edid = drm_get_edid(connector, &intel_dp->adapter);
2891 if (edid) {
2892 if (drm_add_edid_modes(connector, edid)) {
2893 drm_mode_connector_update_edid_property(connector, edid);
2894 drm_edid_to_eld(connector, edid);
2895 } else {
2896 kfree(edid);
2897 edid = ERR_PTR(-EINVAL);
2898 }
2899 } else {
2900 edid = ERR_PTR(-ENOENT);
2901 }
2902 intel_connector->edid = edid;
2903
2904 /* prefer fixed mode from EDID if available */
2905 list_for_each_entry(scan, &connector->probed_modes, head) {
2906 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
2907 fixed_mode = drm_mode_duplicate(dev, scan);
2908 break;
2909 }
2910 }
2911
2912 /* fallback to VBT if available for eDP */
2913 if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
2914 fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2915 if (fixed_mode)
2916 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
2917 }
2918
2919 ironlake_edp_panel_vdd_off(intel_dp, false);
2920 }
2921
2922 if (is_edp(intel_dp)) {
2923 intel_panel_init(&intel_connector->panel, fixed_mode);
2924 intel_panel_setup_backlight(connector);
2925 }
2926
2927 intel_dp_add_properties(intel_dp, connector);
2928
2929 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2930 * 0xd. Failure to do so will result in spurious interrupts being
2931 * generated on the port when a cable is not attached.
2932 */
2933 if (IS_G4X(dev) && !IS_GM45(dev)) {
2934 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2935 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2936 }
2937 }
2938
2939 void
2940 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
2941 {
2942 struct intel_digital_port *intel_dig_port;
2943 struct intel_encoder *intel_encoder;
2944 struct drm_encoder *encoder;
2945 struct intel_connector *intel_connector;
2946
2947 intel_dig_port = kzalloc(sizeof(struct intel_digital_port), GFP_KERNEL);
2948 if (!intel_dig_port)
2949 return;
2950
2951 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2952 if (!intel_connector) {
2953 kfree(intel_dig_port);
2954 return;
2955 }
2956
2957 intel_encoder = &intel_dig_port->base;
2958 encoder = &intel_encoder->base;
2959
2960 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2961 DRM_MODE_ENCODER_TMDS);
2962 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2963
2964 intel_encoder->compute_config = intel_dp_compute_config;
2965 intel_encoder->enable = intel_enable_dp;
2966 intel_encoder->pre_enable = intel_pre_enable_dp;
2967 intel_encoder->disable = intel_disable_dp;
2968 intel_encoder->post_disable = intel_post_disable_dp;
2969 intel_encoder->get_hw_state = intel_dp_get_hw_state;
2970
2971 intel_dig_port->port = port;
2972 intel_dig_port->dp.output_reg = output_reg;
2973
2974 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2975 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2976 intel_encoder->cloneable = false;
2977 intel_encoder->hot_plug = intel_dp_hot_plug;
2978
2979 intel_dp_init_connector(intel_dig_port, intel_connector);
2980 }