UAPI: (Scripted) Convert #include "..." to #include <path/...> in drivers/gpu/
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38 #include <drm/drm_dp_helper.h>
39
40 #define DP_RECEIVER_CAP_SIZE 0xf
41 #define DP_LINK_STATUS_SIZE 6
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 #define DP_LINK_CONFIGURATION_SIZE 9
45
46 struct intel_dp {
47 struct intel_encoder base;
48 uint32_t output_reg;
49 uint32_t DP;
50 uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
51 bool has_audio;
52 enum hdmi_force_audio force_audio;
53 uint32_t color_range;
54 int dpms_mode;
55 uint8_t link_bw;
56 uint8_t lane_count;
57 uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
58 struct i2c_adapter adapter;
59 struct i2c_algo_dp_aux_data algo;
60 bool is_pch_edp;
61 uint8_t train_set[4];
62 int panel_power_up_delay;
63 int panel_power_down_delay;
64 int panel_power_cycle_delay;
65 int backlight_on_delay;
66 int backlight_off_delay;
67 struct drm_display_mode *panel_fixed_mode; /* for eDP */
68 struct delayed_work panel_vdd_work;
69 bool want_panel_vdd;
70 struct edid *edid; /* cached EDID for eDP */
71 int edid_mode_count;
72 };
73
74 /**
75 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
76 * @intel_dp: DP struct
77 *
78 * If a CPU or PCH DP output is attached to an eDP panel, this function
79 * will return true, and false otherwise.
80 */
81 static bool is_edp(struct intel_dp *intel_dp)
82 {
83 return intel_dp->base.type == INTEL_OUTPUT_EDP;
84 }
85
86 /**
87 * is_pch_edp - is the port on the PCH and attached to an eDP panel?
88 * @intel_dp: DP struct
89 *
90 * Returns true if the given DP struct corresponds to a PCH DP port attached
91 * to an eDP panel, false otherwise. Helpful for determining whether we
92 * may need FDI resources for a given DP output or not.
93 */
94 static bool is_pch_edp(struct intel_dp *intel_dp)
95 {
96 return intel_dp->is_pch_edp;
97 }
98
99 /**
100 * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
101 * @intel_dp: DP struct
102 *
103 * Returns true if the given DP struct corresponds to a CPU eDP port.
104 */
105 static bool is_cpu_edp(struct intel_dp *intel_dp)
106 {
107 return is_edp(intel_dp) && !is_pch_edp(intel_dp);
108 }
109
110 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
111 {
112 return container_of(encoder, struct intel_dp, base.base);
113 }
114
115 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
116 {
117 return container_of(intel_attached_encoder(connector),
118 struct intel_dp, base);
119 }
120
121 /**
122 * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
123 * @encoder: DRM encoder
124 *
125 * Return true if @encoder corresponds to a PCH attached eDP panel. Needed
126 * by intel_display.c.
127 */
128 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
129 {
130 struct intel_dp *intel_dp;
131
132 if (!encoder)
133 return false;
134
135 intel_dp = enc_to_intel_dp(encoder);
136
137 return is_pch_edp(intel_dp);
138 }
139
140 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
141 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
142 static void intel_dp_link_down(struct intel_dp *intel_dp);
143
144 void
145 intel_edp_link_config(struct intel_encoder *intel_encoder,
146 int *lane_num, int *link_bw)
147 {
148 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
149
150 *lane_num = intel_dp->lane_count;
151 if (intel_dp->link_bw == DP_LINK_BW_1_62)
152 *link_bw = 162000;
153 else if (intel_dp->link_bw == DP_LINK_BW_2_7)
154 *link_bw = 270000;
155 }
156
157 int
158 intel_edp_target_clock(struct intel_encoder *intel_encoder,
159 struct drm_display_mode *mode)
160 {
161 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
162
163 if (intel_dp->panel_fixed_mode)
164 return intel_dp->panel_fixed_mode->clock;
165 else
166 return mode->clock;
167 }
168
169 static int
170 intel_dp_max_lane_count(struct intel_dp *intel_dp)
171 {
172 int max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
173 switch (max_lane_count) {
174 case 1: case 2: case 4:
175 break;
176 default:
177 max_lane_count = 4;
178 }
179 return max_lane_count;
180 }
181
182 static int
183 intel_dp_max_link_bw(struct intel_dp *intel_dp)
184 {
185 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
186
187 switch (max_link_bw) {
188 case DP_LINK_BW_1_62:
189 case DP_LINK_BW_2_7:
190 break;
191 default:
192 max_link_bw = DP_LINK_BW_1_62;
193 break;
194 }
195 return max_link_bw;
196 }
197
198 static int
199 intel_dp_link_clock(uint8_t link_bw)
200 {
201 if (link_bw == DP_LINK_BW_2_7)
202 return 270000;
203 else
204 return 162000;
205 }
206
207 /*
208 * The units on the numbers in the next two are... bizarre. Examples will
209 * make it clearer; this one parallels an example in the eDP spec.
210 *
211 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
212 *
213 * 270000 * 1 * 8 / 10 == 216000
214 *
215 * The actual data capacity of that configuration is 2.16Gbit/s, so the
216 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
217 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
218 * 119000. At 18bpp that's 2142000 kilobits per second.
219 *
220 * Thus the strange-looking division by 10 in intel_dp_link_required, to
221 * get the result in decakilobits instead of kilobits.
222 */
223
224 static int
225 intel_dp_link_required(int pixel_clock, int bpp)
226 {
227 return (pixel_clock * bpp + 9) / 10;
228 }
229
230 static int
231 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
232 {
233 return (max_link_clock * max_lanes * 8) / 10;
234 }
235
236 static bool
237 intel_dp_adjust_dithering(struct intel_dp *intel_dp,
238 struct drm_display_mode *mode,
239 bool adjust_mode)
240 {
241 int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
242 int max_lanes = intel_dp_max_lane_count(intel_dp);
243 int max_rate, mode_rate;
244
245 mode_rate = intel_dp_link_required(mode->clock, 24);
246 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
247
248 if (mode_rate > max_rate) {
249 mode_rate = intel_dp_link_required(mode->clock, 18);
250 if (mode_rate > max_rate)
251 return false;
252
253 if (adjust_mode)
254 mode->private_flags
255 |= INTEL_MODE_DP_FORCE_6BPC;
256
257 return true;
258 }
259
260 return true;
261 }
262
263 static int
264 intel_dp_mode_valid(struct drm_connector *connector,
265 struct drm_display_mode *mode)
266 {
267 struct intel_dp *intel_dp = intel_attached_dp(connector);
268
269 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
270 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
271 return MODE_PANEL;
272
273 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
274 return MODE_PANEL;
275 }
276
277 if (!intel_dp_adjust_dithering(intel_dp, mode, false))
278 return MODE_CLOCK_HIGH;
279
280 if (mode->clock < 10000)
281 return MODE_CLOCK_LOW;
282
283 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
284 return MODE_H_ILLEGAL;
285
286 return MODE_OK;
287 }
288
289 static uint32_t
290 pack_aux(uint8_t *src, int src_bytes)
291 {
292 int i;
293 uint32_t v = 0;
294
295 if (src_bytes > 4)
296 src_bytes = 4;
297 for (i = 0; i < src_bytes; i++)
298 v |= ((uint32_t) src[i]) << ((3-i) * 8);
299 return v;
300 }
301
302 static void
303 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
304 {
305 int i;
306 if (dst_bytes > 4)
307 dst_bytes = 4;
308 for (i = 0; i < dst_bytes; i++)
309 dst[i] = src >> ((3-i) * 8);
310 }
311
312 /* hrawclock is 1/4 the FSB frequency */
313 static int
314 intel_hrawclk(struct drm_device *dev)
315 {
316 struct drm_i915_private *dev_priv = dev->dev_private;
317 uint32_t clkcfg;
318
319 clkcfg = I915_READ(CLKCFG);
320 switch (clkcfg & CLKCFG_FSB_MASK) {
321 case CLKCFG_FSB_400:
322 return 100;
323 case CLKCFG_FSB_533:
324 return 133;
325 case CLKCFG_FSB_667:
326 return 166;
327 case CLKCFG_FSB_800:
328 return 200;
329 case CLKCFG_FSB_1067:
330 return 266;
331 case CLKCFG_FSB_1333:
332 return 333;
333 /* these two are just a guess; one of them might be right */
334 case CLKCFG_FSB_1600:
335 case CLKCFG_FSB_1600_ALT:
336 return 400;
337 default:
338 return 133;
339 }
340 }
341
342 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
343 {
344 struct drm_device *dev = intel_dp->base.base.dev;
345 struct drm_i915_private *dev_priv = dev->dev_private;
346
347 return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
348 }
349
350 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
351 {
352 struct drm_device *dev = intel_dp->base.base.dev;
353 struct drm_i915_private *dev_priv = dev->dev_private;
354
355 return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
356 }
357
358 static void
359 intel_dp_check_edp(struct intel_dp *intel_dp)
360 {
361 struct drm_device *dev = intel_dp->base.base.dev;
362 struct drm_i915_private *dev_priv = dev->dev_private;
363
364 if (!is_edp(intel_dp))
365 return;
366 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
367 WARN(1, "eDP powered off while attempting aux channel communication.\n");
368 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
369 I915_READ(PCH_PP_STATUS),
370 I915_READ(PCH_PP_CONTROL));
371 }
372 }
373
374 static int
375 intel_dp_aux_ch(struct intel_dp *intel_dp,
376 uint8_t *send, int send_bytes,
377 uint8_t *recv, int recv_size)
378 {
379 uint32_t output_reg = intel_dp->output_reg;
380 struct drm_device *dev = intel_dp->base.base.dev;
381 struct drm_i915_private *dev_priv = dev->dev_private;
382 uint32_t ch_ctl = output_reg + 0x10;
383 uint32_t ch_data = ch_ctl + 4;
384 int i;
385 int recv_bytes;
386 uint32_t status;
387 uint32_t aux_clock_divider;
388 int try, precharge;
389
390 intel_dp_check_edp(intel_dp);
391 /* The clock divider is based off the hrawclk,
392 * and would like to run at 2MHz. So, take the
393 * hrawclk value and divide by 2 and use that
394 *
395 * Note that PCH attached eDP panels should use a 125MHz input
396 * clock divider.
397 */
398 if (is_cpu_edp(intel_dp)) {
399 if (IS_GEN6(dev) || IS_GEN7(dev))
400 aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
401 else
402 aux_clock_divider = 225; /* eDP input clock at 450Mhz */
403 } else if (HAS_PCH_SPLIT(dev))
404 aux_clock_divider = 63; /* IRL input clock fixed at 125Mhz */
405 else
406 aux_clock_divider = intel_hrawclk(dev) / 2;
407
408 if (IS_GEN6(dev))
409 precharge = 3;
410 else
411 precharge = 5;
412
413 /* Try to wait for any previous AUX channel activity */
414 for (try = 0; try < 3; try++) {
415 status = I915_READ(ch_ctl);
416 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
417 break;
418 msleep(1);
419 }
420
421 if (try == 3) {
422 WARN(1, "dp_aux_ch not started status 0x%08x\n",
423 I915_READ(ch_ctl));
424 return -EBUSY;
425 }
426
427 /* Must try at least 3 times according to DP spec */
428 for (try = 0; try < 5; try++) {
429 /* Load the send data into the aux channel data registers */
430 for (i = 0; i < send_bytes; i += 4)
431 I915_WRITE(ch_data + i,
432 pack_aux(send + i, send_bytes - i));
433
434 /* Send the command and wait for it to complete */
435 I915_WRITE(ch_ctl,
436 DP_AUX_CH_CTL_SEND_BUSY |
437 DP_AUX_CH_CTL_TIME_OUT_400us |
438 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
439 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
440 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
441 DP_AUX_CH_CTL_DONE |
442 DP_AUX_CH_CTL_TIME_OUT_ERROR |
443 DP_AUX_CH_CTL_RECEIVE_ERROR);
444 for (;;) {
445 status = I915_READ(ch_ctl);
446 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
447 break;
448 udelay(100);
449 }
450
451 /* Clear done status and any errors */
452 I915_WRITE(ch_ctl,
453 status |
454 DP_AUX_CH_CTL_DONE |
455 DP_AUX_CH_CTL_TIME_OUT_ERROR |
456 DP_AUX_CH_CTL_RECEIVE_ERROR);
457
458 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
459 DP_AUX_CH_CTL_RECEIVE_ERROR))
460 continue;
461 if (status & DP_AUX_CH_CTL_DONE)
462 break;
463 }
464
465 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
466 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
467 return -EBUSY;
468 }
469
470 /* Check for timeout or receive error.
471 * Timeouts occur when the sink is not connected
472 */
473 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
474 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
475 return -EIO;
476 }
477
478 /* Timeouts occur when the device isn't connected, so they're
479 * "normal" -- don't fill the kernel log with these */
480 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
481 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
482 return -ETIMEDOUT;
483 }
484
485 /* Unload any bytes sent back from the other side */
486 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
487 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
488 if (recv_bytes > recv_size)
489 recv_bytes = recv_size;
490
491 for (i = 0; i < recv_bytes; i += 4)
492 unpack_aux(I915_READ(ch_data + i),
493 recv + i, recv_bytes - i);
494
495 return recv_bytes;
496 }
497
498 /* Write data to the aux channel in native mode */
499 static int
500 intel_dp_aux_native_write(struct intel_dp *intel_dp,
501 uint16_t address, uint8_t *send, int send_bytes)
502 {
503 int ret;
504 uint8_t msg[20];
505 int msg_bytes;
506 uint8_t ack;
507
508 intel_dp_check_edp(intel_dp);
509 if (send_bytes > 16)
510 return -1;
511 msg[0] = AUX_NATIVE_WRITE << 4;
512 msg[1] = address >> 8;
513 msg[2] = address & 0xff;
514 msg[3] = send_bytes - 1;
515 memcpy(&msg[4], send, send_bytes);
516 msg_bytes = send_bytes + 4;
517 for (;;) {
518 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
519 if (ret < 0)
520 return ret;
521 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
522 break;
523 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
524 udelay(100);
525 else
526 return -EIO;
527 }
528 return send_bytes;
529 }
530
531 /* Write a single byte to the aux channel in native mode */
532 static int
533 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
534 uint16_t address, uint8_t byte)
535 {
536 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
537 }
538
539 /* read bytes from a native aux channel */
540 static int
541 intel_dp_aux_native_read(struct intel_dp *intel_dp,
542 uint16_t address, uint8_t *recv, int recv_bytes)
543 {
544 uint8_t msg[4];
545 int msg_bytes;
546 uint8_t reply[20];
547 int reply_bytes;
548 uint8_t ack;
549 int ret;
550
551 intel_dp_check_edp(intel_dp);
552 msg[0] = AUX_NATIVE_READ << 4;
553 msg[1] = address >> 8;
554 msg[2] = address & 0xff;
555 msg[3] = recv_bytes - 1;
556
557 msg_bytes = 4;
558 reply_bytes = recv_bytes + 1;
559
560 for (;;) {
561 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
562 reply, reply_bytes);
563 if (ret == 0)
564 return -EPROTO;
565 if (ret < 0)
566 return ret;
567 ack = reply[0];
568 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
569 memcpy(recv, reply + 1, ret - 1);
570 return ret - 1;
571 }
572 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
573 udelay(100);
574 else
575 return -EIO;
576 }
577 }
578
579 static int
580 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
581 uint8_t write_byte, uint8_t *read_byte)
582 {
583 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
584 struct intel_dp *intel_dp = container_of(adapter,
585 struct intel_dp,
586 adapter);
587 uint16_t address = algo_data->address;
588 uint8_t msg[5];
589 uint8_t reply[2];
590 unsigned retry;
591 int msg_bytes;
592 int reply_bytes;
593 int ret;
594
595 intel_dp_check_edp(intel_dp);
596 /* Set up the command byte */
597 if (mode & MODE_I2C_READ)
598 msg[0] = AUX_I2C_READ << 4;
599 else
600 msg[0] = AUX_I2C_WRITE << 4;
601
602 if (!(mode & MODE_I2C_STOP))
603 msg[0] |= AUX_I2C_MOT << 4;
604
605 msg[1] = address >> 8;
606 msg[2] = address;
607
608 switch (mode) {
609 case MODE_I2C_WRITE:
610 msg[3] = 0;
611 msg[4] = write_byte;
612 msg_bytes = 5;
613 reply_bytes = 1;
614 break;
615 case MODE_I2C_READ:
616 msg[3] = 0;
617 msg_bytes = 4;
618 reply_bytes = 2;
619 break;
620 default:
621 msg_bytes = 3;
622 reply_bytes = 1;
623 break;
624 }
625
626 for (retry = 0; retry < 5; retry++) {
627 ret = intel_dp_aux_ch(intel_dp,
628 msg, msg_bytes,
629 reply, reply_bytes);
630 if (ret < 0) {
631 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
632 return ret;
633 }
634
635 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
636 case AUX_NATIVE_REPLY_ACK:
637 /* I2C-over-AUX Reply field is only valid
638 * when paired with AUX ACK.
639 */
640 break;
641 case AUX_NATIVE_REPLY_NACK:
642 DRM_DEBUG_KMS("aux_ch native nack\n");
643 return -EREMOTEIO;
644 case AUX_NATIVE_REPLY_DEFER:
645 udelay(100);
646 continue;
647 default:
648 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
649 reply[0]);
650 return -EREMOTEIO;
651 }
652
653 switch (reply[0] & AUX_I2C_REPLY_MASK) {
654 case AUX_I2C_REPLY_ACK:
655 if (mode == MODE_I2C_READ) {
656 *read_byte = reply[1];
657 }
658 return reply_bytes - 1;
659 case AUX_I2C_REPLY_NACK:
660 DRM_DEBUG_KMS("aux_i2c nack\n");
661 return -EREMOTEIO;
662 case AUX_I2C_REPLY_DEFER:
663 DRM_DEBUG_KMS("aux_i2c defer\n");
664 udelay(100);
665 break;
666 default:
667 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
668 return -EREMOTEIO;
669 }
670 }
671
672 DRM_ERROR("too many retries, giving up\n");
673 return -EREMOTEIO;
674 }
675
676 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
677 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
678
679 static int
680 intel_dp_i2c_init(struct intel_dp *intel_dp,
681 struct intel_connector *intel_connector, const char *name)
682 {
683 int ret;
684
685 DRM_DEBUG_KMS("i2c_init %s\n", name);
686 intel_dp->algo.running = false;
687 intel_dp->algo.address = 0;
688 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
689
690 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
691 intel_dp->adapter.owner = THIS_MODULE;
692 intel_dp->adapter.class = I2C_CLASS_DDC;
693 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
694 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
695 intel_dp->adapter.algo_data = &intel_dp->algo;
696 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
697
698 ironlake_edp_panel_vdd_on(intel_dp);
699 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
700 ironlake_edp_panel_vdd_off(intel_dp, false);
701 return ret;
702 }
703
704 static bool
705 intel_dp_mode_fixup(struct drm_encoder *encoder,
706 const struct drm_display_mode *mode,
707 struct drm_display_mode *adjusted_mode)
708 {
709 struct drm_device *dev = encoder->dev;
710 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
711 int lane_count, clock;
712 int max_lane_count = intel_dp_max_lane_count(intel_dp);
713 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
714 int bpp, mode_rate;
715 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
716
717 if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
718 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
719 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
720 mode, adjusted_mode);
721 }
722
723 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
724 return false;
725
726 DRM_DEBUG_KMS("DP link computation with max lane count %i "
727 "max bw %02x pixel clock %iKHz\n",
728 max_lane_count, bws[max_clock], adjusted_mode->clock);
729
730 if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
731 return false;
732
733 bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
734 mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
735
736 for (clock = 0; clock <= max_clock; clock++) {
737 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
738 int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
739
740 if (mode_rate <= link_avail) {
741 intel_dp->link_bw = bws[clock];
742 intel_dp->lane_count = lane_count;
743 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
744 DRM_DEBUG_KMS("DP link bw %02x lane "
745 "count %d clock %d bpp %d\n",
746 intel_dp->link_bw, intel_dp->lane_count,
747 adjusted_mode->clock, bpp);
748 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
749 mode_rate, link_avail);
750 return true;
751 }
752 }
753 }
754
755 return false;
756 }
757
758 struct intel_dp_m_n {
759 uint32_t tu;
760 uint32_t gmch_m;
761 uint32_t gmch_n;
762 uint32_t link_m;
763 uint32_t link_n;
764 };
765
766 static void
767 intel_reduce_ratio(uint32_t *num, uint32_t *den)
768 {
769 while (*num > 0xffffff || *den > 0xffffff) {
770 *num >>= 1;
771 *den >>= 1;
772 }
773 }
774
775 static void
776 intel_dp_compute_m_n(int bpp,
777 int nlanes,
778 int pixel_clock,
779 int link_clock,
780 struct intel_dp_m_n *m_n)
781 {
782 m_n->tu = 64;
783 m_n->gmch_m = (pixel_clock * bpp) >> 3;
784 m_n->gmch_n = link_clock * nlanes;
785 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
786 m_n->link_m = pixel_clock;
787 m_n->link_n = link_clock;
788 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
789 }
790
791 void
792 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
793 struct drm_display_mode *adjusted_mode)
794 {
795 struct drm_device *dev = crtc->dev;
796 struct intel_encoder *encoder;
797 struct drm_i915_private *dev_priv = dev->dev_private;
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int lane_count = 4;
800 struct intel_dp_m_n m_n;
801 int pipe = intel_crtc->pipe;
802
803 /*
804 * Find the lane count in the intel_encoder private
805 */
806 for_each_encoder_on_crtc(dev, crtc, encoder) {
807 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
808
809 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
810 intel_dp->base.type == INTEL_OUTPUT_EDP)
811 {
812 lane_count = intel_dp->lane_count;
813 break;
814 }
815 }
816
817 /*
818 * Compute the GMCH and Link ratios. The '3' here is
819 * the number of bytes_per_pixel post-LUT, which we always
820 * set up for 8-bits of R/G/B, or 3 bytes total.
821 */
822 intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
823 mode->clock, adjusted_mode->clock, &m_n);
824
825 if (HAS_PCH_SPLIT(dev)) {
826 I915_WRITE(TRANSDATA_M1(pipe),
827 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
828 m_n.gmch_m);
829 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
830 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
831 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
832 } else {
833 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
834 ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
835 m_n.gmch_m);
836 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
837 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
838 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
839 }
840 }
841
842 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
843 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
844
845 static void
846 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
847 struct drm_display_mode *adjusted_mode)
848 {
849 struct drm_device *dev = encoder->dev;
850 struct drm_i915_private *dev_priv = dev->dev_private;
851 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
852 struct drm_crtc *crtc = intel_dp->base.base.crtc;
853 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
854
855 /* Turn on the eDP PLL if needed */
856 if (is_edp(intel_dp)) {
857 if (!is_pch_edp(intel_dp))
858 ironlake_edp_pll_on(encoder);
859 else
860 ironlake_edp_pll_off(encoder);
861 }
862
863 /*
864 * There are four kinds of DP registers:
865 *
866 * IBX PCH
867 * SNB CPU
868 * IVB CPU
869 * CPT PCH
870 *
871 * IBX PCH and CPU are the same for almost everything,
872 * except that the CPU DP PLL is configured in this
873 * register
874 *
875 * CPT PCH is quite different, having many bits moved
876 * to the TRANS_DP_CTL register instead. That
877 * configuration happens (oddly) in ironlake_pch_enable
878 */
879
880 /* Preserve the BIOS-computed detected bit. This is
881 * supposed to be read-only.
882 */
883 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
884 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
885
886 /* Handle DP bits in common between all three register formats */
887
888 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
889
890 switch (intel_dp->lane_count) {
891 case 1:
892 intel_dp->DP |= DP_PORT_WIDTH_1;
893 break;
894 case 2:
895 intel_dp->DP |= DP_PORT_WIDTH_2;
896 break;
897 case 4:
898 intel_dp->DP |= DP_PORT_WIDTH_4;
899 break;
900 }
901 if (intel_dp->has_audio) {
902 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
903 pipe_name(intel_crtc->pipe));
904 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
905 intel_write_eld(encoder, adjusted_mode);
906 }
907 memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
908 intel_dp->link_configuration[0] = intel_dp->link_bw;
909 intel_dp->link_configuration[1] = intel_dp->lane_count;
910 intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
911 /*
912 * Check for DPCD version > 1.1 and enhanced framing support
913 */
914 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
915 (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
916 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
917 }
918
919 /* Split out the IBX/CPU vs CPT settings */
920
921 if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
922 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
923 intel_dp->DP |= DP_SYNC_HS_HIGH;
924 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
925 intel_dp->DP |= DP_SYNC_VS_HIGH;
926 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
927
928 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
929 intel_dp->DP |= DP_ENHANCED_FRAMING;
930
931 intel_dp->DP |= intel_crtc->pipe << 29;
932
933 /* don't miss out required setting for eDP */
934 intel_dp->DP |= DP_PLL_ENABLE;
935 if (adjusted_mode->clock < 200000)
936 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
937 else
938 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
939 } else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
940 intel_dp->DP |= intel_dp->color_range;
941
942 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
943 intel_dp->DP |= DP_SYNC_HS_HIGH;
944 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
945 intel_dp->DP |= DP_SYNC_VS_HIGH;
946 intel_dp->DP |= DP_LINK_TRAIN_OFF;
947
948 if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
949 intel_dp->DP |= DP_ENHANCED_FRAMING;
950
951 if (intel_crtc->pipe == 1)
952 intel_dp->DP |= DP_PIPEB_SELECT;
953
954 if (is_cpu_edp(intel_dp)) {
955 /* don't miss out required setting for eDP */
956 intel_dp->DP |= DP_PLL_ENABLE;
957 if (adjusted_mode->clock < 200000)
958 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
959 else
960 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
961 }
962 } else {
963 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
964 }
965 }
966
967 #define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
968 #define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
969
970 #define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
971 #define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
972
973 #define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
974 #define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
975
976 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
977 u32 mask,
978 u32 value)
979 {
980 struct drm_device *dev = intel_dp->base.base.dev;
981 struct drm_i915_private *dev_priv = dev->dev_private;
982
983 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
984 mask, value,
985 I915_READ(PCH_PP_STATUS),
986 I915_READ(PCH_PP_CONTROL));
987
988 if (_wait_for((I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10)) {
989 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
990 I915_READ(PCH_PP_STATUS),
991 I915_READ(PCH_PP_CONTROL));
992 }
993 }
994
995 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
996 {
997 DRM_DEBUG_KMS("Wait for panel power on\n");
998 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
999 }
1000
1001 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1002 {
1003 DRM_DEBUG_KMS("Wait for panel power off time\n");
1004 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1005 }
1006
1007 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1008 {
1009 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1010 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1011 }
1012
1013
1014 /* Read the current pp_control value, unlocking the register if it
1015 * is locked
1016 */
1017
1018 static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
1019 {
1020 u32 control = I915_READ(PCH_PP_CONTROL);
1021
1022 control &= ~PANEL_UNLOCK_MASK;
1023 control |= PANEL_UNLOCK_REGS;
1024 return control;
1025 }
1026
1027 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1028 {
1029 struct drm_device *dev = intel_dp->base.base.dev;
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 u32 pp;
1032
1033 if (!is_edp(intel_dp))
1034 return;
1035 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1036
1037 WARN(intel_dp->want_panel_vdd,
1038 "eDP VDD already requested on\n");
1039
1040 intel_dp->want_panel_vdd = true;
1041
1042 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1043 DRM_DEBUG_KMS("eDP VDD already on\n");
1044 return;
1045 }
1046
1047 if (!ironlake_edp_have_panel_power(intel_dp))
1048 ironlake_wait_panel_power_cycle(intel_dp);
1049
1050 pp = ironlake_get_pp_control(dev_priv);
1051 pp |= EDP_FORCE_VDD;
1052 I915_WRITE(PCH_PP_CONTROL, pp);
1053 POSTING_READ(PCH_PP_CONTROL);
1054 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1055 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1056
1057 /*
1058 * If the panel wasn't on, delay before accessing aux channel
1059 */
1060 if (!ironlake_edp_have_panel_power(intel_dp)) {
1061 DRM_DEBUG_KMS("eDP was not running\n");
1062 msleep(intel_dp->panel_power_up_delay);
1063 }
1064 }
1065
1066 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1067 {
1068 struct drm_device *dev = intel_dp->base.base.dev;
1069 struct drm_i915_private *dev_priv = dev->dev_private;
1070 u32 pp;
1071
1072 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1073 pp = ironlake_get_pp_control(dev_priv);
1074 pp &= ~EDP_FORCE_VDD;
1075 I915_WRITE(PCH_PP_CONTROL, pp);
1076 POSTING_READ(PCH_PP_CONTROL);
1077
1078 /* Make sure sequencer is idle before allowing subsequent activity */
1079 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
1080 I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
1081
1082 msleep(intel_dp->panel_power_down_delay);
1083 }
1084 }
1085
1086 static void ironlake_panel_vdd_work(struct work_struct *__work)
1087 {
1088 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1089 struct intel_dp, panel_vdd_work);
1090 struct drm_device *dev = intel_dp->base.base.dev;
1091
1092 mutex_lock(&dev->mode_config.mutex);
1093 ironlake_panel_vdd_off_sync(intel_dp);
1094 mutex_unlock(&dev->mode_config.mutex);
1095 }
1096
1097 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1098 {
1099 if (!is_edp(intel_dp))
1100 return;
1101
1102 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1103 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1104
1105 intel_dp->want_panel_vdd = false;
1106
1107 if (sync) {
1108 ironlake_panel_vdd_off_sync(intel_dp);
1109 } else {
1110 /*
1111 * Queue the timer to fire a long
1112 * time from now (relative to the power down delay)
1113 * to keep the panel power up across a sequence of operations
1114 */
1115 schedule_delayed_work(&intel_dp->panel_vdd_work,
1116 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1117 }
1118 }
1119
1120 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1121 {
1122 struct drm_device *dev = intel_dp->base.base.dev;
1123 struct drm_i915_private *dev_priv = dev->dev_private;
1124 u32 pp;
1125
1126 if (!is_edp(intel_dp))
1127 return;
1128
1129 DRM_DEBUG_KMS("Turn eDP power on\n");
1130
1131 if (ironlake_edp_have_panel_power(intel_dp)) {
1132 DRM_DEBUG_KMS("eDP power already on\n");
1133 return;
1134 }
1135
1136 ironlake_wait_panel_power_cycle(intel_dp);
1137
1138 pp = ironlake_get_pp_control(dev_priv);
1139 if (IS_GEN5(dev)) {
1140 /* ILK workaround: disable reset around power sequence */
1141 pp &= ~PANEL_POWER_RESET;
1142 I915_WRITE(PCH_PP_CONTROL, pp);
1143 POSTING_READ(PCH_PP_CONTROL);
1144 }
1145
1146 pp |= POWER_TARGET_ON;
1147 if (!IS_GEN5(dev))
1148 pp |= PANEL_POWER_RESET;
1149
1150 I915_WRITE(PCH_PP_CONTROL, pp);
1151 POSTING_READ(PCH_PP_CONTROL);
1152
1153 ironlake_wait_panel_on(intel_dp);
1154
1155 if (IS_GEN5(dev)) {
1156 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1157 I915_WRITE(PCH_PP_CONTROL, pp);
1158 POSTING_READ(PCH_PP_CONTROL);
1159 }
1160 }
1161
1162 static void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1163 {
1164 struct drm_device *dev = intel_dp->base.base.dev;
1165 struct drm_i915_private *dev_priv = dev->dev_private;
1166 u32 pp;
1167
1168 if (!is_edp(intel_dp))
1169 return;
1170
1171 DRM_DEBUG_KMS("Turn eDP power off\n");
1172
1173 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1174
1175 pp = ironlake_get_pp_control(dev_priv);
1176 /* We need to switch off panel power _and_ force vdd, for otherwise some
1177 * panels get very unhappy and cease to work. */
1178 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1179 I915_WRITE(PCH_PP_CONTROL, pp);
1180 POSTING_READ(PCH_PP_CONTROL);
1181
1182 intel_dp->want_panel_vdd = false;
1183
1184 ironlake_wait_panel_off(intel_dp);
1185 }
1186
1187 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1188 {
1189 struct drm_device *dev = intel_dp->base.base.dev;
1190 struct drm_i915_private *dev_priv = dev->dev_private;
1191 u32 pp;
1192
1193 if (!is_edp(intel_dp))
1194 return;
1195
1196 DRM_DEBUG_KMS("\n");
1197 /*
1198 * If we enable the backlight right away following a panel power
1199 * on, we may see slight flicker as the panel syncs with the eDP
1200 * link. So delay a bit to make sure the image is solid before
1201 * allowing it to appear.
1202 */
1203 msleep(intel_dp->backlight_on_delay);
1204 pp = ironlake_get_pp_control(dev_priv);
1205 pp |= EDP_BLC_ENABLE;
1206 I915_WRITE(PCH_PP_CONTROL, pp);
1207 POSTING_READ(PCH_PP_CONTROL);
1208 }
1209
1210 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1211 {
1212 struct drm_device *dev = intel_dp->base.base.dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 u32 pp;
1215
1216 if (!is_edp(intel_dp))
1217 return;
1218
1219 DRM_DEBUG_KMS("\n");
1220 pp = ironlake_get_pp_control(dev_priv);
1221 pp &= ~EDP_BLC_ENABLE;
1222 I915_WRITE(PCH_PP_CONTROL, pp);
1223 POSTING_READ(PCH_PP_CONTROL);
1224 msleep(intel_dp->backlight_off_delay);
1225 }
1226
1227 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1228 {
1229 struct drm_device *dev = encoder->dev;
1230 struct drm_i915_private *dev_priv = dev->dev_private;
1231 u32 dpa_ctl;
1232
1233 DRM_DEBUG_KMS("\n");
1234 dpa_ctl = I915_READ(DP_A);
1235 dpa_ctl |= DP_PLL_ENABLE;
1236 I915_WRITE(DP_A, dpa_ctl);
1237 POSTING_READ(DP_A);
1238 udelay(200);
1239 }
1240
1241 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1242 {
1243 struct drm_device *dev = encoder->dev;
1244 struct drm_i915_private *dev_priv = dev->dev_private;
1245 u32 dpa_ctl;
1246
1247 dpa_ctl = I915_READ(DP_A);
1248 dpa_ctl &= ~DP_PLL_ENABLE;
1249 I915_WRITE(DP_A, dpa_ctl);
1250 POSTING_READ(DP_A);
1251 udelay(200);
1252 }
1253
1254 /* If the sink supports it, try to set the power state appropriately */
1255 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1256 {
1257 int ret, i;
1258
1259 /* Should have a valid DPCD by this point */
1260 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1261 return;
1262
1263 if (mode != DRM_MODE_DPMS_ON) {
1264 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1265 DP_SET_POWER_D3);
1266 if (ret != 1)
1267 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1268 } else {
1269 /*
1270 * When turning on, we need to retry for 1ms to give the sink
1271 * time to wake up.
1272 */
1273 for (i = 0; i < 3; i++) {
1274 ret = intel_dp_aux_native_write_1(intel_dp,
1275 DP_SET_POWER,
1276 DP_SET_POWER_D0);
1277 if (ret == 1)
1278 break;
1279 msleep(1);
1280 }
1281 }
1282 }
1283
1284 static void intel_dp_prepare(struct drm_encoder *encoder)
1285 {
1286 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1287
1288
1289 /* Make sure the panel is off before trying to change the mode. But also
1290 * ensure that we have vdd while we switch off the panel. */
1291 ironlake_edp_panel_vdd_on(intel_dp);
1292 ironlake_edp_backlight_off(intel_dp);
1293 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1294 ironlake_edp_panel_off(intel_dp);
1295 intel_dp_link_down(intel_dp);
1296 }
1297
1298 static void intel_dp_commit(struct drm_encoder *encoder)
1299 {
1300 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1301 struct drm_device *dev = encoder->dev;
1302 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1303
1304 ironlake_edp_panel_vdd_on(intel_dp);
1305 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1306 intel_dp_start_link_train(intel_dp);
1307 ironlake_edp_panel_on(intel_dp);
1308 ironlake_edp_panel_vdd_off(intel_dp, true);
1309 intel_dp_complete_link_train(intel_dp);
1310 ironlake_edp_backlight_on(intel_dp);
1311
1312 intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1313
1314 if (HAS_PCH_CPT(dev))
1315 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1316 }
1317
1318 static void
1319 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1320 {
1321 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1322 struct drm_device *dev = encoder->dev;
1323 struct drm_i915_private *dev_priv = dev->dev_private;
1324 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1325
1326 if (mode != DRM_MODE_DPMS_ON) {
1327 /* Switching the panel off requires vdd. */
1328 ironlake_edp_panel_vdd_on(intel_dp);
1329 ironlake_edp_backlight_off(intel_dp);
1330 intel_dp_sink_dpms(intel_dp, mode);
1331 ironlake_edp_panel_off(intel_dp);
1332 intel_dp_link_down(intel_dp);
1333
1334 if (is_cpu_edp(intel_dp))
1335 ironlake_edp_pll_off(encoder);
1336 } else {
1337 if (is_cpu_edp(intel_dp))
1338 ironlake_edp_pll_on(encoder);
1339
1340 ironlake_edp_panel_vdd_on(intel_dp);
1341 intel_dp_sink_dpms(intel_dp, mode);
1342 if (!(dp_reg & DP_PORT_EN)) {
1343 intel_dp_start_link_train(intel_dp);
1344 ironlake_edp_panel_on(intel_dp);
1345 ironlake_edp_panel_vdd_off(intel_dp, true);
1346 intel_dp_complete_link_train(intel_dp);
1347 } else
1348 ironlake_edp_panel_vdd_off(intel_dp, false);
1349 ironlake_edp_backlight_on(intel_dp);
1350 }
1351 intel_dp->dpms_mode = mode;
1352 }
1353
1354 /*
1355 * Native read with retry for link status and receiver capability reads for
1356 * cases where the sink may still be asleep.
1357 */
1358 static bool
1359 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1360 uint8_t *recv, int recv_bytes)
1361 {
1362 int ret, i;
1363
1364 /*
1365 * Sinks are *supposed* to come up within 1ms from an off state,
1366 * but we're also supposed to retry 3 times per the spec.
1367 */
1368 for (i = 0; i < 3; i++) {
1369 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1370 recv_bytes);
1371 if (ret == recv_bytes)
1372 return true;
1373 msleep(1);
1374 }
1375
1376 return false;
1377 }
1378
1379 /*
1380 * Fetch AUX CH registers 0x202 - 0x207 which contain
1381 * link status information
1382 */
1383 static bool
1384 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1385 {
1386 return intel_dp_aux_native_read_retry(intel_dp,
1387 DP_LANE0_1_STATUS,
1388 link_status,
1389 DP_LINK_STATUS_SIZE);
1390 }
1391
1392 static uint8_t
1393 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1394 int r)
1395 {
1396 return link_status[r - DP_LANE0_1_STATUS];
1397 }
1398
1399 static uint8_t
1400 intel_get_adjust_request_voltage(uint8_t adjust_request[2],
1401 int lane)
1402 {
1403 int s = ((lane & 1) ?
1404 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1405 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1406 uint8_t l = adjust_request[lane>>1];
1407
1408 return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1409 }
1410
1411 static uint8_t
1412 intel_get_adjust_request_pre_emphasis(uint8_t adjust_request[2],
1413 int lane)
1414 {
1415 int s = ((lane & 1) ?
1416 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1417 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1418 uint8_t l = adjust_request[lane>>1];
1419
1420 return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1421 }
1422
1423
1424 #if 0
1425 static char *voltage_names[] = {
1426 "0.4V", "0.6V", "0.8V", "1.2V"
1427 };
1428 static char *pre_emph_names[] = {
1429 "0dB", "3.5dB", "6dB", "9.5dB"
1430 };
1431 static char *link_train_names[] = {
1432 "pattern 1", "pattern 2", "idle", "off"
1433 };
1434 #endif
1435
1436 /*
1437 * These are source-specific values; current Intel hardware supports
1438 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1439 */
1440
1441 static uint8_t
1442 intel_dp_voltage_max(struct intel_dp *intel_dp)
1443 {
1444 struct drm_device *dev = intel_dp->base.base.dev;
1445
1446 if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
1447 return DP_TRAIN_VOLTAGE_SWING_800;
1448 else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1449 return DP_TRAIN_VOLTAGE_SWING_1200;
1450 else
1451 return DP_TRAIN_VOLTAGE_SWING_800;
1452 }
1453
1454 static uint8_t
1455 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1456 {
1457 struct drm_device *dev = intel_dp->base.base.dev;
1458
1459 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1460 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1461 case DP_TRAIN_VOLTAGE_SWING_400:
1462 return DP_TRAIN_PRE_EMPHASIS_6;
1463 case DP_TRAIN_VOLTAGE_SWING_600:
1464 case DP_TRAIN_VOLTAGE_SWING_800:
1465 return DP_TRAIN_PRE_EMPHASIS_3_5;
1466 default:
1467 return DP_TRAIN_PRE_EMPHASIS_0;
1468 }
1469 } else {
1470 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1471 case DP_TRAIN_VOLTAGE_SWING_400:
1472 return DP_TRAIN_PRE_EMPHASIS_6;
1473 case DP_TRAIN_VOLTAGE_SWING_600:
1474 return DP_TRAIN_PRE_EMPHASIS_6;
1475 case DP_TRAIN_VOLTAGE_SWING_800:
1476 return DP_TRAIN_PRE_EMPHASIS_3_5;
1477 case DP_TRAIN_VOLTAGE_SWING_1200:
1478 default:
1479 return DP_TRAIN_PRE_EMPHASIS_0;
1480 }
1481 }
1482 }
1483
1484 static void
1485 intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1486 {
1487 uint8_t v = 0;
1488 uint8_t p = 0;
1489 int lane;
1490 uint8_t *adjust_request = link_status + (DP_ADJUST_REQUEST_LANE0_1 - DP_LANE0_1_STATUS);
1491 uint8_t voltage_max;
1492 uint8_t preemph_max;
1493
1494 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1495 uint8_t this_v = intel_get_adjust_request_voltage(adjust_request, lane);
1496 uint8_t this_p = intel_get_adjust_request_pre_emphasis(adjust_request, lane);
1497
1498 if (this_v > v)
1499 v = this_v;
1500 if (this_p > p)
1501 p = this_p;
1502 }
1503
1504 voltage_max = intel_dp_voltage_max(intel_dp);
1505 if (v >= voltage_max)
1506 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
1507
1508 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
1509 if (p >= preemph_max)
1510 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1511
1512 for (lane = 0; lane < 4; lane++)
1513 intel_dp->train_set[lane] = v | p;
1514 }
1515
1516 static uint32_t
1517 intel_dp_signal_levels(uint8_t train_set)
1518 {
1519 uint32_t signal_levels = 0;
1520
1521 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1522 case DP_TRAIN_VOLTAGE_SWING_400:
1523 default:
1524 signal_levels |= DP_VOLTAGE_0_4;
1525 break;
1526 case DP_TRAIN_VOLTAGE_SWING_600:
1527 signal_levels |= DP_VOLTAGE_0_6;
1528 break;
1529 case DP_TRAIN_VOLTAGE_SWING_800:
1530 signal_levels |= DP_VOLTAGE_0_8;
1531 break;
1532 case DP_TRAIN_VOLTAGE_SWING_1200:
1533 signal_levels |= DP_VOLTAGE_1_2;
1534 break;
1535 }
1536 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1537 case DP_TRAIN_PRE_EMPHASIS_0:
1538 default:
1539 signal_levels |= DP_PRE_EMPHASIS_0;
1540 break;
1541 case DP_TRAIN_PRE_EMPHASIS_3_5:
1542 signal_levels |= DP_PRE_EMPHASIS_3_5;
1543 break;
1544 case DP_TRAIN_PRE_EMPHASIS_6:
1545 signal_levels |= DP_PRE_EMPHASIS_6;
1546 break;
1547 case DP_TRAIN_PRE_EMPHASIS_9_5:
1548 signal_levels |= DP_PRE_EMPHASIS_9_5;
1549 break;
1550 }
1551 return signal_levels;
1552 }
1553
1554 /* Gen6's DP voltage swing and pre-emphasis control */
1555 static uint32_t
1556 intel_gen6_edp_signal_levels(uint8_t train_set)
1557 {
1558 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1559 DP_TRAIN_PRE_EMPHASIS_MASK);
1560 switch (signal_levels) {
1561 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1562 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1563 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1564 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1565 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1566 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1567 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1568 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1569 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1570 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1571 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1572 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1573 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1574 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1575 default:
1576 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1577 "0x%x\n", signal_levels);
1578 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1579 }
1580 }
1581
1582 /* Gen7's DP voltage swing and pre-emphasis control */
1583 static uint32_t
1584 intel_gen7_edp_signal_levels(uint8_t train_set)
1585 {
1586 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1587 DP_TRAIN_PRE_EMPHASIS_MASK);
1588 switch (signal_levels) {
1589 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1590 return EDP_LINK_TRAIN_400MV_0DB_IVB;
1591 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1592 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
1593 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1594 return EDP_LINK_TRAIN_400MV_6DB_IVB;
1595
1596 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1597 return EDP_LINK_TRAIN_600MV_0DB_IVB;
1598 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1599 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
1600
1601 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1602 return EDP_LINK_TRAIN_800MV_0DB_IVB;
1603 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1604 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
1605
1606 default:
1607 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1608 "0x%x\n", signal_levels);
1609 return EDP_LINK_TRAIN_500MV_0DB_IVB;
1610 }
1611 }
1612
1613 static uint8_t
1614 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1615 int lane)
1616 {
1617 int s = (lane & 1) * 4;
1618 uint8_t l = link_status[lane>>1];
1619
1620 return (l >> s) & 0xf;
1621 }
1622
1623 /* Check for clock recovery is done on all channels */
1624 static bool
1625 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1626 {
1627 int lane;
1628 uint8_t lane_status;
1629
1630 for (lane = 0; lane < lane_count; lane++) {
1631 lane_status = intel_get_lane_status(link_status, lane);
1632 if ((lane_status & DP_LANE_CR_DONE) == 0)
1633 return false;
1634 }
1635 return true;
1636 }
1637
1638 /* Check to see if channel eq is done on all channels */
1639 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1640 DP_LANE_CHANNEL_EQ_DONE|\
1641 DP_LANE_SYMBOL_LOCKED)
1642 static bool
1643 intel_channel_eq_ok(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1644 {
1645 uint8_t lane_align;
1646 uint8_t lane_status;
1647 int lane;
1648
1649 lane_align = intel_dp_link_status(link_status,
1650 DP_LANE_ALIGN_STATUS_UPDATED);
1651 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1652 return false;
1653 for (lane = 0; lane < intel_dp->lane_count; lane++) {
1654 lane_status = intel_get_lane_status(link_status, lane);
1655 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1656 return false;
1657 }
1658 return true;
1659 }
1660
1661 static bool
1662 intel_dp_set_link_train(struct intel_dp *intel_dp,
1663 uint32_t dp_reg_value,
1664 uint8_t dp_train_pat)
1665 {
1666 struct drm_device *dev = intel_dp->base.base.dev;
1667 struct drm_i915_private *dev_priv = dev->dev_private;
1668 int ret;
1669
1670 I915_WRITE(intel_dp->output_reg, dp_reg_value);
1671 POSTING_READ(intel_dp->output_reg);
1672
1673 intel_dp_aux_native_write_1(intel_dp,
1674 DP_TRAINING_PATTERN_SET,
1675 dp_train_pat);
1676
1677 ret = intel_dp_aux_native_write(intel_dp,
1678 DP_TRAINING_LANE0_SET,
1679 intel_dp->train_set,
1680 intel_dp->lane_count);
1681 if (ret != intel_dp->lane_count)
1682 return false;
1683
1684 return true;
1685 }
1686
1687 /* Enable corresponding port and start training pattern 1 */
1688 static void
1689 intel_dp_start_link_train(struct intel_dp *intel_dp)
1690 {
1691 struct drm_device *dev = intel_dp->base.base.dev;
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693 struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1694 int i;
1695 uint8_t voltage;
1696 bool clock_recovery = false;
1697 int voltage_tries, loop_tries;
1698 u32 reg;
1699 uint32_t DP = intel_dp->DP;
1700
1701 /*
1702 * On CPT we have to enable the port in training pattern 1, which
1703 * will happen below in intel_dp_set_link_train. Otherwise, enable
1704 * the port and wait for it to become active.
1705 */
1706 if (!HAS_PCH_CPT(dev)) {
1707 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1708 POSTING_READ(intel_dp->output_reg);
1709 intel_wait_for_vblank(dev, intel_crtc->pipe);
1710 }
1711
1712 /* Write the link configuration data */
1713 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1714 intel_dp->link_configuration,
1715 DP_LINK_CONFIGURATION_SIZE);
1716
1717 DP |= DP_PORT_EN;
1718
1719 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1720 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1721 else
1722 DP &= ~DP_LINK_TRAIN_MASK;
1723 memset(intel_dp->train_set, 0, 4);
1724 voltage = 0xff;
1725 voltage_tries = 0;
1726 loop_tries = 0;
1727 clock_recovery = false;
1728 for (;;) {
1729 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1730 uint8_t link_status[DP_LINK_STATUS_SIZE];
1731 uint32_t signal_levels;
1732
1733
1734 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1735 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1736 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1737 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1738 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1739 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1740 } else {
1741 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1742 DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n", signal_levels);
1743 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1744 }
1745
1746 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1747 reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1748 else
1749 reg = DP | DP_LINK_TRAIN_PAT_1;
1750
1751 if (!intel_dp_set_link_train(intel_dp, reg,
1752 DP_TRAINING_PATTERN_1 |
1753 DP_LINK_SCRAMBLING_DISABLE))
1754 break;
1755 /* Set training pattern 1 */
1756
1757 udelay(100);
1758 if (!intel_dp_get_link_status(intel_dp, link_status)) {
1759 DRM_ERROR("failed to get link status\n");
1760 break;
1761 }
1762
1763 if (intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1764 DRM_DEBUG_KMS("clock recovery OK\n");
1765 clock_recovery = true;
1766 break;
1767 }
1768
1769 /* Check to see if we've tried the max voltage */
1770 for (i = 0; i < intel_dp->lane_count; i++)
1771 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1772 break;
1773 if (i == intel_dp->lane_count && voltage_tries == 5) {
1774 ++loop_tries;
1775 if (loop_tries == 5) {
1776 DRM_DEBUG_KMS("too many full retries, give up\n");
1777 break;
1778 }
1779 memset(intel_dp->train_set, 0, 4);
1780 voltage_tries = 0;
1781 continue;
1782 }
1783
1784 /* Check to see if we've tried the same voltage 5 times */
1785 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1786 ++voltage_tries;
1787 if (voltage_tries == 5) {
1788 DRM_DEBUG_KMS("too many voltage retries, give up\n");
1789 break;
1790 }
1791 } else
1792 voltage_tries = 0;
1793 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1794
1795 /* Compute new intel_dp->train_set as requested by target */
1796 intel_get_adjust_train(intel_dp, link_status);
1797 }
1798
1799 intel_dp->DP = DP;
1800 }
1801
1802 static void
1803 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1804 {
1805 struct drm_device *dev = intel_dp->base.base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 bool channel_eq = false;
1808 int tries, cr_tries;
1809 u32 reg;
1810 uint32_t DP = intel_dp->DP;
1811
1812 /* channel equalization */
1813 tries = 0;
1814 cr_tries = 0;
1815 channel_eq = false;
1816 for (;;) {
1817 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1818 uint32_t signal_levels;
1819 uint8_t link_status[DP_LINK_STATUS_SIZE];
1820
1821 if (cr_tries > 5) {
1822 DRM_ERROR("failed to train DP, aborting\n");
1823 intel_dp_link_down(intel_dp);
1824 break;
1825 }
1826
1827 if (IS_GEN7(dev) && is_cpu_edp(intel_dp)) {
1828 signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
1829 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
1830 } else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
1831 signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1832 DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1833 } else {
1834 signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
1835 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1836 }
1837
1838 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1839 reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1840 else
1841 reg = DP | DP_LINK_TRAIN_PAT_2;
1842
1843 /* channel eq pattern */
1844 if (!intel_dp_set_link_train(intel_dp, reg,
1845 DP_TRAINING_PATTERN_2 |
1846 DP_LINK_SCRAMBLING_DISABLE))
1847 break;
1848
1849 udelay(400);
1850 if (!intel_dp_get_link_status(intel_dp, link_status))
1851 break;
1852
1853 /* Make sure clock is still ok */
1854 if (!intel_clock_recovery_ok(link_status, intel_dp->lane_count)) {
1855 intel_dp_start_link_train(intel_dp);
1856 cr_tries++;
1857 continue;
1858 }
1859
1860 if (intel_channel_eq_ok(intel_dp, link_status)) {
1861 channel_eq = true;
1862 break;
1863 }
1864
1865 /* Try 5 times, then try clock recovery if that fails */
1866 if (tries > 5) {
1867 intel_dp_link_down(intel_dp);
1868 intel_dp_start_link_train(intel_dp);
1869 tries = 0;
1870 cr_tries++;
1871 continue;
1872 }
1873
1874 /* Compute new intel_dp->train_set as requested by target */
1875 intel_get_adjust_train(intel_dp, link_status);
1876 ++tries;
1877 }
1878
1879 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1880 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1881 else
1882 reg = DP | DP_LINK_TRAIN_OFF;
1883
1884 I915_WRITE(intel_dp->output_reg, reg);
1885 POSTING_READ(intel_dp->output_reg);
1886 intel_dp_aux_native_write_1(intel_dp,
1887 DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1888 }
1889
1890 static void
1891 intel_dp_link_down(struct intel_dp *intel_dp)
1892 {
1893 struct drm_device *dev = intel_dp->base.base.dev;
1894 struct drm_i915_private *dev_priv = dev->dev_private;
1895 uint32_t DP = intel_dp->DP;
1896
1897 if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1898 return;
1899
1900 DRM_DEBUG_KMS("\n");
1901
1902 if (is_edp(intel_dp)) {
1903 DP &= ~DP_PLL_ENABLE;
1904 I915_WRITE(intel_dp->output_reg, DP);
1905 POSTING_READ(intel_dp->output_reg);
1906 udelay(100);
1907 }
1908
1909 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
1910 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1911 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1912 } else {
1913 DP &= ~DP_LINK_TRAIN_MASK;
1914 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1915 }
1916 POSTING_READ(intel_dp->output_reg);
1917
1918 msleep(17);
1919
1920 if (is_edp(intel_dp)) {
1921 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp)))
1922 DP |= DP_LINK_TRAIN_OFF_CPT;
1923 else
1924 DP |= DP_LINK_TRAIN_OFF;
1925 }
1926
1927 if (HAS_PCH_IBX(dev) &&
1928 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1929 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1930
1931 /* Hardware workaround: leaving our transcoder select
1932 * set to transcoder B while it's off will prevent the
1933 * corresponding HDMI output on transcoder A.
1934 *
1935 * Combine this with another hardware workaround:
1936 * transcoder select bit can only be cleared while the
1937 * port is enabled.
1938 */
1939 DP &= ~DP_PIPEB_SELECT;
1940 I915_WRITE(intel_dp->output_reg, DP);
1941
1942 /* Changes to enable or select take place the vblank
1943 * after being written.
1944 */
1945 if (crtc == NULL) {
1946 /* We can arrive here never having been attached
1947 * to a CRTC, for instance, due to inheriting
1948 * random state from the BIOS.
1949 *
1950 * If the pipe is not running, play safe and
1951 * wait for the clocks to stabilise before
1952 * continuing.
1953 */
1954 POSTING_READ(intel_dp->output_reg);
1955 msleep(50);
1956 } else
1957 intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1958 }
1959
1960 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
1961 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1962 POSTING_READ(intel_dp->output_reg);
1963 msleep(intel_dp->panel_power_down_delay);
1964 }
1965
1966 static bool
1967 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1968 {
1969 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1970 sizeof(intel_dp->dpcd)) &&
1971 (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1972 return true;
1973 }
1974
1975 return false;
1976 }
1977
1978 static void
1979 intel_dp_probe_oui(struct intel_dp *intel_dp)
1980 {
1981 u8 buf[3];
1982
1983 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
1984 return;
1985
1986 ironlake_edp_panel_vdd_on(intel_dp);
1987
1988 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
1989 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
1990 buf[0], buf[1], buf[2]);
1991
1992 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
1993 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
1994 buf[0], buf[1], buf[2]);
1995
1996 ironlake_edp_panel_vdd_off(intel_dp, false);
1997 }
1998
1999 static bool
2000 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2001 {
2002 int ret;
2003
2004 ret = intel_dp_aux_native_read_retry(intel_dp,
2005 DP_DEVICE_SERVICE_IRQ_VECTOR,
2006 sink_irq_vector, 1);
2007 if (!ret)
2008 return false;
2009
2010 return true;
2011 }
2012
2013 static void
2014 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2015 {
2016 /* NAK by default */
2017 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
2018 }
2019
2020 /*
2021 * According to DP spec
2022 * 5.1.2:
2023 * 1. Read DPCD
2024 * 2. Configure link according to Receiver Capabilities
2025 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2026 * 4. Check link status on receipt of hot-plug interrupt
2027 */
2028
2029 static void
2030 intel_dp_check_link_status(struct intel_dp *intel_dp)
2031 {
2032 u8 sink_irq_vector;
2033 u8 link_status[DP_LINK_STATUS_SIZE];
2034
2035 if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
2036 return;
2037
2038 if (!intel_dp->base.base.crtc)
2039 return;
2040
2041 /* Try to read receiver status if the link appears to be up */
2042 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2043 intel_dp_link_down(intel_dp);
2044 return;
2045 }
2046
2047 /* Now read the DPCD to see if it's actually running */
2048 if (!intel_dp_get_dpcd(intel_dp)) {
2049 intel_dp_link_down(intel_dp);
2050 return;
2051 }
2052
2053 /* Try to read the source of the interrupt */
2054 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2055 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2056 /* Clear interrupt source */
2057 intel_dp_aux_native_write_1(intel_dp,
2058 DP_DEVICE_SERVICE_IRQ_VECTOR,
2059 sink_irq_vector);
2060
2061 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2062 intel_dp_handle_test_request(intel_dp);
2063 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2064 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2065 }
2066
2067 if (!intel_channel_eq_ok(intel_dp, link_status)) {
2068 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2069 drm_get_encoder_name(&intel_dp->base.base));
2070 intel_dp_start_link_train(intel_dp);
2071 intel_dp_complete_link_train(intel_dp);
2072 }
2073 }
2074
2075 static enum drm_connector_status
2076 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2077 {
2078 if (intel_dp_get_dpcd(intel_dp))
2079 return connector_status_connected;
2080 return connector_status_disconnected;
2081 }
2082
2083 static enum drm_connector_status
2084 ironlake_dp_detect(struct intel_dp *intel_dp)
2085 {
2086 enum drm_connector_status status;
2087
2088 /* Can't disconnect eDP, but you can close the lid... */
2089 if (is_edp(intel_dp)) {
2090 status = intel_panel_detect(intel_dp->base.base.dev);
2091 if (status == connector_status_unknown)
2092 status = connector_status_connected;
2093 return status;
2094 }
2095
2096 return intel_dp_detect_dpcd(intel_dp);
2097 }
2098
2099 static enum drm_connector_status
2100 g4x_dp_detect(struct intel_dp *intel_dp)
2101 {
2102 struct drm_device *dev = intel_dp->base.base.dev;
2103 struct drm_i915_private *dev_priv = dev->dev_private;
2104 uint32_t bit;
2105
2106 switch (intel_dp->output_reg) {
2107 case DP_B:
2108 bit = DPB_HOTPLUG_LIVE_STATUS;
2109 break;
2110 case DP_C:
2111 bit = DPC_HOTPLUG_LIVE_STATUS;
2112 break;
2113 case DP_D:
2114 bit = DPD_HOTPLUG_LIVE_STATUS;
2115 break;
2116 default:
2117 return connector_status_unknown;
2118 }
2119
2120 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2121 return connector_status_disconnected;
2122
2123 return intel_dp_detect_dpcd(intel_dp);
2124 }
2125
2126 static struct edid *
2127 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2128 {
2129 struct intel_dp *intel_dp = intel_attached_dp(connector);
2130 struct edid *edid;
2131 int size;
2132
2133 if (is_edp(intel_dp)) {
2134 if (!intel_dp->edid)
2135 return NULL;
2136
2137 size = (intel_dp->edid->extensions + 1) * EDID_LENGTH;
2138 edid = kmalloc(size, GFP_KERNEL);
2139 if (!edid)
2140 return NULL;
2141
2142 memcpy(edid, intel_dp->edid, size);
2143 return edid;
2144 }
2145
2146 edid = drm_get_edid(connector, adapter);
2147 return edid;
2148 }
2149
2150 static int
2151 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2152 {
2153 struct intel_dp *intel_dp = intel_attached_dp(connector);
2154 int ret;
2155
2156 if (is_edp(intel_dp)) {
2157 drm_mode_connector_update_edid_property(connector,
2158 intel_dp->edid);
2159 ret = drm_add_edid_modes(connector, intel_dp->edid);
2160 drm_edid_to_eld(connector,
2161 intel_dp->edid);
2162 connector->display_info.raw_edid = NULL;
2163 return intel_dp->edid_mode_count;
2164 }
2165
2166 ret = intel_ddc_get_modes(connector, adapter);
2167 return ret;
2168 }
2169
2170
2171 /**
2172 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
2173 *
2174 * \return true if DP port is connected.
2175 * \return false if DP port is disconnected.
2176 */
2177 static enum drm_connector_status
2178 intel_dp_detect(struct drm_connector *connector, bool force)
2179 {
2180 struct intel_dp *intel_dp = intel_attached_dp(connector);
2181 struct drm_device *dev = intel_dp->base.base.dev;
2182 enum drm_connector_status status;
2183 struct edid *edid = NULL;
2184
2185 intel_dp->has_audio = false;
2186
2187 if (HAS_PCH_SPLIT(dev))
2188 status = ironlake_dp_detect(intel_dp);
2189 else
2190 status = g4x_dp_detect(intel_dp);
2191
2192 DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
2193 intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
2194 intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
2195 intel_dp->dpcd[6], intel_dp->dpcd[7]);
2196
2197 if (status != connector_status_connected)
2198 return status;
2199
2200 intel_dp_probe_oui(intel_dp);
2201
2202 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
2203 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
2204 } else {
2205 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2206 if (edid) {
2207 intel_dp->has_audio = drm_detect_monitor_audio(edid);
2208 connector->display_info.raw_edid = NULL;
2209 kfree(edid);
2210 }
2211 }
2212
2213 return connector_status_connected;
2214 }
2215
2216 static int intel_dp_get_modes(struct drm_connector *connector)
2217 {
2218 struct intel_dp *intel_dp = intel_attached_dp(connector);
2219 struct drm_device *dev = intel_dp->base.base.dev;
2220 struct drm_i915_private *dev_priv = dev->dev_private;
2221 int ret;
2222
2223 /* We should parse the EDID data and find out if it has an audio sink
2224 */
2225
2226 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
2227 if (ret) {
2228 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
2229 struct drm_display_mode *newmode;
2230 list_for_each_entry(newmode, &connector->probed_modes,
2231 head) {
2232 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2233 intel_dp->panel_fixed_mode =
2234 drm_mode_duplicate(dev, newmode);
2235 break;
2236 }
2237 }
2238 }
2239 return ret;
2240 }
2241
2242 /* if eDP has no EDID, try to use fixed panel mode from VBT */
2243 if (is_edp(intel_dp)) {
2244 /* initialize panel mode from VBT if available for eDP */
2245 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2246 intel_dp->panel_fixed_mode =
2247 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2248 if (intel_dp->panel_fixed_mode) {
2249 intel_dp->panel_fixed_mode->type |=
2250 DRM_MODE_TYPE_PREFERRED;
2251 }
2252 }
2253 if (intel_dp->panel_fixed_mode) {
2254 struct drm_display_mode *mode;
2255 mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2256 drm_mode_probed_add(connector, mode);
2257 return 1;
2258 }
2259 }
2260 return 0;
2261 }
2262
2263 static bool
2264 intel_dp_detect_audio(struct drm_connector *connector)
2265 {
2266 struct intel_dp *intel_dp = intel_attached_dp(connector);
2267 struct edid *edid;
2268 bool has_audio = false;
2269
2270 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2271 if (edid) {
2272 has_audio = drm_detect_monitor_audio(edid);
2273
2274 connector->display_info.raw_edid = NULL;
2275 kfree(edid);
2276 }
2277
2278 return has_audio;
2279 }
2280
2281 static int
2282 intel_dp_set_property(struct drm_connector *connector,
2283 struct drm_property *property,
2284 uint64_t val)
2285 {
2286 struct drm_i915_private *dev_priv = connector->dev->dev_private;
2287 struct intel_dp *intel_dp = intel_attached_dp(connector);
2288 int ret;
2289
2290 ret = drm_connector_property_set_value(connector, property, val);
2291 if (ret)
2292 return ret;
2293
2294 if (property == dev_priv->force_audio_property) {
2295 int i = val;
2296 bool has_audio;
2297
2298 if (i == intel_dp->force_audio)
2299 return 0;
2300
2301 intel_dp->force_audio = i;
2302
2303 if (i == HDMI_AUDIO_AUTO)
2304 has_audio = intel_dp_detect_audio(connector);
2305 else
2306 has_audio = (i == HDMI_AUDIO_ON);
2307
2308 if (has_audio == intel_dp->has_audio)
2309 return 0;
2310
2311 intel_dp->has_audio = has_audio;
2312 goto done;
2313 }
2314
2315 if (property == dev_priv->broadcast_rgb_property) {
2316 if (val == !!intel_dp->color_range)
2317 return 0;
2318
2319 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2320 goto done;
2321 }
2322
2323 return -EINVAL;
2324
2325 done:
2326 if (intel_dp->base.base.crtc) {
2327 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2328 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2329 crtc->x, crtc->y,
2330 crtc->fb);
2331 }
2332
2333 return 0;
2334 }
2335
2336 static void
2337 intel_dp_destroy(struct drm_connector *connector)
2338 {
2339 struct drm_device *dev = connector->dev;
2340
2341 if (intel_dpd_is_edp(dev))
2342 intel_panel_destroy_backlight(dev);
2343
2344 drm_sysfs_connector_remove(connector);
2345 drm_connector_cleanup(connector);
2346 kfree(connector);
2347 }
2348
2349 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2350 {
2351 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2352
2353 i2c_del_adapter(&intel_dp->adapter);
2354 drm_encoder_cleanup(encoder);
2355 if (is_edp(intel_dp)) {
2356 kfree(intel_dp->edid);
2357 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2358 ironlake_panel_vdd_off_sync(intel_dp);
2359 }
2360 kfree(intel_dp);
2361 }
2362
2363 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2364 .dpms = intel_dp_dpms,
2365 .mode_fixup = intel_dp_mode_fixup,
2366 .prepare = intel_dp_prepare,
2367 .mode_set = intel_dp_mode_set,
2368 .commit = intel_dp_commit,
2369 };
2370
2371 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2372 .dpms = drm_helper_connector_dpms,
2373 .detect = intel_dp_detect,
2374 .fill_modes = drm_helper_probe_single_connector_modes,
2375 .set_property = intel_dp_set_property,
2376 .destroy = intel_dp_destroy,
2377 };
2378
2379 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2380 .get_modes = intel_dp_get_modes,
2381 .mode_valid = intel_dp_mode_valid,
2382 .best_encoder = intel_best_encoder,
2383 };
2384
2385 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2386 .destroy = intel_dp_encoder_destroy,
2387 };
2388
2389 static void
2390 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2391 {
2392 struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2393
2394 intel_dp_check_link_status(intel_dp);
2395 }
2396
2397 /* Return which DP Port should be selected for Transcoder DP control */
2398 int
2399 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2400 {
2401 struct drm_device *dev = crtc->dev;
2402 struct intel_encoder *encoder;
2403
2404 for_each_encoder_on_crtc(dev, crtc, encoder) {
2405 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2406
2407 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT ||
2408 intel_dp->base.type == INTEL_OUTPUT_EDP)
2409 return intel_dp->output_reg;
2410 }
2411
2412 return -1;
2413 }
2414
2415 /* check the VBT to see whether the eDP is on DP-D port */
2416 bool intel_dpd_is_edp(struct drm_device *dev)
2417 {
2418 struct drm_i915_private *dev_priv = dev->dev_private;
2419 struct child_device_config *p_child;
2420 int i;
2421
2422 if (!dev_priv->child_dev_num)
2423 return false;
2424
2425 for (i = 0; i < dev_priv->child_dev_num; i++) {
2426 p_child = dev_priv->child_dev + i;
2427
2428 if (p_child->dvo_port == PORT_IDPD &&
2429 p_child->device_type == DEVICE_TYPE_eDP)
2430 return true;
2431 }
2432 return false;
2433 }
2434
2435 static void
2436 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2437 {
2438 intel_attach_force_audio_property(connector);
2439 intel_attach_broadcast_rgb_property(connector);
2440 }
2441
2442 void
2443 intel_dp_init(struct drm_device *dev, int output_reg)
2444 {
2445 struct drm_i915_private *dev_priv = dev->dev_private;
2446 struct drm_connector *connector;
2447 struct intel_dp *intel_dp;
2448 struct intel_encoder *intel_encoder;
2449 struct intel_connector *intel_connector;
2450 const char *name = NULL;
2451 int type;
2452
2453 intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2454 if (!intel_dp)
2455 return;
2456
2457 intel_dp->output_reg = output_reg;
2458 intel_dp->dpms_mode = -1;
2459
2460 intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2461 if (!intel_connector) {
2462 kfree(intel_dp);
2463 return;
2464 }
2465 intel_encoder = &intel_dp->base;
2466
2467 if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2468 if (intel_dpd_is_edp(dev))
2469 intel_dp->is_pch_edp = true;
2470
2471 if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2472 type = DRM_MODE_CONNECTOR_eDP;
2473 intel_encoder->type = INTEL_OUTPUT_EDP;
2474 } else {
2475 type = DRM_MODE_CONNECTOR_DisplayPort;
2476 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2477 }
2478
2479 connector = &intel_connector->base;
2480 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2481 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2482
2483 connector->polled = DRM_CONNECTOR_POLL_HPD;
2484
2485 if (output_reg == DP_B || output_reg == PCH_DP_B)
2486 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2487 else if (output_reg == DP_C || output_reg == PCH_DP_C)
2488 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2489 else if (output_reg == DP_D || output_reg == PCH_DP_D)
2490 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2491
2492 if (is_edp(intel_dp)) {
2493 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2494 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2495 ironlake_panel_vdd_work);
2496 }
2497
2498 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2499
2500 connector->interlace_allowed = true;
2501 connector->doublescan_allowed = 0;
2502
2503 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2504 DRM_MODE_ENCODER_TMDS);
2505 drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2506
2507 intel_connector_attach_encoder(intel_connector, intel_encoder);
2508 drm_sysfs_connector_add(connector);
2509
2510 /* Set up the DDC bus. */
2511 switch (output_reg) {
2512 case DP_A:
2513 name = "DPDDC-A";
2514 break;
2515 case DP_B:
2516 case PCH_DP_B:
2517 dev_priv->hotplug_supported_mask |=
2518 DPB_HOTPLUG_INT_STATUS;
2519 name = "DPDDC-B";
2520 break;
2521 case DP_C:
2522 case PCH_DP_C:
2523 dev_priv->hotplug_supported_mask |=
2524 DPC_HOTPLUG_INT_STATUS;
2525 name = "DPDDC-C";
2526 break;
2527 case DP_D:
2528 case PCH_DP_D:
2529 dev_priv->hotplug_supported_mask |=
2530 DPD_HOTPLUG_INT_STATUS;
2531 name = "DPDDC-D";
2532 break;
2533 }
2534
2535 /* Cache some DPCD data in the eDP case */
2536 if (is_edp(intel_dp)) {
2537 struct edp_power_seq cur, vbt;
2538 u32 pp_on, pp_off, pp_div;
2539
2540 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2541 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2542 pp_div = I915_READ(PCH_PP_DIVISOR);
2543
2544 if (!pp_on || !pp_off || !pp_div) {
2545 DRM_INFO("bad panel power sequencing delays, disabling panel\n");
2546 intel_dp_encoder_destroy(&intel_dp->base.base);
2547 intel_dp_destroy(&intel_connector->base);
2548 return;
2549 }
2550
2551 /* Pull timing values out of registers */
2552 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2553 PANEL_POWER_UP_DELAY_SHIFT;
2554
2555 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2556 PANEL_LIGHT_ON_DELAY_SHIFT;
2557
2558 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2559 PANEL_LIGHT_OFF_DELAY_SHIFT;
2560
2561 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2562 PANEL_POWER_DOWN_DELAY_SHIFT;
2563
2564 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2565 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2566
2567 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2568 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2569
2570 vbt = dev_priv->edp.pps;
2571
2572 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2573 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2574
2575 #define get_delay(field) ((max(cur.field, vbt.field) + 9) / 10)
2576
2577 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2578 intel_dp->backlight_on_delay = get_delay(t8);
2579 intel_dp->backlight_off_delay = get_delay(t9);
2580 intel_dp->panel_power_down_delay = get_delay(t10);
2581 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2582
2583 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2584 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2585 intel_dp->panel_power_cycle_delay);
2586
2587 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2588 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2589 }
2590
2591 intel_dp_i2c_init(intel_dp, intel_connector, name);
2592
2593 if (is_edp(intel_dp)) {
2594 bool ret;
2595 struct edid *edid;
2596
2597 ironlake_edp_panel_vdd_on(intel_dp);
2598 ret = intel_dp_get_dpcd(intel_dp);
2599 ironlake_edp_panel_vdd_off(intel_dp, false);
2600
2601 if (ret) {
2602 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2603 dev_priv->no_aux_handshake =
2604 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2605 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2606 } else {
2607 /* if this fails, presume the device is a ghost */
2608 DRM_INFO("failed to retrieve link info, disabling eDP\n");
2609 intel_dp_encoder_destroy(&intel_dp->base.base);
2610 intel_dp_destroy(&intel_connector->base);
2611 return;
2612 }
2613
2614 ironlake_edp_panel_vdd_on(intel_dp);
2615 edid = drm_get_edid(connector, &intel_dp->adapter);
2616 if (edid) {
2617 drm_mode_connector_update_edid_property(connector,
2618 edid);
2619 intel_dp->edid_mode_count =
2620 drm_add_edid_modes(connector, edid);
2621 drm_edid_to_eld(connector, edid);
2622 intel_dp->edid = edid;
2623 }
2624 ironlake_edp_panel_vdd_off(intel_dp, false);
2625 }
2626
2627 intel_encoder->hot_plug = intel_dp_hot_plug;
2628
2629 if (is_edp(intel_dp)) {
2630 dev_priv->int_edp_connector = connector;
2631 intel_panel_setup_backlight(dev);
2632 }
2633
2634 intel_dp_add_properties(intel_dp, connector);
2635
2636 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2637 * 0xd. Failure to do so will result in spurious interrupts being
2638 * generated on the port when a cable is not attached.
2639 */
2640 if (IS_G4X(dev) && !IS_GM45(dev)) {
2641 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2642 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2643 }
2644 }