Merge tag 'drm-intel-next-2015-04-23-fixed' of git://anongit.freedesktop.org/drm...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
43
44 struct dp_link_dpll {
45 int link_bw;
46 struct dpll dpll;
47 };
48
49 static const struct dp_link_dpll gen4_dpll[] = {
50 { DP_LINK_BW_1_62,
51 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
52 { DP_LINK_BW_2_7,
53 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
54 };
55
56 static const struct dp_link_dpll pch_dpll[] = {
57 { DP_LINK_BW_1_62,
58 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
59 { DP_LINK_BW_2_7,
60 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
61 };
62
63 static const struct dp_link_dpll vlv_dpll[] = {
64 { DP_LINK_BW_1_62,
65 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
66 { DP_LINK_BW_2_7,
67 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
68 };
69
70 /*
71 * CHV supports eDP 1.4 that have more link rates.
72 * Below only provides the fixed rate but exclude variable rate.
73 */
74 static const struct dp_link_dpll chv_dpll[] = {
75 /*
76 * CHV requires to program fractional division for m2.
77 * m2 is stored in fixed point format using formula below
78 * (m2_int << 22) | m2_fraction
79 */
80 { DP_LINK_BW_1_62, /* m2_int = 32, m2_fraction = 1677722 */
81 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
82 { DP_LINK_BW_2_7, /* m2_int = 27, m2_fraction = 0 */
83 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
84 { DP_LINK_BW_5_4, /* m2_int = 27, m2_fraction = 0 */
85 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
86 };
87 /* Skylake supports following rates */
88 static const int gen9_rates[] = { 162000, 216000, 270000,
89 324000, 432000, 540000 };
90 static const int chv_rates[] = { 162000, 202500, 210000, 216000,
91 243000, 270000, 324000, 405000,
92 420000, 432000, 540000 };
93 static const int default_rates[] = { 162000, 270000, 540000 };
94
95 /**
96 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
97 * @intel_dp: DP struct
98 *
99 * If a CPU or PCH DP output is attached to an eDP panel, this function
100 * will return true, and false otherwise.
101 */
102 static bool is_edp(struct intel_dp *intel_dp)
103 {
104 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
105
106 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
107 }
108
109 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
110 {
111 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
112
113 return intel_dig_port->base.base.dev;
114 }
115
116 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
117 {
118 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
119 }
120
121 static void intel_dp_link_down(struct intel_dp *intel_dp);
122 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
123 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
124 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
125 static void vlv_steal_power_sequencer(struct drm_device *dev,
126 enum pipe pipe);
127
128 static int
129 intel_dp_max_link_bw(struct intel_dp *intel_dp)
130 {
131 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
132
133 switch (max_link_bw) {
134 case DP_LINK_BW_1_62:
135 case DP_LINK_BW_2_7:
136 case DP_LINK_BW_5_4:
137 break;
138 default:
139 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
140 max_link_bw);
141 max_link_bw = DP_LINK_BW_1_62;
142 break;
143 }
144 return max_link_bw;
145 }
146
147 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
148 {
149 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
150 struct drm_device *dev = intel_dig_port->base.base.dev;
151 u8 source_max, sink_max;
152
153 source_max = 4;
154 if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
155 (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
156 source_max = 2;
157
158 sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
159
160 return min(source_max, sink_max);
161 }
162
163 /*
164 * The units on the numbers in the next two are... bizarre. Examples will
165 * make it clearer; this one parallels an example in the eDP spec.
166 *
167 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
168 *
169 * 270000 * 1 * 8 / 10 == 216000
170 *
171 * The actual data capacity of that configuration is 2.16Gbit/s, so the
172 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
173 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
174 * 119000. At 18bpp that's 2142000 kilobits per second.
175 *
176 * Thus the strange-looking division by 10 in intel_dp_link_required, to
177 * get the result in decakilobits instead of kilobits.
178 */
179
180 static int
181 intel_dp_link_required(int pixel_clock, int bpp)
182 {
183 return (pixel_clock * bpp + 9) / 10;
184 }
185
186 static int
187 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
188 {
189 return (max_link_clock * max_lanes * 8) / 10;
190 }
191
192 static enum drm_mode_status
193 intel_dp_mode_valid(struct drm_connector *connector,
194 struct drm_display_mode *mode)
195 {
196 struct intel_dp *intel_dp = intel_attached_dp(connector);
197 struct intel_connector *intel_connector = to_intel_connector(connector);
198 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
199 int target_clock = mode->clock;
200 int max_rate, mode_rate, max_lanes, max_link_clock;
201
202 if (is_edp(intel_dp) && fixed_mode) {
203 if (mode->hdisplay > fixed_mode->hdisplay)
204 return MODE_PANEL;
205
206 if (mode->vdisplay > fixed_mode->vdisplay)
207 return MODE_PANEL;
208
209 target_clock = fixed_mode->clock;
210 }
211
212 max_link_clock = intel_dp_max_link_rate(intel_dp);
213 max_lanes = intel_dp_max_lane_count(intel_dp);
214
215 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
216 mode_rate = intel_dp_link_required(target_clock, 18);
217
218 if (mode_rate > max_rate)
219 return MODE_CLOCK_HIGH;
220
221 if (mode->clock < 10000)
222 return MODE_CLOCK_LOW;
223
224 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
225 return MODE_H_ILLEGAL;
226
227 return MODE_OK;
228 }
229
230 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
231 {
232 int i;
233 uint32_t v = 0;
234
235 if (src_bytes > 4)
236 src_bytes = 4;
237 for (i = 0; i < src_bytes; i++)
238 v |= ((uint32_t) src[i]) << ((3-i) * 8);
239 return v;
240 }
241
242 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
243 {
244 int i;
245 if (dst_bytes > 4)
246 dst_bytes = 4;
247 for (i = 0; i < dst_bytes; i++)
248 dst[i] = src >> ((3-i) * 8);
249 }
250
251 /* hrawclock is 1/4 the FSB frequency */
252 static int
253 intel_hrawclk(struct drm_device *dev)
254 {
255 struct drm_i915_private *dev_priv = dev->dev_private;
256 uint32_t clkcfg;
257
258 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
259 if (IS_VALLEYVIEW(dev))
260 return 200;
261
262 clkcfg = I915_READ(CLKCFG);
263 switch (clkcfg & CLKCFG_FSB_MASK) {
264 case CLKCFG_FSB_400:
265 return 100;
266 case CLKCFG_FSB_533:
267 return 133;
268 case CLKCFG_FSB_667:
269 return 166;
270 case CLKCFG_FSB_800:
271 return 200;
272 case CLKCFG_FSB_1067:
273 return 266;
274 case CLKCFG_FSB_1333:
275 return 333;
276 /* these two are just a guess; one of them might be right */
277 case CLKCFG_FSB_1600:
278 case CLKCFG_FSB_1600_ALT:
279 return 400;
280 default:
281 return 133;
282 }
283 }
284
285 static void
286 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
287 struct intel_dp *intel_dp);
288 static void
289 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
290 struct intel_dp *intel_dp);
291
292 static void pps_lock(struct intel_dp *intel_dp)
293 {
294 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
295 struct intel_encoder *encoder = &intel_dig_port->base;
296 struct drm_device *dev = encoder->base.dev;
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 enum intel_display_power_domain power_domain;
299
300 /*
301 * See vlv_power_sequencer_reset() why we need
302 * a power domain reference here.
303 */
304 power_domain = intel_display_port_power_domain(encoder);
305 intel_display_power_get(dev_priv, power_domain);
306
307 mutex_lock(&dev_priv->pps_mutex);
308 }
309
310 static void pps_unlock(struct intel_dp *intel_dp)
311 {
312 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
313 struct intel_encoder *encoder = &intel_dig_port->base;
314 struct drm_device *dev = encoder->base.dev;
315 struct drm_i915_private *dev_priv = dev->dev_private;
316 enum intel_display_power_domain power_domain;
317
318 mutex_unlock(&dev_priv->pps_mutex);
319
320 power_domain = intel_display_port_power_domain(encoder);
321 intel_display_power_put(dev_priv, power_domain);
322 }
323
324 static void
325 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
326 {
327 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
328 struct drm_device *dev = intel_dig_port->base.base.dev;
329 struct drm_i915_private *dev_priv = dev->dev_private;
330 enum pipe pipe = intel_dp->pps_pipe;
331 bool pll_enabled;
332 uint32_t DP;
333
334 if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
335 "skipping pipe %c power seqeuncer kick due to port %c being active\n",
336 pipe_name(pipe), port_name(intel_dig_port->port)))
337 return;
338
339 DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
340 pipe_name(pipe), port_name(intel_dig_port->port));
341
342 /* Preserve the BIOS-computed detected bit. This is
343 * supposed to be read-only.
344 */
345 DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
346 DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
347 DP |= DP_PORT_WIDTH(1);
348 DP |= DP_LINK_TRAIN_PAT_1;
349
350 if (IS_CHERRYVIEW(dev))
351 DP |= DP_PIPE_SELECT_CHV(pipe);
352 else if (pipe == PIPE_B)
353 DP |= DP_PIPEB_SELECT;
354
355 pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
356
357 /*
358 * The DPLL for the pipe must be enabled for this to work.
359 * So enable temporarily it if it's not already enabled.
360 */
361 if (!pll_enabled)
362 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
363 &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
364
365 /*
366 * Similar magic as in intel_dp_enable_port().
367 * We _must_ do this port enable + disable trick
368 * to make this power seqeuencer lock onto the port.
369 * Otherwise even VDD force bit won't work.
370 */
371 I915_WRITE(intel_dp->output_reg, DP);
372 POSTING_READ(intel_dp->output_reg);
373
374 I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
375 POSTING_READ(intel_dp->output_reg);
376
377 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
378 POSTING_READ(intel_dp->output_reg);
379
380 if (!pll_enabled)
381 vlv_force_pll_off(dev, pipe);
382 }
383
384 static enum pipe
385 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
386 {
387 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
388 struct drm_device *dev = intel_dig_port->base.base.dev;
389 struct drm_i915_private *dev_priv = dev->dev_private;
390 struct intel_encoder *encoder;
391 unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
392 enum pipe pipe;
393
394 lockdep_assert_held(&dev_priv->pps_mutex);
395
396 /* We should never land here with regular DP ports */
397 WARN_ON(!is_edp(intel_dp));
398
399 if (intel_dp->pps_pipe != INVALID_PIPE)
400 return intel_dp->pps_pipe;
401
402 /*
403 * We don't have power sequencer currently.
404 * Pick one that's not used by other ports.
405 */
406 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
407 base.head) {
408 struct intel_dp *tmp;
409
410 if (encoder->type != INTEL_OUTPUT_EDP)
411 continue;
412
413 tmp = enc_to_intel_dp(&encoder->base);
414
415 if (tmp->pps_pipe != INVALID_PIPE)
416 pipes &= ~(1 << tmp->pps_pipe);
417 }
418
419 /*
420 * Didn't find one. This should not happen since there
421 * are two power sequencers and up to two eDP ports.
422 */
423 if (WARN_ON(pipes == 0))
424 pipe = PIPE_A;
425 else
426 pipe = ffs(pipes) - 1;
427
428 vlv_steal_power_sequencer(dev, pipe);
429 intel_dp->pps_pipe = pipe;
430
431 DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
432 pipe_name(intel_dp->pps_pipe),
433 port_name(intel_dig_port->port));
434
435 /* init power sequencer on this pipe and port */
436 intel_dp_init_panel_power_sequencer(dev, intel_dp);
437 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
438
439 /*
440 * Even vdd force doesn't work until we've made
441 * the power sequencer lock in on the port.
442 */
443 vlv_power_sequencer_kick(intel_dp);
444
445 return intel_dp->pps_pipe;
446 }
447
448 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
449 enum pipe pipe);
450
451 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
452 enum pipe pipe)
453 {
454 return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
455 }
456
457 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
458 enum pipe pipe)
459 {
460 return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
461 }
462
463 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
464 enum pipe pipe)
465 {
466 return true;
467 }
468
469 static enum pipe
470 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
471 enum port port,
472 vlv_pipe_check pipe_check)
473 {
474 enum pipe pipe;
475
476 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
477 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
478 PANEL_PORT_SELECT_MASK;
479
480 if (port_sel != PANEL_PORT_SELECT_VLV(port))
481 continue;
482
483 if (!pipe_check(dev_priv, pipe))
484 continue;
485
486 return pipe;
487 }
488
489 return INVALID_PIPE;
490 }
491
492 static void
493 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
494 {
495 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
496 struct drm_device *dev = intel_dig_port->base.base.dev;
497 struct drm_i915_private *dev_priv = dev->dev_private;
498 enum port port = intel_dig_port->port;
499
500 lockdep_assert_held(&dev_priv->pps_mutex);
501
502 /* try to find a pipe with this port selected */
503 /* first pick one where the panel is on */
504 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
505 vlv_pipe_has_pp_on);
506 /* didn't find one? pick one where vdd is on */
507 if (intel_dp->pps_pipe == INVALID_PIPE)
508 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
509 vlv_pipe_has_vdd_on);
510 /* didn't find one? pick one with just the correct port */
511 if (intel_dp->pps_pipe == INVALID_PIPE)
512 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
513 vlv_pipe_any);
514
515 /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
516 if (intel_dp->pps_pipe == INVALID_PIPE) {
517 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
518 port_name(port));
519 return;
520 }
521
522 DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
523 port_name(port), pipe_name(intel_dp->pps_pipe));
524
525 intel_dp_init_panel_power_sequencer(dev, intel_dp);
526 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
527 }
528
529 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
530 {
531 struct drm_device *dev = dev_priv->dev;
532 struct intel_encoder *encoder;
533
534 if (WARN_ON(!IS_VALLEYVIEW(dev)))
535 return;
536
537 /*
538 * We can't grab pps_mutex here due to deadlock with power_domain
539 * mutex when power_domain functions are called while holding pps_mutex.
540 * That also means that in order to use pps_pipe the code needs to
541 * hold both a power domain reference and pps_mutex, and the power domain
542 * reference get/put must be done while _not_ holding pps_mutex.
543 * pps_{lock,unlock}() do these steps in the correct order, so one
544 * should use them always.
545 */
546
547 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
548 struct intel_dp *intel_dp;
549
550 if (encoder->type != INTEL_OUTPUT_EDP)
551 continue;
552
553 intel_dp = enc_to_intel_dp(&encoder->base);
554 intel_dp->pps_pipe = INVALID_PIPE;
555 }
556 }
557
558 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
559 {
560 struct drm_device *dev = intel_dp_to_dev(intel_dp);
561
562 if (HAS_PCH_SPLIT(dev))
563 return PCH_PP_CONTROL;
564 else
565 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
566 }
567
568 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
569 {
570 struct drm_device *dev = intel_dp_to_dev(intel_dp);
571
572 if (HAS_PCH_SPLIT(dev))
573 return PCH_PP_STATUS;
574 else
575 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
576 }
577
578 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
579 This function only applicable when panel PM state is not to be tracked */
580 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
581 void *unused)
582 {
583 struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
584 edp_notifier);
585 struct drm_device *dev = intel_dp_to_dev(intel_dp);
586 struct drm_i915_private *dev_priv = dev->dev_private;
587 u32 pp_div;
588 u32 pp_ctrl_reg, pp_div_reg;
589
590 if (!is_edp(intel_dp) || code != SYS_RESTART)
591 return 0;
592
593 pps_lock(intel_dp);
594
595 if (IS_VALLEYVIEW(dev)) {
596 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
597
598 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
599 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
600 pp_div = I915_READ(pp_div_reg);
601 pp_div &= PP_REFERENCE_DIVIDER_MASK;
602
603 /* 0x1F write to PP_DIV_REG sets max cycle delay */
604 I915_WRITE(pp_div_reg, pp_div | 0x1F);
605 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
606 msleep(intel_dp->panel_power_cycle_delay);
607 }
608
609 pps_unlock(intel_dp);
610
611 return 0;
612 }
613
614 static bool edp_have_panel_power(struct intel_dp *intel_dp)
615 {
616 struct drm_device *dev = intel_dp_to_dev(intel_dp);
617 struct drm_i915_private *dev_priv = dev->dev_private;
618
619 lockdep_assert_held(&dev_priv->pps_mutex);
620
621 if (IS_VALLEYVIEW(dev) &&
622 intel_dp->pps_pipe == INVALID_PIPE)
623 return false;
624
625 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
626 }
627
628 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
629 {
630 struct drm_device *dev = intel_dp_to_dev(intel_dp);
631 struct drm_i915_private *dev_priv = dev->dev_private;
632
633 lockdep_assert_held(&dev_priv->pps_mutex);
634
635 if (IS_VALLEYVIEW(dev) &&
636 intel_dp->pps_pipe == INVALID_PIPE)
637 return false;
638
639 return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
640 }
641
642 static void
643 intel_dp_check_edp(struct intel_dp *intel_dp)
644 {
645 struct drm_device *dev = intel_dp_to_dev(intel_dp);
646 struct drm_i915_private *dev_priv = dev->dev_private;
647
648 if (!is_edp(intel_dp))
649 return;
650
651 if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
652 WARN(1, "eDP powered off while attempting aux channel communication.\n");
653 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
654 I915_READ(_pp_stat_reg(intel_dp)),
655 I915_READ(_pp_ctrl_reg(intel_dp)));
656 }
657 }
658
659 static uint32_t
660 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
661 {
662 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
663 struct drm_device *dev = intel_dig_port->base.base.dev;
664 struct drm_i915_private *dev_priv = dev->dev_private;
665 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
666 uint32_t status;
667 bool done;
668
669 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
670 if (has_aux_irq)
671 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
672 msecs_to_jiffies_timeout(10));
673 else
674 done = wait_for_atomic(C, 10) == 0;
675 if (!done)
676 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
677 has_aux_irq);
678 #undef C
679
680 return status;
681 }
682
683 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
684 {
685 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
686 struct drm_device *dev = intel_dig_port->base.base.dev;
687
688 /*
689 * The clock divider is based off the hrawclk, and would like to run at
690 * 2MHz. So, take the hrawclk value and divide by 2 and use that
691 */
692 return index ? 0 : intel_hrawclk(dev) / 2;
693 }
694
695 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
696 {
697 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
698 struct drm_device *dev = intel_dig_port->base.base.dev;
699 struct drm_i915_private *dev_priv = dev->dev_private;
700
701 if (index)
702 return 0;
703
704 if (intel_dig_port->port == PORT_A) {
705 return DIV_ROUND_UP(dev_priv->display.get_display_clock_speed(dev), 2000);
706 } else {
707 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
708 }
709 }
710
711 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
712 {
713 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
714 struct drm_device *dev = intel_dig_port->base.base.dev;
715 struct drm_i915_private *dev_priv = dev->dev_private;
716
717 if (intel_dig_port->port == PORT_A) {
718 if (index)
719 return 0;
720 return DIV_ROUND_CLOSEST(dev_priv->display.get_display_clock_speed(dev), 2000);
721 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
722 /* Workaround for non-ULT HSW */
723 switch (index) {
724 case 0: return 63;
725 case 1: return 72;
726 default: return 0;
727 }
728 } else {
729 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
730 }
731 }
732
733 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
734 {
735 return index ? 0 : 100;
736 }
737
738 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
739 {
740 /*
741 * SKL doesn't need us to program the AUX clock divider (Hardware will
742 * derive the clock from CDCLK automatically). We still implement the
743 * get_aux_clock_divider vfunc to plug-in into the existing code.
744 */
745 return index ? 0 : 1;
746 }
747
748 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
749 bool has_aux_irq,
750 int send_bytes,
751 uint32_t aux_clock_divider)
752 {
753 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
754 struct drm_device *dev = intel_dig_port->base.base.dev;
755 uint32_t precharge, timeout;
756
757 if (IS_GEN6(dev))
758 precharge = 3;
759 else
760 precharge = 5;
761
762 if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
763 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
764 else
765 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
766
767 return DP_AUX_CH_CTL_SEND_BUSY |
768 DP_AUX_CH_CTL_DONE |
769 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
770 DP_AUX_CH_CTL_TIME_OUT_ERROR |
771 timeout |
772 DP_AUX_CH_CTL_RECEIVE_ERROR |
773 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
774 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
775 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
776 }
777
778 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
779 bool has_aux_irq,
780 int send_bytes,
781 uint32_t unused)
782 {
783 return DP_AUX_CH_CTL_SEND_BUSY |
784 DP_AUX_CH_CTL_DONE |
785 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
786 DP_AUX_CH_CTL_TIME_OUT_ERROR |
787 DP_AUX_CH_CTL_TIME_OUT_1600us |
788 DP_AUX_CH_CTL_RECEIVE_ERROR |
789 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
790 DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
791 }
792
793 static int
794 intel_dp_aux_ch(struct intel_dp *intel_dp,
795 const uint8_t *send, int send_bytes,
796 uint8_t *recv, int recv_size)
797 {
798 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
799 struct drm_device *dev = intel_dig_port->base.base.dev;
800 struct drm_i915_private *dev_priv = dev->dev_private;
801 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
802 uint32_t ch_data = ch_ctl + 4;
803 uint32_t aux_clock_divider;
804 int i, ret, recv_bytes;
805 uint32_t status;
806 int try, clock = 0;
807 bool has_aux_irq = HAS_AUX_IRQ(dev);
808 bool vdd;
809
810 pps_lock(intel_dp);
811
812 /*
813 * We will be called with VDD already enabled for dpcd/edid/oui reads.
814 * In such cases we want to leave VDD enabled and it's up to upper layers
815 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
816 * ourselves.
817 */
818 vdd = edp_panel_vdd_on(intel_dp);
819
820 /* dp aux is extremely sensitive to irq latency, hence request the
821 * lowest possible wakeup latency and so prevent the cpu from going into
822 * deep sleep states.
823 */
824 pm_qos_update_request(&dev_priv->pm_qos, 0);
825
826 intel_dp_check_edp(intel_dp);
827
828 intel_aux_display_runtime_get(dev_priv);
829
830 /* Try to wait for any previous AUX channel activity */
831 for (try = 0; try < 3; try++) {
832 status = I915_READ_NOTRACE(ch_ctl);
833 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
834 break;
835 msleep(1);
836 }
837
838 if (try == 3) {
839 WARN(1, "dp_aux_ch not started status 0x%08x\n",
840 I915_READ(ch_ctl));
841 ret = -EBUSY;
842 goto out;
843 }
844
845 /* Only 5 data registers! */
846 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
847 ret = -E2BIG;
848 goto out;
849 }
850
851 while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
852 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
853 has_aux_irq,
854 send_bytes,
855 aux_clock_divider);
856
857 /* Must try at least 3 times according to DP spec */
858 for (try = 0; try < 5; try++) {
859 /* Load the send data into the aux channel data registers */
860 for (i = 0; i < send_bytes; i += 4)
861 I915_WRITE(ch_data + i,
862 intel_dp_pack_aux(send + i,
863 send_bytes - i));
864
865 /* Send the command and wait for it to complete */
866 I915_WRITE(ch_ctl, send_ctl);
867
868 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
869
870 /* Clear done status and any errors */
871 I915_WRITE(ch_ctl,
872 status |
873 DP_AUX_CH_CTL_DONE |
874 DP_AUX_CH_CTL_TIME_OUT_ERROR |
875 DP_AUX_CH_CTL_RECEIVE_ERROR);
876
877 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
878 continue;
879
880 /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
881 * 400us delay required for errors and timeouts
882 * Timeout errors from the HW already meet this
883 * requirement so skip to next iteration
884 */
885 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
886 usleep_range(400, 500);
887 continue;
888 }
889 if (status & DP_AUX_CH_CTL_DONE)
890 break;
891 }
892 if (status & DP_AUX_CH_CTL_DONE)
893 break;
894 }
895
896 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
897 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
898 ret = -EBUSY;
899 goto out;
900 }
901
902 /* Check for timeout or receive error.
903 * Timeouts occur when the sink is not connected
904 */
905 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
906 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
907 ret = -EIO;
908 goto out;
909 }
910
911 /* Timeouts occur when the device isn't connected, so they're
912 * "normal" -- don't fill the kernel log with these */
913 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
914 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
915 ret = -ETIMEDOUT;
916 goto out;
917 }
918
919 /* Unload any bytes sent back from the other side */
920 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
921 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
922 if (recv_bytes > recv_size)
923 recv_bytes = recv_size;
924
925 for (i = 0; i < recv_bytes; i += 4)
926 intel_dp_unpack_aux(I915_READ(ch_data + i),
927 recv + i, recv_bytes - i);
928
929 ret = recv_bytes;
930 out:
931 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
932 intel_aux_display_runtime_put(dev_priv);
933
934 if (vdd)
935 edp_panel_vdd_off(intel_dp, false);
936
937 pps_unlock(intel_dp);
938
939 return ret;
940 }
941
942 #define BARE_ADDRESS_SIZE 3
943 #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
944 static ssize_t
945 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
946 {
947 struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
948 uint8_t txbuf[20], rxbuf[20];
949 size_t txsize, rxsize;
950 int ret;
951
952 txbuf[0] = (msg->request << 4) |
953 ((msg->address >> 16) & 0xf);
954 txbuf[1] = (msg->address >> 8) & 0xff;
955 txbuf[2] = msg->address & 0xff;
956 txbuf[3] = msg->size - 1;
957
958 switch (msg->request & ~DP_AUX_I2C_MOT) {
959 case DP_AUX_NATIVE_WRITE:
960 case DP_AUX_I2C_WRITE:
961 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
962 rxsize = 2; /* 0 or 1 data bytes */
963
964 if (WARN_ON(txsize > 20))
965 return -E2BIG;
966
967 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
968
969 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
970 if (ret > 0) {
971 msg->reply = rxbuf[0] >> 4;
972
973 if (ret > 1) {
974 /* Number of bytes written in a short write. */
975 ret = clamp_t(int, rxbuf[1], 0, msg->size);
976 } else {
977 /* Return payload size. */
978 ret = msg->size;
979 }
980 }
981 break;
982
983 case DP_AUX_NATIVE_READ:
984 case DP_AUX_I2C_READ:
985 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
986 rxsize = msg->size + 1;
987
988 if (WARN_ON(rxsize > 20))
989 return -E2BIG;
990
991 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
992 if (ret > 0) {
993 msg->reply = rxbuf[0] >> 4;
994 /*
995 * Assume happy day, and copy the data. The caller is
996 * expected to check msg->reply before touching it.
997 *
998 * Return payload size.
999 */
1000 ret--;
1001 memcpy(msg->buffer, rxbuf + 1, ret);
1002 }
1003 break;
1004
1005 default:
1006 ret = -EINVAL;
1007 break;
1008 }
1009
1010 return ret;
1011 }
1012
1013 static void
1014 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1015 {
1016 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1017 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1018 enum port port = intel_dig_port->port;
1019 const char *name = NULL;
1020 int ret;
1021
1022 switch (port) {
1023 case PORT_A:
1024 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1025 name = "DPDDC-A";
1026 break;
1027 case PORT_B:
1028 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1029 name = "DPDDC-B";
1030 break;
1031 case PORT_C:
1032 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1033 name = "DPDDC-C";
1034 break;
1035 case PORT_D:
1036 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1037 name = "DPDDC-D";
1038 break;
1039 default:
1040 BUG();
1041 }
1042
1043 /*
1044 * The AUX_CTL register is usually DP_CTL + 0x10.
1045 *
1046 * On Haswell and Broadwell though:
1047 * - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1048 * - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1049 *
1050 * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1051 */
1052 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1053 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1054
1055 intel_dp->aux.name = name;
1056 intel_dp->aux.dev = dev->dev;
1057 intel_dp->aux.transfer = intel_dp_aux_transfer;
1058
1059 DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1060 connector->base.kdev->kobj.name);
1061
1062 ret = drm_dp_aux_register(&intel_dp->aux);
1063 if (ret < 0) {
1064 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1065 name, ret);
1066 return;
1067 }
1068
1069 ret = sysfs_create_link(&connector->base.kdev->kobj,
1070 &intel_dp->aux.ddc.dev.kobj,
1071 intel_dp->aux.ddc.dev.kobj.name);
1072 if (ret < 0) {
1073 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1074 drm_dp_aux_unregister(&intel_dp->aux);
1075 }
1076 }
1077
1078 static void
1079 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1080 {
1081 struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1082
1083 if (!intel_connector->mst_port)
1084 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1085 intel_dp->aux.ddc.dev.kobj.name);
1086 intel_connector_unregister(intel_connector);
1087 }
1088
1089 static void
1090 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config, int link_clock)
1091 {
1092 u32 ctrl1;
1093
1094 pipe_config->ddi_pll_sel = SKL_DPLL0;
1095 pipe_config->dpll_hw_state.cfgcr1 = 0;
1096 pipe_config->dpll_hw_state.cfgcr2 = 0;
1097
1098 ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1099 switch (link_clock / 2) {
1100 case 81000:
1101 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_810,
1102 SKL_DPLL0);
1103 break;
1104 case 135000:
1105 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1350,
1106 SKL_DPLL0);
1107 break;
1108 case 270000:
1109 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2700,
1110 SKL_DPLL0);
1111 break;
1112 case 162000:
1113 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1620,
1114 SKL_DPLL0);
1115 break;
1116 /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1117 results in CDCLK change. Need to handle the change of CDCLK by
1118 disabling pipes and re-enabling them */
1119 case 108000:
1120 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_1080,
1121 SKL_DPLL0);
1122 break;
1123 case 216000:
1124 ctrl1 |= DPLL_CRTL1_LINK_RATE(DPLL_CRTL1_LINK_RATE_2160,
1125 SKL_DPLL0);
1126 break;
1127
1128 }
1129 pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1130 }
1131
1132 static void
1133 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config, int link_bw)
1134 {
1135 switch (link_bw) {
1136 case DP_LINK_BW_1_62:
1137 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1138 break;
1139 case DP_LINK_BW_2_7:
1140 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1141 break;
1142 case DP_LINK_BW_5_4:
1143 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1144 break;
1145 }
1146 }
1147
1148 static int
1149 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1150 {
1151 if (intel_dp->num_sink_rates) {
1152 *sink_rates = intel_dp->sink_rates;
1153 return intel_dp->num_sink_rates;
1154 }
1155
1156 *sink_rates = default_rates;
1157
1158 return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1159 }
1160
1161 static int
1162 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1163 {
1164 if (INTEL_INFO(dev)->gen >= 9) {
1165 *source_rates = gen9_rates;
1166 return ARRAY_SIZE(gen9_rates);
1167 } else if (IS_CHERRYVIEW(dev)) {
1168 *source_rates = chv_rates;
1169 return ARRAY_SIZE(chv_rates);
1170 }
1171
1172 *source_rates = default_rates;
1173
1174 if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1175 /* WaDisableHBR2:skl */
1176 return (DP_LINK_BW_2_7 >> 3) + 1;
1177 else if (INTEL_INFO(dev)->gen >= 8 ||
1178 (IS_HASWELL(dev) && !IS_HSW_ULX(dev)))
1179 return (DP_LINK_BW_5_4 >> 3) + 1;
1180 else
1181 return (DP_LINK_BW_2_7 >> 3) + 1;
1182 }
1183
1184 static void
1185 intel_dp_set_clock(struct intel_encoder *encoder,
1186 struct intel_crtc_state *pipe_config, int link_bw)
1187 {
1188 struct drm_device *dev = encoder->base.dev;
1189 const struct dp_link_dpll *divisor = NULL;
1190 int i, count = 0;
1191
1192 if (IS_G4X(dev)) {
1193 divisor = gen4_dpll;
1194 count = ARRAY_SIZE(gen4_dpll);
1195 } else if (HAS_PCH_SPLIT(dev)) {
1196 divisor = pch_dpll;
1197 count = ARRAY_SIZE(pch_dpll);
1198 } else if (IS_CHERRYVIEW(dev)) {
1199 divisor = chv_dpll;
1200 count = ARRAY_SIZE(chv_dpll);
1201 } else if (IS_VALLEYVIEW(dev)) {
1202 divisor = vlv_dpll;
1203 count = ARRAY_SIZE(vlv_dpll);
1204 }
1205
1206 if (divisor && count) {
1207 for (i = 0; i < count; i++) {
1208 if (link_bw == divisor[i].link_bw) {
1209 pipe_config->dpll = divisor[i].dpll;
1210 pipe_config->clock_set = true;
1211 break;
1212 }
1213 }
1214 }
1215 }
1216
1217 static int intersect_rates(const int *source_rates, int source_len,
1218 const int *sink_rates, int sink_len,
1219 int *common_rates)
1220 {
1221 int i = 0, j = 0, k = 0;
1222
1223 while (i < source_len && j < sink_len) {
1224 if (source_rates[i] == sink_rates[j]) {
1225 if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1226 return k;
1227 common_rates[k] = source_rates[i];
1228 ++k;
1229 ++i;
1230 ++j;
1231 } else if (source_rates[i] < sink_rates[j]) {
1232 ++i;
1233 } else {
1234 ++j;
1235 }
1236 }
1237 return k;
1238 }
1239
1240 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1241 int *common_rates)
1242 {
1243 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1244 const int *source_rates, *sink_rates;
1245 int source_len, sink_len;
1246
1247 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1248 source_len = intel_dp_source_rates(dev, &source_rates);
1249
1250 return intersect_rates(source_rates, source_len,
1251 sink_rates, sink_len,
1252 common_rates);
1253 }
1254
1255 static void snprintf_int_array(char *str, size_t len,
1256 const int *array, int nelem)
1257 {
1258 int i;
1259
1260 str[0] = '\0';
1261
1262 for (i = 0; i < nelem; i++) {
1263 int r = snprintf(str, len, "%d,", array[i]);
1264 if (r >= len)
1265 return;
1266 str += r;
1267 len -= r;
1268 }
1269 }
1270
1271 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1272 {
1273 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1274 const int *source_rates, *sink_rates;
1275 int source_len, sink_len, common_len;
1276 int common_rates[DP_MAX_SUPPORTED_RATES];
1277 char str[128]; /* FIXME: too big for stack? */
1278
1279 if ((drm_debug & DRM_UT_KMS) == 0)
1280 return;
1281
1282 source_len = intel_dp_source_rates(dev, &source_rates);
1283 snprintf_int_array(str, sizeof(str), source_rates, source_len);
1284 DRM_DEBUG_KMS("source rates: %s\n", str);
1285
1286 sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1287 snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1288 DRM_DEBUG_KMS("sink rates: %s\n", str);
1289
1290 common_len = intel_dp_common_rates(intel_dp, common_rates);
1291 snprintf_int_array(str, sizeof(str), common_rates, common_len);
1292 DRM_DEBUG_KMS("common rates: %s\n", str);
1293 }
1294
1295 static int rate_to_index(int find, const int *rates)
1296 {
1297 int i = 0;
1298
1299 for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1300 if (find == rates[i])
1301 break;
1302
1303 return i;
1304 }
1305
1306 int
1307 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1308 {
1309 int rates[DP_MAX_SUPPORTED_RATES] = {};
1310 int len;
1311
1312 len = intel_dp_common_rates(intel_dp, rates);
1313 if (WARN_ON(len <= 0))
1314 return 162000;
1315
1316 return rates[rate_to_index(0, rates) - 1];
1317 }
1318
1319 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1320 {
1321 return rate_to_index(rate, intel_dp->sink_rates);
1322 }
1323
1324 bool
1325 intel_dp_compute_config(struct intel_encoder *encoder,
1326 struct intel_crtc_state *pipe_config)
1327 {
1328 struct drm_device *dev = encoder->base.dev;
1329 struct drm_i915_private *dev_priv = dev->dev_private;
1330 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1331 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1332 enum port port = dp_to_dig_port(intel_dp)->port;
1333 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1334 struct intel_connector *intel_connector = intel_dp->attached_connector;
1335 int lane_count, clock;
1336 int min_lane_count = 1;
1337 int max_lane_count = intel_dp_max_lane_count(intel_dp);
1338 /* Conveniently, the link BW constants become indices with a shift...*/
1339 int min_clock = 0;
1340 int max_clock;
1341 int bpp, mode_rate;
1342 int link_avail, link_clock;
1343 int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1344 int common_len;
1345
1346 common_len = intel_dp_common_rates(intel_dp, common_rates);
1347
1348 /* No common link rates between source and sink */
1349 WARN_ON(common_len <= 0);
1350
1351 max_clock = common_len - 1;
1352
1353 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1354 pipe_config->has_pch_encoder = true;
1355
1356 pipe_config->has_dp_encoder = true;
1357 pipe_config->has_drrs = false;
1358 pipe_config->has_audio = intel_dp->has_audio;
1359
1360 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1361 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1362 adjusted_mode);
1363
1364 if (INTEL_INFO(dev)->gen >= 9) {
1365 int ret;
1366 ret = skl_update_scaler_users(intel_crtc, pipe_config, NULL, NULL, 0);
1367 if (ret)
1368 return ret;
1369 }
1370
1371 if (!HAS_PCH_SPLIT(dev))
1372 intel_gmch_panel_fitting(intel_crtc, pipe_config,
1373 intel_connector->panel.fitting_mode);
1374 else
1375 intel_pch_panel_fitting(intel_crtc, pipe_config,
1376 intel_connector->panel.fitting_mode);
1377 }
1378
1379 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1380 return false;
1381
1382 DRM_DEBUG_KMS("DP link computation with max lane count %i "
1383 "max bw %d pixel clock %iKHz\n",
1384 max_lane_count, common_rates[max_clock],
1385 adjusted_mode->crtc_clock);
1386
1387 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1388 * bpc in between. */
1389 bpp = pipe_config->pipe_bpp;
1390 if (is_edp(intel_dp)) {
1391 if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
1392 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1393 dev_priv->vbt.edp_bpp);
1394 bpp = dev_priv->vbt.edp_bpp;
1395 }
1396
1397 /*
1398 * Use the maximum clock and number of lanes the eDP panel
1399 * advertizes being capable of. The panels are generally
1400 * designed to support only a single clock and lane
1401 * configuration, and typically these values correspond to the
1402 * native resolution of the panel.
1403 */
1404 min_lane_count = max_lane_count;
1405 min_clock = max_clock;
1406 }
1407
1408 for (; bpp >= 6*3; bpp -= 2*3) {
1409 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1410 bpp);
1411
1412 for (clock = min_clock; clock <= max_clock; clock++) {
1413 for (lane_count = min_lane_count;
1414 lane_count <= max_lane_count;
1415 lane_count <<= 1) {
1416
1417 link_clock = common_rates[clock];
1418 link_avail = intel_dp_max_data_rate(link_clock,
1419 lane_count);
1420
1421 if (mode_rate <= link_avail) {
1422 goto found;
1423 }
1424 }
1425 }
1426 }
1427
1428 return false;
1429
1430 found:
1431 if (intel_dp->color_range_auto) {
1432 /*
1433 * See:
1434 * CEA-861-E - 5.1 Default Encoding Parameters
1435 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1436 */
1437 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
1438 intel_dp->color_range = DP_COLOR_RANGE_16_235;
1439 else
1440 intel_dp->color_range = 0;
1441 }
1442
1443 if (intel_dp->color_range)
1444 pipe_config->limited_color_range = true;
1445
1446 intel_dp->lane_count = lane_count;
1447
1448 if (intel_dp->num_sink_rates) {
1449 intel_dp->link_bw = 0;
1450 intel_dp->rate_select =
1451 intel_dp_rate_select(intel_dp, common_rates[clock]);
1452 } else {
1453 intel_dp->link_bw =
1454 drm_dp_link_rate_to_bw_code(common_rates[clock]);
1455 intel_dp->rate_select = 0;
1456 }
1457
1458 pipe_config->pipe_bpp = bpp;
1459 pipe_config->port_clock = common_rates[clock];
1460
1461 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
1462 intel_dp->link_bw, intel_dp->lane_count,
1463 pipe_config->port_clock, bpp);
1464 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1465 mode_rate, link_avail);
1466
1467 intel_link_compute_m_n(bpp, lane_count,
1468 adjusted_mode->crtc_clock,
1469 pipe_config->port_clock,
1470 &pipe_config->dp_m_n);
1471
1472 if (intel_connector->panel.downclock_mode != NULL &&
1473 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1474 pipe_config->has_drrs = true;
1475 intel_link_compute_m_n(bpp, lane_count,
1476 intel_connector->panel.downclock_mode->clock,
1477 pipe_config->port_clock,
1478 &pipe_config->dp_m2_n2);
1479 }
1480
1481 if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1482 skl_edp_set_pll_config(pipe_config, common_rates[clock]);
1483 else if (IS_BROXTON(dev))
1484 /* handled in ddi */;
1485 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1486 hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
1487 else
1488 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
1489
1490 return true;
1491 }
1492
1493 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1494 {
1495 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1496 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1497 struct drm_device *dev = crtc->base.dev;
1498 struct drm_i915_private *dev_priv = dev->dev_private;
1499 u32 dpa_ctl;
1500
1501 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1502 crtc->config->port_clock);
1503 dpa_ctl = I915_READ(DP_A);
1504 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1505
1506 if (crtc->config->port_clock == 162000) {
1507 /* For a long time we've carried around a ILK-DevA w/a for the
1508 * 160MHz clock. If we're really unlucky, it's still required.
1509 */
1510 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1511 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1512 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1513 } else {
1514 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1515 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1516 }
1517
1518 I915_WRITE(DP_A, dpa_ctl);
1519
1520 POSTING_READ(DP_A);
1521 udelay(500);
1522 }
1523
1524 static void intel_dp_prepare(struct intel_encoder *encoder)
1525 {
1526 struct drm_device *dev = encoder->base.dev;
1527 struct drm_i915_private *dev_priv = dev->dev_private;
1528 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1529 enum port port = dp_to_dig_port(intel_dp)->port;
1530 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1531 struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1532
1533 /*
1534 * There are four kinds of DP registers:
1535 *
1536 * IBX PCH
1537 * SNB CPU
1538 * IVB CPU
1539 * CPT PCH
1540 *
1541 * IBX PCH and CPU are the same for almost everything,
1542 * except that the CPU DP PLL is configured in this
1543 * register
1544 *
1545 * CPT PCH is quite different, having many bits moved
1546 * to the TRANS_DP_CTL register instead. That
1547 * configuration happens (oddly) in ironlake_pch_enable
1548 */
1549
1550 /* Preserve the BIOS-computed detected bit. This is
1551 * supposed to be read-only.
1552 */
1553 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1554
1555 /* Handle DP bits in common between all three register formats */
1556 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1557 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1558
1559 if (crtc->config->has_audio)
1560 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1561
1562 /* Split out the IBX/CPU vs CPT settings */
1563
1564 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1565 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1566 intel_dp->DP |= DP_SYNC_HS_HIGH;
1567 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1568 intel_dp->DP |= DP_SYNC_VS_HIGH;
1569 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1570
1571 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1572 intel_dp->DP |= DP_ENHANCED_FRAMING;
1573
1574 intel_dp->DP |= crtc->pipe << 29;
1575 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1576 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1577 intel_dp->DP |= intel_dp->color_range;
1578
1579 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1580 intel_dp->DP |= DP_SYNC_HS_HIGH;
1581 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1582 intel_dp->DP |= DP_SYNC_VS_HIGH;
1583 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1584
1585 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1586 intel_dp->DP |= DP_ENHANCED_FRAMING;
1587
1588 if (!IS_CHERRYVIEW(dev)) {
1589 if (crtc->pipe == 1)
1590 intel_dp->DP |= DP_PIPEB_SELECT;
1591 } else {
1592 intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1593 }
1594 } else {
1595 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1596 }
1597 }
1598
1599 #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1600 #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
1601
1602 #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
1603 #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
1604
1605 #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1606 #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1607
1608 static void wait_panel_status(struct intel_dp *intel_dp,
1609 u32 mask,
1610 u32 value)
1611 {
1612 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1613 struct drm_i915_private *dev_priv = dev->dev_private;
1614 u32 pp_stat_reg, pp_ctrl_reg;
1615
1616 lockdep_assert_held(&dev_priv->pps_mutex);
1617
1618 pp_stat_reg = _pp_stat_reg(intel_dp);
1619 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1620
1621 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1622 mask, value,
1623 I915_READ(pp_stat_reg),
1624 I915_READ(pp_ctrl_reg));
1625
1626 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1627 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1628 I915_READ(pp_stat_reg),
1629 I915_READ(pp_ctrl_reg));
1630 }
1631
1632 DRM_DEBUG_KMS("Wait complete\n");
1633 }
1634
1635 static void wait_panel_on(struct intel_dp *intel_dp)
1636 {
1637 DRM_DEBUG_KMS("Wait for panel power on\n");
1638 wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1639 }
1640
1641 static void wait_panel_off(struct intel_dp *intel_dp)
1642 {
1643 DRM_DEBUG_KMS("Wait for panel power off time\n");
1644 wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1645 }
1646
1647 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1648 {
1649 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1650
1651 /* When we disable the VDD override bit last we have to do the manual
1652 * wait. */
1653 wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1654 intel_dp->panel_power_cycle_delay);
1655
1656 wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1657 }
1658
1659 static void wait_backlight_on(struct intel_dp *intel_dp)
1660 {
1661 wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1662 intel_dp->backlight_on_delay);
1663 }
1664
1665 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1666 {
1667 wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1668 intel_dp->backlight_off_delay);
1669 }
1670
1671 /* Read the current pp_control value, unlocking the register if it
1672 * is locked
1673 */
1674
1675 static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1676 {
1677 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1678 struct drm_i915_private *dev_priv = dev->dev_private;
1679 u32 control;
1680
1681 lockdep_assert_held(&dev_priv->pps_mutex);
1682
1683 control = I915_READ(_pp_ctrl_reg(intel_dp));
1684 control &= ~PANEL_UNLOCK_MASK;
1685 control |= PANEL_UNLOCK_REGS;
1686 return control;
1687 }
1688
1689 /*
1690 * Must be paired with edp_panel_vdd_off().
1691 * Must hold pps_mutex around the whole on/off sequence.
1692 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1693 */
1694 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1695 {
1696 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1697 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1698 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1699 struct drm_i915_private *dev_priv = dev->dev_private;
1700 enum intel_display_power_domain power_domain;
1701 u32 pp;
1702 u32 pp_stat_reg, pp_ctrl_reg;
1703 bool need_to_disable = !intel_dp->want_panel_vdd;
1704
1705 lockdep_assert_held(&dev_priv->pps_mutex);
1706
1707 if (!is_edp(intel_dp))
1708 return false;
1709
1710 cancel_delayed_work(&intel_dp->panel_vdd_work);
1711 intel_dp->want_panel_vdd = true;
1712
1713 if (edp_have_panel_vdd(intel_dp))
1714 return need_to_disable;
1715
1716 power_domain = intel_display_port_power_domain(intel_encoder);
1717 intel_display_power_get(dev_priv, power_domain);
1718
1719 DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1720 port_name(intel_dig_port->port));
1721
1722 if (!edp_have_panel_power(intel_dp))
1723 wait_panel_power_cycle(intel_dp);
1724
1725 pp = ironlake_get_pp_control(intel_dp);
1726 pp |= EDP_FORCE_VDD;
1727
1728 pp_stat_reg = _pp_stat_reg(intel_dp);
1729 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1730
1731 I915_WRITE(pp_ctrl_reg, pp);
1732 POSTING_READ(pp_ctrl_reg);
1733 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1734 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1735 /*
1736 * If the panel wasn't on, delay before accessing aux channel
1737 */
1738 if (!edp_have_panel_power(intel_dp)) {
1739 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1740 port_name(intel_dig_port->port));
1741 msleep(intel_dp->panel_power_up_delay);
1742 }
1743
1744 return need_to_disable;
1745 }
1746
1747 /*
1748 * Must be paired with intel_edp_panel_vdd_off() or
1749 * intel_edp_panel_off().
1750 * Nested calls to these functions are not allowed since
1751 * we drop the lock. Caller must use some higher level
1752 * locking to prevent nested calls from other threads.
1753 */
1754 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1755 {
1756 bool vdd;
1757
1758 if (!is_edp(intel_dp))
1759 return;
1760
1761 pps_lock(intel_dp);
1762 vdd = edp_panel_vdd_on(intel_dp);
1763 pps_unlock(intel_dp);
1764
1765 I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1766 port_name(dp_to_dig_port(intel_dp)->port));
1767 }
1768
1769 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1770 {
1771 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1772 struct drm_i915_private *dev_priv = dev->dev_private;
1773 struct intel_digital_port *intel_dig_port =
1774 dp_to_dig_port(intel_dp);
1775 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1776 enum intel_display_power_domain power_domain;
1777 u32 pp;
1778 u32 pp_stat_reg, pp_ctrl_reg;
1779
1780 lockdep_assert_held(&dev_priv->pps_mutex);
1781
1782 WARN_ON(intel_dp->want_panel_vdd);
1783
1784 if (!edp_have_panel_vdd(intel_dp))
1785 return;
1786
1787 DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1788 port_name(intel_dig_port->port));
1789
1790 pp = ironlake_get_pp_control(intel_dp);
1791 pp &= ~EDP_FORCE_VDD;
1792
1793 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1794 pp_stat_reg = _pp_stat_reg(intel_dp);
1795
1796 I915_WRITE(pp_ctrl_reg, pp);
1797 POSTING_READ(pp_ctrl_reg);
1798
1799 /* Make sure sequencer is idle before allowing subsequent activity */
1800 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1801 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1802
1803 if ((pp & POWER_TARGET_ON) == 0)
1804 intel_dp->last_power_cycle = jiffies;
1805
1806 power_domain = intel_display_port_power_domain(intel_encoder);
1807 intel_display_power_put(dev_priv, power_domain);
1808 }
1809
1810 static void edp_panel_vdd_work(struct work_struct *__work)
1811 {
1812 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1813 struct intel_dp, panel_vdd_work);
1814
1815 pps_lock(intel_dp);
1816 if (!intel_dp->want_panel_vdd)
1817 edp_panel_vdd_off_sync(intel_dp);
1818 pps_unlock(intel_dp);
1819 }
1820
1821 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1822 {
1823 unsigned long delay;
1824
1825 /*
1826 * Queue the timer to fire a long time from now (relative to the power
1827 * down delay) to keep the panel power up across a sequence of
1828 * operations.
1829 */
1830 delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1831 schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1832 }
1833
1834 /*
1835 * Must be paired with edp_panel_vdd_on().
1836 * Must hold pps_mutex around the whole on/off sequence.
1837 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1838 */
1839 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1840 {
1841 struct drm_i915_private *dev_priv =
1842 intel_dp_to_dev(intel_dp)->dev_private;
1843
1844 lockdep_assert_held(&dev_priv->pps_mutex);
1845
1846 if (!is_edp(intel_dp))
1847 return;
1848
1849 I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1850 port_name(dp_to_dig_port(intel_dp)->port));
1851
1852 intel_dp->want_panel_vdd = false;
1853
1854 if (sync)
1855 edp_panel_vdd_off_sync(intel_dp);
1856 else
1857 edp_panel_vdd_schedule_off(intel_dp);
1858 }
1859
1860 static void edp_panel_on(struct intel_dp *intel_dp)
1861 {
1862 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 u32 pp;
1865 u32 pp_ctrl_reg;
1866
1867 lockdep_assert_held(&dev_priv->pps_mutex);
1868
1869 if (!is_edp(intel_dp))
1870 return;
1871
1872 DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1873 port_name(dp_to_dig_port(intel_dp)->port));
1874
1875 if (WARN(edp_have_panel_power(intel_dp),
1876 "eDP port %c panel power already on\n",
1877 port_name(dp_to_dig_port(intel_dp)->port)))
1878 return;
1879
1880 wait_panel_power_cycle(intel_dp);
1881
1882 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1883 pp = ironlake_get_pp_control(intel_dp);
1884 if (IS_GEN5(dev)) {
1885 /* ILK workaround: disable reset around power sequence */
1886 pp &= ~PANEL_POWER_RESET;
1887 I915_WRITE(pp_ctrl_reg, pp);
1888 POSTING_READ(pp_ctrl_reg);
1889 }
1890
1891 pp |= POWER_TARGET_ON;
1892 if (!IS_GEN5(dev))
1893 pp |= PANEL_POWER_RESET;
1894
1895 I915_WRITE(pp_ctrl_reg, pp);
1896 POSTING_READ(pp_ctrl_reg);
1897
1898 wait_panel_on(intel_dp);
1899 intel_dp->last_power_on = jiffies;
1900
1901 if (IS_GEN5(dev)) {
1902 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1903 I915_WRITE(pp_ctrl_reg, pp);
1904 POSTING_READ(pp_ctrl_reg);
1905 }
1906 }
1907
1908 void intel_edp_panel_on(struct intel_dp *intel_dp)
1909 {
1910 if (!is_edp(intel_dp))
1911 return;
1912
1913 pps_lock(intel_dp);
1914 edp_panel_on(intel_dp);
1915 pps_unlock(intel_dp);
1916 }
1917
1918
1919 static void edp_panel_off(struct intel_dp *intel_dp)
1920 {
1921 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1922 struct intel_encoder *intel_encoder = &intel_dig_port->base;
1923 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1924 struct drm_i915_private *dev_priv = dev->dev_private;
1925 enum intel_display_power_domain power_domain;
1926 u32 pp;
1927 u32 pp_ctrl_reg;
1928
1929 lockdep_assert_held(&dev_priv->pps_mutex);
1930
1931 if (!is_edp(intel_dp))
1932 return;
1933
1934 DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
1935 port_name(dp_to_dig_port(intel_dp)->port));
1936
1937 WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
1938 port_name(dp_to_dig_port(intel_dp)->port));
1939
1940 pp = ironlake_get_pp_control(intel_dp);
1941 /* We need to switch off panel power _and_ force vdd, for otherwise some
1942 * panels get very unhappy and cease to work. */
1943 pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
1944 EDP_BLC_ENABLE);
1945
1946 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1947
1948 intel_dp->want_panel_vdd = false;
1949
1950 I915_WRITE(pp_ctrl_reg, pp);
1951 POSTING_READ(pp_ctrl_reg);
1952
1953 intel_dp->last_power_cycle = jiffies;
1954 wait_panel_off(intel_dp);
1955
1956 /* We got a reference when we enabled the VDD. */
1957 power_domain = intel_display_port_power_domain(intel_encoder);
1958 intel_display_power_put(dev_priv, power_domain);
1959 }
1960
1961 void intel_edp_panel_off(struct intel_dp *intel_dp)
1962 {
1963 if (!is_edp(intel_dp))
1964 return;
1965
1966 pps_lock(intel_dp);
1967 edp_panel_off(intel_dp);
1968 pps_unlock(intel_dp);
1969 }
1970
1971 /* Enable backlight in the panel power control. */
1972 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
1973 {
1974 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1975 struct drm_device *dev = intel_dig_port->base.base.dev;
1976 struct drm_i915_private *dev_priv = dev->dev_private;
1977 u32 pp;
1978 u32 pp_ctrl_reg;
1979
1980 /*
1981 * If we enable the backlight right away following a panel power
1982 * on, we may see slight flicker as the panel syncs with the eDP
1983 * link. So delay a bit to make sure the image is solid before
1984 * allowing it to appear.
1985 */
1986 wait_backlight_on(intel_dp);
1987
1988 pps_lock(intel_dp);
1989
1990 pp = ironlake_get_pp_control(intel_dp);
1991 pp |= EDP_BLC_ENABLE;
1992
1993 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1994
1995 I915_WRITE(pp_ctrl_reg, pp);
1996 POSTING_READ(pp_ctrl_reg);
1997
1998 pps_unlock(intel_dp);
1999 }
2000
2001 /* Enable backlight PWM and backlight PP control. */
2002 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2003 {
2004 if (!is_edp(intel_dp))
2005 return;
2006
2007 DRM_DEBUG_KMS("\n");
2008
2009 intel_panel_enable_backlight(intel_dp->attached_connector);
2010 _intel_edp_backlight_on(intel_dp);
2011 }
2012
2013 /* Disable backlight in the panel power control. */
2014 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2015 {
2016 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2017 struct drm_i915_private *dev_priv = dev->dev_private;
2018 u32 pp;
2019 u32 pp_ctrl_reg;
2020
2021 if (!is_edp(intel_dp))
2022 return;
2023
2024 pps_lock(intel_dp);
2025
2026 pp = ironlake_get_pp_control(intel_dp);
2027 pp &= ~EDP_BLC_ENABLE;
2028
2029 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2030
2031 I915_WRITE(pp_ctrl_reg, pp);
2032 POSTING_READ(pp_ctrl_reg);
2033
2034 pps_unlock(intel_dp);
2035
2036 intel_dp->last_backlight_off = jiffies;
2037 edp_wait_backlight_off(intel_dp);
2038 }
2039
2040 /* Disable backlight PP control and backlight PWM. */
2041 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2042 {
2043 if (!is_edp(intel_dp))
2044 return;
2045
2046 DRM_DEBUG_KMS("\n");
2047
2048 _intel_edp_backlight_off(intel_dp);
2049 intel_panel_disable_backlight(intel_dp->attached_connector);
2050 }
2051
2052 /*
2053 * Hook for controlling the panel power control backlight through the bl_power
2054 * sysfs attribute. Take care to handle multiple calls.
2055 */
2056 static void intel_edp_backlight_power(struct intel_connector *connector,
2057 bool enable)
2058 {
2059 struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2060 bool is_enabled;
2061
2062 pps_lock(intel_dp);
2063 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2064 pps_unlock(intel_dp);
2065
2066 if (is_enabled == enable)
2067 return;
2068
2069 DRM_DEBUG_KMS("panel power control backlight %s\n",
2070 enable ? "enable" : "disable");
2071
2072 if (enable)
2073 _intel_edp_backlight_on(intel_dp);
2074 else
2075 _intel_edp_backlight_off(intel_dp);
2076 }
2077
2078 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2079 {
2080 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2081 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2082 struct drm_device *dev = crtc->dev;
2083 struct drm_i915_private *dev_priv = dev->dev_private;
2084 u32 dpa_ctl;
2085
2086 assert_pipe_disabled(dev_priv,
2087 to_intel_crtc(crtc)->pipe);
2088
2089 DRM_DEBUG_KMS("\n");
2090 dpa_ctl = I915_READ(DP_A);
2091 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2092 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2093
2094 /* We don't adjust intel_dp->DP while tearing down the link, to
2095 * facilitate link retraining (e.g. after hotplug). Hence clear all
2096 * enable bits here to ensure that we don't enable too much. */
2097 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2098 intel_dp->DP |= DP_PLL_ENABLE;
2099 I915_WRITE(DP_A, intel_dp->DP);
2100 POSTING_READ(DP_A);
2101 udelay(200);
2102 }
2103
2104 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2105 {
2106 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2107 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2108 struct drm_device *dev = crtc->dev;
2109 struct drm_i915_private *dev_priv = dev->dev_private;
2110 u32 dpa_ctl;
2111
2112 assert_pipe_disabled(dev_priv,
2113 to_intel_crtc(crtc)->pipe);
2114
2115 dpa_ctl = I915_READ(DP_A);
2116 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2117 "dp pll off, should be on\n");
2118 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2119
2120 /* We can't rely on the value tracked for the DP register in
2121 * intel_dp->DP because link_down must not change that (otherwise link
2122 * re-training will fail. */
2123 dpa_ctl &= ~DP_PLL_ENABLE;
2124 I915_WRITE(DP_A, dpa_ctl);
2125 POSTING_READ(DP_A);
2126 udelay(200);
2127 }
2128
2129 /* If the sink supports it, try to set the power state appropriately */
2130 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2131 {
2132 int ret, i;
2133
2134 /* Should have a valid DPCD by this point */
2135 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2136 return;
2137
2138 if (mode != DRM_MODE_DPMS_ON) {
2139 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2140 DP_SET_POWER_D3);
2141 } else {
2142 /*
2143 * When turning on, we need to retry for 1ms to give the sink
2144 * time to wake up.
2145 */
2146 for (i = 0; i < 3; i++) {
2147 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2148 DP_SET_POWER_D0);
2149 if (ret == 1)
2150 break;
2151 msleep(1);
2152 }
2153 }
2154
2155 if (ret != 1)
2156 DRM_DEBUG_KMS("failed to %s sink power state\n",
2157 mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2158 }
2159
2160 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2161 enum pipe *pipe)
2162 {
2163 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2164 enum port port = dp_to_dig_port(intel_dp)->port;
2165 struct drm_device *dev = encoder->base.dev;
2166 struct drm_i915_private *dev_priv = dev->dev_private;
2167 enum intel_display_power_domain power_domain;
2168 u32 tmp;
2169
2170 power_domain = intel_display_port_power_domain(encoder);
2171 if (!intel_display_power_is_enabled(dev_priv, power_domain))
2172 return false;
2173
2174 tmp = I915_READ(intel_dp->output_reg);
2175
2176 if (!(tmp & DP_PORT_EN))
2177 return false;
2178
2179 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
2180 *pipe = PORT_TO_PIPE_CPT(tmp);
2181 } else if (IS_CHERRYVIEW(dev)) {
2182 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2183 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
2184 *pipe = PORT_TO_PIPE(tmp);
2185 } else {
2186 u32 trans_sel;
2187 u32 trans_dp;
2188 int i;
2189
2190 switch (intel_dp->output_reg) {
2191 case PCH_DP_B:
2192 trans_sel = TRANS_DP_PORT_SEL_B;
2193 break;
2194 case PCH_DP_C:
2195 trans_sel = TRANS_DP_PORT_SEL_C;
2196 break;
2197 case PCH_DP_D:
2198 trans_sel = TRANS_DP_PORT_SEL_D;
2199 break;
2200 default:
2201 return true;
2202 }
2203
2204 for_each_pipe(dev_priv, i) {
2205 trans_dp = I915_READ(TRANS_DP_CTL(i));
2206 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
2207 *pipe = i;
2208 return true;
2209 }
2210 }
2211
2212 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2213 intel_dp->output_reg);
2214 }
2215
2216 return true;
2217 }
2218
2219 static void intel_dp_get_config(struct intel_encoder *encoder,
2220 struct intel_crtc_state *pipe_config)
2221 {
2222 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2223 u32 tmp, flags = 0;
2224 struct drm_device *dev = encoder->base.dev;
2225 struct drm_i915_private *dev_priv = dev->dev_private;
2226 enum port port = dp_to_dig_port(intel_dp)->port;
2227 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2228 int dotclock;
2229
2230 tmp = I915_READ(intel_dp->output_reg);
2231 if (tmp & DP_AUDIO_OUTPUT_ENABLE)
2232 pipe_config->has_audio = true;
2233
2234 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
2235 if (tmp & DP_SYNC_HS_HIGH)
2236 flags |= DRM_MODE_FLAG_PHSYNC;
2237 else
2238 flags |= DRM_MODE_FLAG_NHSYNC;
2239
2240 if (tmp & DP_SYNC_VS_HIGH)
2241 flags |= DRM_MODE_FLAG_PVSYNC;
2242 else
2243 flags |= DRM_MODE_FLAG_NVSYNC;
2244 } else {
2245 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2246 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2247 flags |= DRM_MODE_FLAG_PHSYNC;
2248 else
2249 flags |= DRM_MODE_FLAG_NHSYNC;
2250
2251 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2252 flags |= DRM_MODE_FLAG_PVSYNC;
2253 else
2254 flags |= DRM_MODE_FLAG_NVSYNC;
2255 }
2256
2257 pipe_config->base.adjusted_mode.flags |= flags;
2258
2259 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2260 tmp & DP_COLOR_RANGE_16_235)
2261 pipe_config->limited_color_range = true;
2262
2263 pipe_config->has_dp_encoder = true;
2264
2265 intel_dp_get_m_n(crtc, pipe_config);
2266
2267 if (port == PORT_A) {
2268 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2269 pipe_config->port_clock = 162000;
2270 else
2271 pipe_config->port_clock = 270000;
2272 }
2273
2274 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2275 &pipe_config->dp_m_n);
2276
2277 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2278 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2279
2280 pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2281
2282 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2283 pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2284 /*
2285 * This is a big fat ugly hack.
2286 *
2287 * Some machines in UEFI boot mode provide us a VBT that has 18
2288 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2289 * unknown we fail to light up. Yet the same BIOS boots up with
2290 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2291 * max, not what it tells us to use.
2292 *
2293 * Note: This will still be broken if the eDP panel is not lit
2294 * up by the BIOS, and thus we can't get the mode at module
2295 * load.
2296 */
2297 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2298 pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2299 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2300 }
2301 }
2302
2303 static void intel_disable_dp(struct intel_encoder *encoder)
2304 {
2305 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2306 struct drm_device *dev = encoder->base.dev;
2307 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2308
2309 if (crtc->config->has_audio)
2310 intel_audio_codec_disable(encoder);
2311
2312 if (HAS_PSR(dev) && !HAS_DDI(dev))
2313 intel_psr_disable(intel_dp);
2314
2315 /* Make sure the panel is off before trying to change the mode. But also
2316 * ensure that we have vdd while we switch off the panel. */
2317 intel_edp_panel_vdd_on(intel_dp);
2318 intel_edp_backlight_off(intel_dp);
2319 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2320 intel_edp_panel_off(intel_dp);
2321
2322 /* disable the port before the pipe on g4x */
2323 if (INTEL_INFO(dev)->gen < 5)
2324 intel_dp_link_down(intel_dp);
2325 }
2326
2327 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2328 {
2329 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2330 enum port port = dp_to_dig_port(intel_dp)->port;
2331
2332 intel_dp_link_down(intel_dp);
2333 if (port == PORT_A)
2334 ironlake_edp_pll_off(intel_dp);
2335 }
2336
2337 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2338 {
2339 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2340
2341 intel_dp_link_down(intel_dp);
2342 }
2343
2344 static void chv_post_disable_dp(struct intel_encoder *encoder)
2345 {
2346 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2347 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2348 struct drm_device *dev = encoder->base.dev;
2349 struct drm_i915_private *dev_priv = dev->dev_private;
2350 struct intel_crtc *intel_crtc =
2351 to_intel_crtc(encoder->base.crtc);
2352 enum dpio_channel ch = vlv_dport_to_channel(dport);
2353 enum pipe pipe = intel_crtc->pipe;
2354 u32 val;
2355
2356 intel_dp_link_down(intel_dp);
2357
2358 mutex_lock(&dev_priv->dpio_lock);
2359
2360 /* Propagate soft reset to data lane reset */
2361 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2362 val |= CHV_PCS_REQ_SOFTRESET_EN;
2363 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2364
2365 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2366 val |= CHV_PCS_REQ_SOFTRESET_EN;
2367 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2368
2369 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2370 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2371 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2372
2373 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2374 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2375 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2376
2377 mutex_unlock(&dev_priv->dpio_lock);
2378 }
2379
2380 static void
2381 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2382 uint32_t *DP,
2383 uint8_t dp_train_pat)
2384 {
2385 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2386 struct drm_device *dev = intel_dig_port->base.base.dev;
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388 enum port port = intel_dig_port->port;
2389
2390 if (HAS_DDI(dev)) {
2391 uint32_t temp = I915_READ(DP_TP_CTL(port));
2392
2393 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2394 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2395 else
2396 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2397
2398 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2399 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2400 case DP_TRAINING_PATTERN_DISABLE:
2401 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2402
2403 break;
2404 case DP_TRAINING_PATTERN_1:
2405 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2406 break;
2407 case DP_TRAINING_PATTERN_2:
2408 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2409 break;
2410 case DP_TRAINING_PATTERN_3:
2411 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2412 break;
2413 }
2414 I915_WRITE(DP_TP_CTL(port), temp);
2415
2416 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2417 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2418
2419 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2420 case DP_TRAINING_PATTERN_DISABLE:
2421 *DP |= DP_LINK_TRAIN_OFF_CPT;
2422 break;
2423 case DP_TRAINING_PATTERN_1:
2424 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2425 break;
2426 case DP_TRAINING_PATTERN_2:
2427 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2428 break;
2429 case DP_TRAINING_PATTERN_3:
2430 DRM_ERROR("DP training pattern 3 not supported\n");
2431 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2432 break;
2433 }
2434
2435 } else {
2436 if (IS_CHERRYVIEW(dev))
2437 *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2438 else
2439 *DP &= ~DP_LINK_TRAIN_MASK;
2440
2441 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2442 case DP_TRAINING_PATTERN_DISABLE:
2443 *DP |= DP_LINK_TRAIN_OFF;
2444 break;
2445 case DP_TRAINING_PATTERN_1:
2446 *DP |= DP_LINK_TRAIN_PAT_1;
2447 break;
2448 case DP_TRAINING_PATTERN_2:
2449 *DP |= DP_LINK_TRAIN_PAT_2;
2450 break;
2451 case DP_TRAINING_PATTERN_3:
2452 if (IS_CHERRYVIEW(dev)) {
2453 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2454 } else {
2455 DRM_ERROR("DP training pattern 3 not supported\n");
2456 *DP |= DP_LINK_TRAIN_PAT_2;
2457 }
2458 break;
2459 }
2460 }
2461 }
2462
2463 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2464 {
2465 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2466 struct drm_i915_private *dev_priv = dev->dev_private;
2467
2468 /* enable with pattern 1 (as per spec) */
2469 _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2470 DP_TRAINING_PATTERN_1);
2471
2472 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2473 POSTING_READ(intel_dp->output_reg);
2474
2475 /*
2476 * Magic for VLV/CHV. We _must_ first set up the register
2477 * without actually enabling the port, and then do another
2478 * write to enable the port. Otherwise link training will
2479 * fail when the power sequencer is freshly used for this port.
2480 */
2481 intel_dp->DP |= DP_PORT_EN;
2482
2483 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2484 POSTING_READ(intel_dp->output_reg);
2485 }
2486
2487 static void intel_enable_dp(struct intel_encoder *encoder)
2488 {
2489 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2490 struct drm_device *dev = encoder->base.dev;
2491 struct drm_i915_private *dev_priv = dev->dev_private;
2492 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2493 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2494
2495 if (WARN_ON(dp_reg & DP_PORT_EN))
2496 return;
2497
2498 pps_lock(intel_dp);
2499
2500 if (IS_VALLEYVIEW(dev))
2501 vlv_init_panel_power_sequencer(intel_dp);
2502
2503 intel_dp_enable_port(intel_dp);
2504
2505 edp_panel_vdd_on(intel_dp);
2506 edp_panel_on(intel_dp);
2507 edp_panel_vdd_off(intel_dp, true);
2508
2509 pps_unlock(intel_dp);
2510
2511 if (IS_VALLEYVIEW(dev))
2512 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp));
2513
2514 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2515 intel_dp_start_link_train(intel_dp);
2516 intel_dp_complete_link_train(intel_dp);
2517 intel_dp_stop_link_train(intel_dp);
2518
2519 if (crtc->config->has_audio) {
2520 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2521 pipe_name(crtc->pipe));
2522 intel_audio_codec_enable(encoder);
2523 }
2524 }
2525
2526 static void g4x_enable_dp(struct intel_encoder *encoder)
2527 {
2528 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2529
2530 intel_enable_dp(encoder);
2531 intel_edp_backlight_on(intel_dp);
2532 }
2533
2534 static void vlv_enable_dp(struct intel_encoder *encoder)
2535 {
2536 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2537
2538 intel_edp_backlight_on(intel_dp);
2539 intel_psr_enable(intel_dp);
2540 }
2541
2542 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2543 {
2544 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2545 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2546
2547 intel_dp_prepare(encoder);
2548
2549 /* Only ilk+ has port A */
2550 if (dport->port == PORT_A) {
2551 ironlake_set_pll_cpu_edp(intel_dp);
2552 ironlake_edp_pll_on(intel_dp);
2553 }
2554 }
2555
2556 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2557 {
2558 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2559 struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2560 enum pipe pipe = intel_dp->pps_pipe;
2561 int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2562
2563 edp_panel_vdd_off_sync(intel_dp);
2564
2565 /*
2566 * VLV seems to get confused when multiple power seqeuencers
2567 * have the same port selected (even if only one has power/vdd
2568 * enabled). The failure manifests as vlv_wait_port_ready() failing
2569 * CHV on the other hand doesn't seem to mind having the same port
2570 * selected in multiple power seqeuencers, but let's clear the
2571 * port select always when logically disconnecting a power sequencer
2572 * from a port.
2573 */
2574 DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2575 pipe_name(pipe), port_name(intel_dig_port->port));
2576 I915_WRITE(pp_on_reg, 0);
2577 POSTING_READ(pp_on_reg);
2578
2579 intel_dp->pps_pipe = INVALID_PIPE;
2580 }
2581
2582 static void vlv_steal_power_sequencer(struct drm_device *dev,
2583 enum pipe pipe)
2584 {
2585 struct drm_i915_private *dev_priv = dev->dev_private;
2586 struct intel_encoder *encoder;
2587
2588 lockdep_assert_held(&dev_priv->pps_mutex);
2589
2590 if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2591 return;
2592
2593 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2594 base.head) {
2595 struct intel_dp *intel_dp;
2596 enum port port;
2597
2598 if (encoder->type != INTEL_OUTPUT_EDP)
2599 continue;
2600
2601 intel_dp = enc_to_intel_dp(&encoder->base);
2602 port = dp_to_dig_port(intel_dp)->port;
2603
2604 if (intel_dp->pps_pipe != pipe)
2605 continue;
2606
2607 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2608 pipe_name(pipe), port_name(port));
2609
2610 WARN(encoder->connectors_active,
2611 "stealing pipe %c power sequencer from active eDP port %c\n",
2612 pipe_name(pipe), port_name(port));
2613
2614 /* make sure vdd is off before we steal it */
2615 vlv_detach_power_sequencer(intel_dp);
2616 }
2617 }
2618
2619 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2620 {
2621 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2622 struct intel_encoder *encoder = &intel_dig_port->base;
2623 struct drm_device *dev = encoder->base.dev;
2624 struct drm_i915_private *dev_priv = dev->dev_private;
2625 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2626
2627 lockdep_assert_held(&dev_priv->pps_mutex);
2628
2629 if (!is_edp(intel_dp))
2630 return;
2631
2632 if (intel_dp->pps_pipe == crtc->pipe)
2633 return;
2634
2635 /*
2636 * If another power sequencer was being used on this
2637 * port previously make sure to turn off vdd there while
2638 * we still have control of it.
2639 */
2640 if (intel_dp->pps_pipe != INVALID_PIPE)
2641 vlv_detach_power_sequencer(intel_dp);
2642
2643 /*
2644 * We may be stealing the power
2645 * sequencer from another port.
2646 */
2647 vlv_steal_power_sequencer(dev, crtc->pipe);
2648
2649 /* now it's all ours */
2650 intel_dp->pps_pipe = crtc->pipe;
2651
2652 DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2653 pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2654
2655 /* init power sequencer on this pipe and port */
2656 intel_dp_init_panel_power_sequencer(dev, intel_dp);
2657 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2658 }
2659
2660 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2661 {
2662 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2663 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2664 struct drm_device *dev = encoder->base.dev;
2665 struct drm_i915_private *dev_priv = dev->dev_private;
2666 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2667 enum dpio_channel port = vlv_dport_to_channel(dport);
2668 int pipe = intel_crtc->pipe;
2669 u32 val;
2670
2671 mutex_lock(&dev_priv->dpio_lock);
2672
2673 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2674 val = 0;
2675 if (pipe)
2676 val |= (1<<21);
2677 else
2678 val &= ~(1<<21);
2679 val |= 0x001000c4;
2680 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2681 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2682 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2683
2684 mutex_unlock(&dev_priv->dpio_lock);
2685
2686 intel_enable_dp(encoder);
2687 }
2688
2689 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2690 {
2691 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2692 struct drm_device *dev = encoder->base.dev;
2693 struct drm_i915_private *dev_priv = dev->dev_private;
2694 struct intel_crtc *intel_crtc =
2695 to_intel_crtc(encoder->base.crtc);
2696 enum dpio_channel port = vlv_dport_to_channel(dport);
2697 int pipe = intel_crtc->pipe;
2698
2699 intel_dp_prepare(encoder);
2700
2701 /* Program Tx lane resets to default */
2702 mutex_lock(&dev_priv->dpio_lock);
2703 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2704 DPIO_PCS_TX_LANE2_RESET |
2705 DPIO_PCS_TX_LANE1_RESET);
2706 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2707 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2708 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2709 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2710 DPIO_PCS_CLK_SOFT_RESET);
2711
2712 /* Fix up inter-pair skew failure */
2713 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2714 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2715 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2716 mutex_unlock(&dev_priv->dpio_lock);
2717 }
2718
2719 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2720 {
2721 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2722 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2723 struct drm_device *dev = encoder->base.dev;
2724 struct drm_i915_private *dev_priv = dev->dev_private;
2725 struct intel_crtc *intel_crtc =
2726 to_intel_crtc(encoder->base.crtc);
2727 enum dpio_channel ch = vlv_dport_to_channel(dport);
2728 int pipe = intel_crtc->pipe;
2729 int data, i;
2730 u32 val;
2731
2732 mutex_lock(&dev_priv->dpio_lock);
2733
2734 /* allow hardware to manage TX FIFO reset source */
2735 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2736 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2737 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2738
2739 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2740 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2741 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2742
2743 /* Deassert soft data lane reset*/
2744 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2745 val |= CHV_PCS_REQ_SOFTRESET_EN;
2746 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2747
2748 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2749 val |= CHV_PCS_REQ_SOFTRESET_EN;
2750 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2751
2752 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2753 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2754 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2755
2756 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2757 val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2758 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2759
2760 /* Program Tx lane latency optimal setting*/
2761 for (i = 0; i < 4; i++) {
2762 /* Set the upar bit */
2763 data = (i == 1) ? 0x0 : 0x1;
2764 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2765 data << DPIO_UPAR_SHIFT);
2766 }
2767
2768 /* Data lane stagger programming */
2769 /* FIXME: Fix up value only after power analysis */
2770
2771 mutex_unlock(&dev_priv->dpio_lock);
2772
2773 intel_enable_dp(encoder);
2774 }
2775
2776 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2777 {
2778 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2779 struct drm_device *dev = encoder->base.dev;
2780 struct drm_i915_private *dev_priv = dev->dev_private;
2781 struct intel_crtc *intel_crtc =
2782 to_intel_crtc(encoder->base.crtc);
2783 enum dpio_channel ch = vlv_dport_to_channel(dport);
2784 enum pipe pipe = intel_crtc->pipe;
2785 u32 val;
2786
2787 intel_dp_prepare(encoder);
2788
2789 mutex_lock(&dev_priv->dpio_lock);
2790
2791 /* program left/right clock distribution */
2792 if (pipe != PIPE_B) {
2793 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2794 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2795 if (ch == DPIO_CH0)
2796 val |= CHV_BUFLEFTENA1_FORCE;
2797 if (ch == DPIO_CH1)
2798 val |= CHV_BUFRIGHTENA1_FORCE;
2799 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2800 } else {
2801 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2802 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2803 if (ch == DPIO_CH0)
2804 val |= CHV_BUFLEFTENA2_FORCE;
2805 if (ch == DPIO_CH1)
2806 val |= CHV_BUFRIGHTENA2_FORCE;
2807 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2808 }
2809
2810 /* program clock channel usage */
2811 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2812 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2813 if (pipe != PIPE_B)
2814 val &= ~CHV_PCS_USEDCLKCHANNEL;
2815 else
2816 val |= CHV_PCS_USEDCLKCHANNEL;
2817 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2818
2819 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2820 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2821 if (pipe != PIPE_B)
2822 val &= ~CHV_PCS_USEDCLKCHANNEL;
2823 else
2824 val |= CHV_PCS_USEDCLKCHANNEL;
2825 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2826
2827 /*
2828 * This a a bit weird since generally CL
2829 * matches the pipe, but here we need to
2830 * pick the CL based on the port.
2831 */
2832 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2833 if (pipe != PIPE_B)
2834 val &= ~CHV_CMN_USEDCLKCHANNEL;
2835 else
2836 val |= CHV_CMN_USEDCLKCHANNEL;
2837 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2838
2839 mutex_unlock(&dev_priv->dpio_lock);
2840 }
2841
2842 /*
2843 * Native read with retry for link status and receiver capability reads for
2844 * cases where the sink may still be asleep.
2845 *
2846 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
2847 * supposed to retry 3 times per the spec.
2848 */
2849 static ssize_t
2850 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
2851 void *buffer, size_t size)
2852 {
2853 ssize_t ret;
2854 int i;
2855
2856 /*
2857 * Sometime we just get the same incorrect byte repeated
2858 * over the entire buffer. Doing just one throw away read
2859 * initially seems to "solve" it.
2860 */
2861 drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
2862
2863 for (i = 0; i < 3; i++) {
2864 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
2865 if (ret == size)
2866 return ret;
2867 msleep(1);
2868 }
2869
2870 return ret;
2871 }
2872
2873 /*
2874 * Fetch AUX CH registers 0x202 - 0x207 which contain
2875 * link status information
2876 */
2877 static bool
2878 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2879 {
2880 return intel_dp_dpcd_read_wake(&intel_dp->aux,
2881 DP_LANE0_1_STATUS,
2882 link_status,
2883 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2884 }
2885
2886 /* These are source-specific values. */
2887 static uint8_t
2888 intel_dp_voltage_max(struct intel_dp *intel_dp)
2889 {
2890 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2891 struct drm_i915_private *dev_priv = dev->dev_private;
2892 enum port port = dp_to_dig_port(intel_dp)->port;
2893
2894 if (IS_BROXTON(dev))
2895 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2896 else if (INTEL_INFO(dev)->gen >= 9) {
2897 if (dev_priv->vbt.edp_low_vswing && port == PORT_A)
2898 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2899 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2900 } else if (IS_VALLEYVIEW(dev))
2901 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2902 else if (IS_GEN7(dev) && port == PORT_A)
2903 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2904 else if (HAS_PCH_CPT(dev) && port != PORT_A)
2905 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
2906 else
2907 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
2908 }
2909
2910 static uint8_t
2911 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
2912 {
2913 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2914 enum port port = dp_to_dig_port(intel_dp)->port;
2915
2916 if (INTEL_INFO(dev)->gen >= 9) {
2917 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2918 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2919 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2920 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2921 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2922 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2923 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2924 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2925 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2926 default:
2927 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2928 }
2929 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2930 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2931 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2932 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2933 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2934 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2935 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2936 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2937 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2938 default:
2939 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2940 }
2941 } else if (IS_VALLEYVIEW(dev)) {
2942 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2943 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2944 return DP_TRAIN_PRE_EMPH_LEVEL_3;
2945 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2946 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2947 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2948 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2949 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2950 default:
2951 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2952 }
2953 } else if (IS_GEN7(dev) && port == PORT_A) {
2954 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2955 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2956 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2957 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2958 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2959 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2960 default:
2961 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2962 }
2963 } else {
2964 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2965 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2966 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2967 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
2968 return DP_TRAIN_PRE_EMPH_LEVEL_2;
2969 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
2970 return DP_TRAIN_PRE_EMPH_LEVEL_1;
2971 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
2972 default:
2973 return DP_TRAIN_PRE_EMPH_LEVEL_0;
2974 }
2975 }
2976 }
2977
2978 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
2979 {
2980 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2981 struct drm_i915_private *dev_priv = dev->dev_private;
2982 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2983 struct intel_crtc *intel_crtc =
2984 to_intel_crtc(dport->base.base.crtc);
2985 unsigned long demph_reg_value, preemph_reg_value,
2986 uniqtranscale_reg_value;
2987 uint8_t train_set = intel_dp->train_set[0];
2988 enum dpio_channel port = vlv_dport_to_channel(dport);
2989 int pipe = intel_crtc->pipe;
2990
2991 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2992 case DP_TRAIN_PRE_EMPH_LEVEL_0:
2993 preemph_reg_value = 0x0004000;
2994 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2995 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
2996 demph_reg_value = 0x2B405555;
2997 uniqtranscale_reg_value = 0x552AB83A;
2998 break;
2999 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3000 demph_reg_value = 0x2B404040;
3001 uniqtranscale_reg_value = 0x5548B83A;
3002 break;
3003 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3004 demph_reg_value = 0x2B245555;
3005 uniqtranscale_reg_value = 0x5560B83A;
3006 break;
3007 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3008 demph_reg_value = 0x2B405555;
3009 uniqtranscale_reg_value = 0x5598DA3A;
3010 break;
3011 default:
3012 return 0;
3013 }
3014 break;
3015 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3016 preemph_reg_value = 0x0002000;
3017 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3018 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3019 demph_reg_value = 0x2B404040;
3020 uniqtranscale_reg_value = 0x5552B83A;
3021 break;
3022 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3023 demph_reg_value = 0x2B404848;
3024 uniqtranscale_reg_value = 0x5580B83A;
3025 break;
3026 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3027 demph_reg_value = 0x2B404040;
3028 uniqtranscale_reg_value = 0x55ADDA3A;
3029 break;
3030 default:
3031 return 0;
3032 }
3033 break;
3034 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3035 preemph_reg_value = 0x0000000;
3036 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3037 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3038 demph_reg_value = 0x2B305555;
3039 uniqtranscale_reg_value = 0x5570B83A;
3040 break;
3041 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3042 demph_reg_value = 0x2B2B4040;
3043 uniqtranscale_reg_value = 0x55ADDA3A;
3044 break;
3045 default:
3046 return 0;
3047 }
3048 break;
3049 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3050 preemph_reg_value = 0x0006000;
3051 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3052 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3053 demph_reg_value = 0x1B405555;
3054 uniqtranscale_reg_value = 0x55ADDA3A;
3055 break;
3056 default:
3057 return 0;
3058 }
3059 break;
3060 default:
3061 return 0;
3062 }
3063
3064 mutex_lock(&dev_priv->dpio_lock);
3065 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3066 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3067 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3068 uniqtranscale_reg_value);
3069 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3070 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3071 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3072 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3073 mutex_unlock(&dev_priv->dpio_lock);
3074
3075 return 0;
3076 }
3077
3078 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3079 {
3080 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3081 struct drm_i915_private *dev_priv = dev->dev_private;
3082 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3083 struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3084 u32 deemph_reg_value, margin_reg_value, val;
3085 uint8_t train_set = intel_dp->train_set[0];
3086 enum dpio_channel ch = vlv_dport_to_channel(dport);
3087 enum pipe pipe = intel_crtc->pipe;
3088 int i;
3089
3090 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3091 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3092 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3093 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3094 deemph_reg_value = 128;
3095 margin_reg_value = 52;
3096 break;
3097 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3098 deemph_reg_value = 128;
3099 margin_reg_value = 77;
3100 break;
3101 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3102 deemph_reg_value = 128;
3103 margin_reg_value = 102;
3104 break;
3105 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3106 deemph_reg_value = 128;
3107 margin_reg_value = 154;
3108 /* FIXME extra to set for 1200 */
3109 break;
3110 default:
3111 return 0;
3112 }
3113 break;
3114 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3115 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3116 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3117 deemph_reg_value = 85;
3118 margin_reg_value = 78;
3119 break;
3120 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3121 deemph_reg_value = 85;
3122 margin_reg_value = 116;
3123 break;
3124 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3125 deemph_reg_value = 85;
3126 margin_reg_value = 154;
3127 break;
3128 default:
3129 return 0;
3130 }
3131 break;
3132 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3133 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3134 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3135 deemph_reg_value = 64;
3136 margin_reg_value = 104;
3137 break;
3138 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3139 deemph_reg_value = 64;
3140 margin_reg_value = 154;
3141 break;
3142 default:
3143 return 0;
3144 }
3145 break;
3146 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3147 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3148 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3149 deemph_reg_value = 43;
3150 margin_reg_value = 154;
3151 break;
3152 default:
3153 return 0;
3154 }
3155 break;
3156 default:
3157 return 0;
3158 }
3159
3160 mutex_lock(&dev_priv->dpio_lock);
3161
3162 /* Clear calc init */
3163 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3164 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3165 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3166 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3167 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3168
3169 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3170 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3171 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3172 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3173 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3174
3175 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3176 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3177 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3178 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3179
3180 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3181 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3182 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3183 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3184
3185 /* Program swing deemph */
3186 for (i = 0; i < 4; i++) {
3187 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3188 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3189 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3190 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3191 }
3192
3193 /* Program swing margin */
3194 for (i = 0; i < 4; i++) {
3195 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3196 val &= ~DPIO_SWING_MARGIN000_MASK;
3197 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3198 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3199 }
3200
3201 /* Disable unique transition scale */
3202 for (i = 0; i < 4; i++) {
3203 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3204 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3205 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3206 }
3207
3208 if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
3209 == DP_TRAIN_PRE_EMPH_LEVEL_0) &&
3210 ((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
3211 == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)) {
3212
3213 /*
3214 * The document said it needs to set bit 27 for ch0 and bit 26
3215 * for ch1. Might be a typo in the doc.
3216 * For now, for this unique transition scale selection, set bit
3217 * 27 for ch0 and ch1.
3218 */
3219 for (i = 0; i < 4; i++) {
3220 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3221 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3222 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3223 }
3224
3225 for (i = 0; i < 4; i++) {
3226 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3227 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3228 val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3229 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3230 }
3231 }
3232
3233 /* Start swing calculation */
3234 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3235 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3236 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3237
3238 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3239 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3240 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3241
3242 /* LRC Bypass */
3243 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
3244 val |= DPIO_LRC_BYPASS;
3245 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
3246
3247 mutex_unlock(&dev_priv->dpio_lock);
3248
3249 return 0;
3250 }
3251
3252 static void
3253 intel_get_adjust_train(struct intel_dp *intel_dp,
3254 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3255 {
3256 uint8_t v = 0;
3257 uint8_t p = 0;
3258 int lane;
3259 uint8_t voltage_max;
3260 uint8_t preemph_max;
3261
3262 for (lane = 0; lane < intel_dp->lane_count; lane++) {
3263 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3264 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3265
3266 if (this_v > v)
3267 v = this_v;
3268 if (this_p > p)
3269 p = this_p;
3270 }
3271
3272 voltage_max = intel_dp_voltage_max(intel_dp);
3273 if (v >= voltage_max)
3274 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3275
3276 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3277 if (p >= preemph_max)
3278 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3279
3280 for (lane = 0; lane < 4; lane++)
3281 intel_dp->train_set[lane] = v | p;
3282 }
3283
3284 static uint32_t
3285 gen4_signal_levels(uint8_t train_set)
3286 {
3287 uint32_t signal_levels = 0;
3288
3289 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3290 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3291 default:
3292 signal_levels |= DP_VOLTAGE_0_4;
3293 break;
3294 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3295 signal_levels |= DP_VOLTAGE_0_6;
3296 break;
3297 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3298 signal_levels |= DP_VOLTAGE_0_8;
3299 break;
3300 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3301 signal_levels |= DP_VOLTAGE_1_2;
3302 break;
3303 }
3304 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3305 case DP_TRAIN_PRE_EMPH_LEVEL_0:
3306 default:
3307 signal_levels |= DP_PRE_EMPHASIS_0;
3308 break;
3309 case DP_TRAIN_PRE_EMPH_LEVEL_1:
3310 signal_levels |= DP_PRE_EMPHASIS_3_5;
3311 break;
3312 case DP_TRAIN_PRE_EMPH_LEVEL_2:
3313 signal_levels |= DP_PRE_EMPHASIS_6;
3314 break;
3315 case DP_TRAIN_PRE_EMPH_LEVEL_3:
3316 signal_levels |= DP_PRE_EMPHASIS_9_5;
3317 break;
3318 }
3319 return signal_levels;
3320 }
3321
3322 /* Gen6's DP voltage swing and pre-emphasis control */
3323 static uint32_t
3324 gen6_edp_signal_levels(uint8_t train_set)
3325 {
3326 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3327 DP_TRAIN_PRE_EMPHASIS_MASK);
3328 switch (signal_levels) {
3329 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3330 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3331 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3332 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3333 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3334 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3335 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3336 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3337 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3338 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3339 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3340 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3341 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3342 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3343 default:
3344 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3345 "0x%x\n", signal_levels);
3346 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3347 }
3348 }
3349
3350 /* Gen7's DP voltage swing and pre-emphasis control */
3351 static uint32_t
3352 gen7_edp_signal_levels(uint8_t train_set)
3353 {
3354 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3355 DP_TRAIN_PRE_EMPHASIS_MASK);
3356 switch (signal_levels) {
3357 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3358 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3359 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3360 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3361 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3362 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3363
3364 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3365 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3366 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3367 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3368
3369 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3370 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3371 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3372 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3373
3374 default:
3375 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3376 "0x%x\n", signal_levels);
3377 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3378 }
3379 }
3380
3381 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
3382 static uint32_t
3383 hsw_signal_levels(uint8_t train_set)
3384 {
3385 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3386 DP_TRAIN_PRE_EMPHASIS_MASK);
3387 switch (signal_levels) {
3388 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3389 return DDI_BUF_TRANS_SELECT(0);
3390 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3391 return DDI_BUF_TRANS_SELECT(1);
3392 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3393 return DDI_BUF_TRANS_SELECT(2);
3394 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3395 return DDI_BUF_TRANS_SELECT(3);
3396
3397 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3398 return DDI_BUF_TRANS_SELECT(4);
3399 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3400 return DDI_BUF_TRANS_SELECT(5);
3401 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3402 return DDI_BUF_TRANS_SELECT(6);
3403
3404 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3405 return DDI_BUF_TRANS_SELECT(7);
3406 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3407 return DDI_BUF_TRANS_SELECT(8);
3408
3409 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3410 return DDI_BUF_TRANS_SELECT(9);
3411 default:
3412 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3413 "0x%x\n", signal_levels);
3414 return DDI_BUF_TRANS_SELECT(0);
3415 }
3416 }
3417
3418 static void bxt_signal_levels(struct intel_dp *intel_dp)
3419 {
3420 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3421 enum port port = dport->port;
3422 struct drm_device *dev = dport->base.base.dev;
3423 struct intel_encoder *encoder = &dport->base;
3424 uint8_t train_set = intel_dp->train_set[0];
3425 uint32_t level = 0;
3426
3427 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3428 DP_TRAIN_PRE_EMPHASIS_MASK);
3429 switch (signal_levels) {
3430 default:
3431 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emph level\n");
3432 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3433 level = 0;
3434 break;
3435 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3436 level = 1;
3437 break;
3438 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3439 level = 2;
3440 break;
3441 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
3442 level = 3;
3443 break;
3444 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3445 level = 4;
3446 break;
3447 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3448 level = 5;
3449 break;
3450 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3451 level = 6;
3452 break;
3453 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3454 level = 7;
3455 break;
3456 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3457 level = 8;
3458 break;
3459 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3460 level = 9;
3461 break;
3462 }
3463
3464 bxt_ddi_vswing_sequence(dev, level, port, encoder->type);
3465 }
3466
3467 /* Properly updates "DP" with the correct signal levels. */
3468 static void
3469 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3470 {
3471 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3472 enum port port = intel_dig_port->port;
3473 struct drm_device *dev = intel_dig_port->base.base.dev;
3474 uint32_t signal_levels, mask;
3475 uint8_t train_set = intel_dp->train_set[0];
3476
3477 if (IS_BROXTON(dev)) {
3478 signal_levels = 0;
3479 bxt_signal_levels(intel_dp);
3480 mask = 0;
3481 } else if (HAS_DDI(dev)) {
3482 signal_levels = hsw_signal_levels(train_set);
3483 mask = DDI_BUF_EMP_MASK;
3484 } else if (IS_CHERRYVIEW(dev)) {
3485 signal_levels = chv_signal_levels(intel_dp);
3486 mask = 0;
3487 } else if (IS_VALLEYVIEW(dev)) {
3488 signal_levels = vlv_signal_levels(intel_dp);
3489 mask = 0;
3490 } else if (IS_GEN7(dev) && port == PORT_A) {
3491 signal_levels = gen7_edp_signal_levels(train_set);
3492 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3493 } else if (IS_GEN6(dev) && port == PORT_A) {
3494 signal_levels = gen6_edp_signal_levels(train_set);
3495 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3496 } else {
3497 signal_levels = gen4_signal_levels(train_set);
3498 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3499 }
3500
3501 if (mask)
3502 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3503
3504 DRM_DEBUG_KMS("Using vswing level %d\n",
3505 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3506 DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3507 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3508 DP_TRAIN_PRE_EMPHASIS_SHIFT);
3509
3510 *DP = (*DP & ~mask) | signal_levels;
3511 }
3512
3513 static bool
3514 intel_dp_set_link_train(struct intel_dp *intel_dp,
3515 uint32_t *DP,
3516 uint8_t dp_train_pat)
3517 {
3518 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3519 struct drm_device *dev = intel_dig_port->base.base.dev;
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 uint8_t buf[sizeof(intel_dp->train_set) + 1];
3522 int ret, len;
3523
3524 _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3525
3526 I915_WRITE(intel_dp->output_reg, *DP);
3527 POSTING_READ(intel_dp->output_reg);
3528
3529 buf[0] = dp_train_pat;
3530 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3531 DP_TRAINING_PATTERN_DISABLE) {
3532 /* don't write DP_TRAINING_LANEx_SET on disable */
3533 len = 1;
3534 } else {
3535 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3536 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3537 len = intel_dp->lane_count + 1;
3538 }
3539
3540 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3541 buf, len);
3542
3543 return ret == len;
3544 }
3545
3546 static bool
3547 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3548 uint8_t dp_train_pat)
3549 {
3550 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3551 intel_dp_set_signal_levels(intel_dp, DP);
3552 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3553 }
3554
3555 static bool
3556 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3557 const uint8_t link_status[DP_LINK_STATUS_SIZE])
3558 {
3559 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3560 struct drm_device *dev = intel_dig_port->base.base.dev;
3561 struct drm_i915_private *dev_priv = dev->dev_private;
3562 int ret;
3563
3564 intel_get_adjust_train(intel_dp, link_status);
3565 intel_dp_set_signal_levels(intel_dp, DP);
3566
3567 I915_WRITE(intel_dp->output_reg, *DP);
3568 POSTING_READ(intel_dp->output_reg);
3569
3570 ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3571 intel_dp->train_set, intel_dp->lane_count);
3572
3573 return ret == intel_dp->lane_count;
3574 }
3575
3576 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3577 {
3578 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3579 struct drm_device *dev = intel_dig_port->base.base.dev;
3580 struct drm_i915_private *dev_priv = dev->dev_private;
3581 enum port port = intel_dig_port->port;
3582 uint32_t val;
3583
3584 if (!HAS_DDI(dev))
3585 return;
3586
3587 val = I915_READ(DP_TP_CTL(port));
3588 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3589 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3590 I915_WRITE(DP_TP_CTL(port), val);
3591
3592 /*
3593 * On PORT_A we can have only eDP in SST mode. There the only reason
3594 * we need to set idle transmission mode is to work around a HW issue
3595 * where we enable the pipe while not in idle link-training mode.
3596 * In this case there is requirement to wait for a minimum number of
3597 * idle patterns to be sent.
3598 */
3599 if (port == PORT_A)
3600 return;
3601
3602 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3603 1))
3604 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3605 }
3606
3607 /* Enable corresponding port and start training pattern 1 */
3608 void
3609 intel_dp_start_link_train(struct intel_dp *intel_dp)
3610 {
3611 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3612 struct drm_device *dev = encoder->dev;
3613 int i;
3614 uint8_t voltage;
3615 int voltage_tries, loop_tries;
3616 uint32_t DP = intel_dp->DP;
3617 uint8_t link_config[2];
3618
3619 if (HAS_DDI(dev))
3620 intel_ddi_prepare_link_retrain(encoder);
3621
3622 /* Write the link configuration data */
3623 link_config[0] = intel_dp->link_bw;
3624 link_config[1] = intel_dp->lane_count;
3625 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3626 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3627 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3628 if (intel_dp->num_sink_rates)
3629 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3630 &intel_dp->rate_select, 1);
3631
3632 link_config[0] = 0;
3633 link_config[1] = DP_SET_ANSI_8B10B;
3634 drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3635
3636 DP |= DP_PORT_EN;
3637
3638 /* clock recovery */
3639 if (!intel_dp_reset_link_train(intel_dp, &DP,
3640 DP_TRAINING_PATTERN_1 |
3641 DP_LINK_SCRAMBLING_DISABLE)) {
3642 DRM_ERROR("failed to enable link training\n");
3643 return;
3644 }
3645
3646 voltage = 0xff;
3647 voltage_tries = 0;
3648 loop_tries = 0;
3649 for (;;) {
3650 uint8_t link_status[DP_LINK_STATUS_SIZE];
3651
3652 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3653 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3654 DRM_ERROR("failed to get link status\n");
3655 break;
3656 }
3657
3658 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3659 DRM_DEBUG_KMS("clock recovery OK\n");
3660 break;
3661 }
3662
3663 /* Check to see if we've tried the max voltage */
3664 for (i = 0; i < intel_dp->lane_count; i++)
3665 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3666 break;
3667 if (i == intel_dp->lane_count) {
3668 ++loop_tries;
3669 if (loop_tries == 5) {
3670 DRM_ERROR("too many full retries, give up\n");
3671 break;
3672 }
3673 intel_dp_reset_link_train(intel_dp, &DP,
3674 DP_TRAINING_PATTERN_1 |
3675 DP_LINK_SCRAMBLING_DISABLE);
3676 voltage_tries = 0;
3677 continue;
3678 }
3679
3680 /* Check to see if we've tried the same voltage 5 times */
3681 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3682 ++voltage_tries;
3683 if (voltage_tries == 5) {
3684 DRM_ERROR("too many voltage retries, give up\n");
3685 break;
3686 }
3687 } else
3688 voltage_tries = 0;
3689 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3690
3691 /* Update training set as requested by target */
3692 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3693 DRM_ERROR("failed to update link training\n");
3694 break;
3695 }
3696 }
3697
3698 intel_dp->DP = DP;
3699 }
3700
3701 void
3702 intel_dp_complete_link_train(struct intel_dp *intel_dp)
3703 {
3704 bool channel_eq = false;
3705 int tries, cr_tries;
3706 uint32_t DP = intel_dp->DP;
3707 uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3708
3709 /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
3710 if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
3711 training_pattern = DP_TRAINING_PATTERN_3;
3712
3713 /* channel equalization */
3714 if (!intel_dp_set_link_train(intel_dp, &DP,
3715 training_pattern |
3716 DP_LINK_SCRAMBLING_DISABLE)) {
3717 DRM_ERROR("failed to start channel equalization\n");
3718 return;
3719 }
3720
3721 tries = 0;
3722 cr_tries = 0;
3723 channel_eq = false;
3724 for (;;) {
3725 uint8_t link_status[DP_LINK_STATUS_SIZE];
3726
3727 if (cr_tries > 5) {
3728 DRM_ERROR("failed to train DP, aborting\n");
3729 break;
3730 }
3731
3732 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3733 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3734 DRM_ERROR("failed to get link status\n");
3735 break;
3736 }
3737
3738 /* Make sure clock is still ok */
3739 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3740 intel_dp_start_link_train(intel_dp);
3741 intel_dp_set_link_train(intel_dp, &DP,
3742 training_pattern |
3743 DP_LINK_SCRAMBLING_DISABLE);
3744 cr_tries++;
3745 continue;
3746 }
3747
3748 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3749 channel_eq = true;
3750 break;
3751 }
3752
3753 /* Try 5 times, then try clock recovery if that fails */
3754 if (tries > 5) {
3755 intel_dp_start_link_train(intel_dp);
3756 intel_dp_set_link_train(intel_dp, &DP,
3757 training_pattern |
3758 DP_LINK_SCRAMBLING_DISABLE);
3759 tries = 0;
3760 cr_tries++;
3761 continue;
3762 }
3763
3764 /* Update training set as requested by target */
3765 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3766 DRM_ERROR("failed to update link training\n");
3767 break;
3768 }
3769 ++tries;
3770 }
3771
3772 intel_dp_set_idle_link_train(intel_dp);
3773
3774 intel_dp->DP = DP;
3775
3776 if (channel_eq)
3777 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3778
3779 }
3780
3781 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3782 {
3783 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3784 DP_TRAINING_PATTERN_DISABLE);
3785 }
3786
3787 static void
3788 intel_dp_link_down(struct intel_dp *intel_dp)
3789 {
3790 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3791 enum port port = intel_dig_port->port;
3792 struct drm_device *dev = intel_dig_port->base.base.dev;
3793 struct drm_i915_private *dev_priv = dev->dev_private;
3794 uint32_t DP = intel_dp->DP;
3795
3796 if (WARN_ON(HAS_DDI(dev)))
3797 return;
3798
3799 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3800 return;
3801
3802 DRM_DEBUG_KMS("\n");
3803
3804 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3805 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3806 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3807 } else {
3808 if (IS_CHERRYVIEW(dev))
3809 DP &= ~DP_LINK_TRAIN_MASK_CHV;
3810 else
3811 DP &= ~DP_LINK_TRAIN_MASK;
3812 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3813 }
3814 POSTING_READ(intel_dp->output_reg);
3815
3816 if (HAS_PCH_IBX(dev) &&
3817 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3818 /* Hardware workaround: leaving our transcoder select
3819 * set to transcoder B while it's off will prevent the
3820 * corresponding HDMI output on transcoder A.
3821 *
3822 * Combine this with another hardware workaround:
3823 * transcoder select bit can only be cleared while the
3824 * port is enabled.
3825 */
3826 DP &= ~DP_PIPEB_SELECT;
3827 I915_WRITE(intel_dp->output_reg, DP);
3828 POSTING_READ(intel_dp->output_reg);
3829 }
3830
3831 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
3832 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
3833 POSTING_READ(intel_dp->output_reg);
3834 msleep(intel_dp->panel_power_down_delay);
3835 }
3836
3837 static bool
3838 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3839 {
3840 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3841 struct drm_device *dev = dig_port->base.base.dev;
3842 struct drm_i915_private *dev_priv = dev->dev_private;
3843 uint8_t rev;
3844
3845 if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3846 sizeof(intel_dp->dpcd)) < 0)
3847 return false; /* aux transfer failed */
3848
3849 DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3850
3851 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3852 return false; /* DPCD not present */
3853
3854 /* Check if the panel supports PSR */
3855 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3856 if (is_edp(intel_dp)) {
3857 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3858 intel_dp->psr_dpcd,
3859 sizeof(intel_dp->psr_dpcd));
3860 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3861 dev_priv->psr.sink_support = true;
3862 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3863 }
3864
3865 if (INTEL_INFO(dev)->gen >= 9 &&
3866 (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3867 uint8_t frame_sync_cap;
3868
3869 dev_priv->psr.sink_support = true;
3870 intel_dp_dpcd_read_wake(&intel_dp->aux,
3871 DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3872 &frame_sync_cap, 1);
3873 dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3874 /* PSR2 needs frame sync as well */
3875 dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3876 DRM_DEBUG_KMS("PSR2 %s on sink",
3877 dev_priv->psr.psr2_support ? "supported" : "not supported");
3878 }
3879 }
3880
3881 /* Training Pattern 3 support, both source and sink */
3882 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
3883 intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED &&
3884 (IS_HASWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 8)) {
3885 intel_dp->use_tps3 = true;
3886 DRM_DEBUG_KMS("Displayport TPS3 supported\n");
3887 } else
3888 intel_dp->use_tps3 = false;
3889
3890 /* Intermediate frequency support */
3891 if (is_edp(intel_dp) &&
3892 (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
3893 (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
3894 (rev >= 0x03)) { /* eDp v1.4 or higher */
3895 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
3896 int i;
3897
3898 intel_dp_dpcd_read_wake(&intel_dp->aux,
3899 DP_SUPPORTED_LINK_RATES,
3900 sink_rates,
3901 sizeof(sink_rates));
3902
3903 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
3904 int val = le16_to_cpu(sink_rates[i]);
3905
3906 if (val == 0)
3907 break;
3908
3909 intel_dp->sink_rates[i] = val * 200;
3910 }
3911 intel_dp->num_sink_rates = i;
3912 }
3913
3914 intel_dp_print_rates(intel_dp);
3915
3916 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
3917 DP_DWN_STRM_PORT_PRESENT))
3918 return true; /* native DP sink */
3919
3920 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
3921 return true; /* no per-port downstream info */
3922
3923 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
3924 intel_dp->downstream_ports,
3925 DP_MAX_DOWNSTREAM_PORTS) < 0)
3926 return false; /* downstream port status fetch failed */
3927
3928 return true;
3929 }
3930
3931 static void
3932 intel_dp_probe_oui(struct intel_dp *intel_dp)
3933 {
3934 u8 buf[3];
3935
3936 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
3937 return;
3938
3939 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3940 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
3941 buf[0], buf[1], buf[2]);
3942
3943 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3944 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
3945 buf[0], buf[1], buf[2]);
3946 }
3947
3948 static bool
3949 intel_dp_probe_mst(struct intel_dp *intel_dp)
3950 {
3951 u8 buf[1];
3952
3953 if (!intel_dp->can_mst)
3954 return false;
3955
3956 if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
3957 return false;
3958
3959 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
3960 if (buf[0] & DP_MST_CAP) {
3961 DRM_DEBUG_KMS("Sink is MST capable\n");
3962 intel_dp->is_mst = true;
3963 } else {
3964 DRM_DEBUG_KMS("Sink is not MST capable\n");
3965 intel_dp->is_mst = false;
3966 }
3967 }
3968
3969 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
3970 return intel_dp->is_mst;
3971 }
3972
3973 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
3974 {
3975 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3976 struct drm_device *dev = intel_dig_port->base.base.dev;
3977 struct intel_crtc *intel_crtc =
3978 to_intel_crtc(intel_dig_port->base.base.crtc);
3979 u8 buf;
3980 int test_crc_count;
3981 int attempts = 6;
3982
3983 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3984 return -EIO;
3985
3986 if (!(buf & DP_TEST_CRC_SUPPORTED))
3987 return -ENOTTY;
3988
3989 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
3990 return -EIO;
3991
3992 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
3993 buf | DP_TEST_SINK_START) < 0)
3994 return -EIO;
3995
3996 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
3997 return -EIO;
3998 test_crc_count = buf & DP_TEST_COUNT_MASK;
3999
4000 do {
4001 if (drm_dp_dpcd_readb(&intel_dp->aux,
4002 DP_TEST_SINK_MISC, &buf) < 0)
4003 return -EIO;
4004 intel_wait_for_vblank(dev, intel_crtc->pipe);
4005 } while (--attempts && (buf & DP_TEST_COUNT_MASK) == test_crc_count);
4006
4007 if (attempts == 0) {
4008 DRM_DEBUG_KMS("Panel is unable to calculate CRC after 6 vblanks\n");
4009 return -ETIMEDOUT;
4010 }
4011
4012 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
4013 return -EIO;
4014
4015 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4016 return -EIO;
4017 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4018 buf & ~DP_TEST_SINK_START) < 0)
4019 return -EIO;
4020
4021 return 0;
4022 }
4023
4024 static bool
4025 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4026 {
4027 return intel_dp_dpcd_read_wake(&intel_dp->aux,
4028 DP_DEVICE_SERVICE_IRQ_VECTOR,
4029 sink_irq_vector, 1) == 1;
4030 }
4031
4032 static bool
4033 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4034 {
4035 int ret;
4036
4037 ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4038 DP_SINK_COUNT_ESI,
4039 sink_irq_vector, 14);
4040 if (ret != 14)
4041 return false;
4042
4043 return true;
4044 }
4045
4046 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4047 {
4048 uint8_t test_result = DP_TEST_ACK;
4049 return test_result;
4050 }
4051
4052 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4053 {
4054 uint8_t test_result = DP_TEST_NAK;
4055 return test_result;
4056 }
4057
4058 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4059 {
4060 uint8_t test_result = DP_TEST_NAK;
4061 return test_result;
4062 }
4063
4064 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4065 {
4066 uint8_t test_result = DP_TEST_NAK;
4067 return test_result;
4068 }
4069
4070 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4071 {
4072 uint8_t response = DP_TEST_NAK;
4073 uint8_t rxdata = 0;
4074 int status = 0;
4075
4076 intel_dp->compliance_test_type = 0;
4077 intel_dp->aux.i2c_nack_count = 0;
4078 intel_dp->aux.i2c_defer_count = 0;
4079
4080 status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4081 if (status <= 0) {
4082 DRM_DEBUG_KMS("Could not read test request from sink\n");
4083 goto update_status;
4084 }
4085
4086 switch (rxdata) {
4087 case DP_TEST_LINK_TRAINING:
4088 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4089 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4090 response = intel_dp_autotest_link_training(intel_dp);
4091 break;
4092 case DP_TEST_LINK_VIDEO_PATTERN:
4093 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4094 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4095 response = intel_dp_autotest_video_pattern(intel_dp);
4096 break;
4097 case DP_TEST_LINK_EDID_READ:
4098 DRM_DEBUG_KMS("EDID test requested\n");
4099 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4100 response = intel_dp_autotest_edid(intel_dp);
4101 break;
4102 case DP_TEST_LINK_PHY_TEST_PATTERN:
4103 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4104 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4105 response = intel_dp_autotest_phy_pattern(intel_dp);
4106 break;
4107 default:
4108 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4109 break;
4110 }
4111
4112 update_status:
4113 status = drm_dp_dpcd_write(&intel_dp->aux,
4114 DP_TEST_RESPONSE,
4115 &response, 1);
4116 if (status <= 0)
4117 DRM_DEBUG_KMS("Could not write test response to sink\n");
4118 }
4119
4120 static int
4121 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4122 {
4123 bool bret;
4124
4125 if (intel_dp->is_mst) {
4126 u8 esi[16] = { 0 };
4127 int ret = 0;
4128 int retry;
4129 bool handled;
4130 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4131 go_again:
4132 if (bret == true) {
4133
4134 /* check link status - esi[10] = 0x200c */
4135 if (intel_dp->active_mst_links && !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4136 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4137 intel_dp_start_link_train(intel_dp);
4138 intel_dp_complete_link_train(intel_dp);
4139 intel_dp_stop_link_train(intel_dp);
4140 }
4141
4142 DRM_DEBUG_KMS("got esi %3ph\n", esi);
4143 ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4144
4145 if (handled) {
4146 for (retry = 0; retry < 3; retry++) {
4147 int wret;
4148 wret = drm_dp_dpcd_write(&intel_dp->aux,
4149 DP_SINK_COUNT_ESI+1,
4150 &esi[1], 3);
4151 if (wret == 3) {
4152 break;
4153 }
4154 }
4155
4156 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4157 if (bret == true) {
4158 DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4159 goto go_again;
4160 }
4161 } else
4162 ret = 0;
4163
4164 return ret;
4165 } else {
4166 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4167 DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4168 intel_dp->is_mst = false;
4169 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4170 /* send a hotplug event */
4171 drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4172 }
4173 }
4174 return -EINVAL;
4175 }
4176
4177 /*
4178 * According to DP spec
4179 * 5.1.2:
4180 * 1. Read DPCD
4181 * 2. Configure link according to Receiver Capabilities
4182 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
4183 * 4. Check link status on receipt of hot-plug interrupt
4184 */
4185 static void
4186 intel_dp_check_link_status(struct intel_dp *intel_dp)
4187 {
4188 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4189 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4190 u8 sink_irq_vector;
4191 u8 link_status[DP_LINK_STATUS_SIZE];
4192
4193 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4194
4195 if (!intel_encoder->connectors_active)
4196 return;
4197
4198 if (WARN_ON(!intel_encoder->base.crtc))
4199 return;
4200
4201 if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4202 return;
4203
4204 /* Try to read receiver status if the link appears to be up */
4205 if (!intel_dp_get_link_status(intel_dp, link_status)) {
4206 return;
4207 }
4208
4209 /* Now read the DPCD to see if it's actually running */
4210 if (!intel_dp_get_dpcd(intel_dp)) {
4211 return;
4212 }
4213
4214 /* Try to read the source of the interrupt */
4215 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4216 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4217 /* Clear interrupt source */
4218 drm_dp_dpcd_writeb(&intel_dp->aux,
4219 DP_DEVICE_SERVICE_IRQ_VECTOR,
4220 sink_irq_vector);
4221
4222 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4223 intel_dp_handle_test_request(intel_dp);
4224 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4225 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4226 }
4227
4228 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4229 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4230 intel_encoder->base.name);
4231 intel_dp_start_link_train(intel_dp);
4232 intel_dp_complete_link_train(intel_dp);
4233 intel_dp_stop_link_train(intel_dp);
4234 }
4235 }
4236
4237 /* XXX this is probably wrong for multiple downstream ports */
4238 static enum drm_connector_status
4239 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4240 {
4241 uint8_t *dpcd = intel_dp->dpcd;
4242 uint8_t type;
4243
4244 if (!intel_dp_get_dpcd(intel_dp))
4245 return connector_status_disconnected;
4246
4247 /* if there's no downstream port, we're done */
4248 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4249 return connector_status_connected;
4250
4251 /* If we're HPD-aware, SINK_COUNT changes dynamically */
4252 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4253 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4254 uint8_t reg;
4255
4256 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4257 &reg, 1) < 0)
4258 return connector_status_unknown;
4259
4260 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4261 : connector_status_disconnected;
4262 }
4263
4264 /* If no HPD, poke DDC gently */
4265 if (drm_probe_ddc(&intel_dp->aux.ddc))
4266 return connector_status_connected;
4267
4268 /* Well we tried, say unknown for unreliable port types */
4269 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4270 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4271 if (type == DP_DS_PORT_TYPE_VGA ||
4272 type == DP_DS_PORT_TYPE_NON_EDID)
4273 return connector_status_unknown;
4274 } else {
4275 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4276 DP_DWN_STRM_PORT_TYPE_MASK;
4277 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4278 type == DP_DWN_STRM_PORT_TYPE_OTHER)
4279 return connector_status_unknown;
4280 }
4281
4282 /* Anything else is out of spec, warn and ignore */
4283 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4284 return connector_status_disconnected;
4285 }
4286
4287 static enum drm_connector_status
4288 edp_detect(struct intel_dp *intel_dp)
4289 {
4290 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4291 enum drm_connector_status status;
4292
4293 status = intel_panel_detect(dev);
4294 if (status == connector_status_unknown)
4295 status = connector_status_connected;
4296
4297 return status;
4298 }
4299
4300 static enum drm_connector_status
4301 ironlake_dp_detect(struct intel_dp *intel_dp)
4302 {
4303 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4304 struct drm_i915_private *dev_priv = dev->dev_private;
4305 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4306
4307 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4308 return connector_status_disconnected;
4309
4310 return intel_dp_detect_dpcd(intel_dp);
4311 }
4312
4313 static int g4x_digital_port_connected(struct drm_device *dev,
4314 struct intel_digital_port *intel_dig_port)
4315 {
4316 struct drm_i915_private *dev_priv = dev->dev_private;
4317 uint32_t bit;
4318
4319 if (IS_VALLEYVIEW(dev)) {
4320 switch (intel_dig_port->port) {
4321 case PORT_B:
4322 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4323 break;
4324 case PORT_C:
4325 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4326 break;
4327 case PORT_D:
4328 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4329 break;
4330 default:
4331 return -EINVAL;
4332 }
4333 } else {
4334 switch (intel_dig_port->port) {
4335 case PORT_B:
4336 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4337 break;
4338 case PORT_C:
4339 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4340 break;
4341 case PORT_D:
4342 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4343 break;
4344 default:
4345 return -EINVAL;
4346 }
4347 }
4348
4349 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
4350 return 0;
4351 return 1;
4352 }
4353
4354 static enum drm_connector_status
4355 g4x_dp_detect(struct intel_dp *intel_dp)
4356 {
4357 struct drm_device *dev = intel_dp_to_dev(intel_dp);
4358 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4359 int ret;
4360
4361 /* Can't disconnect eDP, but you can close the lid... */
4362 if (is_edp(intel_dp)) {
4363 enum drm_connector_status status;
4364
4365 status = intel_panel_detect(dev);
4366 if (status == connector_status_unknown)
4367 status = connector_status_connected;
4368 return status;
4369 }
4370
4371 ret = g4x_digital_port_connected(dev, intel_dig_port);
4372 if (ret == -EINVAL)
4373 return connector_status_unknown;
4374 else if (ret == 0)
4375 return connector_status_disconnected;
4376
4377 return intel_dp_detect_dpcd(intel_dp);
4378 }
4379
4380 static struct edid *
4381 intel_dp_get_edid(struct intel_dp *intel_dp)
4382 {
4383 struct intel_connector *intel_connector = intel_dp->attached_connector;
4384
4385 /* use cached edid if we have one */
4386 if (intel_connector->edid) {
4387 /* invalid edid */
4388 if (IS_ERR(intel_connector->edid))
4389 return NULL;
4390
4391 return drm_edid_duplicate(intel_connector->edid);
4392 } else
4393 return drm_get_edid(&intel_connector->base,
4394 &intel_dp->aux.ddc);
4395 }
4396
4397 static void
4398 intel_dp_set_edid(struct intel_dp *intel_dp)
4399 {
4400 struct intel_connector *intel_connector = intel_dp->attached_connector;
4401 struct edid *edid;
4402
4403 edid = intel_dp_get_edid(intel_dp);
4404 intel_connector->detect_edid = edid;
4405
4406 if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4407 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4408 else
4409 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4410 }
4411
4412 static void
4413 intel_dp_unset_edid(struct intel_dp *intel_dp)
4414 {
4415 struct intel_connector *intel_connector = intel_dp->attached_connector;
4416
4417 kfree(intel_connector->detect_edid);
4418 intel_connector->detect_edid = NULL;
4419
4420 intel_dp->has_audio = false;
4421 }
4422
4423 static enum intel_display_power_domain
4424 intel_dp_power_get(struct intel_dp *dp)
4425 {
4426 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4427 enum intel_display_power_domain power_domain;
4428
4429 power_domain = intel_display_port_power_domain(encoder);
4430 intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4431
4432 return power_domain;
4433 }
4434
4435 static void
4436 intel_dp_power_put(struct intel_dp *dp,
4437 enum intel_display_power_domain power_domain)
4438 {
4439 struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4440 intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4441 }
4442
4443 static enum drm_connector_status
4444 intel_dp_detect(struct drm_connector *connector, bool force)
4445 {
4446 struct intel_dp *intel_dp = intel_attached_dp(connector);
4447 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4448 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4449 struct drm_device *dev = connector->dev;
4450 enum drm_connector_status status;
4451 enum intel_display_power_domain power_domain;
4452 bool ret;
4453
4454 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4455 connector->base.id, connector->name);
4456 intel_dp_unset_edid(intel_dp);
4457
4458 if (intel_dp->is_mst) {
4459 /* MST devices are disconnected from a monitor POV */
4460 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4461 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4462 return connector_status_disconnected;
4463 }
4464
4465 power_domain = intel_dp_power_get(intel_dp);
4466
4467 /* Can't disconnect eDP, but you can close the lid... */
4468 if (is_edp(intel_dp))
4469 status = edp_detect(intel_dp);
4470 else if (HAS_PCH_SPLIT(dev))
4471 status = ironlake_dp_detect(intel_dp);
4472 else
4473 status = g4x_dp_detect(intel_dp);
4474 if (status != connector_status_connected)
4475 goto out;
4476
4477 intel_dp_probe_oui(intel_dp);
4478
4479 ret = intel_dp_probe_mst(intel_dp);
4480 if (ret) {
4481 /* if we are in MST mode then this connector
4482 won't appear connected or have anything with EDID on it */
4483 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4484 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4485 status = connector_status_disconnected;
4486 goto out;
4487 }
4488
4489 intel_dp_set_edid(intel_dp);
4490
4491 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4492 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4493 status = connector_status_connected;
4494
4495 out:
4496 intel_dp_power_put(intel_dp, power_domain);
4497 return status;
4498 }
4499
4500 static void
4501 intel_dp_force(struct drm_connector *connector)
4502 {
4503 struct intel_dp *intel_dp = intel_attached_dp(connector);
4504 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4505 enum intel_display_power_domain power_domain;
4506
4507 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4508 connector->base.id, connector->name);
4509 intel_dp_unset_edid(intel_dp);
4510
4511 if (connector->status != connector_status_connected)
4512 return;
4513
4514 power_domain = intel_dp_power_get(intel_dp);
4515
4516 intel_dp_set_edid(intel_dp);
4517
4518 intel_dp_power_put(intel_dp, power_domain);
4519
4520 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4521 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4522 }
4523
4524 static int intel_dp_get_modes(struct drm_connector *connector)
4525 {
4526 struct intel_connector *intel_connector = to_intel_connector(connector);
4527 struct edid *edid;
4528
4529 edid = intel_connector->detect_edid;
4530 if (edid) {
4531 int ret = intel_connector_update_modes(connector, edid);
4532 if (ret)
4533 return ret;
4534 }
4535
4536 /* if eDP has no EDID, fall back to fixed mode */
4537 if (is_edp(intel_attached_dp(connector)) &&
4538 intel_connector->panel.fixed_mode) {
4539 struct drm_display_mode *mode;
4540
4541 mode = drm_mode_duplicate(connector->dev,
4542 intel_connector->panel.fixed_mode);
4543 if (mode) {
4544 drm_mode_probed_add(connector, mode);
4545 return 1;
4546 }
4547 }
4548
4549 return 0;
4550 }
4551
4552 static bool
4553 intel_dp_detect_audio(struct drm_connector *connector)
4554 {
4555 bool has_audio = false;
4556 struct edid *edid;
4557
4558 edid = to_intel_connector(connector)->detect_edid;
4559 if (edid)
4560 has_audio = drm_detect_monitor_audio(edid);
4561
4562 return has_audio;
4563 }
4564
4565 static int
4566 intel_dp_set_property(struct drm_connector *connector,
4567 struct drm_property *property,
4568 uint64_t val)
4569 {
4570 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4571 struct intel_connector *intel_connector = to_intel_connector(connector);
4572 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4573 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4574 int ret;
4575
4576 ret = drm_object_property_set_value(&connector->base, property, val);
4577 if (ret)
4578 return ret;
4579
4580 if (property == dev_priv->force_audio_property) {
4581 int i = val;
4582 bool has_audio;
4583
4584 if (i == intel_dp->force_audio)
4585 return 0;
4586
4587 intel_dp->force_audio = i;
4588
4589 if (i == HDMI_AUDIO_AUTO)
4590 has_audio = intel_dp_detect_audio(connector);
4591 else
4592 has_audio = (i == HDMI_AUDIO_ON);
4593
4594 if (has_audio == intel_dp->has_audio)
4595 return 0;
4596
4597 intel_dp->has_audio = has_audio;
4598 goto done;
4599 }
4600
4601 if (property == dev_priv->broadcast_rgb_property) {
4602 bool old_auto = intel_dp->color_range_auto;
4603 uint32_t old_range = intel_dp->color_range;
4604
4605 switch (val) {
4606 case INTEL_BROADCAST_RGB_AUTO:
4607 intel_dp->color_range_auto = true;
4608 break;
4609 case INTEL_BROADCAST_RGB_FULL:
4610 intel_dp->color_range_auto = false;
4611 intel_dp->color_range = 0;
4612 break;
4613 case INTEL_BROADCAST_RGB_LIMITED:
4614 intel_dp->color_range_auto = false;
4615 intel_dp->color_range = DP_COLOR_RANGE_16_235;
4616 break;
4617 default:
4618 return -EINVAL;
4619 }
4620
4621 if (old_auto == intel_dp->color_range_auto &&
4622 old_range == intel_dp->color_range)
4623 return 0;
4624
4625 goto done;
4626 }
4627
4628 if (is_edp(intel_dp) &&
4629 property == connector->dev->mode_config.scaling_mode_property) {
4630 if (val == DRM_MODE_SCALE_NONE) {
4631 DRM_DEBUG_KMS("no scaling not supported\n");
4632 return -EINVAL;
4633 }
4634
4635 if (intel_connector->panel.fitting_mode == val) {
4636 /* the eDP scaling property is not changed */
4637 return 0;
4638 }
4639 intel_connector->panel.fitting_mode = val;
4640
4641 goto done;
4642 }
4643
4644 return -EINVAL;
4645
4646 done:
4647 if (intel_encoder->base.crtc)
4648 intel_crtc_restore_mode(intel_encoder->base.crtc);
4649
4650 return 0;
4651 }
4652
4653 static void
4654 intel_dp_connector_destroy(struct drm_connector *connector)
4655 {
4656 struct intel_connector *intel_connector = to_intel_connector(connector);
4657
4658 kfree(intel_connector->detect_edid);
4659
4660 if (!IS_ERR_OR_NULL(intel_connector->edid))
4661 kfree(intel_connector->edid);
4662
4663 /* Can't call is_edp() since the encoder may have been destroyed
4664 * already. */
4665 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4666 intel_panel_fini(&intel_connector->panel);
4667
4668 drm_connector_cleanup(connector);
4669 kfree(connector);
4670 }
4671
4672 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4673 {
4674 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4675 struct intel_dp *intel_dp = &intel_dig_port->dp;
4676
4677 drm_dp_aux_unregister(&intel_dp->aux);
4678 intel_dp_mst_encoder_cleanup(intel_dig_port);
4679 if (is_edp(intel_dp)) {
4680 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4681 /*
4682 * vdd might still be enabled do to the delayed vdd off.
4683 * Make sure vdd is actually turned off here.
4684 */
4685 pps_lock(intel_dp);
4686 edp_panel_vdd_off_sync(intel_dp);
4687 pps_unlock(intel_dp);
4688
4689 if (intel_dp->edp_notifier.notifier_call) {
4690 unregister_reboot_notifier(&intel_dp->edp_notifier);
4691 intel_dp->edp_notifier.notifier_call = NULL;
4692 }
4693 }
4694 drm_encoder_cleanup(encoder);
4695 kfree(intel_dig_port);
4696 }
4697
4698 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
4699 {
4700 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4701
4702 if (!is_edp(intel_dp))
4703 return;
4704
4705 /*
4706 * vdd might still be enabled do to the delayed vdd off.
4707 * Make sure vdd is actually turned off here.
4708 */
4709 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4710 pps_lock(intel_dp);
4711 edp_panel_vdd_off_sync(intel_dp);
4712 pps_unlock(intel_dp);
4713 }
4714
4715 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
4716 {
4717 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4718 struct drm_device *dev = intel_dig_port->base.base.dev;
4719 struct drm_i915_private *dev_priv = dev->dev_private;
4720 enum intel_display_power_domain power_domain;
4721
4722 lockdep_assert_held(&dev_priv->pps_mutex);
4723
4724 if (!edp_have_panel_vdd(intel_dp))
4725 return;
4726
4727 /*
4728 * The VDD bit needs a power domain reference, so if the bit is
4729 * already enabled when we boot or resume, grab this reference and
4730 * schedule a vdd off, so we don't hold on to the reference
4731 * indefinitely.
4732 */
4733 DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
4734 power_domain = intel_display_port_power_domain(&intel_dig_port->base);
4735 intel_display_power_get(dev_priv, power_domain);
4736
4737 edp_panel_vdd_schedule_off(intel_dp);
4738 }
4739
4740 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
4741 {
4742 struct intel_dp *intel_dp;
4743
4744 if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
4745 return;
4746
4747 intel_dp = enc_to_intel_dp(encoder);
4748
4749 pps_lock(intel_dp);
4750
4751 /*
4752 * Read out the current power sequencer assignment,
4753 * in case the BIOS did something with it.
4754 */
4755 if (IS_VALLEYVIEW(encoder->dev))
4756 vlv_initial_power_sequencer_setup(intel_dp);
4757
4758 intel_edp_panel_vdd_sanitize(intel_dp);
4759
4760 pps_unlock(intel_dp);
4761 }
4762
4763 static const struct drm_connector_funcs intel_dp_connector_funcs = {
4764 .dpms = intel_connector_dpms,
4765 .detect = intel_dp_detect,
4766 .force = intel_dp_force,
4767 .fill_modes = drm_helper_probe_single_connector_modes,
4768 .set_property = intel_dp_set_property,
4769 .atomic_get_property = intel_connector_atomic_get_property,
4770 .destroy = intel_dp_connector_destroy,
4771 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
4772 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
4773 };
4774
4775 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
4776 .get_modes = intel_dp_get_modes,
4777 .mode_valid = intel_dp_mode_valid,
4778 .best_encoder = intel_best_encoder,
4779 };
4780
4781 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
4782 .reset = intel_dp_encoder_reset,
4783 .destroy = intel_dp_encoder_destroy,
4784 };
4785
4786 void
4787 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
4788 {
4789 return;
4790 }
4791
4792 enum irqreturn
4793 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
4794 {
4795 struct intel_dp *intel_dp = &intel_dig_port->dp;
4796 struct intel_encoder *intel_encoder = &intel_dig_port->base;
4797 struct drm_device *dev = intel_dig_port->base.base.dev;
4798 struct drm_i915_private *dev_priv = dev->dev_private;
4799 enum intel_display_power_domain power_domain;
4800 enum irqreturn ret = IRQ_NONE;
4801
4802 if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
4803 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
4804
4805 if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
4806 /*
4807 * vdd off can generate a long pulse on eDP which
4808 * would require vdd on to handle it, and thus we
4809 * would end up in an endless cycle of
4810 * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
4811 */
4812 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
4813 port_name(intel_dig_port->port));
4814 return IRQ_HANDLED;
4815 }
4816
4817 DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
4818 port_name(intel_dig_port->port),
4819 long_hpd ? "long" : "short");
4820
4821 power_domain = intel_display_port_power_domain(intel_encoder);
4822 intel_display_power_get(dev_priv, power_domain);
4823
4824 if (long_hpd) {
4825
4826 if (HAS_PCH_SPLIT(dev)) {
4827 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
4828 goto mst_fail;
4829 } else {
4830 if (g4x_digital_port_connected(dev, intel_dig_port) != 1)
4831 goto mst_fail;
4832 }
4833
4834 if (!intel_dp_get_dpcd(intel_dp)) {
4835 goto mst_fail;
4836 }
4837
4838 intel_dp_probe_oui(intel_dp);
4839
4840 if (!intel_dp_probe_mst(intel_dp))
4841 goto mst_fail;
4842
4843 } else {
4844 if (intel_dp->is_mst) {
4845 if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
4846 goto mst_fail;
4847 }
4848
4849 if (!intel_dp->is_mst) {
4850 /*
4851 * we'll check the link status via the normal hot plug path later -
4852 * but for short hpds we should check it now
4853 */
4854 drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4855 intel_dp_check_link_status(intel_dp);
4856 drm_modeset_unlock(&dev->mode_config.connection_mutex);
4857 }
4858 }
4859
4860 ret = IRQ_HANDLED;
4861
4862 goto put_power;
4863 mst_fail:
4864 /* if we were in MST mode, and device is not there get out of MST mode */
4865 if (intel_dp->is_mst) {
4866 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
4867 intel_dp->is_mst = false;
4868 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4869 }
4870 put_power:
4871 intel_display_power_put(dev_priv, power_domain);
4872
4873 return ret;
4874 }
4875
4876 /* Return which DP Port should be selected for Transcoder DP control */
4877 int
4878 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4879 {
4880 struct drm_device *dev = crtc->dev;
4881 struct intel_encoder *intel_encoder;
4882 struct intel_dp *intel_dp;
4883
4884 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4885 intel_dp = enc_to_intel_dp(&intel_encoder->base);
4886
4887 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4888 intel_encoder->type == INTEL_OUTPUT_EDP)
4889 return intel_dp->output_reg;
4890 }
4891
4892 return -1;
4893 }
4894
4895 /* check the VBT to see whether the eDP is on DP-D port */
4896 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
4897 {
4898 struct drm_i915_private *dev_priv = dev->dev_private;
4899 union child_device_config *p_child;
4900 int i;
4901 static const short port_mapping[] = {
4902 [PORT_B] = PORT_IDPB,
4903 [PORT_C] = PORT_IDPC,
4904 [PORT_D] = PORT_IDPD,
4905 };
4906
4907 if (port == PORT_A)
4908 return true;
4909
4910 if (!dev_priv->vbt.child_dev_num)
4911 return false;
4912
4913 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
4914 p_child = dev_priv->vbt.child_dev + i;
4915
4916 if (p_child->common.dvo_port == port_mapping[port] &&
4917 (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
4918 (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
4919 return true;
4920 }
4921 return false;
4922 }
4923
4924 void
4925 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
4926 {
4927 struct intel_connector *intel_connector = to_intel_connector(connector);
4928
4929 intel_attach_force_audio_property(connector);
4930 intel_attach_broadcast_rgb_property(connector);
4931 intel_dp->color_range_auto = true;
4932
4933 if (is_edp(intel_dp)) {
4934 drm_mode_create_scaling_mode_property(connector->dev);
4935 drm_object_attach_property(
4936 &connector->base,
4937 connector->dev->mode_config.scaling_mode_property,
4938 DRM_MODE_SCALE_ASPECT);
4939 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
4940 }
4941 }
4942
4943 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
4944 {
4945 intel_dp->last_power_cycle = jiffies;
4946 intel_dp->last_power_on = jiffies;
4947 intel_dp->last_backlight_off = jiffies;
4948 }
4949
4950 static void
4951 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
4952 struct intel_dp *intel_dp)
4953 {
4954 struct drm_i915_private *dev_priv = dev->dev_private;
4955 struct edp_power_seq cur, vbt, spec,
4956 *final = &intel_dp->pps_delays;
4957 u32 pp_on, pp_off, pp_div, pp;
4958 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
4959
4960 lockdep_assert_held(&dev_priv->pps_mutex);
4961
4962 /* already initialized? */
4963 if (final->t11_t12 != 0)
4964 return;
4965
4966 if (HAS_PCH_SPLIT(dev)) {
4967 pp_ctrl_reg = PCH_PP_CONTROL;
4968 pp_on_reg = PCH_PP_ON_DELAYS;
4969 pp_off_reg = PCH_PP_OFF_DELAYS;
4970 pp_div_reg = PCH_PP_DIVISOR;
4971 } else {
4972 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
4973
4974 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
4975 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
4976 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
4977 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4978 }
4979
4980 /* Workaround: Need to write PP_CONTROL with the unlock key as
4981 * the very first thing. */
4982 pp = ironlake_get_pp_control(intel_dp);
4983 I915_WRITE(pp_ctrl_reg, pp);
4984
4985 pp_on = I915_READ(pp_on_reg);
4986 pp_off = I915_READ(pp_off_reg);
4987 pp_div = I915_READ(pp_div_reg);
4988
4989 /* Pull timing values out of registers */
4990 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
4991 PANEL_POWER_UP_DELAY_SHIFT;
4992
4993 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
4994 PANEL_LIGHT_ON_DELAY_SHIFT;
4995
4996 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
4997 PANEL_LIGHT_OFF_DELAY_SHIFT;
4998
4999 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5000 PANEL_POWER_DOWN_DELAY_SHIFT;
5001
5002 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5003 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5004
5005 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5006 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5007
5008 vbt = dev_priv->vbt.edp_pps;
5009
5010 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5011 * our hw here, which are all in 100usec. */
5012 spec.t1_t3 = 210 * 10;
5013 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5014 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5015 spec.t10 = 500 * 10;
5016 /* This one is special and actually in units of 100ms, but zero
5017 * based in the hw (so we need to add 100 ms). But the sw vbt
5018 * table multiplies it with 1000 to make it in units of 100usec,
5019 * too. */
5020 spec.t11_t12 = (510 + 100) * 10;
5021
5022 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5023 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5024
5025 /* Use the max of the register settings and vbt. If both are
5026 * unset, fall back to the spec limits. */
5027 #define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
5028 spec.field : \
5029 max(cur.field, vbt.field))
5030 assign_final(t1_t3);
5031 assign_final(t8);
5032 assign_final(t9);
5033 assign_final(t10);
5034 assign_final(t11_t12);
5035 #undef assign_final
5036
5037 #define get_delay(field) (DIV_ROUND_UP(final->field, 10))
5038 intel_dp->panel_power_up_delay = get_delay(t1_t3);
5039 intel_dp->backlight_on_delay = get_delay(t8);
5040 intel_dp->backlight_off_delay = get_delay(t9);
5041 intel_dp->panel_power_down_delay = get_delay(t10);
5042 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5043 #undef get_delay
5044
5045 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5046 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5047 intel_dp->panel_power_cycle_delay);
5048
5049 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5050 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5051 }
5052
5053 static void
5054 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5055 struct intel_dp *intel_dp)
5056 {
5057 struct drm_i915_private *dev_priv = dev->dev_private;
5058 u32 pp_on, pp_off, pp_div, port_sel = 0;
5059 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5060 int pp_on_reg, pp_off_reg, pp_div_reg;
5061 enum port port = dp_to_dig_port(intel_dp)->port;
5062 const struct edp_power_seq *seq = &intel_dp->pps_delays;
5063
5064 lockdep_assert_held(&dev_priv->pps_mutex);
5065
5066 if (HAS_PCH_SPLIT(dev)) {
5067 pp_on_reg = PCH_PP_ON_DELAYS;
5068 pp_off_reg = PCH_PP_OFF_DELAYS;
5069 pp_div_reg = PCH_PP_DIVISOR;
5070 } else {
5071 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5072
5073 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5074 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5075 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5076 }
5077
5078 /*
5079 * And finally store the new values in the power sequencer. The
5080 * backlight delays are set to 1 because we do manual waits on them. For
5081 * T8, even BSpec recommends doing it. For T9, if we don't do this,
5082 * we'll end up waiting for the backlight off delay twice: once when we
5083 * do the manual sleep, and once when we disable the panel and wait for
5084 * the PP_STATUS bit to become zero.
5085 */
5086 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5087 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5088 pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5089 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5090 /* Compute the divisor for the pp clock, simply match the Bspec
5091 * formula. */
5092 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5093 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5094 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5095
5096 /* Haswell doesn't have any port selection bits for the panel
5097 * power sequencer any more. */
5098 if (IS_VALLEYVIEW(dev)) {
5099 port_sel = PANEL_PORT_SELECT_VLV(port);
5100 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5101 if (port == PORT_A)
5102 port_sel = PANEL_PORT_SELECT_DPA;
5103 else
5104 port_sel = PANEL_PORT_SELECT_DPD;
5105 }
5106
5107 pp_on |= port_sel;
5108
5109 I915_WRITE(pp_on_reg, pp_on);
5110 I915_WRITE(pp_off_reg, pp_off);
5111 I915_WRITE(pp_div_reg, pp_div);
5112
5113 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5114 I915_READ(pp_on_reg),
5115 I915_READ(pp_off_reg),
5116 I915_READ(pp_div_reg));
5117 }
5118
5119 /**
5120 * intel_dp_set_drrs_state - program registers for RR switch to take effect
5121 * @dev: DRM device
5122 * @refresh_rate: RR to be programmed
5123 *
5124 * This function gets called when refresh rate (RR) has to be changed from
5125 * one frequency to another. Switches can be between high and low RR
5126 * supported by the panel or to any other RR based on media playback (in
5127 * this case, RR value needs to be passed from user space).
5128 *
5129 * The caller of this function needs to take a lock on dev_priv->drrs.
5130 */
5131 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5132 {
5133 struct drm_i915_private *dev_priv = dev->dev_private;
5134 struct intel_encoder *encoder;
5135 struct intel_digital_port *dig_port = NULL;
5136 struct intel_dp *intel_dp = dev_priv->drrs.dp;
5137 struct intel_crtc_state *config = NULL;
5138 struct intel_crtc *intel_crtc = NULL;
5139 u32 reg, val;
5140 enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5141
5142 if (refresh_rate <= 0) {
5143 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5144 return;
5145 }
5146
5147 if (intel_dp == NULL) {
5148 DRM_DEBUG_KMS("DRRS not supported.\n");
5149 return;
5150 }
5151
5152 /*
5153 * FIXME: This needs proper synchronization with psr state for some
5154 * platforms that cannot have PSR and DRRS enabled at the same time.
5155 */
5156
5157 dig_port = dp_to_dig_port(intel_dp);
5158 encoder = &dig_port->base;
5159 intel_crtc = to_intel_crtc(encoder->base.crtc);
5160
5161 if (!intel_crtc) {
5162 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5163 return;
5164 }
5165
5166 config = intel_crtc->config;
5167
5168 if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5169 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5170 return;
5171 }
5172
5173 if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5174 refresh_rate)
5175 index = DRRS_LOW_RR;
5176
5177 if (index == dev_priv->drrs.refresh_rate_type) {
5178 DRM_DEBUG_KMS(
5179 "DRRS requested for previously set RR...ignoring\n");
5180 return;
5181 }
5182
5183 if (!intel_crtc->active) {
5184 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5185 return;
5186 }
5187
5188 if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5189 switch (index) {
5190 case DRRS_HIGH_RR:
5191 intel_dp_set_m_n(intel_crtc, M1_N1);
5192 break;
5193 case DRRS_LOW_RR:
5194 intel_dp_set_m_n(intel_crtc, M2_N2);
5195 break;
5196 case DRRS_MAX_RR:
5197 default:
5198 DRM_ERROR("Unsupported refreshrate type\n");
5199 }
5200 } else if (INTEL_INFO(dev)->gen > 6) {
5201 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5202 val = I915_READ(reg);
5203
5204 if (index > DRRS_HIGH_RR) {
5205 if (IS_VALLEYVIEW(dev))
5206 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5207 else
5208 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5209 } else {
5210 if (IS_VALLEYVIEW(dev))
5211 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5212 else
5213 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5214 }
5215 I915_WRITE(reg, val);
5216 }
5217
5218 dev_priv->drrs.refresh_rate_type = index;
5219
5220 DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5221 }
5222
5223 /**
5224 * intel_edp_drrs_enable - init drrs struct if supported
5225 * @intel_dp: DP struct
5226 *
5227 * Initializes frontbuffer_bits and drrs.dp
5228 */
5229 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5230 {
5231 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5232 struct drm_i915_private *dev_priv = dev->dev_private;
5233 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5234 struct drm_crtc *crtc = dig_port->base.base.crtc;
5235 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5236
5237 if (!intel_crtc->config->has_drrs) {
5238 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5239 return;
5240 }
5241
5242 mutex_lock(&dev_priv->drrs.mutex);
5243 if (WARN_ON(dev_priv->drrs.dp)) {
5244 DRM_ERROR("DRRS already enabled\n");
5245 goto unlock;
5246 }
5247
5248 dev_priv->drrs.busy_frontbuffer_bits = 0;
5249
5250 dev_priv->drrs.dp = intel_dp;
5251
5252 unlock:
5253 mutex_unlock(&dev_priv->drrs.mutex);
5254 }
5255
5256 /**
5257 * intel_edp_drrs_disable - Disable DRRS
5258 * @intel_dp: DP struct
5259 *
5260 */
5261 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5262 {
5263 struct drm_device *dev = intel_dp_to_dev(intel_dp);
5264 struct drm_i915_private *dev_priv = dev->dev_private;
5265 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5266 struct drm_crtc *crtc = dig_port->base.base.crtc;
5267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5268
5269 if (!intel_crtc->config->has_drrs)
5270 return;
5271
5272 mutex_lock(&dev_priv->drrs.mutex);
5273 if (!dev_priv->drrs.dp) {
5274 mutex_unlock(&dev_priv->drrs.mutex);
5275 return;
5276 }
5277
5278 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5279 intel_dp_set_drrs_state(dev_priv->dev,
5280 intel_dp->attached_connector->panel.
5281 fixed_mode->vrefresh);
5282
5283 dev_priv->drrs.dp = NULL;
5284 mutex_unlock(&dev_priv->drrs.mutex);
5285
5286 cancel_delayed_work_sync(&dev_priv->drrs.work);
5287 }
5288
5289 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5290 {
5291 struct drm_i915_private *dev_priv =
5292 container_of(work, typeof(*dev_priv), drrs.work.work);
5293 struct intel_dp *intel_dp;
5294
5295 mutex_lock(&dev_priv->drrs.mutex);
5296
5297 intel_dp = dev_priv->drrs.dp;
5298
5299 if (!intel_dp)
5300 goto unlock;
5301
5302 /*
5303 * The delayed work can race with an invalidate hence we need to
5304 * recheck.
5305 */
5306
5307 if (dev_priv->drrs.busy_frontbuffer_bits)
5308 goto unlock;
5309
5310 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5311 intel_dp_set_drrs_state(dev_priv->dev,
5312 intel_dp->attached_connector->panel.
5313 downclock_mode->vrefresh);
5314
5315 unlock:
5316 mutex_unlock(&dev_priv->drrs.mutex);
5317 }
5318
5319 /**
5320 * intel_edp_drrs_invalidate - Invalidate DRRS
5321 * @dev: DRM device
5322 * @frontbuffer_bits: frontbuffer plane tracking bits
5323 *
5324 * When there is a disturbance on screen (due to cursor movement/time
5325 * update etc), DRRS needs to be invalidated, i.e. need to switch to
5326 * high RR.
5327 *
5328 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5329 */
5330 void intel_edp_drrs_invalidate(struct drm_device *dev,
5331 unsigned frontbuffer_bits)
5332 {
5333 struct drm_i915_private *dev_priv = dev->dev_private;
5334 struct drm_crtc *crtc;
5335 enum pipe pipe;
5336
5337 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5338 return;
5339
5340 cancel_delayed_work(&dev_priv->drrs.work);
5341
5342 mutex_lock(&dev_priv->drrs.mutex);
5343 if (!dev_priv->drrs.dp) {
5344 mutex_unlock(&dev_priv->drrs.mutex);
5345 return;
5346 }
5347
5348 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5349 pipe = to_intel_crtc(crtc)->pipe;
5350
5351 if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR) {
5352 intel_dp_set_drrs_state(dev_priv->dev,
5353 dev_priv->drrs.dp->attached_connector->panel.
5354 fixed_mode->vrefresh);
5355 }
5356
5357 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5358
5359 dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5360 mutex_unlock(&dev_priv->drrs.mutex);
5361 }
5362
5363 /**
5364 * intel_edp_drrs_flush - Flush DRRS
5365 * @dev: DRM device
5366 * @frontbuffer_bits: frontbuffer plane tracking bits
5367 *
5368 * When there is no movement on screen, DRRS work can be scheduled.
5369 * This DRRS work is responsible for setting relevant registers after a
5370 * timeout of 1 second.
5371 *
5372 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5373 */
5374 void intel_edp_drrs_flush(struct drm_device *dev,
5375 unsigned frontbuffer_bits)
5376 {
5377 struct drm_i915_private *dev_priv = dev->dev_private;
5378 struct drm_crtc *crtc;
5379 enum pipe pipe;
5380
5381 if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5382 return;
5383
5384 cancel_delayed_work(&dev_priv->drrs.work);
5385
5386 mutex_lock(&dev_priv->drrs.mutex);
5387 if (!dev_priv->drrs.dp) {
5388 mutex_unlock(&dev_priv->drrs.mutex);
5389 return;
5390 }
5391
5392 crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5393 pipe = to_intel_crtc(crtc)->pipe;
5394 dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5395
5396 if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR &&
5397 !dev_priv->drrs.busy_frontbuffer_bits)
5398 schedule_delayed_work(&dev_priv->drrs.work,
5399 msecs_to_jiffies(1000));
5400 mutex_unlock(&dev_priv->drrs.mutex);
5401 }
5402
5403 /**
5404 * DOC: Display Refresh Rate Switching (DRRS)
5405 *
5406 * Display Refresh Rate Switching (DRRS) is a power conservation feature
5407 * which enables swtching between low and high refresh rates,
5408 * dynamically, based on the usage scenario. This feature is applicable
5409 * for internal panels.
5410 *
5411 * Indication that the panel supports DRRS is given by the panel EDID, which
5412 * would list multiple refresh rates for one resolution.
5413 *
5414 * DRRS is of 2 types - static and seamless.
5415 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5416 * (may appear as a blink on screen) and is used in dock-undock scenario.
5417 * Seamless DRRS involves changing RR without any visual effect to the user
5418 * and can be used during normal system usage. This is done by programming
5419 * certain registers.
5420 *
5421 * Support for static/seamless DRRS may be indicated in the VBT based on
5422 * inputs from the panel spec.
5423 *
5424 * DRRS saves power by switching to low RR based on usage scenarios.
5425 *
5426 * eDP DRRS:-
5427 * The implementation is based on frontbuffer tracking implementation.
5428 * When there is a disturbance on the screen triggered by user activity or a
5429 * periodic system activity, DRRS is disabled (RR is changed to high RR).
5430 * When there is no movement on screen, after a timeout of 1 second, a switch
5431 * to low RR is made.
5432 * For integration with frontbuffer tracking code,
5433 * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5434 *
5435 * DRRS can be further extended to support other internal panels and also
5436 * the scenario of video playback wherein RR is set based on the rate
5437 * requested by userspace.
5438 */
5439
5440 /**
5441 * intel_dp_drrs_init - Init basic DRRS work and mutex.
5442 * @intel_connector: eDP connector
5443 * @fixed_mode: preferred mode of panel
5444 *
5445 * This function is called only once at driver load to initialize basic
5446 * DRRS stuff.
5447 *
5448 * Returns:
5449 * Downclock mode if panel supports it, else return NULL.
5450 * DRRS support is determined by the presence of downclock mode (apart
5451 * from VBT setting).
5452 */
5453 static struct drm_display_mode *
5454 intel_dp_drrs_init(struct intel_connector *intel_connector,
5455 struct drm_display_mode *fixed_mode)
5456 {
5457 struct drm_connector *connector = &intel_connector->base;
5458 struct drm_device *dev = connector->dev;
5459 struct drm_i915_private *dev_priv = dev->dev_private;
5460 struct drm_display_mode *downclock_mode = NULL;
5461
5462 INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5463 mutex_init(&dev_priv->drrs.mutex);
5464
5465 if (INTEL_INFO(dev)->gen <= 6) {
5466 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5467 return NULL;
5468 }
5469
5470 if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5471 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5472 return NULL;
5473 }
5474
5475 downclock_mode = intel_find_panel_downclock
5476 (dev, fixed_mode, connector);
5477
5478 if (!downclock_mode) {
5479 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5480 return NULL;
5481 }
5482
5483 dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5484
5485 dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5486 DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5487 return downclock_mode;
5488 }
5489
5490 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5491 struct intel_connector *intel_connector)
5492 {
5493 struct drm_connector *connector = &intel_connector->base;
5494 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5495 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5496 struct drm_device *dev = intel_encoder->base.dev;
5497 struct drm_i915_private *dev_priv = dev->dev_private;
5498 struct drm_display_mode *fixed_mode = NULL;
5499 struct drm_display_mode *downclock_mode = NULL;
5500 bool has_dpcd;
5501 struct drm_display_mode *scan;
5502 struct edid *edid;
5503 enum pipe pipe = INVALID_PIPE;
5504
5505 if (!is_edp(intel_dp))
5506 return true;
5507
5508 pps_lock(intel_dp);
5509 intel_edp_panel_vdd_sanitize(intel_dp);
5510 pps_unlock(intel_dp);
5511
5512 /* Cache DPCD and EDID for edp. */
5513 has_dpcd = intel_dp_get_dpcd(intel_dp);
5514
5515 if (has_dpcd) {
5516 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5517 dev_priv->no_aux_handshake =
5518 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5519 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5520 } else {
5521 /* if this fails, presume the device is a ghost */
5522 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5523 return false;
5524 }
5525
5526 /* We now know it's not a ghost, init power sequence regs. */
5527 pps_lock(intel_dp);
5528 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5529 pps_unlock(intel_dp);
5530
5531 mutex_lock(&dev->mode_config.mutex);
5532 edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5533 if (edid) {
5534 if (drm_add_edid_modes(connector, edid)) {
5535 drm_mode_connector_update_edid_property(connector,
5536 edid);
5537 drm_edid_to_eld(connector, edid);
5538 } else {
5539 kfree(edid);
5540 edid = ERR_PTR(-EINVAL);
5541 }
5542 } else {
5543 edid = ERR_PTR(-ENOENT);
5544 }
5545 intel_connector->edid = edid;
5546
5547 /* prefer fixed mode from EDID if available */
5548 list_for_each_entry(scan, &connector->probed_modes, head) {
5549 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5550 fixed_mode = drm_mode_duplicate(dev, scan);
5551 downclock_mode = intel_dp_drrs_init(
5552 intel_connector, fixed_mode);
5553 break;
5554 }
5555 }
5556
5557 /* fallback to VBT if available for eDP */
5558 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5559 fixed_mode = drm_mode_duplicate(dev,
5560 dev_priv->vbt.lfp_lvds_vbt_mode);
5561 if (fixed_mode)
5562 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5563 }
5564 mutex_unlock(&dev->mode_config.mutex);
5565
5566 if (IS_VALLEYVIEW(dev)) {
5567 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5568 register_reboot_notifier(&intel_dp->edp_notifier);
5569
5570 /*
5571 * Figure out the current pipe for the initial backlight setup.
5572 * If the current pipe isn't valid, try the PPS pipe, and if that
5573 * fails just assume pipe A.
5574 */
5575 if (IS_CHERRYVIEW(dev))
5576 pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5577 else
5578 pipe = PORT_TO_PIPE(intel_dp->DP);
5579
5580 if (pipe != PIPE_A && pipe != PIPE_B)
5581 pipe = intel_dp->pps_pipe;
5582
5583 if (pipe != PIPE_A && pipe != PIPE_B)
5584 pipe = PIPE_A;
5585
5586 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5587 pipe_name(pipe));
5588 }
5589
5590 intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5591 intel_connector->panel.backlight_power = intel_edp_backlight_power;
5592 intel_panel_setup_backlight(connector, pipe);
5593
5594 return true;
5595 }
5596
5597 bool
5598 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5599 struct intel_connector *intel_connector)
5600 {
5601 struct drm_connector *connector = &intel_connector->base;
5602 struct intel_dp *intel_dp = &intel_dig_port->dp;
5603 struct intel_encoder *intel_encoder = &intel_dig_port->base;
5604 struct drm_device *dev = intel_encoder->base.dev;
5605 struct drm_i915_private *dev_priv = dev->dev_private;
5606 enum port port = intel_dig_port->port;
5607 int type;
5608
5609 intel_dp->pps_pipe = INVALID_PIPE;
5610
5611 /* intel_dp vfuncs */
5612 if (INTEL_INFO(dev)->gen >= 9)
5613 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5614 else if (IS_VALLEYVIEW(dev))
5615 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5616 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5617 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5618 else if (HAS_PCH_SPLIT(dev))
5619 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5620 else
5621 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5622
5623 if (INTEL_INFO(dev)->gen >= 9)
5624 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5625 else
5626 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5627
5628 /* Preserve the current hw state. */
5629 intel_dp->DP = I915_READ(intel_dp->output_reg);
5630 intel_dp->attached_connector = intel_connector;
5631
5632 if (intel_dp_is_edp(dev, port))
5633 type = DRM_MODE_CONNECTOR_eDP;
5634 else
5635 type = DRM_MODE_CONNECTOR_DisplayPort;
5636
5637 /*
5638 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
5639 * for DP the encoder type can be set by the caller to
5640 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
5641 */
5642 if (type == DRM_MODE_CONNECTOR_eDP)
5643 intel_encoder->type = INTEL_OUTPUT_EDP;
5644
5645 /* eDP only on port B and/or C on vlv/chv */
5646 if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
5647 port != PORT_B && port != PORT_C))
5648 return false;
5649
5650 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
5651 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
5652 port_name(port));
5653
5654 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
5655 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
5656
5657 connector->interlace_allowed = true;
5658 connector->doublescan_allowed = 0;
5659
5660 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
5661 edp_panel_vdd_work);
5662
5663 intel_connector_attach_encoder(intel_connector, intel_encoder);
5664 drm_connector_register(connector);
5665
5666 if (HAS_DDI(dev))
5667 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
5668 else
5669 intel_connector->get_hw_state = intel_connector_get_hw_state;
5670 intel_connector->unregister = intel_dp_connector_unregister;
5671
5672 /* Set up the hotplug pin. */
5673 switch (port) {
5674 case PORT_A:
5675 intel_encoder->hpd_pin = HPD_PORT_A;
5676 break;
5677 case PORT_B:
5678 intel_encoder->hpd_pin = HPD_PORT_B;
5679 break;
5680 case PORT_C:
5681 intel_encoder->hpd_pin = HPD_PORT_C;
5682 break;
5683 case PORT_D:
5684 intel_encoder->hpd_pin = HPD_PORT_D;
5685 break;
5686 default:
5687 BUG();
5688 }
5689
5690 if (is_edp(intel_dp)) {
5691 pps_lock(intel_dp);
5692 intel_dp_init_panel_power_timestamps(intel_dp);
5693 if (IS_VALLEYVIEW(dev))
5694 vlv_initial_power_sequencer_setup(intel_dp);
5695 else
5696 intel_dp_init_panel_power_sequencer(dev, intel_dp);
5697 pps_unlock(intel_dp);
5698 }
5699
5700 intel_dp_aux_init(intel_dp, intel_connector);
5701
5702 /* init MST on ports that can support it */
5703 if (IS_HASWELL(dev) || IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
5704 if (port == PORT_B || port == PORT_C || port == PORT_D) {
5705 intel_dp_mst_encoder_init(intel_dig_port,
5706 intel_connector->base.base.id);
5707 }
5708 }
5709
5710 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
5711 drm_dp_aux_unregister(&intel_dp->aux);
5712 if (is_edp(intel_dp)) {
5713 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5714 /*
5715 * vdd might still be enabled do to the delayed vdd off.
5716 * Make sure vdd is actually turned off here.
5717 */
5718 pps_lock(intel_dp);
5719 edp_panel_vdd_off_sync(intel_dp);
5720 pps_unlock(intel_dp);
5721 }
5722 drm_connector_unregister(connector);
5723 drm_connector_cleanup(connector);
5724 return false;
5725 }
5726
5727 intel_dp_add_properties(intel_dp, connector);
5728
5729 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
5730 * 0xd. Failure to do so will result in spurious interrupts being
5731 * generated on the port when a cable is not attached.
5732 */
5733 if (IS_G4X(dev) && !IS_GM45(dev)) {
5734 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
5735 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
5736 }
5737
5738 i915_debugfs_connector_add(connector);
5739
5740 return true;
5741 }
5742
5743 void
5744 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
5745 {
5746 struct drm_i915_private *dev_priv = dev->dev_private;
5747 struct intel_digital_port *intel_dig_port;
5748 struct intel_encoder *intel_encoder;
5749 struct drm_encoder *encoder;
5750 struct intel_connector *intel_connector;
5751
5752 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
5753 if (!intel_dig_port)
5754 return;
5755
5756 intel_connector = intel_connector_alloc();
5757 if (!intel_connector) {
5758 kfree(intel_dig_port);
5759 return;
5760 }
5761
5762 intel_encoder = &intel_dig_port->base;
5763 encoder = &intel_encoder->base;
5764
5765 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
5766 DRM_MODE_ENCODER_TMDS);
5767
5768 intel_encoder->compute_config = intel_dp_compute_config;
5769 intel_encoder->disable = intel_disable_dp;
5770 intel_encoder->get_hw_state = intel_dp_get_hw_state;
5771 intel_encoder->get_config = intel_dp_get_config;
5772 intel_encoder->suspend = intel_dp_encoder_suspend;
5773 if (IS_CHERRYVIEW(dev)) {
5774 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
5775 intel_encoder->pre_enable = chv_pre_enable_dp;
5776 intel_encoder->enable = vlv_enable_dp;
5777 intel_encoder->post_disable = chv_post_disable_dp;
5778 } else if (IS_VALLEYVIEW(dev)) {
5779 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
5780 intel_encoder->pre_enable = vlv_pre_enable_dp;
5781 intel_encoder->enable = vlv_enable_dp;
5782 intel_encoder->post_disable = vlv_post_disable_dp;
5783 } else {
5784 intel_encoder->pre_enable = g4x_pre_enable_dp;
5785 intel_encoder->enable = g4x_enable_dp;
5786 if (INTEL_INFO(dev)->gen >= 5)
5787 intel_encoder->post_disable = ilk_post_disable_dp;
5788 }
5789
5790 intel_dig_port->port = port;
5791 intel_dig_port->dp.output_reg = output_reg;
5792
5793 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
5794 if (IS_CHERRYVIEW(dev)) {
5795 if (port == PORT_D)
5796 intel_encoder->crtc_mask = 1 << 2;
5797 else
5798 intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
5799 } else {
5800 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
5801 }
5802 intel_encoder->cloneable = 0;
5803 intel_encoder->hot_plug = intel_dp_hot_plug;
5804
5805 intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
5806 dev_priv->hpd_irq_port[port] = intel_dig_port;
5807
5808 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
5809 drm_encoder_cleanup(encoder);
5810 kfree(intel_dig_port);
5811 kfree(intel_connector);
5812 }
5813 }
5814
5815 void intel_dp_mst_suspend(struct drm_device *dev)
5816 {
5817 struct drm_i915_private *dev_priv = dev->dev_private;
5818 int i;
5819
5820 /* disable MST */
5821 for (i = 0; i < I915_MAX_PORTS; i++) {
5822 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5823 if (!intel_dig_port)
5824 continue;
5825
5826 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5827 if (!intel_dig_port->dp.can_mst)
5828 continue;
5829 if (intel_dig_port->dp.is_mst)
5830 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
5831 }
5832 }
5833 }
5834
5835 void intel_dp_mst_resume(struct drm_device *dev)
5836 {
5837 struct drm_i915_private *dev_priv = dev->dev_private;
5838 int i;
5839
5840 for (i = 0; i < I915_MAX_PORTS; i++) {
5841 struct intel_digital_port *intel_dig_port = dev_priv->hpd_irq_port[i];
5842 if (!intel_dig_port)
5843 continue;
5844 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
5845 int ret;
5846
5847 if (!intel_dig_port->dp.can_mst)
5848 continue;
5849
5850 ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
5851 if (ret != 0) {
5852 intel_dp_check_mst_status(&intel_dig_port->dp);
5853 }
5854 }
5855 }
5856 }