Merge branch 'drm-nouveau-fixes' of git://anongit.freedesktop.org/git/nouveau/linux...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
43
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
61
62 typedef struct {
63 int min, max;
64 } intel_range_t;
65
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
70
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
78 };
79
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
82
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
91
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
100
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103 int target, int refclk, intel_clock_t *match_clock,
104 intel_clock_t *best_clock);
105
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
108 {
109 if (IS_GEN5(dev)) {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112 } else
113 return 27;
114 }
115
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117 .dot = { .min = 25000, .max = 350000 },
118 .vco = { .min = 930000, .max = 1400000 },
119 .n = { .min = 3, .max = 16 },
120 .m = { .min = 96, .max = 140 },
121 .m1 = { .min = 18, .max = 26 },
122 .m2 = { .min = 6, .max = 16 },
123 .p = { .min = 4, .max = 128 },
124 .p1 = { .min = 2, .max = 33 },
125 .p2 = { .dot_limit = 165000,
126 .p2_slow = 4, .p2_fast = 2 },
127 .find_pll = intel_find_best_PLL,
128 };
129
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131 .dot = { .min = 25000, .max = 350000 },
132 .vco = { .min = 930000, .max = 1400000 },
133 .n = { .min = 3, .max = 16 },
134 .m = { .min = 96, .max = 140 },
135 .m1 = { .min = 18, .max = 26 },
136 .m2 = { .min = 6, .max = 16 },
137 .p = { .min = 4, .max = 128 },
138 .p1 = { .min = 1, .max = 6 },
139 .p2 = { .dot_limit = 165000,
140 .p2_slow = 14, .p2_fast = 7 },
141 .find_pll = intel_find_best_PLL,
142 };
143
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 10, .max = 22 },
150 .m2 = { .min = 5, .max = 9 },
151 .p = { .min = 5, .max = 80 },
152 .p1 = { .min = 1, .max = 8 },
153 .p2 = { .dot_limit = 200000,
154 .p2_slow = 10, .p2_fast = 5 },
155 .find_pll = intel_find_best_PLL,
156 };
157
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 10, .max = 22 },
164 .m2 = { .min = 5, .max = 9 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
169 .find_pll = intel_find_best_PLL,
170 };
171
172
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174 .dot = { .min = 25000, .max = 270000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 10, .max = 30 },
181 .p1 = { .min = 1, .max = 3},
182 .p2 = { .dot_limit = 270000,
183 .p2_slow = 10,
184 .p2_fast = 10
185 },
186 .find_pll = intel_g4x_find_best_PLL,
187 };
188
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190 .dot = { .min = 22000, .max = 400000 },
191 .vco = { .min = 1750000, .max = 3500000},
192 .n = { .min = 1, .max = 4 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 16, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8},
198 .p2 = { .dot_limit = 165000,
199 .p2_slow = 10, .p2_fast = 5 },
200 .find_pll = intel_g4x_find_best_PLL,
201 };
202
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204 .dot = { .min = 20000, .max = 115000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 28, .max = 112 },
211 .p1 = { .min = 2, .max = 8 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 14, .p2_fast = 14
214 },
215 .find_pll = intel_g4x_find_best_PLL,
216 };
217
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219 .dot = { .min = 80000, .max = 224000 },
220 .vco = { .min = 1750000, .max = 3500000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 14, .max = 42 },
226 .p1 = { .min = 2, .max = 6 },
227 .p2 = { .dot_limit = 0,
228 .p2_slow = 7, .p2_fast = 7
229 },
230 .find_pll = intel_g4x_find_best_PLL,
231 };
232
233 static const intel_limit_t intel_limits_g4x_display_port = {
234 .dot = { .min = 161670, .max = 227000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 2 },
237 .m = { .min = 97, .max = 108 },
238 .m1 = { .min = 0x10, .max = 0x12 },
239 .m2 = { .min = 0x05, .max = 0x06 },
240 .p = { .min = 10, .max = 20 },
241 .p1 = { .min = 1, .max = 2},
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 10, .p2_fast = 10 },
244 .find_pll = intel_find_pll_g4x_dp,
245 };
246
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248 .dot = { .min = 20000, .max = 400000},
249 .vco = { .min = 1700000, .max = 3500000 },
250 /* Pineview's Ncounter is a ring counter */
251 .n = { .min = 3, .max = 6 },
252 .m = { .min = 2, .max = 256 },
253 /* Pineview only has one combined m divider, which we treat as m2. */
254 .m1 = { .min = 0, .max = 0 },
255 .m2 = { .min = 0, .max = 254 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
258 .p2 = { .dot_limit = 200000,
259 .p2_slow = 10, .p2_fast = 5 },
260 .find_pll = intel_find_best_PLL,
261 };
262
263 static const intel_limit_t intel_limits_pineview_lvds = {
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1700000, .max = 3500000 },
266 .n = { .min = 3, .max = 6 },
267 .m = { .min = 2, .max = 256 },
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 7, .max = 112 },
271 .p1 = { .min = 1, .max = 8 },
272 .p2 = { .dot_limit = 112000,
273 .p2_slow = 14, .p2_fast = 14 },
274 .find_pll = intel_find_best_PLL,
275 };
276
277 /* Ironlake / Sandybridge
278 *
279 * We calculate clock using (register_value + 2) for N/M1/M2, so here
280 * the range value for them is (actual_value - 2).
281 */
282 static const intel_limit_t intel_limits_ironlake_dac = {
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 5 },
286 .m = { .min = 79, .max = 127 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 10, .p2_fast = 5 },
293 .find_pll = intel_g4x_find_best_PLL,
294 };
295
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297 .dot = { .min = 25000, .max = 350000 },
298 .vco = { .min = 1760000, .max = 3510000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 79, .max = 118 },
301 .m1 = { .min = 12, .max = 22 },
302 .m2 = { .min = 5, .max = 9 },
303 .p = { .min = 28, .max = 112 },
304 .p1 = { .min = 2, .max = 8 },
305 .p2 = { .dot_limit = 225000,
306 .p2_slow = 14, .p2_fast = 14 },
307 .find_pll = intel_g4x_find_best_PLL,
308 };
309
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 3 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 14, .max = 56 },
318 .p1 = { .min = 2, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 7, .p2_fast = 7 },
321 .find_pll = intel_g4x_find_best_PLL,
322 };
323
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326 .dot = { .min = 25000, .max = 350000 },
327 .vco = { .min = 1760000, .max = 3510000 },
328 .n = { .min = 1, .max = 2 },
329 .m = { .min = 79, .max = 126 },
330 .m1 = { .min = 12, .max = 22 },
331 .m2 = { .min = 5, .max = 9 },
332 .p = { .min = 28, .max = 112 },
333 .p1 = { .min = 2, .max = 8 },
334 .p2 = { .dot_limit = 225000,
335 .p2_slow = 14, .p2_fast = 14 },
336 .find_pll = intel_g4x_find_best_PLL,
337 };
338
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 126 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 42 },
347 .p1 = { .min = 2, .max = 6 },
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
350 .find_pll = intel_g4x_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000},
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 81, .max = 90 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 10, .max = 20 },
361 .p1 = { .min = 1, .max = 2},
362 .p2 = { .dot_limit = 0,
363 .p2_slow = 10, .p2_fast = 10 },
364 .find_pll = intel_find_pll_ironlake_dp,
365 };
366
367 static const intel_limit_t intel_limits_vlv_dac = {
368 .dot = { .min = 25000, .max = 270000 },
369 .vco = { .min = 4000000, .max = 6000000 },
370 .n = { .min = 1, .max = 7 },
371 .m = { .min = 22, .max = 450 }, /* guess */
372 .m1 = { .min = 2, .max = 3 },
373 .m2 = { .min = 11, .max = 156 },
374 .p = { .min = 10, .max = 30 },
375 .p1 = { .min = 2, .max = 3 },
376 .p2 = { .dot_limit = 270000,
377 .p2_slow = 2, .p2_fast = 20 },
378 .find_pll = intel_vlv_find_best_pll,
379 };
380
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382 .dot = { .min = 20000, .max = 165000 },
383 .vco = { .min = 5994000, .max = 4000000 },
384 .n = { .min = 1, .max = 7 },
385 .m = { .min = 60, .max = 300 }, /* guess */
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p = { .min = 10, .max = 30 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .dot_limit = 270000,
391 .p2_slow = 2, .p2_fast = 20 },
392 .find_pll = intel_vlv_find_best_pll,
393 };
394
395 static const intel_limit_t intel_limits_vlv_dp = {
396 .dot = { .min = 162000, .max = 270000 },
397 .vco = { .min = 5994000, .max = 4000000 },
398 .n = { .min = 1, .max = 7 },
399 .m = { .min = 60, .max = 300 }, /* guess */
400 .m1 = { .min = 2, .max = 3 },
401 .m2 = { .min = 11, .max = 156 },
402 .p = { .min = 10, .max = 30 },
403 .p1 = { .min = 2, .max = 3 },
404 .p2 = { .dot_limit = 270000,
405 .p2_slow = 2, .p2_fast = 20 },
406 .find_pll = intel_vlv_find_best_pll,
407 };
408
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
410 {
411 unsigned long flags;
412 u32 val = 0;
413
414 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416 DRM_ERROR("DPIO idle wait timed out\n");
417 goto out_unlock;
418 }
419
420 I915_WRITE(DPIO_REG, reg);
421 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422 DPIO_BYTE);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO read wait timed out\n");
425 goto out_unlock;
426 }
427 val = I915_READ(DPIO_DATA);
428
429 out_unlock:
430 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431 return val;
432 }
433
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435 u32 val)
436 {
437 unsigned long flags;
438
439 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441 DRM_ERROR("DPIO idle wait timed out\n");
442 goto out_unlock;
443 }
444
445 I915_WRITE(DPIO_DATA, val);
446 I915_WRITE(DPIO_REG, reg);
447 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448 DPIO_BYTE);
449 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450 DRM_ERROR("DPIO write wait timed out\n");
451
452 out_unlock:
453 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
454 }
455
456 static void vlv_init_dpio(struct drm_device *dev)
457 {
458 struct drm_i915_private *dev_priv = dev->dev_private;
459
460 /* Reset the DPIO config */
461 I915_WRITE(DPIO_CTL, 0);
462 POSTING_READ(DPIO_CTL);
463 I915_WRITE(DPIO_CTL, 1);
464 POSTING_READ(DPIO_CTL);
465 }
466
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
468 {
469 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470 return 1;
471 }
472
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
474 {
475 .callback = intel_dual_link_lvds_callback,
476 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477 .matches = {
478 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
480 },
481 },
482 { } /* terminating entry */
483 };
484
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486 unsigned int reg)
487 {
488 unsigned int val;
489
490 /* use the module option value if specified */
491 if (i915_lvds_channel_mode > 0)
492 return i915_lvds_channel_mode == 2;
493
494 if (dmi_check_system(intel_dual_link_lvds))
495 return true;
496
497 if (dev_priv->lvds_val)
498 val = dev_priv->lvds_val;
499 else {
500 /* BIOS should set the proper LVDS register value at boot, but
501 * in reality, it doesn't set the value when the lid is closed;
502 * we need to check "the value to be set" in VBT when LVDS
503 * register is uninitialized.
504 */
505 val = I915_READ(reg);
506 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507 val = dev_priv->bios_lvds_val;
508 dev_priv->lvds_val = val;
509 }
510 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
511 }
512
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514 int refclk)
515 {
516 struct drm_device *dev = crtc->dev;
517 struct drm_i915_private *dev_priv = dev->dev_private;
518 const intel_limit_t *limit;
519
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522 /* LVDS dual channel */
523 if (refclk == 100000)
524 limit = &intel_limits_ironlake_dual_lvds_100m;
525 else
526 limit = &intel_limits_ironlake_dual_lvds;
527 } else {
528 if (refclk == 100000)
529 limit = &intel_limits_ironlake_single_lvds_100m;
530 else
531 limit = &intel_limits_ironlake_single_lvds;
532 }
533 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534 HAS_eDP)
535 limit = &intel_limits_ironlake_display_port;
536 else
537 limit = &intel_limits_ironlake_dac;
538
539 return limit;
540 }
541
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
543 {
544 struct drm_device *dev = crtc->dev;
545 struct drm_i915_private *dev_priv = dev->dev_private;
546 const intel_limit_t *limit;
547
548 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549 if (is_dual_link_lvds(dev_priv, LVDS))
550 /* LVDS with dual channel */
551 limit = &intel_limits_g4x_dual_channel_lvds;
552 else
553 /* LVDS with dual channel */
554 limit = &intel_limits_g4x_single_channel_lvds;
555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557 limit = &intel_limits_g4x_hdmi;
558 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559 limit = &intel_limits_g4x_sdvo;
560 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561 limit = &intel_limits_g4x_display_port;
562 } else /* The option is for other outputs */
563 limit = &intel_limits_i9xx_sdvo;
564
565 return limit;
566 }
567
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
569 {
570 struct drm_device *dev = crtc->dev;
571 const intel_limit_t *limit;
572
573 if (HAS_PCH_SPLIT(dev))
574 limit = intel_ironlake_limit(crtc, refclk);
575 else if (IS_G4X(dev)) {
576 limit = intel_g4x_limit(crtc);
577 } else if (IS_PINEVIEW(dev)) {
578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579 limit = &intel_limits_pineview_lvds;
580 else
581 limit = &intel_limits_pineview_sdvo;
582 } else if (IS_VALLEYVIEW(dev)) {
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584 limit = &intel_limits_vlv_dac;
585 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586 limit = &intel_limits_vlv_hdmi;
587 else
588 limit = &intel_limits_vlv_dp;
589 } else if (!IS_GEN2(dev)) {
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591 limit = &intel_limits_i9xx_lvds;
592 else
593 limit = &intel_limits_i9xx_sdvo;
594 } else {
595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596 limit = &intel_limits_i8xx_lvds;
597 else
598 limit = &intel_limits_i8xx_dvo;
599 }
600 return limit;
601 }
602
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
605 {
606 clock->m = clock->m2 + 2;
607 clock->p = clock->p1 * clock->p2;
608 clock->vco = refclk * clock->m / clock->n;
609 clock->dot = clock->vco / clock->p;
610 }
611
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
613 {
614 if (IS_PINEVIEW(dev)) {
615 pineview_clock(refclk, clock);
616 return;
617 }
618 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619 clock->p = clock->p1 * clock->p2;
620 clock->vco = refclk * clock->m / (clock->n + 2);
621 clock->dot = clock->vco / clock->p;
622 }
623
624 /**
625 * Returns whether any output on the specified pipe is of the specified type
626 */
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
628 {
629 struct drm_device *dev = crtc->dev;
630 struct intel_encoder *encoder;
631
632 for_each_encoder_on_crtc(dev, crtc, encoder)
633 if (encoder->type == type)
634 return true;
635
636 return false;
637 }
638
639 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
640 /**
641 * Returns whether the given set of divisors are valid for a given refclk with
642 * the given connectors.
643 */
644
645 static bool intel_PLL_is_valid(struct drm_device *dev,
646 const intel_limit_t *limit,
647 const intel_clock_t *clock)
648 {
649 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
650 INTELPllInvalid("p1 out of range\n");
651 if (clock->p < limit->p.min || limit->p.max < clock->p)
652 INTELPllInvalid("p out of range\n");
653 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
654 INTELPllInvalid("m2 out of range\n");
655 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
656 INTELPllInvalid("m1 out of range\n");
657 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
658 INTELPllInvalid("m1 <= m2\n");
659 if (clock->m < limit->m.min || limit->m.max < clock->m)
660 INTELPllInvalid("m out of range\n");
661 if (clock->n < limit->n.min || limit->n.max < clock->n)
662 INTELPllInvalid("n out of range\n");
663 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
664 INTELPllInvalid("vco out of range\n");
665 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
666 * connector, etc., rather than just a single range.
667 */
668 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
669 INTELPllInvalid("dot out of range\n");
670
671 return true;
672 }
673
674 static bool
675 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
678
679 {
680 struct drm_device *dev = crtc->dev;
681 struct drm_i915_private *dev_priv = dev->dev_private;
682 intel_clock_t clock;
683 int err = target;
684
685 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
686 (I915_READ(LVDS)) != 0) {
687 /*
688 * For LVDS, if the panel is on, just rely on its current
689 * settings for dual-channel. We haven't figured out how to
690 * reliably set up different single/dual channel state, if we
691 * even can.
692 */
693 if (is_dual_link_lvds(dev_priv, LVDS))
694 clock.p2 = limit->p2.p2_fast;
695 else
696 clock.p2 = limit->p2.p2_slow;
697 } else {
698 if (target < limit->p2.dot_limit)
699 clock.p2 = limit->p2.p2_slow;
700 else
701 clock.p2 = limit->p2.p2_fast;
702 }
703
704 memset(best_clock, 0, sizeof(*best_clock));
705
706 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
707 clock.m1++) {
708 for (clock.m2 = limit->m2.min;
709 clock.m2 <= limit->m2.max; clock.m2++) {
710 /* m1 is always 0 in Pineview */
711 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
712 break;
713 for (clock.n = limit->n.min;
714 clock.n <= limit->n.max; clock.n++) {
715 for (clock.p1 = limit->p1.min;
716 clock.p1 <= limit->p1.max; clock.p1++) {
717 int this_err;
718
719 intel_clock(dev, refclk, &clock);
720 if (!intel_PLL_is_valid(dev, limit,
721 &clock))
722 continue;
723 if (match_clock &&
724 clock.p != match_clock->p)
725 continue;
726
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
731 }
732 }
733 }
734 }
735 }
736
737 return (err != target);
738 }
739
740 static bool
741 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742 int target, int refclk, intel_clock_t *match_clock,
743 intel_clock_t *best_clock)
744 {
745 struct drm_device *dev = crtc->dev;
746 struct drm_i915_private *dev_priv = dev->dev_private;
747 intel_clock_t clock;
748 int max_n;
749 bool found;
750 /* approximately equals target * 0.00585 */
751 int err_most = (target >> 8) + (target >> 9);
752 found = false;
753
754 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
755 int lvds_reg;
756
757 if (HAS_PCH_SPLIT(dev))
758 lvds_reg = PCH_LVDS;
759 else
760 lvds_reg = LVDS;
761 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
762 LVDS_CLKB_POWER_UP)
763 clock.p2 = limit->p2.p2_fast;
764 else
765 clock.p2 = limit->p2.p2_slow;
766 } else {
767 if (target < limit->p2.dot_limit)
768 clock.p2 = limit->p2.p2_slow;
769 else
770 clock.p2 = limit->p2.p2_fast;
771 }
772
773 memset(best_clock, 0, sizeof(*best_clock));
774 max_n = limit->n.max;
775 /* based on hardware requirement, prefer smaller n to precision */
776 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
777 /* based on hardware requirement, prefere larger m1,m2 */
778 for (clock.m1 = limit->m1.max;
779 clock.m1 >= limit->m1.min; clock.m1--) {
780 for (clock.m2 = limit->m2.max;
781 clock.m2 >= limit->m2.min; clock.m2--) {
782 for (clock.p1 = limit->p1.max;
783 clock.p1 >= limit->p1.min; clock.p1--) {
784 int this_err;
785
786 intel_clock(dev, refclk, &clock);
787 if (!intel_PLL_is_valid(dev, limit,
788 &clock))
789 continue;
790 if (match_clock &&
791 clock.p != match_clock->p)
792 continue;
793
794 this_err = abs(clock.dot - target);
795 if (this_err < err_most) {
796 *best_clock = clock;
797 err_most = this_err;
798 max_n = clock.n;
799 found = true;
800 }
801 }
802 }
803 }
804 }
805 return found;
806 }
807
808 static bool
809 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
810 int target, int refclk, intel_clock_t *match_clock,
811 intel_clock_t *best_clock)
812 {
813 struct drm_device *dev = crtc->dev;
814 intel_clock_t clock;
815
816 if (target < 200000) {
817 clock.n = 1;
818 clock.p1 = 2;
819 clock.p2 = 10;
820 clock.m1 = 12;
821 clock.m2 = 9;
822 } else {
823 clock.n = 2;
824 clock.p1 = 1;
825 clock.p2 = 10;
826 clock.m1 = 14;
827 clock.m2 = 8;
828 }
829 intel_clock(dev, refclk, &clock);
830 memcpy(best_clock, &clock, sizeof(intel_clock_t));
831 return true;
832 }
833
834 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
835 static bool
836 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839 {
840 intel_clock_t clock;
841 if (target < 200000) {
842 clock.p1 = 2;
843 clock.p2 = 10;
844 clock.n = 2;
845 clock.m1 = 23;
846 clock.m2 = 8;
847 } else {
848 clock.p1 = 1;
849 clock.p2 = 10;
850 clock.n = 1;
851 clock.m1 = 14;
852 clock.m2 = 2;
853 }
854 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
855 clock.p = (clock.p1 * clock.p2);
856 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
857 clock.vco = 0;
858 memcpy(best_clock, &clock, sizeof(intel_clock_t));
859 return true;
860 }
861 static bool
862 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
863 int target, int refclk, intel_clock_t *match_clock,
864 intel_clock_t *best_clock)
865 {
866 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
867 u32 m, n, fastclk;
868 u32 updrate, minupdate, fracbits, p;
869 unsigned long bestppm, ppm, absppm;
870 int dotclk, flag;
871
872 dotclk = target * 1000;
873 bestppm = 1000000;
874 ppm = absppm = 0;
875 fastclk = dotclk / (2*100);
876 updrate = 0;
877 minupdate = 19200;
878 fracbits = 1;
879 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
880 bestm1 = bestm2 = bestp1 = bestp2 = 0;
881
882 /* based on hardware requirement, prefer smaller n to precision */
883 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
884 updrate = refclk / n;
885 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
886 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
887 if (p2 > 10)
888 p2 = p2 - 1;
889 p = p1 * p2;
890 /* based on hardware requirement, prefer bigger m1,m2 values */
891 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
892 m2 = (((2*(fastclk * p * n / m1 )) +
893 refclk) / (2*refclk));
894 m = m1 * m2;
895 vco = updrate * m;
896 if (vco >= limit->vco.min && vco < limit->vco.max) {
897 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
898 absppm = (ppm > 0) ? ppm : (-ppm);
899 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
900 bestppm = 0;
901 flag = 1;
902 }
903 if (absppm < bestppm - 10) {
904 bestppm = absppm;
905 flag = 1;
906 }
907 if (flag) {
908 bestn = n;
909 bestm1 = m1;
910 bestm2 = m2;
911 bestp1 = p1;
912 bestp2 = p2;
913 flag = 0;
914 }
915 }
916 }
917 }
918 }
919 }
920 best_clock->n = bestn;
921 best_clock->m1 = bestm1;
922 best_clock->m2 = bestm2;
923 best_clock->p1 = bestp1;
924 best_clock->p2 = bestp2;
925
926 return true;
927 }
928
929 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
930 {
931 struct drm_i915_private *dev_priv = dev->dev_private;
932 u32 frame, frame_reg = PIPEFRAME(pipe);
933
934 frame = I915_READ(frame_reg);
935
936 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
937 DRM_DEBUG_KMS("vblank wait timed out\n");
938 }
939
940 /**
941 * intel_wait_for_vblank - wait for vblank on a given pipe
942 * @dev: drm device
943 * @pipe: pipe to wait for
944 *
945 * Wait for vblank to occur on a given pipe. Needed for various bits of
946 * mode setting code.
947 */
948 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
949 {
950 struct drm_i915_private *dev_priv = dev->dev_private;
951 int pipestat_reg = PIPESTAT(pipe);
952
953 if (INTEL_INFO(dev)->gen >= 5) {
954 ironlake_wait_for_vblank(dev, pipe);
955 return;
956 }
957
958 /* Clear existing vblank status. Note this will clear any other
959 * sticky status fields as well.
960 *
961 * This races with i915_driver_irq_handler() with the result
962 * that either function could miss a vblank event. Here it is not
963 * fatal, as we will either wait upon the next vblank interrupt or
964 * timeout. Generally speaking intel_wait_for_vblank() is only
965 * called during modeset at which time the GPU should be idle and
966 * should *not* be performing page flips and thus not waiting on
967 * vblanks...
968 * Currently, the result of us stealing a vblank from the irq
969 * handler is that a single frame will be skipped during swapbuffers.
970 */
971 I915_WRITE(pipestat_reg,
972 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
973
974 /* Wait for vblank interrupt bit to set */
975 if (wait_for(I915_READ(pipestat_reg) &
976 PIPE_VBLANK_INTERRUPT_STATUS,
977 50))
978 DRM_DEBUG_KMS("vblank wait timed out\n");
979 }
980
981 /*
982 * intel_wait_for_pipe_off - wait for pipe to turn off
983 * @dev: drm device
984 * @pipe: pipe to wait for
985 *
986 * After disabling a pipe, we can't wait for vblank in the usual way,
987 * spinning on the vblank interrupt status bit, since we won't actually
988 * see an interrupt when the pipe is disabled.
989 *
990 * On Gen4 and above:
991 * wait for the pipe register state bit to turn off
992 *
993 * Otherwise:
994 * wait for the display line value to settle (it usually
995 * ends up stopping at the start of the next frame).
996 *
997 */
998 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
999 {
1000 struct drm_i915_private *dev_priv = dev->dev_private;
1001
1002 if (INTEL_INFO(dev)->gen >= 4) {
1003 int reg = PIPECONF(pipe);
1004
1005 /* Wait for the Pipe State to go off */
1006 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1007 100))
1008 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1009 } else {
1010 u32 last_line, line_mask;
1011 int reg = PIPEDSL(pipe);
1012 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1013
1014 if (IS_GEN2(dev))
1015 line_mask = DSL_LINEMASK_GEN2;
1016 else
1017 line_mask = DSL_LINEMASK_GEN3;
1018
1019 /* Wait for the display line to settle */
1020 do {
1021 last_line = I915_READ(reg) & line_mask;
1022 mdelay(5);
1023 } while (((I915_READ(reg) & line_mask) != last_line) &&
1024 time_after(timeout, jiffies));
1025 if (time_after(jiffies, timeout))
1026 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1027 }
1028 }
1029
1030 static const char *state_string(bool enabled)
1031 {
1032 return enabled ? "on" : "off";
1033 }
1034
1035 /* Only for pre-ILK configs */
1036 static void assert_pll(struct drm_i915_private *dev_priv,
1037 enum pipe pipe, bool state)
1038 {
1039 int reg;
1040 u32 val;
1041 bool cur_state;
1042
1043 reg = DPLL(pipe);
1044 val = I915_READ(reg);
1045 cur_state = !!(val & DPLL_VCO_ENABLE);
1046 WARN(cur_state != state,
1047 "PLL state assertion failure (expected %s, current %s)\n",
1048 state_string(state), state_string(cur_state));
1049 }
1050 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1051 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1052
1053 /* For ILK+ */
1054 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1055 struct intel_pch_pll *pll,
1056 struct intel_crtc *crtc,
1057 bool state)
1058 {
1059 u32 val;
1060 bool cur_state;
1061
1062 if (HAS_PCH_LPT(dev_priv->dev)) {
1063 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1064 return;
1065 }
1066
1067 if (WARN (!pll,
1068 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1069 return;
1070
1071 val = I915_READ(pll->pll_reg);
1072 cur_state = !!(val & DPLL_VCO_ENABLE);
1073 WARN(cur_state != state,
1074 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1075 pll->pll_reg, state_string(state), state_string(cur_state), val);
1076
1077 /* Make sure the selected PLL is correctly attached to the transcoder */
1078 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1079 u32 pch_dpll;
1080
1081 pch_dpll = I915_READ(PCH_DPLL_SEL);
1082 cur_state = pll->pll_reg == _PCH_DPLL_B;
1083 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1084 "PLL[%d] not attached to this transcoder %d: %08x\n",
1085 cur_state, crtc->pipe, pch_dpll)) {
1086 cur_state = !!(val >> (4*crtc->pipe + 3));
1087 WARN(cur_state != state,
1088 "PLL[%d] not %s on this transcoder %d: %08x\n",
1089 pll->pll_reg == _PCH_DPLL_B,
1090 state_string(state),
1091 crtc->pipe,
1092 val);
1093 }
1094 }
1095 }
1096 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1097 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1098
1099 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1100 enum pipe pipe, bool state)
1101 {
1102 int reg;
1103 u32 val;
1104 bool cur_state;
1105
1106 if (IS_HASWELL(dev_priv->dev)) {
1107 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1108 reg = DDI_FUNC_CTL(pipe);
1109 val = I915_READ(reg);
1110 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1111 } else {
1112 reg = FDI_TX_CTL(pipe);
1113 val = I915_READ(reg);
1114 cur_state = !!(val & FDI_TX_ENABLE);
1115 }
1116 WARN(cur_state != state,
1117 "FDI TX state assertion failure (expected %s, current %s)\n",
1118 state_string(state), state_string(cur_state));
1119 }
1120 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1121 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1122
1123 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1125 {
1126 int reg;
1127 u32 val;
1128 bool cur_state;
1129
1130 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1131 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1132 return;
1133 } else {
1134 reg = FDI_RX_CTL(pipe);
1135 val = I915_READ(reg);
1136 cur_state = !!(val & FDI_RX_ENABLE);
1137 }
1138 WARN(cur_state != state,
1139 "FDI RX state assertion failure (expected %s, current %s)\n",
1140 state_string(state), state_string(cur_state));
1141 }
1142 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1143 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1144
1145 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1146 enum pipe pipe)
1147 {
1148 int reg;
1149 u32 val;
1150
1151 /* ILK FDI PLL is always enabled */
1152 if (dev_priv->info->gen == 5)
1153 return;
1154
1155 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1156 if (IS_HASWELL(dev_priv->dev))
1157 return;
1158
1159 reg = FDI_TX_CTL(pipe);
1160 val = I915_READ(reg);
1161 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1162 }
1163
1164 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1165 enum pipe pipe)
1166 {
1167 int reg;
1168 u32 val;
1169
1170 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1171 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1172 return;
1173 }
1174 reg = FDI_RX_CTL(pipe);
1175 val = I915_READ(reg);
1176 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1177 }
1178
1179 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1180 enum pipe pipe)
1181 {
1182 int pp_reg, lvds_reg;
1183 u32 val;
1184 enum pipe panel_pipe = PIPE_A;
1185 bool locked = true;
1186
1187 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1188 pp_reg = PCH_PP_CONTROL;
1189 lvds_reg = PCH_LVDS;
1190 } else {
1191 pp_reg = PP_CONTROL;
1192 lvds_reg = LVDS;
1193 }
1194
1195 val = I915_READ(pp_reg);
1196 if (!(val & PANEL_POWER_ON) ||
1197 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1198 locked = false;
1199
1200 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1201 panel_pipe = PIPE_B;
1202
1203 WARN(panel_pipe == pipe && locked,
1204 "panel assertion failure, pipe %c regs locked\n",
1205 pipe_name(pipe));
1206 }
1207
1208 void assert_pipe(struct drm_i915_private *dev_priv,
1209 enum pipe pipe, bool state)
1210 {
1211 int reg;
1212 u32 val;
1213 bool cur_state;
1214
1215 /* if we need the pipe A quirk it must be always on */
1216 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1217 state = true;
1218
1219 reg = PIPECONF(pipe);
1220 val = I915_READ(reg);
1221 cur_state = !!(val & PIPECONF_ENABLE);
1222 WARN(cur_state != state,
1223 "pipe %c assertion failure (expected %s, current %s)\n",
1224 pipe_name(pipe), state_string(state), state_string(cur_state));
1225 }
1226
1227 static void assert_plane(struct drm_i915_private *dev_priv,
1228 enum plane plane, bool state)
1229 {
1230 int reg;
1231 u32 val;
1232 bool cur_state;
1233
1234 reg = DSPCNTR(plane);
1235 val = I915_READ(reg);
1236 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1237 WARN(cur_state != state,
1238 "plane %c assertion failure (expected %s, current %s)\n",
1239 plane_name(plane), state_string(state), state_string(cur_state));
1240 }
1241
1242 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1243 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1244
1245 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1246 enum pipe pipe)
1247 {
1248 int reg, i;
1249 u32 val;
1250 int cur_pipe;
1251
1252 /* Planes are fixed to pipes on ILK+ */
1253 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1254 reg = DSPCNTR(pipe);
1255 val = I915_READ(reg);
1256 WARN((val & DISPLAY_PLANE_ENABLE),
1257 "plane %c assertion failure, should be disabled but not\n",
1258 plane_name(pipe));
1259 return;
1260 }
1261
1262 /* Need to check both planes against the pipe */
1263 for (i = 0; i < 2; i++) {
1264 reg = DSPCNTR(i);
1265 val = I915_READ(reg);
1266 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1267 DISPPLANE_SEL_PIPE_SHIFT;
1268 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1269 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1270 plane_name(i), pipe_name(pipe));
1271 }
1272 }
1273
1274 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1275 {
1276 u32 val;
1277 bool enabled;
1278
1279 if (HAS_PCH_LPT(dev_priv->dev)) {
1280 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1281 return;
1282 }
1283
1284 val = I915_READ(PCH_DREF_CONTROL);
1285 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1286 DREF_SUPERSPREAD_SOURCE_MASK));
1287 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1288 }
1289
1290 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1291 enum pipe pipe)
1292 {
1293 int reg;
1294 u32 val;
1295 bool enabled;
1296
1297 reg = TRANSCONF(pipe);
1298 val = I915_READ(reg);
1299 enabled = !!(val & TRANS_ENABLE);
1300 WARN(enabled,
1301 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1302 pipe_name(pipe));
1303 }
1304
1305 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1306 enum pipe pipe, u32 port_sel, u32 val)
1307 {
1308 if ((val & DP_PORT_EN) == 0)
1309 return false;
1310
1311 if (HAS_PCH_CPT(dev_priv->dev)) {
1312 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1313 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1314 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1315 return false;
1316 } else {
1317 if ((val & DP_PIPE_MASK) != (pipe << 30))
1318 return false;
1319 }
1320 return true;
1321 }
1322
1323 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1324 enum pipe pipe, u32 val)
1325 {
1326 if ((val & PORT_ENABLE) == 0)
1327 return false;
1328
1329 if (HAS_PCH_CPT(dev_priv->dev)) {
1330 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1331 return false;
1332 } else {
1333 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1334 return false;
1335 }
1336 return true;
1337 }
1338
1339 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1340 enum pipe pipe, u32 val)
1341 {
1342 if ((val & LVDS_PORT_EN) == 0)
1343 return false;
1344
1345 if (HAS_PCH_CPT(dev_priv->dev)) {
1346 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1347 return false;
1348 } else {
1349 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1350 return false;
1351 }
1352 return true;
1353 }
1354
1355 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1356 enum pipe pipe, u32 val)
1357 {
1358 if ((val & ADPA_DAC_ENABLE) == 0)
1359 return false;
1360 if (HAS_PCH_CPT(dev_priv->dev)) {
1361 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1362 return false;
1363 } else {
1364 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1365 return false;
1366 }
1367 return true;
1368 }
1369
1370 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1371 enum pipe pipe, int reg, u32 port_sel)
1372 {
1373 u32 val = I915_READ(reg);
1374 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1375 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1376 reg, pipe_name(pipe));
1377
1378 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1379 "IBX PCH dp port still using transcoder B\n");
1380 }
1381
1382 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1383 enum pipe pipe, int reg)
1384 {
1385 u32 val = I915_READ(reg);
1386 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1387 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1388 reg, pipe_name(pipe));
1389
1390 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1391 "IBX PCH hdmi port still using transcoder B\n");
1392 }
1393
1394 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1395 enum pipe pipe)
1396 {
1397 int reg;
1398 u32 val;
1399
1400 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1401 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1402 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1403
1404 reg = PCH_ADPA;
1405 val = I915_READ(reg);
1406 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1407 "PCH VGA enabled on transcoder %c, should be disabled\n",
1408 pipe_name(pipe));
1409
1410 reg = PCH_LVDS;
1411 val = I915_READ(reg);
1412 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1413 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1414 pipe_name(pipe));
1415
1416 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1417 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1418 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1419 }
1420
1421 /**
1422 * intel_enable_pll - enable a PLL
1423 * @dev_priv: i915 private structure
1424 * @pipe: pipe PLL to enable
1425 *
1426 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1427 * make sure the PLL reg is writable first though, since the panel write
1428 * protect mechanism may be enabled.
1429 *
1430 * Note! This is for pre-ILK only.
1431 */
1432 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1433 {
1434 int reg;
1435 u32 val;
1436
1437 /* No really, not for ILK+ */
1438 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1439
1440 /* PLL is protected by panel, make sure we can write it */
1441 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1442 assert_panel_unlocked(dev_priv, pipe);
1443
1444 reg = DPLL(pipe);
1445 val = I915_READ(reg);
1446 val |= DPLL_VCO_ENABLE;
1447
1448 /* We do this three times for luck */
1449 I915_WRITE(reg, val);
1450 POSTING_READ(reg);
1451 udelay(150); /* wait for warmup */
1452 I915_WRITE(reg, val);
1453 POSTING_READ(reg);
1454 udelay(150); /* wait for warmup */
1455 I915_WRITE(reg, val);
1456 POSTING_READ(reg);
1457 udelay(150); /* wait for warmup */
1458 }
1459
1460 /**
1461 * intel_disable_pll - disable a PLL
1462 * @dev_priv: i915 private structure
1463 * @pipe: pipe PLL to disable
1464 *
1465 * Disable the PLL for @pipe, making sure the pipe is off first.
1466 *
1467 * Note! This is for pre-ILK only.
1468 */
1469 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1470 {
1471 int reg;
1472 u32 val;
1473
1474 /* Don't disable pipe A or pipe A PLLs if needed */
1475 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1476 return;
1477
1478 /* Make sure the pipe isn't still relying on us */
1479 assert_pipe_disabled(dev_priv, pipe);
1480
1481 reg = DPLL(pipe);
1482 val = I915_READ(reg);
1483 val &= ~DPLL_VCO_ENABLE;
1484 I915_WRITE(reg, val);
1485 POSTING_READ(reg);
1486 }
1487
1488 /* SBI access */
1489 static void
1490 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1491 {
1492 unsigned long flags;
1493
1494 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1495 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1496 100)) {
1497 DRM_ERROR("timeout waiting for SBI to become ready\n");
1498 goto out_unlock;
1499 }
1500
1501 I915_WRITE(SBI_ADDR,
1502 (reg << 16));
1503 I915_WRITE(SBI_DATA,
1504 value);
1505 I915_WRITE(SBI_CTL_STAT,
1506 SBI_BUSY |
1507 SBI_CTL_OP_CRWR);
1508
1509 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1510 100)) {
1511 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1512 goto out_unlock;
1513 }
1514
1515 out_unlock:
1516 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1517 }
1518
1519 static u32
1520 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1521 {
1522 unsigned long flags;
1523 u32 value = 0;
1524
1525 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1526 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1527 100)) {
1528 DRM_ERROR("timeout waiting for SBI to become ready\n");
1529 goto out_unlock;
1530 }
1531
1532 I915_WRITE(SBI_ADDR,
1533 (reg << 16));
1534 I915_WRITE(SBI_CTL_STAT,
1535 SBI_BUSY |
1536 SBI_CTL_OP_CRRD);
1537
1538 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1539 100)) {
1540 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1541 goto out_unlock;
1542 }
1543
1544 value = I915_READ(SBI_DATA);
1545
1546 out_unlock:
1547 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1548 return value;
1549 }
1550
1551 /**
1552 * intel_enable_pch_pll - enable PCH PLL
1553 * @dev_priv: i915 private structure
1554 * @pipe: pipe PLL to enable
1555 *
1556 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1557 * drives the transcoder clock.
1558 */
1559 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1560 {
1561 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1562 struct intel_pch_pll *pll;
1563 int reg;
1564 u32 val;
1565
1566 /* PCH PLLs only available on ILK, SNB and IVB */
1567 BUG_ON(dev_priv->info->gen < 5);
1568 pll = intel_crtc->pch_pll;
1569 if (pll == NULL)
1570 return;
1571
1572 if (WARN_ON(pll->refcount == 0))
1573 return;
1574
1575 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1576 pll->pll_reg, pll->active, pll->on,
1577 intel_crtc->base.base.id);
1578
1579 /* PCH refclock must be enabled first */
1580 assert_pch_refclk_enabled(dev_priv);
1581
1582 if (pll->active++ && pll->on) {
1583 assert_pch_pll_enabled(dev_priv, pll, NULL);
1584 return;
1585 }
1586
1587 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1588
1589 reg = pll->pll_reg;
1590 val = I915_READ(reg);
1591 val |= DPLL_VCO_ENABLE;
1592 I915_WRITE(reg, val);
1593 POSTING_READ(reg);
1594 udelay(200);
1595
1596 pll->on = true;
1597 }
1598
1599 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1600 {
1601 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1602 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1603 int reg;
1604 u32 val;
1605
1606 /* PCH only available on ILK+ */
1607 BUG_ON(dev_priv->info->gen < 5);
1608 if (pll == NULL)
1609 return;
1610
1611 if (WARN_ON(pll->refcount == 0))
1612 return;
1613
1614 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1615 pll->pll_reg, pll->active, pll->on,
1616 intel_crtc->base.base.id);
1617
1618 if (WARN_ON(pll->active == 0)) {
1619 assert_pch_pll_disabled(dev_priv, pll, NULL);
1620 return;
1621 }
1622
1623 if (--pll->active) {
1624 assert_pch_pll_enabled(dev_priv, pll, NULL);
1625 return;
1626 }
1627
1628 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1629
1630 /* Make sure transcoder isn't still depending on us */
1631 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1632
1633 reg = pll->pll_reg;
1634 val = I915_READ(reg);
1635 val &= ~DPLL_VCO_ENABLE;
1636 I915_WRITE(reg, val);
1637 POSTING_READ(reg);
1638 udelay(200);
1639
1640 pll->on = false;
1641 }
1642
1643 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1644 enum pipe pipe)
1645 {
1646 int reg;
1647 u32 val, pipeconf_val;
1648 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1649
1650 /* PCH only available on ILK+ */
1651 BUG_ON(dev_priv->info->gen < 5);
1652
1653 /* Make sure PCH DPLL is enabled */
1654 assert_pch_pll_enabled(dev_priv,
1655 to_intel_crtc(crtc)->pch_pll,
1656 to_intel_crtc(crtc));
1657
1658 /* FDI must be feeding us bits for PCH ports */
1659 assert_fdi_tx_enabled(dev_priv, pipe);
1660 assert_fdi_rx_enabled(dev_priv, pipe);
1661
1662 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1663 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1664 return;
1665 }
1666 reg = TRANSCONF(pipe);
1667 val = I915_READ(reg);
1668 pipeconf_val = I915_READ(PIPECONF(pipe));
1669
1670 if (HAS_PCH_IBX(dev_priv->dev)) {
1671 /*
1672 * make the BPC in transcoder be consistent with
1673 * that in pipeconf reg.
1674 */
1675 val &= ~PIPE_BPC_MASK;
1676 val |= pipeconf_val & PIPE_BPC_MASK;
1677 }
1678
1679 val &= ~TRANS_INTERLACE_MASK;
1680 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1681 if (HAS_PCH_IBX(dev_priv->dev) &&
1682 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1683 val |= TRANS_LEGACY_INTERLACED_ILK;
1684 else
1685 val |= TRANS_INTERLACED;
1686 else
1687 val |= TRANS_PROGRESSIVE;
1688
1689 I915_WRITE(reg, val | TRANS_ENABLE);
1690 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1691 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1692 }
1693
1694 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1695 enum pipe pipe)
1696 {
1697 int reg;
1698 u32 val;
1699
1700 /* FDI relies on the transcoder */
1701 assert_fdi_tx_disabled(dev_priv, pipe);
1702 assert_fdi_rx_disabled(dev_priv, pipe);
1703
1704 /* Ports must be off as well */
1705 assert_pch_ports_disabled(dev_priv, pipe);
1706
1707 reg = TRANSCONF(pipe);
1708 val = I915_READ(reg);
1709 val &= ~TRANS_ENABLE;
1710 I915_WRITE(reg, val);
1711 /* wait for PCH transcoder off, transcoder state */
1712 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1713 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1714 }
1715
1716 /**
1717 * intel_enable_pipe - enable a pipe, asserting requirements
1718 * @dev_priv: i915 private structure
1719 * @pipe: pipe to enable
1720 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1721 *
1722 * Enable @pipe, making sure that various hardware specific requirements
1723 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1724 *
1725 * @pipe should be %PIPE_A or %PIPE_B.
1726 *
1727 * Will wait until the pipe is actually running (i.e. first vblank) before
1728 * returning.
1729 */
1730 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1731 bool pch_port)
1732 {
1733 int reg;
1734 u32 val;
1735
1736 /*
1737 * A pipe without a PLL won't actually be able to drive bits from
1738 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1739 * need the check.
1740 */
1741 if (!HAS_PCH_SPLIT(dev_priv->dev))
1742 assert_pll_enabled(dev_priv, pipe);
1743 else {
1744 if (pch_port) {
1745 /* if driving the PCH, we need FDI enabled */
1746 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1747 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1748 }
1749 /* FIXME: assert CPU port conditions for SNB+ */
1750 }
1751
1752 reg = PIPECONF(pipe);
1753 val = I915_READ(reg);
1754 if (val & PIPECONF_ENABLE)
1755 return;
1756
1757 I915_WRITE(reg, val | PIPECONF_ENABLE);
1758 intel_wait_for_vblank(dev_priv->dev, pipe);
1759 }
1760
1761 /**
1762 * intel_disable_pipe - disable a pipe, asserting requirements
1763 * @dev_priv: i915 private structure
1764 * @pipe: pipe to disable
1765 *
1766 * Disable @pipe, making sure that various hardware specific requirements
1767 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1768 *
1769 * @pipe should be %PIPE_A or %PIPE_B.
1770 *
1771 * Will wait until the pipe has shut down before returning.
1772 */
1773 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1774 enum pipe pipe)
1775 {
1776 int reg;
1777 u32 val;
1778
1779 /*
1780 * Make sure planes won't keep trying to pump pixels to us,
1781 * or we might hang the display.
1782 */
1783 assert_planes_disabled(dev_priv, pipe);
1784
1785 /* Don't disable pipe A or pipe A PLLs if needed */
1786 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1787 return;
1788
1789 reg = PIPECONF(pipe);
1790 val = I915_READ(reg);
1791 if ((val & PIPECONF_ENABLE) == 0)
1792 return;
1793
1794 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1795 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1796 }
1797
1798 /*
1799 * Plane regs are double buffered, going from enabled->disabled needs a
1800 * trigger in order to latch. The display address reg provides this.
1801 */
1802 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1803 enum plane plane)
1804 {
1805 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1806 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1807 }
1808
1809 /**
1810 * intel_enable_plane - enable a display plane on a given pipe
1811 * @dev_priv: i915 private structure
1812 * @plane: plane to enable
1813 * @pipe: pipe being fed
1814 *
1815 * Enable @plane on @pipe, making sure that @pipe is running first.
1816 */
1817 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1818 enum plane plane, enum pipe pipe)
1819 {
1820 int reg;
1821 u32 val;
1822
1823 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1824 assert_pipe_enabled(dev_priv, pipe);
1825
1826 reg = DSPCNTR(plane);
1827 val = I915_READ(reg);
1828 if (val & DISPLAY_PLANE_ENABLE)
1829 return;
1830
1831 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1832 intel_flush_display_plane(dev_priv, plane);
1833 intel_wait_for_vblank(dev_priv->dev, pipe);
1834 }
1835
1836 /**
1837 * intel_disable_plane - disable a display plane
1838 * @dev_priv: i915 private structure
1839 * @plane: plane to disable
1840 * @pipe: pipe consuming the data
1841 *
1842 * Disable @plane; should be an independent operation.
1843 */
1844 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1845 enum plane plane, enum pipe pipe)
1846 {
1847 int reg;
1848 u32 val;
1849
1850 reg = DSPCNTR(plane);
1851 val = I915_READ(reg);
1852 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1853 return;
1854
1855 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1856 intel_flush_display_plane(dev_priv, plane);
1857 intel_wait_for_vblank(dev_priv->dev, pipe);
1858 }
1859
1860 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1861 enum pipe pipe, int reg, u32 port_sel)
1862 {
1863 u32 val = I915_READ(reg);
1864 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1865 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1866 I915_WRITE(reg, val & ~DP_PORT_EN);
1867 }
1868 }
1869
1870 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1871 enum pipe pipe, int reg)
1872 {
1873 u32 val = I915_READ(reg);
1874 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1875 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1876 reg, pipe);
1877 I915_WRITE(reg, val & ~PORT_ENABLE);
1878 }
1879 }
1880
1881 /* Disable any ports connected to this transcoder */
1882 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1883 enum pipe pipe)
1884 {
1885 u32 reg, val;
1886
1887 val = I915_READ(PCH_PP_CONTROL);
1888 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1889
1890 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1891 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1892 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1893
1894 reg = PCH_ADPA;
1895 val = I915_READ(reg);
1896 if (adpa_pipe_enabled(dev_priv, val, pipe))
1897 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1898
1899 reg = PCH_LVDS;
1900 val = I915_READ(reg);
1901 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1902 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1903 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1904 POSTING_READ(reg);
1905 udelay(100);
1906 }
1907
1908 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1909 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1910 disable_pch_hdmi(dev_priv, pipe, HDMID);
1911 }
1912
1913 int
1914 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1915 struct drm_i915_gem_object *obj,
1916 struct intel_ring_buffer *pipelined)
1917 {
1918 struct drm_i915_private *dev_priv = dev->dev_private;
1919 u32 alignment;
1920 int ret;
1921
1922 switch (obj->tiling_mode) {
1923 case I915_TILING_NONE:
1924 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1925 alignment = 128 * 1024;
1926 else if (INTEL_INFO(dev)->gen >= 4)
1927 alignment = 4 * 1024;
1928 else
1929 alignment = 64 * 1024;
1930 break;
1931 case I915_TILING_X:
1932 /* pin() will align the object as required by fence */
1933 alignment = 0;
1934 break;
1935 case I915_TILING_Y:
1936 /* FIXME: Is this true? */
1937 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1938 return -EINVAL;
1939 default:
1940 BUG();
1941 }
1942
1943 dev_priv->mm.interruptible = false;
1944 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1945 if (ret)
1946 goto err_interruptible;
1947
1948 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1949 * fence, whereas 965+ only requires a fence if using
1950 * framebuffer compression. For simplicity, we always install
1951 * a fence as the cost is not that onerous.
1952 */
1953 ret = i915_gem_object_get_fence(obj);
1954 if (ret)
1955 goto err_unpin;
1956
1957 i915_gem_object_pin_fence(obj);
1958
1959 dev_priv->mm.interruptible = true;
1960 return 0;
1961
1962 err_unpin:
1963 i915_gem_object_unpin(obj);
1964 err_interruptible:
1965 dev_priv->mm.interruptible = true;
1966 return ret;
1967 }
1968
1969 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1970 {
1971 i915_gem_object_unpin_fence(obj);
1972 i915_gem_object_unpin(obj);
1973 }
1974
1975 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1976 * is assumed to be a power-of-two. */
1977 static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
1978 unsigned int bpp,
1979 unsigned int pitch)
1980 {
1981 int tile_rows, tiles;
1982
1983 tile_rows = *y / 8;
1984 *y %= 8;
1985 tiles = *x / (512/bpp);
1986 *x %= 512/bpp;
1987
1988 return tile_rows * pitch * 8 + tiles * 4096;
1989 }
1990
1991 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1992 int x, int y)
1993 {
1994 struct drm_device *dev = crtc->dev;
1995 struct drm_i915_private *dev_priv = dev->dev_private;
1996 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1997 struct intel_framebuffer *intel_fb;
1998 struct drm_i915_gem_object *obj;
1999 int plane = intel_crtc->plane;
2000 unsigned long linear_offset;
2001 u32 dspcntr;
2002 u32 reg;
2003
2004 switch (plane) {
2005 case 0:
2006 case 1:
2007 break;
2008 default:
2009 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2010 return -EINVAL;
2011 }
2012
2013 intel_fb = to_intel_framebuffer(fb);
2014 obj = intel_fb->obj;
2015
2016 reg = DSPCNTR(plane);
2017 dspcntr = I915_READ(reg);
2018 /* Mask out pixel format bits in case we change it */
2019 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2020 switch (fb->bits_per_pixel) {
2021 case 8:
2022 dspcntr |= DISPPLANE_8BPP;
2023 break;
2024 case 16:
2025 if (fb->depth == 15)
2026 dspcntr |= DISPPLANE_15_16BPP;
2027 else
2028 dspcntr |= DISPPLANE_16BPP;
2029 break;
2030 case 24:
2031 case 32:
2032 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2033 break;
2034 default:
2035 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2036 return -EINVAL;
2037 }
2038 if (INTEL_INFO(dev)->gen >= 4) {
2039 if (obj->tiling_mode != I915_TILING_NONE)
2040 dspcntr |= DISPPLANE_TILED;
2041 else
2042 dspcntr &= ~DISPPLANE_TILED;
2043 }
2044
2045 I915_WRITE(reg, dspcntr);
2046
2047 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2048
2049 if (INTEL_INFO(dev)->gen >= 4) {
2050 intel_crtc->dspaddr_offset =
2051 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2052 fb->bits_per_pixel / 8,
2053 fb->pitches[0]);
2054 linear_offset -= intel_crtc->dspaddr_offset;
2055 } else {
2056 intel_crtc->dspaddr_offset = linear_offset;
2057 }
2058
2059 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2060 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2061 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2062 if (INTEL_INFO(dev)->gen >= 4) {
2063 I915_MODIFY_DISPBASE(DSPSURF(plane),
2064 obj->gtt_offset + intel_crtc->dspaddr_offset);
2065 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2066 I915_WRITE(DSPLINOFF(plane), linear_offset);
2067 } else
2068 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2069 POSTING_READ(reg);
2070
2071 return 0;
2072 }
2073
2074 static int ironlake_update_plane(struct drm_crtc *crtc,
2075 struct drm_framebuffer *fb, int x, int y)
2076 {
2077 struct drm_device *dev = crtc->dev;
2078 struct drm_i915_private *dev_priv = dev->dev_private;
2079 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2080 struct intel_framebuffer *intel_fb;
2081 struct drm_i915_gem_object *obj;
2082 int plane = intel_crtc->plane;
2083 unsigned long linear_offset;
2084 u32 dspcntr;
2085 u32 reg;
2086
2087 switch (plane) {
2088 case 0:
2089 case 1:
2090 case 2:
2091 break;
2092 default:
2093 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2094 return -EINVAL;
2095 }
2096
2097 intel_fb = to_intel_framebuffer(fb);
2098 obj = intel_fb->obj;
2099
2100 reg = DSPCNTR(plane);
2101 dspcntr = I915_READ(reg);
2102 /* Mask out pixel format bits in case we change it */
2103 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2104 switch (fb->bits_per_pixel) {
2105 case 8:
2106 dspcntr |= DISPPLANE_8BPP;
2107 break;
2108 case 16:
2109 if (fb->depth != 16)
2110 return -EINVAL;
2111
2112 dspcntr |= DISPPLANE_16BPP;
2113 break;
2114 case 24:
2115 case 32:
2116 if (fb->depth == 24)
2117 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2118 else if (fb->depth == 30)
2119 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2120 else
2121 return -EINVAL;
2122 break;
2123 default:
2124 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2125 return -EINVAL;
2126 }
2127
2128 if (obj->tiling_mode != I915_TILING_NONE)
2129 dspcntr |= DISPPLANE_TILED;
2130 else
2131 dspcntr &= ~DISPPLANE_TILED;
2132
2133 /* must disable */
2134 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2135
2136 I915_WRITE(reg, dspcntr);
2137
2138 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2139 intel_crtc->dspaddr_offset =
2140 gen4_compute_dspaddr_offset_xtiled(&x, &y,
2141 fb->bits_per_pixel / 8,
2142 fb->pitches[0]);
2143 linear_offset -= intel_crtc->dspaddr_offset;
2144
2145 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2146 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2147 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2148 I915_MODIFY_DISPBASE(DSPSURF(plane),
2149 obj->gtt_offset + intel_crtc->dspaddr_offset);
2150 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2151 I915_WRITE(DSPLINOFF(plane), linear_offset);
2152 POSTING_READ(reg);
2153
2154 return 0;
2155 }
2156
2157 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2158 static int
2159 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2160 int x, int y, enum mode_set_atomic state)
2161 {
2162 struct drm_device *dev = crtc->dev;
2163 struct drm_i915_private *dev_priv = dev->dev_private;
2164
2165 if (dev_priv->display.disable_fbc)
2166 dev_priv->display.disable_fbc(dev);
2167 intel_increase_pllclock(crtc);
2168
2169 return dev_priv->display.update_plane(crtc, fb, x, y);
2170 }
2171
2172 static int
2173 intel_finish_fb(struct drm_framebuffer *old_fb)
2174 {
2175 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2176 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2177 bool was_interruptible = dev_priv->mm.interruptible;
2178 int ret;
2179
2180 wait_event(dev_priv->pending_flip_queue,
2181 atomic_read(&dev_priv->mm.wedged) ||
2182 atomic_read(&obj->pending_flip) == 0);
2183
2184 /* Big Hammer, we also need to ensure that any pending
2185 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2186 * current scanout is retired before unpinning the old
2187 * framebuffer.
2188 *
2189 * This should only fail upon a hung GPU, in which case we
2190 * can safely continue.
2191 */
2192 dev_priv->mm.interruptible = false;
2193 ret = i915_gem_object_finish_gpu(obj);
2194 dev_priv->mm.interruptible = was_interruptible;
2195
2196 return ret;
2197 }
2198
2199 static int
2200 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2201 struct drm_framebuffer *old_fb)
2202 {
2203 struct drm_device *dev = crtc->dev;
2204 struct drm_i915_private *dev_priv = dev->dev_private;
2205 struct drm_i915_master_private *master_priv;
2206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2207 int ret;
2208
2209 /* no fb bound */
2210 if (!crtc->fb) {
2211 DRM_ERROR("No FB bound\n");
2212 return 0;
2213 }
2214
2215 if(intel_crtc->plane > dev_priv->num_pipe) {
2216 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2217 intel_crtc->plane,
2218 dev_priv->num_pipe);
2219 return -EINVAL;
2220 }
2221
2222 mutex_lock(&dev->struct_mutex);
2223 ret = intel_pin_and_fence_fb_obj(dev,
2224 to_intel_framebuffer(crtc->fb)->obj,
2225 NULL);
2226 if (ret != 0) {
2227 mutex_unlock(&dev->struct_mutex);
2228 DRM_ERROR("pin & fence failed\n");
2229 return ret;
2230 }
2231
2232 if (old_fb)
2233 intel_finish_fb(old_fb);
2234
2235 ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
2236 if (ret) {
2237 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2238 mutex_unlock(&dev->struct_mutex);
2239 DRM_ERROR("failed to update base address\n");
2240 return ret;
2241 }
2242
2243 if (old_fb) {
2244 intel_wait_for_vblank(dev, intel_crtc->pipe);
2245 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2246 }
2247
2248 intel_update_fbc(dev);
2249 mutex_unlock(&dev->struct_mutex);
2250
2251 if (!dev->primary->master)
2252 return 0;
2253
2254 master_priv = dev->primary->master->driver_priv;
2255 if (!master_priv->sarea_priv)
2256 return 0;
2257
2258 if (intel_crtc->pipe) {
2259 master_priv->sarea_priv->pipeB_x = x;
2260 master_priv->sarea_priv->pipeB_y = y;
2261 } else {
2262 master_priv->sarea_priv->pipeA_x = x;
2263 master_priv->sarea_priv->pipeA_y = y;
2264 }
2265
2266 return 0;
2267 }
2268
2269 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2270 {
2271 struct drm_device *dev = crtc->dev;
2272 struct drm_i915_private *dev_priv = dev->dev_private;
2273 u32 dpa_ctl;
2274
2275 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2276 dpa_ctl = I915_READ(DP_A);
2277 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2278
2279 if (clock < 200000) {
2280 u32 temp;
2281 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2282 /* workaround for 160Mhz:
2283 1) program 0x4600c bits 15:0 = 0x8124
2284 2) program 0x46010 bit 0 = 1
2285 3) program 0x46034 bit 24 = 1
2286 4) program 0x64000 bit 14 = 1
2287 */
2288 temp = I915_READ(0x4600c);
2289 temp &= 0xffff0000;
2290 I915_WRITE(0x4600c, temp | 0x8124);
2291
2292 temp = I915_READ(0x46010);
2293 I915_WRITE(0x46010, temp | 1);
2294
2295 temp = I915_READ(0x46034);
2296 I915_WRITE(0x46034, temp | (1 << 24));
2297 } else {
2298 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2299 }
2300 I915_WRITE(DP_A, dpa_ctl);
2301
2302 POSTING_READ(DP_A);
2303 udelay(500);
2304 }
2305
2306 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2307 {
2308 struct drm_device *dev = crtc->dev;
2309 struct drm_i915_private *dev_priv = dev->dev_private;
2310 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2311 int pipe = intel_crtc->pipe;
2312 u32 reg, temp;
2313
2314 /* enable normal train */
2315 reg = FDI_TX_CTL(pipe);
2316 temp = I915_READ(reg);
2317 if (IS_IVYBRIDGE(dev)) {
2318 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2319 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2320 } else {
2321 temp &= ~FDI_LINK_TRAIN_NONE;
2322 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2323 }
2324 I915_WRITE(reg, temp);
2325
2326 reg = FDI_RX_CTL(pipe);
2327 temp = I915_READ(reg);
2328 if (HAS_PCH_CPT(dev)) {
2329 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2330 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2331 } else {
2332 temp &= ~FDI_LINK_TRAIN_NONE;
2333 temp |= FDI_LINK_TRAIN_NONE;
2334 }
2335 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2336
2337 /* wait one idle pattern time */
2338 POSTING_READ(reg);
2339 udelay(1000);
2340
2341 /* IVB wants error correction enabled */
2342 if (IS_IVYBRIDGE(dev))
2343 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2344 FDI_FE_ERRC_ENABLE);
2345 }
2346
2347 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2348 {
2349 struct drm_i915_private *dev_priv = dev->dev_private;
2350 u32 flags = I915_READ(SOUTH_CHICKEN1);
2351
2352 flags |= FDI_PHASE_SYNC_OVR(pipe);
2353 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2354 flags |= FDI_PHASE_SYNC_EN(pipe);
2355 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2356 POSTING_READ(SOUTH_CHICKEN1);
2357 }
2358
2359 /* The FDI link training functions for ILK/Ibexpeak. */
2360 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2361 {
2362 struct drm_device *dev = crtc->dev;
2363 struct drm_i915_private *dev_priv = dev->dev_private;
2364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2365 int pipe = intel_crtc->pipe;
2366 int plane = intel_crtc->plane;
2367 u32 reg, temp, tries;
2368
2369 /* FDI needs bits from pipe & plane first */
2370 assert_pipe_enabled(dev_priv, pipe);
2371 assert_plane_enabled(dev_priv, plane);
2372
2373 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2374 for train result */
2375 reg = FDI_RX_IMR(pipe);
2376 temp = I915_READ(reg);
2377 temp &= ~FDI_RX_SYMBOL_LOCK;
2378 temp &= ~FDI_RX_BIT_LOCK;
2379 I915_WRITE(reg, temp);
2380 I915_READ(reg);
2381 udelay(150);
2382
2383 /* enable CPU FDI TX and PCH FDI RX */
2384 reg = FDI_TX_CTL(pipe);
2385 temp = I915_READ(reg);
2386 temp &= ~(7 << 19);
2387 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2388 temp &= ~FDI_LINK_TRAIN_NONE;
2389 temp |= FDI_LINK_TRAIN_PATTERN_1;
2390 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2391
2392 reg = FDI_RX_CTL(pipe);
2393 temp = I915_READ(reg);
2394 temp &= ~FDI_LINK_TRAIN_NONE;
2395 temp |= FDI_LINK_TRAIN_PATTERN_1;
2396 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2397
2398 POSTING_READ(reg);
2399 udelay(150);
2400
2401 /* Ironlake workaround, enable clock pointer after FDI enable*/
2402 if (HAS_PCH_IBX(dev)) {
2403 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2404 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2405 FDI_RX_PHASE_SYNC_POINTER_EN);
2406 }
2407
2408 reg = FDI_RX_IIR(pipe);
2409 for (tries = 0; tries < 5; tries++) {
2410 temp = I915_READ(reg);
2411 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2412
2413 if ((temp & FDI_RX_BIT_LOCK)) {
2414 DRM_DEBUG_KMS("FDI train 1 done.\n");
2415 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2416 break;
2417 }
2418 }
2419 if (tries == 5)
2420 DRM_ERROR("FDI train 1 fail!\n");
2421
2422 /* Train 2 */
2423 reg = FDI_TX_CTL(pipe);
2424 temp = I915_READ(reg);
2425 temp &= ~FDI_LINK_TRAIN_NONE;
2426 temp |= FDI_LINK_TRAIN_PATTERN_2;
2427 I915_WRITE(reg, temp);
2428
2429 reg = FDI_RX_CTL(pipe);
2430 temp = I915_READ(reg);
2431 temp &= ~FDI_LINK_TRAIN_NONE;
2432 temp |= FDI_LINK_TRAIN_PATTERN_2;
2433 I915_WRITE(reg, temp);
2434
2435 POSTING_READ(reg);
2436 udelay(150);
2437
2438 reg = FDI_RX_IIR(pipe);
2439 for (tries = 0; tries < 5; tries++) {
2440 temp = I915_READ(reg);
2441 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2442
2443 if (temp & FDI_RX_SYMBOL_LOCK) {
2444 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2445 DRM_DEBUG_KMS("FDI train 2 done.\n");
2446 break;
2447 }
2448 }
2449 if (tries == 5)
2450 DRM_ERROR("FDI train 2 fail!\n");
2451
2452 DRM_DEBUG_KMS("FDI train done\n");
2453
2454 }
2455
2456 static const int snb_b_fdi_train_param[] = {
2457 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2458 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2459 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2460 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2461 };
2462
2463 /* The FDI link training functions for SNB/Cougarpoint. */
2464 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2465 {
2466 struct drm_device *dev = crtc->dev;
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2469 int pipe = intel_crtc->pipe;
2470 u32 reg, temp, i, retry;
2471
2472 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2473 for train result */
2474 reg = FDI_RX_IMR(pipe);
2475 temp = I915_READ(reg);
2476 temp &= ~FDI_RX_SYMBOL_LOCK;
2477 temp &= ~FDI_RX_BIT_LOCK;
2478 I915_WRITE(reg, temp);
2479
2480 POSTING_READ(reg);
2481 udelay(150);
2482
2483 /* enable CPU FDI TX and PCH FDI RX */
2484 reg = FDI_TX_CTL(pipe);
2485 temp = I915_READ(reg);
2486 temp &= ~(7 << 19);
2487 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2488 temp &= ~FDI_LINK_TRAIN_NONE;
2489 temp |= FDI_LINK_TRAIN_PATTERN_1;
2490 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2491 /* SNB-B */
2492 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2493 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2494
2495 reg = FDI_RX_CTL(pipe);
2496 temp = I915_READ(reg);
2497 if (HAS_PCH_CPT(dev)) {
2498 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2499 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2500 } else {
2501 temp &= ~FDI_LINK_TRAIN_NONE;
2502 temp |= FDI_LINK_TRAIN_PATTERN_1;
2503 }
2504 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2505
2506 POSTING_READ(reg);
2507 udelay(150);
2508
2509 if (HAS_PCH_CPT(dev))
2510 cpt_phase_pointer_enable(dev, pipe);
2511
2512 for (i = 0; i < 4; i++) {
2513 reg = FDI_TX_CTL(pipe);
2514 temp = I915_READ(reg);
2515 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2516 temp |= snb_b_fdi_train_param[i];
2517 I915_WRITE(reg, temp);
2518
2519 POSTING_READ(reg);
2520 udelay(500);
2521
2522 for (retry = 0; retry < 5; retry++) {
2523 reg = FDI_RX_IIR(pipe);
2524 temp = I915_READ(reg);
2525 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2526 if (temp & FDI_RX_BIT_LOCK) {
2527 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2528 DRM_DEBUG_KMS("FDI train 1 done.\n");
2529 break;
2530 }
2531 udelay(50);
2532 }
2533 if (retry < 5)
2534 break;
2535 }
2536 if (i == 4)
2537 DRM_ERROR("FDI train 1 fail!\n");
2538
2539 /* Train 2 */
2540 reg = FDI_TX_CTL(pipe);
2541 temp = I915_READ(reg);
2542 temp &= ~FDI_LINK_TRAIN_NONE;
2543 temp |= FDI_LINK_TRAIN_PATTERN_2;
2544 if (IS_GEN6(dev)) {
2545 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2546 /* SNB-B */
2547 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2548 }
2549 I915_WRITE(reg, temp);
2550
2551 reg = FDI_RX_CTL(pipe);
2552 temp = I915_READ(reg);
2553 if (HAS_PCH_CPT(dev)) {
2554 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2555 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2556 } else {
2557 temp &= ~FDI_LINK_TRAIN_NONE;
2558 temp |= FDI_LINK_TRAIN_PATTERN_2;
2559 }
2560 I915_WRITE(reg, temp);
2561
2562 POSTING_READ(reg);
2563 udelay(150);
2564
2565 for (i = 0; i < 4; i++) {
2566 reg = FDI_TX_CTL(pipe);
2567 temp = I915_READ(reg);
2568 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2569 temp |= snb_b_fdi_train_param[i];
2570 I915_WRITE(reg, temp);
2571
2572 POSTING_READ(reg);
2573 udelay(500);
2574
2575 for (retry = 0; retry < 5; retry++) {
2576 reg = FDI_RX_IIR(pipe);
2577 temp = I915_READ(reg);
2578 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2579 if (temp & FDI_RX_SYMBOL_LOCK) {
2580 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2581 DRM_DEBUG_KMS("FDI train 2 done.\n");
2582 break;
2583 }
2584 udelay(50);
2585 }
2586 if (retry < 5)
2587 break;
2588 }
2589 if (i == 4)
2590 DRM_ERROR("FDI train 2 fail!\n");
2591
2592 DRM_DEBUG_KMS("FDI train done.\n");
2593 }
2594
2595 /* Manual link training for Ivy Bridge A0 parts */
2596 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2597 {
2598 struct drm_device *dev = crtc->dev;
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2601 int pipe = intel_crtc->pipe;
2602 u32 reg, temp, i;
2603
2604 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2605 for train result */
2606 reg = FDI_RX_IMR(pipe);
2607 temp = I915_READ(reg);
2608 temp &= ~FDI_RX_SYMBOL_LOCK;
2609 temp &= ~FDI_RX_BIT_LOCK;
2610 I915_WRITE(reg, temp);
2611
2612 POSTING_READ(reg);
2613 udelay(150);
2614
2615 /* enable CPU FDI TX and PCH FDI RX */
2616 reg = FDI_TX_CTL(pipe);
2617 temp = I915_READ(reg);
2618 temp &= ~(7 << 19);
2619 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2620 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2621 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2622 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2623 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2624 temp |= FDI_COMPOSITE_SYNC;
2625 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2626
2627 reg = FDI_RX_CTL(pipe);
2628 temp = I915_READ(reg);
2629 temp &= ~FDI_LINK_TRAIN_AUTO;
2630 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2631 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2632 temp |= FDI_COMPOSITE_SYNC;
2633 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2634
2635 POSTING_READ(reg);
2636 udelay(150);
2637
2638 if (HAS_PCH_CPT(dev))
2639 cpt_phase_pointer_enable(dev, pipe);
2640
2641 for (i = 0; i < 4; i++) {
2642 reg = FDI_TX_CTL(pipe);
2643 temp = I915_READ(reg);
2644 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2645 temp |= snb_b_fdi_train_param[i];
2646 I915_WRITE(reg, temp);
2647
2648 POSTING_READ(reg);
2649 udelay(500);
2650
2651 reg = FDI_RX_IIR(pipe);
2652 temp = I915_READ(reg);
2653 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2654
2655 if (temp & FDI_RX_BIT_LOCK ||
2656 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2657 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2658 DRM_DEBUG_KMS("FDI train 1 done.\n");
2659 break;
2660 }
2661 }
2662 if (i == 4)
2663 DRM_ERROR("FDI train 1 fail!\n");
2664
2665 /* Train 2 */
2666 reg = FDI_TX_CTL(pipe);
2667 temp = I915_READ(reg);
2668 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2669 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2670 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2671 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2672 I915_WRITE(reg, temp);
2673
2674 reg = FDI_RX_CTL(pipe);
2675 temp = I915_READ(reg);
2676 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2677 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2678 I915_WRITE(reg, temp);
2679
2680 POSTING_READ(reg);
2681 udelay(150);
2682
2683 for (i = 0; i < 4; i++) {
2684 reg = FDI_TX_CTL(pipe);
2685 temp = I915_READ(reg);
2686 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2687 temp |= snb_b_fdi_train_param[i];
2688 I915_WRITE(reg, temp);
2689
2690 POSTING_READ(reg);
2691 udelay(500);
2692
2693 reg = FDI_RX_IIR(pipe);
2694 temp = I915_READ(reg);
2695 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2696
2697 if (temp & FDI_RX_SYMBOL_LOCK) {
2698 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2699 DRM_DEBUG_KMS("FDI train 2 done.\n");
2700 break;
2701 }
2702 }
2703 if (i == 4)
2704 DRM_ERROR("FDI train 2 fail!\n");
2705
2706 DRM_DEBUG_KMS("FDI train done.\n");
2707 }
2708
2709 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2710 {
2711 struct drm_device *dev = crtc->dev;
2712 struct drm_i915_private *dev_priv = dev->dev_private;
2713 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2714 int pipe = intel_crtc->pipe;
2715 u32 reg, temp;
2716
2717 /* Write the TU size bits so error detection works */
2718 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2719 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2720
2721 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2722 reg = FDI_RX_CTL(pipe);
2723 temp = I915_READ(reg);
2724 temp &= ~((0x7 << 19) | (0x7 << 16));
2725 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2726 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2727 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2728
2729 POSTING_READ(reg);
2730 udelay(200);
2731
2732 /* Switch from Rawclk to PCDclk */
2733 temp = I915_READ(reg);
2734 I915_WRITE(reg, temp | FDI_PCDCLK);
2735
2736 POSTING_READ(reg);
2737 udelay(200);
2738
2739 /* On Haswell, the PLL configuration for ports and pipes is handled
2740 * separately, as part of DDI setup */
2741 if (!IS_HASWELL(dev)) {
2742 /* Enable CPU FDI TX PLL, always on for Ironlake */
2743 reg = FDI_TX_CTL(pipe);
2744 temp = I915_READ(reg);
2745 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2746 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2747
2748 POSTING_READ(reg);
2749 udelay(100);
2750 }
2751 }
2752 }
2753
2754 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2755 {
2756 struct drm_i915_private *dev_priv = dev->dev_private;
2757 u32 flags = I915_READ(SOUTH_CHICKEN1);
2758
2759 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2760 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2761 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2762 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2763 POSTING_READ(SOUTH_CHICKEN1);
2764 }
2765 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2766 {
2767 struct drm_device *dev = crtc->dev;
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2770 int pipe = intel_crtc->pipe;
2771 u32 reg, temp;
2772
2773 /* disable CPU FDI tx and PCH FDI rx */
2774 reg = FDI_TX_CTL(pipe);
2775 temp = I915_READ(reg);
2776 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2777 POSTING_READ(reg);
2778
2779 reg = FDI_RX_CTL(pipe);
2780 temp = I915_READ(reg);
2781 temp &= ~(0x7 << 16);
2782 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2783 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2784
2785 POSTING_READ(reg);
2786 udelay(100);
2787
2788 /* Ironlake workaround, disable clock pointer after downing FDI */
2789 if (HAS_PCH_IBX(dev)) {
2790 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2791 I915_WRITE(FDI_RX_CHICKEN(pipe),
2792 I915_READ(FDI_RX_CHICKEN(pipe) &
2793 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2794 } else if (HAS_PCH_CPT(dev)) {
2795 cpt_phase_pointer_disable(dev, pipe);
2796 }
2797
2798 /* still set train pattern 1 */
2799 reg = FDI_TX_CTL(pipe);
2800 temp = I915_READ(reg);
2801 temp &= ~FDI_LINK_TRAIN_NONE;
2802 temp |= FDI_LINK_TRAIN_PATTERN_1;
2803 I915_WRITE(reg, temp);
2804
2805 reg = FDI_RX_CTL(pipe);
2806 temp = I915_READ(reg);
2807 if (HAS_PCH_CPT(dev)) {
2808 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2809 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2810 } else {
2811 temp &= ~FDI_LINK_TRAIN_NONE;
2812 temp |= FDI_LINK_TRAIN_PATTERN_1;
2813 }
2814 /* BPC in FDI rx is consistent with that in PIPECONF */
2815 temp &= ~(0x07 << 16);
2816 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2817 I915_WRITE(reg, temp);
2818
2819 POSTING_READ(reg);
2820 udelay(100);
2821 }
2822
2823 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2824 {
2825 struct drm_device *dev = crtc->dev;
2826
2827 if (crtc->fb == NULL)
2828 return;
2829
2830 mutex_lock(&dev->struct_mutex);
2831 intel_finish_fb(crtc->fb);
2832 mutex_unlock(&dev->struct_mutex);
2833 }
2834
2835 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2836 {
2837 struct drm_device *dev = crtc->dev;
2838 struct intel_encoder *encoder;
2839
2840 /*
2841 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2842 * must be driven by its own crtc; no sharing is possible.
2843 */
2844 for_each_encoder_on_crtc(dev, crtc, encoder) {
2845
2846 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2847 * CPU handles all others */
2848 if (IS_HASWELL(dev)) {
2849 /* It is still unclear how this will work on PPT, so throw up a warning */
2850 WARN_ON(!HAS_PCH_LPT(dev));
2851
2852 if (encoder->type == DRM_MODE_ENCODER_DAC) {
2853 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2854 return true;
2855 } else {
2856 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2857 encoder->type);
2858 return false;
2859 }
2860 }
2861
2862 switch (encoder->type) {
2863 case INTEL_OUTPUT_EDP:
2864 if (!intel_encoder_is_pch_edp(&encoder->base))
2865 return false;
2866 continue;
2867 }
2868 }
2869
2870 return true;
2871 }
2872
2873 /* Program iCLKIP clock to the desired frequency */
2874 static void lpt_program_iclkip(struct drm_crtc *crtc)
2875 {
2876 struct drm_device *dev = crtc->dev;
2877 struct drm_i915_private *dev_priv = dev->dev_private;
2878 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2879 u32 temp;
2880
2881 /* It is necessary to ungate the pixclk gate prior to programming
2882 * the divisors, and gate it back when it is done.
2883 */
2884 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2885
2886 /* Disable SSCCTL */
2887 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2888 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2889 SBI_SSCCTL_DISABLE);
2890
2891 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2892 if (crtc->mode.clock == 20000) {
2893 auxdiv = 1;
2894 divsel = 0x41;
2895 phaseinc = 0x20;
2896 } else {
2897 /* The iCLK virtual clock root frequency is in MHz,
2898 * but the crtc->mode.clock in in KHz. To get the divisors,
2899 * it is necessary to divide one by another, so we
2900 * convert the virtual clock precision to KHz here for higher
2901 * precision.
2902 */
2903 u32 iclk_virtual_root_freq = 172800 * 1000;
2904 u32 iclk_pi_range = 64;
2905 u32 desired_divisor, msb_divisor_value, pi_value;
2906
2907 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2908 msb_divisor_value = desired_divisor / iclk_pi_range;
2909 pi_value = desired_divisor % iclk_pi_range;
2910
2911 auxdiv = 0;
2912 divsel = msb_divisor_value - 2;
2913 phaseinc = pi_value;
2914 }
2915
2916 /* This should not happen with any sane values */
2917 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2918 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2919 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2920 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2921
2922 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2923 crtc->mode.clock,
2924 auxdiv,
2925 divsel,
2926 phasedir,
2927 phaseinc);
2928
2929 /* Program SSCDIVINTPHASE6 */
2930 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2931 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2932 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2933 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2934 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2935 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2936 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2937
2938 intel_sbi_write(dev_priv,
2939 SBI_SSCDIVINTPHASE6,
2940 temp);
2941
2942 /* Program SSCAUXDIV */
2943 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2944 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2945 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2946 intel_sbi_write(dev_priv,
2947 SBI_SSCAUXDIV6,
2948 temp);
2949
2950
2951 /* Enable modulator and associated divider */
2952 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2953 temp &= ~SBI_SSCCTL_DISABLE;
2954 intel_sbi_write(dev_priv,
2955 SBI_SSCCTL6,
2956 temp);
2957
2958 /* Wait for initialization time */
2959 udelay(24);
2960
2961 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2962 }
2963
2964 /*
2965 * Enable PCH resources required for PCH ports:
2966 * - PCH PLLs
2967 * - FDI training & RX/TX
2968 * - update transcoder timings
2969 * - DP transcoding bits
2970 * - transcoder
2971 */
2972 static void ironlake_pch_enable(struct drm_crtc *crtc)
2973 {
2974 struct drm_device *dev = crtc->dev;
2975 struct drm_i915_private *dev_priv = dev->dev_private;
2976 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2977 int pipe = intel_crtc->pipe;
2978 u32 reg, temp;
2979
2980 assert_transcoder_disabled(dev_priv, pipe);
2981
2982 /* For PCH output, training FDI link */
2983 dev_priv->display.fdi_link_train(crtc);
2984
2985 intel_enable_pch_pll(intel_crtc);
2986
2987 if (HAS_PCH_LPT(dev)) {
2988 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2989 lpt_program_iclkip(crtc);
2990 } else if (HAS_PCH_CPT(dev)) {
2991 u32 sel;
2992
2993 temp = I915_READ(PCH_DPLL_SEL);
2994 switch (pipe) {
2995 default:
2996 case 0:
2997 temp |= TRANSA_DPLL_ENABLE;
2998 sel = TRANSA_DPLLB_SEL;
2999 break;
3000 case 1:
3001 temp |= TRANSB_DPLL_ENABLE;
3002 sel = TRANSB_DPLLB_SEL;
3003 break;
3004 case 2:
3005 temp |= TRANSC_DPLL_ENABLE;
3006 sel = TRANSC_DPLLB_SEL;
3007 break;
3008 }
3009 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3010 temp |= sel;
3011 else
3012 temp &= ~sel;
3013 I915_WRITE(PCH_DPLL_SEL, temp);
3014 }
3015
3016 /* set transcoder timing, panel must allow it */
3017 assert_panel_unlocked(dev_priv, pipe);
3018 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3019 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3020 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3021
3022 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3023 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3024 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3025 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3026
3027 if (!IS_HASWELL(dev))
3028 intel_fdi_normal_train(crtc);
3029
3030 /* For PCH DP, enable TRANS_DP_CTL */
3031 if (HAS_PCH_CPT(dev) &&
3032 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3033 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3034 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3035 reg = TRANS_DP_CTL(pipe);
3036 temp = I915_READ(reg);
3037 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3038 TRANS_DP_SYNC_MASK |
3039 TRANS_DP_BPC_MASK);
3040 temp |= (TRANS_DP_OUTPUT_ENABLE |
3041 TRANS_DP_ENH_FRAMING);
3042 temp |= bpc << 9; /* same format but at 11:9 */
3043
3044 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3045 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3046 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3047 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3048
3049 switch (intel_trans_dp_port_sel(crtc)) {
3050 case PCH_DP_B:
3051 temp |= TRANS_DP_PORT_SEL_B;
3052 break;
3053 case PCH_DP_C:
3054 temp |= TRANS_DP_PORT_SEL_C;
3055 break;
3056 case PCH_DP_D:
3057 temp |= TRANS_DP_PORT_SEL_D;
3058 break;
3059 default:
3060 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3061 temp |= TRANS_DP_PORT_SEL_B;
3062 break;
3063 }
3064
3065 I915_WRITE(reg, temp);
3066 }
3067
3068 intel_enable_transcoder(dev_priv, pipe);
3069 }
3070
3071 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3072 {
3073 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3074
3075 if (pll == NULL)
3076 return;
3077
3078 if (pll->refcount == 0) {
3079 WARN(1, "bad PCH PLL refcount\n");
3080 return;
3081 }
3082
3083 --pll->refcount;
3084 intel_crtc->pch_pll = NULL;
3085 }
3086
3087 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3088 {
3089 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3090 struct intel_pch_pll *pll;
3091 int i;
3092
3093 pll = intel_crtc->pch_pll;
3094 if (pll) {
3095 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3096 intel_crtc->base.base.id, pll->pll_reg);
3097 goto prepare;
3098 }
3099
3100 if (HAS_PCH_IBX(dev_priv->dev)) {
3101 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3102 i = intel_crtc->pipe;
3103 pll = &dev_priv->pch_plls[i];
3104
3105 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3106 intel_crtc->base.base.id, pll->pll_reg);
3107
3108 goto found;
3109 }
3110
3111 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3112 pll = &dev_priv->pch_plls[i];
3113
3114 /* Only want to check enabled timings first */
3115 if (pll->refcount == 0)
3116 continue;
3117
3118 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3119 fp == I915_READ(pll->fp0_reg)) {
3120 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3121 intel_crtc->base.base.id,
3122 pll->pll_reg, pll->refcount, pll->active);
3123
3124 goto found;
3125 }
3126 }
3127
3128 /* Ok no matching timings, maybe there's a free one? */
3129 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3130 pll = &dev_priv->pch_plls[i];
3131 if (pll->refcount == 0) {
3132 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3133 intel_crtc->base.base.id, pll->pll_reg);
3134 goto found;
3135 }
3136 }
3137
3138 return NULL;
3139
3140 found:
3141 intel_crtc->pch_pll = pll;
3142 pll->refcount++;
3143 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3144 prepare: /* separate function? */
3145 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3146
3147 /* Wait for the clocks to stabilize before rewriting the regs */
3148 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3149 POSTING_READ(pll->pll_reg);
3150 udelay(150);
3151
3152 I915_WRITE(pll->fp0_reg, fp);
3153 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3154 pll->on = false;
3155 return pll;
3156 }
3157
3158 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3159 {
3160 struct drm_i915_private *dev_priv = dev->dev_private;
3161 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3162 u32 temp;
3163
3164 temp = I915_READ(dslreg);
3165 udelay(500);
3166 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3167 /* Without this, mode sets may fail silently on FDI */
3168 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3169 udelay(250);
3170 I915_WRITE(tc2reg, 0);
3171 if (wait_for(I915_READ(dslreg) != temp, 5))
3172 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3173 }
3174 }
3175
3176 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3177 {
3178 struct drm_device *dev = crtc->dev;
3179 struct drm_i915_private *dev_priv = dev->dev_private;
3180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3181 int pipe = intel_crtc->pipe;
3182 int plane = intel_crtc->plane;
3183 u32 temp;
3184 bool is_pch_port;
3185
3186 if (intel_crtc->active)
3187 return;
3188
3189 intel_crtc->active = true;
3190 intel_update_watermarks(dev);
3191
3192 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3193 temp = I915_READ(PCH_LVDS);
3194 if ((temp & LVDS_PORT_EN) == 0)
3195 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3196 }
3197
3198 is_pch_port = intel_crtc_driving_pch(crtc);
3199
3200 if (is_pch_port)
3201 ironlake_fdi_pll_enable(crtc);
3202 else
3203 ironlake_fdi_disable(crtc);
3204
3205 /* Enable panel fitting for LVDS */
3206 if (dev_priv->pch_pf_size &&
3207 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3208 /* Force use of hard-coded filter coefficients
3209 * as some pre-programmed values are broken,
3210 * e.g. x201.
3211 */
3212 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3213 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3214 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3215 }
3216
3217 /*
3218 * On ILK+ LUT must be loaded before the pipe is running but with
3219 * clocks enabled
3220 */
3221 intel_crtc_load_lut(crtc);
3222
3223 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3224 intel_enable_plane(dev_priv, plane, pipe);
3225
3226 if (is_pch_port)
3227 ironlake_pch_enable(crtc);
3228
3229 mutex_lock(&dev->struct_mutex);
3230 intel_update_fbc(dev);
3231 mutex_unlock(&dev->struct_mutex);
3232
3233 intel_crtc_update_cursor(crtc, true);
3234 }
3235
3236 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3237 {
3238 struct drm_device *dev = crtc->dev;
3239 struct drm_i915_private *dev_priv = dev->dev_private;
3240 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3241 int pipe = intel_crtc->pipe;
3242 int plane = intel_crtc->plane;
3243 u32 reg, temp;
3244
3245 if (!intel_crtc->active)
3246 return;
3247
3248 intel_crtc_wait_for_pending_flips(crtc);
3249 drm_vblank_off(dev, pipe);
3250 intel_crtc_update_cursor(crtc, false);
3251
3252 intel_disable_plane(dev_priv, plane, pipe);
3253
3254 if (dev_priv->cfb_plane == plane)
3255 intel_disable_fbc(dev);
3256
3257 intel_disable_pipe(dev_priv, pipe);
3258
3259 /* Disable PF */
3260 I915_WRITE(PF_CTL(pipe), 0);
3261 I915_WRITE(PF_WIN_SZ(pipe), 0);
3262
3263 ironlake_fdi_disable(crtc);
3264
3265 /* This is a horrible layering violation; we should be doing this in
3266 * the connector/encoder ->prepare instead, but we don't always have
3267 * enough information there about the config to know whether it will
3268 * actually be necessary or just cause undesired flicker.
3269 */
3270 intel_disable_pch_ports(dev_priv, pipe);
3271
3272 intel_disable_transcoder(dev_priv, pipe);
3273
3274 if (HAS_PCH_CPT(dev)) {
3275 /* disable TRANS_DP_CTL */
3276 reg = TRANS_DP_CTL(pipe);
3277 temp = I915_READ(reg);
3278 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3279 temp |= TRANS_DP_PORT_SEL_NONE;
3280 I915_WRITE(reg, temp);
3281
3282 /* disable DPLL_SEL */
3283 temp = I915_READ(PCH_DPLL_SEL);
3284 switch (pipe) {
3285 case 0:
3286 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3287 break;
3288 case 1:
3289 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3290 break;
3291 case 2:
3292 /* C shares PLL A or B */
3293 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3294 break;
3295 default:
3296 BUG(); /* wtf */
3297 }
3298 I915_WRITE(PCH_DPLL_SEL, temp);
3299 }
3300
3301 /* disable PCH DPLL */
3302 intel_disable_pch_pll(intel_crtc);
3303
3304 /* Switch from PCDclk to Rawclk */
3305 reg = FDI_RX_CTL(pipe);
3306 temp = I915_READ(reg);
3307 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3308
3309 /* Disable CPU FDI TX PLL */
3310 reg = FDI_TX_CTL(pipe);
3311 temp = I915_READ(reg);
3312 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3313
3314 POSTING_READ(reg);
3315 udelay(100);
3316
3317 reg = FDI_RX_CTL(pipe);
3318 temp = I915_READ(reg);
3319 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3320
3321 /* Wait for the clocks to turn off. */
3322 POSTING_READ(reg);
3323 udelay(100);
3324
3325 intel_crtc->active = false;
3326 intel_update_watermarks(dev);
3327
3328 mutex_lock(&dev->struct_mutex);
3329 intel_update_fbc(dev);
3330 mutex_unlock(&dev->struct_mutex);
3331 }
3332
3333 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3334 {
3335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3336 int pipe = intel_crtc->pipe;
3337 int plane = intel_crtc->plane;
3338
3339 /* XXX: When our outputs are all unaware of DPMS modes other than off
3340 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3341 */
3342 switch (mode) {
3343 case DRM_MODE_DPMS_ON:
3344 case DRM_MODE_DPMS_STANDBY:
3345 case DRM_MODE_DPMS_SUSPEND:
3346 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3347 ironlake_crtc_enable(crtc);
3348 break;
3349
3350 case DRM_MODE_DPMS_OFF:
3351 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3352 ironlake_crtc_disable(crtc);
3353 break;
3354 }
3355 }
3356
3357 static void ironlake_crtc_off(struct drm_crtc *crtc)
3358 {
3359 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3360 intel_put_pch_pll(intel_crtc);
3361 }
3362
3363 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3364 {
3365 if (!enable && intel_crtc->overlay) {
3366 struct drm_device *dev = intel_crtc->base.dev;
3367 struct drm_i915_private *dev_priv = dev->dev_private;
3368
3369 mutex_lock(&dev->struct_mutex);
3370 dev_priv->mm.interruptible = false;
3371 (void) intel_overlay_switch_off(intel_crtc->overlay);
3372 dev_priv->mm.interruptible = true;
3373 mutex_unlock(&dev->struct_mutex);
3374 }
3375
3376 /* Let userspace switch the overlay on again. In most cases userspace
3377 * has to recompute where to put it anyway.
3378 */
3379 }
3380
3381 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3382 {
3383 struct drm_device *dev = crtc->dev;
3384 struct drm_i915_private *dev_priv = dev->dev_private;
3385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3386 int pipe = intel_crtc->pipe;
3387 int plane = intel_crtc->plane;
3388
3389 if (intel_crtc->active)
3390 return;
3391
3392 intel_crtc->active = true;
3393 intel_update_watermarks(dev);
3394
3395 intel_enable_pll(dev_priv, pipe);
3396 intel_enable_pipe(dev_priv, pipe, false);
3397 intel_enable_plane(dev_priv, plane, pipe);
3398
3399 intel_crtc_load_lut(crtc);
3400 intel_update_fbc(dev);
3401
3402 /* Give the overlay scaler a chance to enable if it's on this pipe */
3403 intel_crtc_dpms_overlay(intel_crtc, true);
3404 intel_crtc_update_cursor(crtc, true);
3405 }
3406
3407 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3408 {
3409 struct drm_device *dev = crtc->dev;
3410 struct drm_i915_private *dev_priv = dev->dev_private;
3411 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3412 int pipe = intel_crtc->pipe;
3413 int plane = intel_crtc->plane;
3414
3415 if (!intel_crtc->active)
3416 return;
3417
3418 /* Give the overlay scaler a chance to disable if it's on this pipe */
3419 intel_crtc_wait_for_pending_flips(crtc);
3420 drm_vblank_off(dev, pipe);
3421 intel_crtc_dpms_overlay(intel_crtc, false);
3422 intel_crtc_update_cursor(crtc, false);
3423
3424 if (dev_priv->cfb_plane == plane)
3425 intel_disable_fbc(dev);
3426
3427 intel_disable_plane(dev_priv, plane, pipe);
3428 intel_disable_pipe(dev_priv, pipe);
3429 intel_disable_pll(dev_priv, pipe);
3430
3431 intel_crtc->active = false;
3432 intel_update_fbc(dev);
3433 intel_update_watermarks(dev);
3434 }
3435
3436 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3437 {
3438 /* XXX: When our outputs are all unaware of DPMS modes other than off
3439 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3440 */
3441 switch (mode) {
3442 case DRM_MODE_DPMS_ON:
3443 case DRM_MODE_DPMS_STANDBY:
3444 case DRM_MODE_DPMS_SUSPEND:
3445 i9xx_crtc_enable(crtc);
3446 break;
3447 case DRM_MODE_DPMS_OFF:
3448 i9xx_crtc_disable(crtc);
3449 break;
3450 }
3451 }
3452
3453 static void i9xx_crtc_off(struct drm_crtc *crtc)
3454 {
3455 }
3456
3457 /**
3458 * Sets the power management mode of the pipe and plane.
3459 */
3460 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3461 {
3462 struct drm_device *dev = crtc->dev;
3463 struct drm_i915_private *dev_priv = dev->dev_private;
3464 struct drm_i915_master_private *master_priv;
3465 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3466 int pipe = intel_crtc->pipe;
3467 bool enabled;
3468
3469 if (intel_crtc->dpms_mode == mode)
3470 return;
3471
3472 intel_crtc->dpms_mode = mode;
3473
3474 dev_priv->display.dpms(crtc, mode);
3475
3476 if (!dev->primary->master)
3477 return;
3478
3479 master_priv = dev->primary->master->driver_priv;
3480 if (!master_priv->sarea_priv)
3481 return;
3482
3483 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3484
3485 switch (pipe) {
3486 case 0:
3487 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3488 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3489 break;
3490 case 1:
3491 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3492 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3493 break;
3494 default:
3495 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3496 break;
3497 }
3498 }
3499
3500 static void intel_crtc_disable(struct drm_crtc *crtc)
3501 {
3502 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3503 struct drm_device *dev = crtc->dev;
3504 struct drm_i915_private *dev_priv = dev->dev_private;
3505
3506 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3507 dev_priv->display.off(crtc);
3508
3509 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3510 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3511
3512 if (crtc->fb) {
3513 mutex_lock(&dev->struct_mutex);
3514 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3515 mutex_unlock(&dev->struct_mutex);
3516 }
3517 }
3518
3519 /* Prepare for a mode set.
3520 *
3521 * Note we could be a lot smarter here. We need to figure out which outputs
3522 * will be enabled, which disabled (in short, how the config will changes)
3523 * and perform the minimum necessary steps to accomplish that, e.g. updating
3524 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3525 * panel fitting is in the proper state, etc.
3526 */
3527 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3528 {
3529 i9xx_crtc_disable(crtc);
3530 }
3531
3532 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3533 {
3534 i9xx_crtc_enable(crtc);
3535 }
3536
3537 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3538 {
3539 ironlake_crtc_disable(crtc);
3540 }
3541
3542 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3543 {
3544 ironlake_crtc_enable(crtc);
3545 }
3546
3547 void intel_encoder_prepare(struct drm_encoder *encoder)
3548 {
3549 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3550 /* lvds has its own version of prepare see intel_lvds_prepare */
3551 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3552 }
3553
3554 void intel_encoder_commit(struct drm_encoder *encoder)
3555 {
3556 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3557 struct drm_device *dev = encoder->dev;
3558 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
3559
3560 /* lvds has its own version of commit see intel_lvds_commit */
3561 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3562
3563 if (HAS_PCH_CPT(dev))
3564 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3565 }
3566
3567 void intel_encoder_destroy(struct drm_encoder *encoder)
3568 {
3569 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3570
3571 drm_encoder_cleanup(encoder);
3572 kfree(intel_encoder);
3573 }
3574
3575 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3576 struct drm_display_mode *mode,
3577 struct drm_display_mode *adjusted_mode)
3578 {
3579 struct drm_device *dev = crtc->dev;
3580
3581 if (HAS_PCH_SPLIT(dev)) {
3582 /* FDI link clock is fixed at 2.7G */
3583 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3584 return false;
3585 }
3586
3587 /* All interlaced capable intel hw wants timings in frames. Note though
3588 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3589 * timings, so we need to be careful not to clobber these.*/
3590 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3591 drm_mode_set_crtcinfo(adjusted_mode, 0);
3592
3593 return true;
3594 }
3595
3596 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3597 {
3598 return 400000; /* FIXME */
3599 }
3600
3601 static int i945_get_display_clock_speed(struct drm_device *dev)
3602 {
3603 return 400000;
3604 }
3605
3606 static int i915_get_display_clock_speed(struct drm_device *dev)
3607 {
3608 return 333000;
3609 }
3610
3611 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3612 {
3613 return 200000;
3614 }
3615
3616 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3617 {
3618 u16 gcfgc = 0;
3619
3620 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3621
3622 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3623 return 133000;
3624 else {
3625 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3626 case GC_DISPLAY_CLOCK_333_MHZ:
3627 return 333000;
3628 default:
3629 case GC_DISPLAY_CLOCK_190_200_MHZ:
3630 return 190000;
3631 }
3632 }
3633 }
3634
3635 static int i865_get_display_clock_speed(struct drm_device *dev)
3636 {
3637 return 266000;
3638 }
3639
3640 static int i855_get_display_clock_speed(struct drm_device *dev)
3641 {
3642 u16 hpllcc = 0;
3643 /* Assume that the hardware is in the high speed state. This
3644 * should be the default.
3645 */
3646 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3647 case GC_CLOCK_133_200:
3648 case GC_CLOCK_100_200:
3649 return 200000;
3650 case GC_CLOCK_166_250:
3651 return 250000;
3652 case GC_CLOCK_100_133:
3653 return 133000;
3654 }
3655
3656 /* Shouldn't happen */
3657 return 0;
3658 }
3659
3660 static int i830_get_display_clock_speed(struct drm_device *dev)
3661 {
3662 return 133000;
3663 }
3664
3665 struct fdi_m_n {
3666 u32 tu;
3667 u32 gmch_m;
3668 u32 gmch_n;
3669 u32 link_m;
3670 u32 link_n;
3671 };
3672
3673 static void
3674 fdi_reduce_ratio(u32 *num, u32 *den)
3675 {
3676 while (*num > 0xffffff || *den > 0xffffff) {
3677 *num >>= 1;
3678 *den >>= 1;
3679 }
3680 }
3681
3682 static void
3683 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3684 int link_clock, struct fdi_m_n *m_n)
3685 {
3686 m_n->tu = 64; /* default size */
3687
3688 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3689 m_n->gmch_m = bits_per_pixel * pixel_clock;
3690 m_n->gmch_n = link_clock * nlanes * 8;
3691 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3692
3693 m_n->link_m = pixel_clock;
3694 m_n->link_n = link_clock;
3695 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3696 }
3697
3698 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3699 {
3700 if (i915_panel_use_ssc >= 0)
3701 return i915_panel_use_ssc != 0;
3702 return dev_priv->lvds_use_ssc
3703 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3704 }
3705
3706 /**
3707 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3708 * @crtc: CRTC structure
3709 * @mode: requested mode
3710 *
3711 * A pipe may be connected to one or more outputs. Based on the depth of the
3712 * attached framebuffer, choose a good color depth to use on the pipe.
3713 *
3714 * If possible, match the pipe depth to the fb depth. In some cases, this
3715 * isn't ideal, because the connected output supports a lesser or restricted
3716 * set of depths. Resolve that here:
3717 * LVDS typically supports only 6bpc, so clamp down in that case
3718 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3719 * Displays may support a restricted set as well, check EDID and clamp as
3720 * appropriate.
3721 * DP may want to dither down to 6bpc to fit larger modes
3722 *
3723 * RETURNS:
3724 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3725 * true if they don't match).
3726 */
3727 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3728 unsigned int *pipe_bpp,
3729 struct drm_display_mode *mode)
3730 {
3731 struct drm_device *dev = crtc->dev;
3732 struct drm_i915_private *dev_priv = dev->dev_private;
3733 struct drm_connector *connector;
3734 struct intel_encoder *intel_encoder;
3735 unsigned int display_bpc = UINT_MAX, bpc;
3736
3737 /* Walk the encoders & connectors on this crtc, get min bpc */
3738 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3739
3740 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3741 unsigned int lvds_bpc;
3742
3743 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3744 LVDS_A3_POWER_UP)
3745 lvds_bpc = 8;
3746 else
3747 lvds_bpc = 6;
3748
3749 if (lvds_bpc < display_bpc) {
3750 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3751 display_bpc = lvds_bpc;
3752 }
3753 continue;
3754 }
3755
3756 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
3757 /* Use VBT settings if we have an eDP panel */
3758 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
3759
3760 if (edp_bpc < display_bpc) {
3761 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
3762 display_bpc = edp_bpc;
3763 }
3764 continue;
3765 }
3766
3767 /* Not one of the known troublemakers, check the EDID */
3768 list_for_each_entry(connector, &dev->mode_config.connector_list,
3769 head) {
3770 if (connector->encoder != &intel_encoder->base)
3771 continue;
3772
3773 /* Don't use an invalid EDID bpc value */
3774 if (connector->display_info.bpc &&
3775 connector->display_info.bpc < display_bpc) {
3776 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3777 display_bpc = connector->display_info.bpc;
3778 }
3779 }
3780
3781 /*
3782 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3783 * through, clamp it down. (Note: >12bpc will be caught below.)
3784 */
3785 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3786 if (display_bpc > 8 && display_bpc < 12) {
3787 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3788 display_bpc = 12;
3789 } else {
3790 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3791 display_bpc = 8;
3792 }
3793 }
3794 }
3795
3796 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3797 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3798 display_bpc = 6;
3799 }
3800
3801 /*
3802 * We could just drive the pipe at the highest bpc all the time and
3803 * enable dithering as needed, but that costs bandwidth. So choose
3804 * the minimum value that expresses the full color range of the fb but
3805 * also stays within the max display bpc discovered above.
3806 */
3807
3808 switch (crtc->fb->depth) {
3809 case 8:
3810 bpc = 8; /* since we go through a colormap */
3811 break;
3812 case 15:
3813 case 16:
3814 bpc = 6; /* min is 18bpp */
3815 break;
3816 case 24:
3817 bpc = 8;
3818 break;
3819 case 30:
3820 bpc = 10;
3821 break;
3822 case 48:
3823 bpc = 12;
3824 break;
3825 default:
3826 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3827 bpc = min((unsigned int)8, display_bpc);
3828 break;
3829 }
3830
3831 display_bpc = min(display_bpc, bpc);
3832
3833 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3834 bpc, display_bpc);
3835
3836 *pipe_bpp = display_bpc * 3;
3837
3838 return display_bpc != bpc;
3839 }
3840
3841 static int vlv_get_refclk(struct drm_crtc *crtc)
3842 {
3843 struct drm_device *dev = crtc->dev;
3844 struct drm_i915_private *dev_priv = dev->dev_private;
3845 int refclk = 27000; /* for DP & HDMI */
3846
3847 return 100000; /* only one validated so far */
3848
3849 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3850 refclk = 96000;
3851 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3852 if (intel_panel_use_ssc(dev_priv))
3853 refclk = 100000;
3854 else
3855 refclk = 96000;
3856 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3857 refclk = 100000;
3858 }
3859
3860 return refclk;
3861 }
3862
3863 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3864 {
3865 struct drm_device *dev = crtc->dev;
3866 struct drm_i915_private *dev_priv = dev->dev_private;
3867 int refclk;
3868
3869 if (IS_VALLEYVIEW(dev)) {
3870 refclk = vlv_get_refclk(crtc);
3871 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3872 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3873 refclk = dev_priv->lvds_ssc_freq * 1000;
3874 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3875 refclk / 1000);
3876 } else if (!IS_GEN2(dev)) {
3877 refclk = 96000;
3878 } else {
3879 refclk = 48000;
3880 }
3881
3882 return refclk;
3883 }
3884
3885 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3886 intel_clock_t *clock)
3887 {
3888 /* SDVO TV has fixed PLL values depend on its clock range,
3889 this mirrors vbios setting. */
3890 if (adjusted_mode->clock >= 100000
3891 && adjusted_mode->clock < 140500) {
3892 clock->p1 = 2;
3893 clock->p2 = 10;
3894 clock->n = 3;
3895 clock->m1 = 16;
3896 clock->m2 = 8;
3897 } else if (adjusted_mode->clock >= 140500
3898 && adjusted_mode->clock <= 200000) {
3899 clock->p1 = 1;
3900 clock->p2 = 10;
3901 clock->n = 6;
3902 clock->m1 = 12;
3903 clock->m2 = 8;
3904 }
3905 }
3906
3907 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3908 intel_clock_t *clock,
3909 intel_clock_t *reduced_clock)
3910 {
3911 struct drm_device *dev = crtc->dev;
3912 struct drm_i915_private *dev_priv = dev->dev_private;
3913 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3914 int pipe = intel_crtc->pipe;
3915 u32 fp, fp2 = 0;
3916
3917 if (IS_PINEVIEW(dev)) {
3918 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3919 if (reduced_clock)
3920 fp2 = (1 << reduced_clock->n) << 16 |
3921 reduced_clock->m1 << 8 | reduced_clock->m2;
3922 } else {
3923 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3924 if (reduced_clock)
3925 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3926 reduced_clock->m2;
3927 }
3928
3929 I915_WRITE(FP0(pipe), fp);
3930
3931 intel_crtc->lowfreq_avail = false;
3932 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3933 reduced_clock && i915_powersave) {
3934 I915_WRITE(FP1(pipe), fp2);
3935 intel_crtc->lowfreq_avail = true;
3936 } else {
3937 I915_WRITE(FP1(pipe), fp);
3938 }
3939 }
3940
3941 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3942 struct drm_display_mode *adjusted_mode)
3943 {
3944 struct drm_device *dev = crtc->dev;
3945 struct drm_i915_private *dev_priv = dev->dev_private;
3946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3947 int pipe = intel_crtc->pipe;
3948 u32 temp;
3949
3950 temp = I915_READ(LVDS);
3951 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3952 if (pipe == 1) {
3953 temp |= LVDS_PIPEB_SELECT;
3954 } else {
3955 temp &= ~LVDS_PIPEB_SELECT;
3956 }
3957 /* set the corresponsding LVDS_BORDER bit */
3958 temp |= dev_priv->lvds_border_bits;
3959 /* Set the B0-B3 data pairs corresponding to whether we're going to
3960 * set the DPLLs for dual-channel mode or not.
3961 */
3962 if (clock->p2 == 7)
3963 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3964 else
3965 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3966
3967 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3968 * appropriately here, but we need to look more thoroughly into how
3969 * panels behave in the two modes.
3970 */
3971 /* set the dithering flag on LVDS as needed */
3972 if (INTEL_INFO(dev)->gen >= 4) {
3973 if (dev_priv->lvds_dither)
3974 temp |= LVDS_ENABLE_DITHER;
3975 else
3976 temp &= ~LVDS_ENABLE_DITHER;
3977 }
3978 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3979 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3980 temp |= LVDS_HSYNC_POLARITY;
3981 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3982 temp |= LVDS_VSYNC_POLARITY;
3983 I915_WRITE(LVDS, temp);
3984 }
3985
3986 static void vlv_update_pll(struct drm_crtc *crtc,
3987 struct drm_display_mode *mode,
3988 struct drm_display_mode *adjusted_mode,
3989 intel_clock_t *clock, intel_clock_t *reduced_clock,
3990 int refclk, int num_connectors)
3991 {
3992 struct drm_device *dev = crtc->dev;
3993 struct drm_i915_private *dev_priv = dev->dev_private;
3994 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3995 int pipe = intel_crtc->pipe;
3996 u32 dpll, mdiv, pdiv;
3997 u32 bestn, bestm1, bestm2, bestp1, bestp2;
3998 bool is_hdmi;
3999
4000 is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4001
4002 bestn = clock->n;
4003 bestm1 = clock->m1;
4004 bestm2 = clock->m2;
4005 bestp1 = clock->p1;
4006 bestp2 = clock->p2;
4007
4008 /* Enable DPIO clock input */
4009 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4010 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4011 I915_WRITE(DPLL(pipe), dpll);
4012 POSTING_READ(DPLL(pipe));
4013
4014 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4015 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4016 mdiv |= ((bestn << DPIO_N_SHIFT));
4017 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4018 mdiv |= (1 << DPIO_K_SHIFT);
4019 mdiv |= DPIO_ENABLE_CALIBRATION;
4020 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4021
4022 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4023
4024 pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4025 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4026 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4027 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4028
4029 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4030
4031 dpll |= DPLL_VCO_ENABLE;
4032 I915_WRITE(DPLL(pipe), dpll);
4033 POSTING_READ(DPLL(pipe));
4034 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4035 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4036
4037 if (is_hdmi) {
4038 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4039
4040 if (temp > 1)
4041 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4042 else
4043 temp = 0;
4044
4045 I915_WRITE(DPLL_MD(pipe), temp);
4046 POSTING_READ(DPLL_MD(pipe));
4047 }
4048
4049 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4050 }
4051
4052 static void i9xx_update_pll(struct drm_crtc *crtc,
4053 struct drm_display_mode *mode,
4054 struct drm_display_mode *adjusted_mode,
4055 intel_clock_t *clock, intel_clock_t *reduced_clock,
4056 int num_connectors)
4057 {
4058 struct drm_device *dev = crtc->dev;
4059 struct drm_i915_private *dev_priv = dev->dev_private;
4060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4061 int pipe = intel_crtc->pipe;
4062 u32 dpll;
4063 bool is_sdvo;
4064
4065 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4066 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4067
4068 dpll = DPLL_VGA_MODE_DIS;
4069
4070 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4071 dpll |= DPLLB_MODE_LVDS;
4072 else
4073 dpll |= DPLLB_MODE_DAC_SERIAL;
4074 if (is_sdvo) {
4075 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4076 if (pixel_multiplier > 1) {
4077 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4078 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4079 }
4080 dpll |= DPLL_DVO_HIGH_SPEED;
4081 }
4082 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4083 dpll |= DPLL_DVO_HIGH_SPEED;
4084
4085 /* compute bitmask from p1 value */
4086 if (IS_PINEVIEW(dev))
4087 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4088 else {
4089 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4090 if (IS_G4X(dev) && reduced_clock)
4091 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4092 }
4093 switch (clock->p2) {
4094 case 5:
4095 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4096 break;
4097 case 7:
4098 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4099 break;
4100 case 10:
4101 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4102 break;
4103 case 14:
4104 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4105 break;
4106 }
4107 if (INTEL_INFO(dev)->gen >= 4)
4108 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4109
4110 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4111 dpll |= PLL_REF_INPUT_TVCLKINBC;
4112 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4113 /* XXX: just matching BIOS for now */
4114 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4115 dpll |= 3;
4116 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4117 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4118 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4119 else
4120 dpll |= PLL_REF_INPUT_DREFCLK;
4121
4122 dpll |= DPLL_VCO_ENABLE;
4123 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4124 POSTING_READ(DPLL(pipe));
4125 udelay(150);
4126
4127 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4128 * This is an exception to the general rule that mode_set doesn't turn
4129 * things on.
4130 */
4131 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4132 intel_update_lvds(crtc, clock, adjusted_mode);
4133
4134 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4135 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4136
4137 I915_WRITE(DPLL(pipe), dpll);
4138
4139 /* Wait for the clocks to stabilize. */
4140 POSTING_READ(DPLL(pipe));
4141 udelay(150);
4142
4143 if (INTEL_INFO(dev)->gen >= 4) {
4144 u32 temp = 0;
4145 if (is_sdvo) {
4146 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4147 if (temp > 1)
4148 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4149 else
4150 temp = 0;
4151 }
4152 I915_WRITE(DPLL_MD(pipe), temp);
4153 } else {
4154 /* The pixel multiplier can only be updated once the
4155 * DPLL is enabled and the clocks are stable.
4156 *
4157 * So write it again.
4158 */
4159 I915_WRITE(DPLL(pipe), dpll);
4160 }
4161 }
4162
4163 static void i8xx_update_pll(struct drm_crtc *crtc,
4164 struct drm_display_mode *adjusted_mode,
4165 intel_clock_t *clock,
4166 int num_connectors)
4167 {
4168 struct drm_device *dev = crtc->dev;
4169 struct drm_i915_private *dev_priv = dev->dev_private;
4170 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4171 int pipe = intel_crtc->pipe;
4172 u32 dpll;
4173
4174 dpll = DPLL_VGA_MODE_DIS;
4175
4176 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4177 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4178 } else {
4179 if (clock->p1 == 2)
4180 dpll |= PLL_P1_DIVIDE_BY_TWO;
4181 else
4182 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4183 if (clock->p2 == 4)
4184 dpll |= PLL_P2_DIVIDE_BY_4;
4185 }
4186
4187 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4188 /* XXX: just matching BIOS for now */
4189 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4190 dpll |= 3;
4191 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4192 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4193 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4194 else
4195 dpll |= PLL_REF_INPUT_DREFCLK;
4196
4197 dpll |= DPLL_VCO_ENABLE;
4198 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4199 POSTING_READ(DPLL(pipe));
4200 udelay(150);
4201
4202 I915_WRITE(DPLL(pipe), dpll);
4203
4204 /* Wait for the clocks to stabilize. */
4205 POSTING_READ(DPLL(pipe));
4206 udelay(150);
4207
4208 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4209 * This is an exception to the general rule that mode_set doesn't turn
4210 * things on.
4211 */
4212 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4213 intel_update_lvds(crtc, clock, adjusted_mode);
4214
4215 /* The pixel multiplier can only be updated once the
4216 * DPLL is enabled and the clocks are stable.
4217 *
4218 * So write it again.
4219 */
4220 I915_WRITE(DPLL(pipe), dpll);
4221 }
4222
4223 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4224 struct drm_display_mode *mode,
4225 struct drm_display_mode *adjusted_mode,
4226 int x, int y,
4227 struct drm_framebuffer *old_fb)
4228 {
4229 struct drm_device *dev = crtc->dev;
4230 struct drm_i915_private *dev_priv = dev->dev_private;
4231 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4232 int pipe = intel_crtc->pipe;
4233 int plane = intel_crtc->plane;
4234 int refclk, num_connectors = 0;
4235 intel_clock_t clock, reduced_clock;
4236 u32 dspcntr, pipeconf, vsyncshift;
4237 bool ok, has_reduced_clock = false, is_sdvo = false;
4238 bool is_lvds = false, is_tv = false, is_dp = false;
4239 struct intel_encoder *encoder;
4240 const intel_limit_t *limit;
4241 int ret;
4242
4243 for_each_encoder_on_crtc(dev, crtc, encoder) {
4244 switch (encoder->type) {
4245 case INTEL_OUTPUT_LVDS:
4246 is_lvds = true;
4247 break;
4248 case INTEL_OUTPUT_SDVO:
4249 case INTEL_OUTPUT_HDMI:
4250 is_sdvo = true;
4251 if (encoder->needs_tv_clock)
4252 is_tv = true;
4253 break;
4254 case INTEL_OUTPUT_TVOUT:
4255 is_tv = true;
4256 break;
4257 case INTEL_OUTPUT_DISPLAYPORT:
4258 is_dp = true;
4259 break;
4260 }
4261
4262 num_connectors++;
4263 }
4264
4265 refclk = i9xx_get_refclk(crtc, num_connectors);
4266
4267 /*
4268 * Returns a set of divisors for the desired target clock with the given
4269 * refclk, or FALSE. The returned values represent the clock equation:
4270 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4271 */
4272 limit = intel_limit(crtc, refclk);
4273 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4274 &clock);
4275 if (!ok) {
4276 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4277 return -EINVAL;
4278 }
4279
4280 /* Ensure that the cursor is valid for the new mode before changing... */
4281 intel_crtc_update_cursor(crtc, true);
4282
4283 if (is_lvds && dev_priv->lvds_downclock_avail) {
4284 /*
4285 * Ensure we match the reduced clock's P to the target clock.
4286 * If the clocks don't match, we can't switch the display clock
4287 * by using the FP0/FP1. In such case we will disable the LVDS
4288 * downclock feature.
4289 */
4290 has_reduced_clock = limit->find_pll(limit, crtc,
4291 dev_priv->lvds_downclock,
4292 refclk,
4293 &clock,
4294 &reduced_clock);
4295 }
4296
4297 if (is_sdvo && is_tv)
4298 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4299
4300 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4301 &reduced_clock : NULL);
4302
4303 if (IS_GEN2(dev))
4304 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4305 else if (IS_VALLEYVIEW(dev))
4306 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4307 refclk, num_connectors);
4308 else
4309 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4310 has_reduced_clock ? &reduced_clock : NULL,
4311 num_connectors);
4312
4313 /* setup pipeconf */
4314 pipeconf = I915_READ(PIPECONF(pipe));
4315
4316 /* Set up the display plane register */
4317 dspcntr = DISPPLANE_GAMMA_ENABLE;
4318
4319 if (pipe == 0)
4320 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4321 else
4322 dspcntr |= DISPPLANE_SEL_PIPE_B;
4323
4324 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4325 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4326 * core speed.
4327 *
4328 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4329 * pipe == 0 check?
4330 */
4331 if (mode->clock >
4332 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4333 pipeconf |= PIPECONF_DOUBLE_WIDE;
4334 else
4335 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4336 }
4337
4338 /* default to 8bpc */
4339 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4340 if (is_dp) {
4341 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4342 pipeconf |= PIPECONF_BPP_6 |
4343 PIPECONF_DITHER_EN |
4344 PIPECONF_DITHER_TYPE_SP;
4345 }
4346 }
4347
4348 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4349 drm_mode_debug_printmodeline(mode);
4350
4351 if (HAS_PIPE_CXSR(dev)) {
4352 if (intel_crtc->lowfreq_avail) {
4353 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4354 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4355 } else {
4356 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4357 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4358 }
4359 }
4360
4361 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4362 if (!IS_GEN2(dev) &&
4363 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4364 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4365 /* the chip adds 2 halflines automatically */
4366 adjusted_mode->crtc_vtotal -= 1;
4367 adjusted_mode->crtc_vblank_end -= 1;
4368 vsyncshift = adjusted_mode->crtc_hsync_start
4369 - adjusted_mode->crtc_htotal/2;
4370 } else {
4371 pipeconf |= PIPECONF_PROGRESSIVE;
4372 vsyncshift = 0;
4373 }
4374
4375 if (!IS_GEN3(dev))
4376 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4377
4378 I915_WRITE(HTOTAL(pipe),
4379 (adjusted_mode->crtc_hdisplay - 1) |
4380 ((adjusted_mode->crtc_htotal - 1) << 16));
4381 I915_WRITE(HBLANK(pipe),
4382 (adjusted_mode->crtc_hblank_start - 1) |
4383 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4384 I915_WRITE(HSYNC(pipe),
4385 (adjusted_mode->crtc_hsync_start - 1) |
4386 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4387
4388 I915_WRITE(VTOTAL(pipe),
4389 (adjusted_mode->crtc_vdisplay - 1) |
4390 ((adjusted_mode->crtc_vtotal - 1) << 16));
4391 I915_WRITE(VBLANK(pipe),
4392 (adjusted_mode->crtc_vblank_start - 1) |
4393 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4394 I915_WRITE(VSYNC(pipe),
4395 (adjusted_mode->crtc_vsync_start - 1) |
4396 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4397
4398 /* pipesrc and dspsize control the size that is scaled from,
4399 * which should always be the user's requested size.
4400 */
4401 I915_WRITE(DSPSIZE(plane),
4402 ((mode->vdisplay - 1) << 16) |
4403 (mode->hdisplay - 1));
4404 I915_WRITE(DSPPOS(plane), 0);
4405 I915_WRITE(PIPESRC(pipe),
4406 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4407
4408 I915_WRITE(PIPECONF(pipe), pipeconf);
4409 POSTING_READ(PIPECONF(pipe));
4410 intel_enable_pipe(dev_priv, pipe, false);
4411
4412 intel_wait_for_vblank(dev, pipe);
4413
4414 I915_WRITE(DSPCNTR(plane), dspcntr);
4415 POSTING_READ(DSPCNTR(plane));
4416
4417 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4418
4419 intel_update_watermarks(dev);
4420
4421 return ret;
4422 }
4423
4424 /*
4425 * Initialize reference clocks when the driver loads
4426 */
4427 void ironlake_init_pch_refclk(struct drm_device *dev)
4428 {
4429 struct drm_i915_private *dev_priv = dev->dev_private;
4430 struct drm_mode_config *mode_config = &dev->mode_config;
4431 struct intel_encoder *encoder;
4432 u32 temp;
4433 bool has_lvds = false;
4434 bool has_cpu_edp = false;
4435 bool has_pch_edp = false;
4436 bool has_panel = false;
4437 bool has_ck505 = false;
4438 bool can_ssc = false;
4439
4440 /* We need to take the global config into account */
4441 list_for_each_entry(encoder, &mode_config->encoder_list,
4442 base.head) {
4443 switch (encoder->type) {
4444 case INTEL_OUTPUT_LVDS:
4445 has_panel = true;
4446 has_lvds = true;
4447 break;
4448 case INTEL_OUTPUT_EDP:
4449 has_panel = true;
4450 if (intel_encoder_is_pch_edp(&encoder->base))
4451 has_pch_edp = true;
4452 else
4453 has_cpu_edp = true;
4454 break;
4455 }
4456 }
4457
4458 if (HAS_PCH_IBX(dev)) {
4459 has_ck505 = dev_priv->display_clock_mode;
4460 can_ssc = has_ck505;
4461 } else {
4462 has_ck505 = false;
4463 can_ssc = true;
4464 }
4465
4466 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4467 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4468 has_ck505);
4469
4470 /* Ironlake: try to setup display ref clock before DPLL
4471 * enabling. This is only under driver's control after
4472 * PCH B stepping, previous chipset stepping should be
4473 * ignoring this setting.
4474 */
4475 temp = I915_READ(PCH_DREF_CONTROL);
4476 /* Always enable nonspread source */
4477 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4478
4479 if (has_ck505)
4480 temp |= DREF_NONSPREAD_CK505_ENABLE;
4481 else
4482 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4483
4484 if (has_panel) {
4485 temp &= ~DREF_SSC_SOURCE_MASK;
4486 temp |= DREF_SSC_SOURCE_ENABLE;
4487
4488 /* SSC must be turned on before enabling the CPU output */
4489 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4490 DRM_DEBUG_KMS("Using SSC on panel\n");
4491 temp |= DREF_SSC1_ENABLE;
4492 } else
4493 temp &= ~DREF_SSC1_ENABLE;
4494
4495 /* Get SSC going before enabling the outputs */
4496 I915_WRITE(PCH_DREF_CONTROL, temp);
4497 POSTING_READ(PCH_DREF_CONTROL);
4498 udelay(200);
4499
4500 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4501
4502 /* Enable CPU source on CPU attached eDP */
4503 if (has_cpu_edp) {
4504 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4505 DRM_DEBUG_KMS("Using SSC on eDP\n");
4506 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4507 }
4508 else
4509 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4510 } else
4511 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4512
4513 I915_WRITE(PCH_DREF_CONTROL, temp);
4514 POSTING_READ(PCH_DREF_CONTROL);
4515 udelay(200);
4516 } else {
4517 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4518
4519 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4520
4521 /* Turn off CPU output */
4522 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4523
4524 I915_WRITE(PCH_DREF_CONTROL, temp);
4525 POSTING_READ(PCH_DREF_CONTROL);
4526 udelay(200);
4527
4528 /* Turn off the SSC source */
4529 temp &= ~DREF_SSC_SOURCE_MASK;
4530 temp |= DREF_SSC_SOURCE_DISABLE;
4531
4532 /* Turn off SSC1 */
4533 temp &= ~ DREF_SSC1_ENABLE;
4534
4535 I915_WRITE(PCH_DREF_CONTROL, temp);
4536 POSTING_READ(PCH_DREF_CONTROL);
4537 udelay(200);
4538 }
4539 }
4540
4541 static int ironlake_get_refclk(struct drm_crtc *crtc)
4542 {
4543 struct drm_device *dev = crtc->dev;
4544 struct drm_i915_private *dev_priv = dev->dev_private;
4545 struct intel_encoder *encoder;
4546 struct intel_encoder *edp_encoder = NULL;
4547 int num_connectors = 0;
4548 bool is_lvds = false;
4549
4550 for_each_encoder_on_crtc(dev, crtc, encoder) {
4551 switch (encoder->type) {
4552 case INTEL_OUTPUT_LVDS:
4553 is_lvds = true;
4554 break;
4555 case INTEL_OUTPUT_EDP:
4556 edp_encoder = encoder;
4557 break;
4558 }
4559 num_connectors++;
4560 }
4561
4562 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4563 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4564 dev_priv->lvds_ssc_freq);
4565 return dev_priv->lvds_ssc_freq * 1000;
4566 }
4567
4568 return 120000;
4569 }
4570
4571 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4572 struct drm_display_mode *mode,
4573 struct drm_display_mode *adjusted_mode,
4574 int x, int y,
4575 struct drm_framebuffer *old_fb)
4576 {
4577 struct drm_device *dev = crtc->dev;
4578 struct drm_i915_private *dev_priv = dev->dev_private;
4579 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4580 int pipe = intel_crtc->pipe;
4581 int plane = intel_crtc->plane;
4582 int refclk, num_connectors = 0;
4583 intel_clock_t clock, reduced_clock;
4584 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4585 bool ok, has_reduced_clock = false, is_sdvo = false;
4586 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4587 struct intel_encoder *encoder, *edp_encoder = NULL;
4588 const intel_limit_t *limit;
4589 int ret;
4590 struct fdi_m_n m_n = {0};
4591 u32 temp;
4592 int target_clock, pixel_multiplier, lane, link_bw, factor;
4593 unsigned int pipe_bpp;
4594 bool dither;
4595 bool is_cpu_edp = false, is_pch_edp = false;
4596
4597 for_each_encoder_on_crtc(dev, crtc, encoder) {
4598 switch (encoder->type) {
4599 case INTEL_OUTPUT_LVDS:
4600 is_lvds = true;
4601 break;
4602 case INTEL_OUTPUT_SDVO:
4603 case INTEL_OUTPUT_HDMI:
4604 is_sdvo = true;
4605 if (encoder->needs_tv_clock)
4606 is_tv = true;
4607 break;
4608 case INTEL_OUTPUT_TVOUT:
4609 is_tv = true;
4610 break;
4611 case INTEL_OUTPUT_ANALOG:
4612 is_crt = true;
4613 break;
4614 case INTEL_OUTPUT_DISPLAYPORT:
4615 is_dp = true;
4616 break;
4617 case INTEL_OUTPUT_EDP:
4618 is_dp = true;
4619 if (intel_encoder_is_pch_edp(&encoder->base))
4620 is_pch_edp = true;
4621 else
4622 is_cpu_edp = true;
4623 edp_encoder = encoder;
4624 break;
4625 }
4626
4627 num_connectors++;
4628 }
4629
4630 refclk = ironlake_get_refclk(crtc);
4631
4632 /*
4633 * Returns a set of divisors for the desired target clock with the given
4634 * refclk, or FALSE. The returned values represent the clock equation:
4635 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4636 */
4637 limit = intel_limit(crtc, refclk);
4638 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4639 &clock);
4640 if (!ok) {
4641 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4642 return -EINVAL;
4643 }
4644
4645 /* Ensure that the cursor is valid for the new mode before changing... */
4646 intel_crtc_update_cursor(crtc, true);
4647
4648 if (is_lvds && dev_priv->lvds_downclock_avail) {
4649 /*
4650 * Ensure we match the reduced clock's P to the target clock.
4651 * If the clocks don't match, we can't switch the display clock
4652 * by using the FP0/FP1. In such case we will disable the LVDS
4653 * downclock feature.
4654 */
4655 has_reduced_clock = limit->find_pll(limit, crtc,
4656 dev_priv->lvds_downclock,
4657 refclk,
4658 &clock,
4659 &reduced_clock);
4660 }
4661
4662 if (is_sdvo && is_tv)
4663 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4664
4665
4666 /* FDI link */
4667 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4668 lane = 0;
4669 /* CPU eDP doesn't require FDI link, so just set DP M/N
4670 according to current link config */
4671 if (is_cpu_edp) {
4672 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4673 } else {
4674 /* FDI is a binary signal running at ~2.7GHz, encoding
4675 * each output octet as 10 bits. The actual frequency
4676 * is stored as a divider into a 100MHz clock, and the
4677 * mode pixel clock is stored in units of 1KHz.
4678 * Hence the bw of each lane in terms of the mode signal
4679 * is:
4680 */
4681 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4682 }
4683
4684 /* [e]DP over FDI requires target mode clock instead of link clock. */
4685 if (edp_encoder)
4686 target_clock = intel_edp_target_clock(edp_encoder, mode);
4687 else if (is_dp)
4688 target_clock = mode->clock;
4689 else
4690 target_clock = adjusted_mode->clock;
4691
4692 /* determine panel color depth */
4693 temp = I915_READ(PIPECONF(pipe));
4694 temp &= ~PIPE_BPC_MASK;
4695 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4696 switch (pipe_bpp) {
4697 case 18:
4698 temp |= PIPE_6BPC;
4699 break;
4700 case 24:
4701 temp |= PIPE_8BPC;
4702 break;
4703 case 30:
4704 temp |= PIPE_10BPC;
4705 break;
4706 case 36:
4707 temp |= PIPE_12BPC;
4708 break;
4709 default:
4710 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4711 pipe_bpp);
4712 temp |= PIPE_8BPC;
4713 pipe_bpp = 24;
4714 break;
4715 }
4716
4717 intel_crtc->bpp = pipe_bpp;
4718 I915_WRITE(PIPECONF(pipe), temp);
4719
4720 if (!lane) {
4721 /*
4722 * Account for spread spectrum to avoid
4723 * oversubscribing the link. Max center spread
4724 * is 2.5%; use 5% for safety's sake.
4725 */
4726 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4727 lane = bps / (link_bw * 8) + 1;
4728 }
4729
4730 intel_crtc->fdi_lanes = lane;
4731
4732 if (pixel_multiplier > 1)
4733 link_bw *= pixel_multiplier;
4734 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4735 &m_n);
4736
4737 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4738 if (has_reduced_clock)
4739 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4740 reduced_clock.m2;
4741
4742 /* Enable autotuning of the PLL clock (if permissible) */
4743 factor = 21;
4744 if (is_lvds) {
4745 if ((intel_panel_use_ssc(dev_priv) &&
4746 dev_priv->lvds_ssc_freq == 100) ||
4747 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4748 factor = 25;
4749 } else if (is_sdvo && is_tv)
4750 factor = 20;
4751
4752 if (clock.m < factor * clock.n)
4753 fp |= FP_CB_TUNE;
4754
4755 dpll = 0;
4756
4757 if (is_lvds)
4758 dpll |= DPLLB_MODE_LVDS;
4759 else
4760 dpll |= DPLLB_MODE_DAC_SERIAL;
4761 if (is_sdvo) {
4762 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4763 if (pixel_multiplier > 1) {
4764 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4765 }
4766 dpll |= DPLL_DVO_HIGH_SPEED;
4767 }
4768 if (is_dp && !is_cpu_edp)
4769 dpll |= DPLL_DVO_HIGH_SPEED;
4770
4771 /* compute bitmask from p1 value */
4772 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4773 /* also FPA1 */
4774 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4775
4776 switch (clock.p2) {
4777 case 5:
4778 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4779 break;
4780 case 7:
4781 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4782 break;
4783 case 10:
4784 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4785 break;
4786 case 14:
4787 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4788 break;
4789 }
4790
4791 if (is_sdvo && is_tv)
4792 dpll |= PLL_REF_INPUT_TVCLKINBC;
4793 else if (is_tv)
4794 /* XXX: just matching BIOS for now */
4795 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4796 dpll |= 3;
4797 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4798 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4799 else
4800 dpll |= PLL_REF_INPUT_DREFCLK;
4801
4802 /* setup pipeconf */
4803 pipeconf = I915_READ(PIPECONF(pipe));
4804
4805 /* Set up the display plane register */
4806 dspcntr = DISPPLANE_GAMMA_ENABLE;
4807
4808 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4809 drm_mode_debug_printmodeline(mode);
4810
4811 /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4812 * pre-Haswell/LPT generation */
4813 if (HAS_PCH_LPT(dev)) {
4814 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4815 pipe);
4816 } else if (!is_cpu_edp) {
4817 struct intel_pch_pll *pll;
4818
4819 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4820 if (pll == NULL) {
4821 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4822 pipe);
4823 return -EINVAL;
4824 }
4825 } else
4826 intel_put_pch_pll(intel_crtc);
4827
4828 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4829 * This is an exception to the general rule that mode_set doesn't turn
4830 * things on.
4831 */
4832 if (is_lvds) {
4833 temp = I915_READ(PCH_LVDS);
4834 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4835 if (HAS_PCH_CPT(dev)) {
4836 temp &= ~PORT_TRANS_SEL_MASK;
4837 temp |= PORT_TRANS_SEL_CPT(pipe);
4838 } else {
4839 if (pipe == 1)
4840 temp |= LVDS_PIPEB_SELECT;
4841 else
4842 temp &= ~LVDS_PIPEB_SELECT;
4843 }
4844
4845 /* set the corresponsding LVDS_BORDER bit */
4846 temp |= dev_priv->lvds_border_bits;
4847 /* Set the B0-B3 data pairs corresponding to whether we're going to
4848 * set the DPLLs for dual-channel mode or not.
4849 */
4850 if (clock.p2 == 7)
4851 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4852 else
4853 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4854
4855 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4856 * appropriately here, but we need to look more thoroughly into how
4857 * panels behave in the two modes.
4858 */
4859 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4860 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4861 temp |= LVDS_HSYNC_POLARITY;
4862 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4863 temp |= LVDS_VSYNC_POLARITY;
4864 I915_WRITE(PCH_LVDS, temp);
4865 }
4866
4867 pipeconf &= ~PIPECONF_DITHER_EN;
4868 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4869 if ((is_lvds && dev_priv->lvds_dither) || dither) {
4870 pipeconf |= PIPECONF_DITHER_EN;
4871 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4872 }
4873 if (is_dp && !is_cpu_edp) {
4874 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4875 } else {
4876 /* For non-DP output, clear any trans DP clock recovery setting.*/
4877 I915_WRITE(TRANSDATA_M1(pipe), 0);
4878 I915_WRITE(TRANSDATA_N1(pipe), 0);
4879 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4880 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4881 }
4882
4883 if (intel_crtc->pch_pll) {
4884 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4885
4886 /* Wait for the clocks to stabilize. */
4887 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4888 udelay(150);
4889
4890 /* The pixel multiplier can only be updated once the
4891 * DPLL is enabled and the clocks are stable.
4892 *
4893 * So write it again.
4894 */
4895 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4896 }
4897
4898 intel_crtc->lowfreq_avail = false;
4899 if (intel_crtc->pch_pll) {
4900 if (is_lvds && has_reduced_clock && i915_powersave) {
4901 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4902 intel_crtc->lowfreq_avail = true;
4903 } else {
4904 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4905 }
4906 }
4907
4908 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4909 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4910 pipeconf |= PIPECONF_INTERLACED_ILK;
4911 /* the chip adds 2 halflines automatically */
4912 adjusted_mode->crtc_vtotal -= 1;
4913 adjusted_mode->crtc_vblank_end -= 1;
4914 I915_WRITE(VSYNCSHIFT(pipe),
4915 adjusted_mode->crtc_hsync_start
4916 - adjusted_mode->crtc_htotal/2);
4917 } else {
4918 pipeconf |= PIPECONF_PROGRESSIVE;
4919 I915_WRITE(VSYNCSHIFT(pipe), 0);
4920 }
4921
4922 I915_WRITE(HTOTAL(pipe),
4923 (adjusted_mode->crtc_hdisplay - 1) |
4924 ((adjusted_mode->crtc_htotal - 1) << 16));
4925 I915_WRITE(HBLANK(pipe),
4926 (adjusted_mode->crtc_hblank_start - 1) |
4927 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4928 I915_WRITE(HSYNC(pipe),
4929 (adjusted_mode->crtc_hsync_start - 1) |
4930 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4931
4932 I915_WRITE(VTOTAL(pipe),
4933 (adjusted_mode->crtc_vdisplay - 1) |
4934 ((adjusted_mode->crtc_vtotal - 1) << 16));
4935 I915_WRITE(VBLANK(pipe),
4936 (adjusted_mode->crtc_vblank_start - 1) |
4937 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4938 I915_WRITE(VSYNC(pipe),
4939 (adjusted_mode->crtc_vsync_start - 1) |
4940 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4941
4942 /* pipesrc controls the size that is scaled from, which should
4943 * always be the user's requested size.
4944 */
4945 I915_WRITE(PIPESRC(pipe),
4946 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4947
4948 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4949 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4950 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4951 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4952
4953 if (is_cpu_edp)
4954 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4955
4956 I915_WRITE(PIPECONF(pipe), pipeconf);
4957 POSTING_READ(PIPECONF(pipe));
4958
4959 intel_wait_for_vblank(dev, pipe);
4960
4961 I915_WRITE(DSPCNTR(plane), dspcntr);
4962 POSTING_READ(DSPCNTR(plane));
4963
4964 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4965
4966 intel_update_watermarks(dev);
4967
4968 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
4969
4970 return ret;
4971 }
4972
4973 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4974 struct drm_display_mode *mode,
4975 struct drm_display_mode *adjusted_mode,
4976 int x, int y,
4977 struct drm_framebuffer *old_fb)
4978 {
4979 struct drm_device *dev = crtc->dev;
4980 struct drm_i915_private *dev_priv = dev->dev_private;
4981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4982 int pipe = intel_crtc->pipe;
4983 int ret;
4984
4985 drm_vblank_pre_modeset(dev, pipe);
4986
4987 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4988 x, y, old_fb);
4989 drm_vblank_post_modeset(dev, pipe);
4990
4991 if (ret)
4992 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4993 else
4994 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4995
4996 return ret;
4997 }
4998
4999 static bool intel_eld_uptodate(struct drm_connector *connector,
5000 int reg_eldv, uint32_t bits_eldv,
5001 int reg_elda, uint32_t bits_elda,
5002 int reg_edid)
5003 {
5004 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5005 uint8_t *eld = connector->eld;
5006 uint32_t i;
5007
5008 i = I915_READ(reg_eldv);
5009 i &= bits_eldv;
5010
5011 if (!eld[0])
5012 return !i;
5013
5014 if (!i)
5015 return false;
5016
5017 i = I915_READ(reg_elda);
5018 i &= ~bits_elda;
5019 I915_WRITE(reg_elda, i);
5020
5021 for (i = 0; i < eld[2]; i++)
5022 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5023 return false;
5024
5025 return true;
5026 }
5027
5028 static void g4x_write_eld(struct drm_connector *connector,
5029 struct drm_crtc *crtc)
5030 {
5031 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5032 uint8_t *eld = connector->eld;
5033 uint32_t eldv;
5034 uint32_t len;
5035 uint32_t i;
5036
5037 i = I915_READ(G4X_AUD_VID_DID);
5038
5039 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5040 eldv = G4X_ELDV_DEVCL_DEVBLC;
5041 else
5042 eldv = G4X_ELDV_DEVCTG;
5043
5044 if (intel_eld_uptodate(connector,
5045 G4X_AUD_CNTL_ST, eldv,
5046 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5047 G4X_HDMIW_HDMIEDID))
5048 return;
5049
5050 i = I915_READ(G4X_AUD_CNTL_ST);
5051 i &= ~(eldv | G4X_ELD_ADDR);
5052 len = (i >> 9) & 0x1f; /* ELD buffer size */
5053 I915_WRITE(G4X_AUD_CNTL_ST, i);
5054
5055 if (!eld[0])
5056 return;
5057
5058 len = min_t(uint8_t, eld[2], len);
5059 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5060 for (i = 0; i < len; i++)
5061 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5062
5063 i = I915_READ(G4X_AUD_CNTL_ST);
5064 i |= eldv;
5065 I915_WRITE(G4X_AUD_CNTL_ST, i);
5066 }
5067
5068 static void ironlake_write_eld(struct drm_connector *connector,
5069 struct drm_crtc *crtc)
5070 {
5071 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5072 uint8_t *eld = connector->eld;
5073 uint32_t eldv;
5074 uint32_t i;
5075 int len;
5076 int hdmiw_hdmiedid;
5077 int aud_config;
5078 int aud_cntl_st;
5079 int aud_cntrl_st2;
5080
5081 if (HAS_PCH_IBX(connector->dev)) {
5082 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
5083 aud_config = IBX_AUD_CONFIG_A;
5084 aud_cntl_st = IBX_AUD_CNTL_ST_A;
5085 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5086 } else {
5087 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
5088 aud_config = CPT_AUD_CONFIG_A;
5089 aud_cntl_st = CPT_AUD_CNTL_ST_A;
5090 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5091 }
5092
5093 i = to_intel_crtc(crtc)->pipe;
5094 hdmiw_hdmiedid += i * 0x100;
5095 aud_cntl_st += i * 0x100;
5096 aud_config += i * 0x100;
5097
5098 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5099
5100 i = I915_READ(aud_cntl_st);
5101 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
5102 if (!i) {
5103 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5104 /* operate blindly on all ports */
5105 eldv = IBX_ELD_VALIDB;
5106 eldv |= IBX_ELD_VALIDB << 4;
5107 eldv |= IBX_ELD_VALIDB << 8;
5108 } else {
5109 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5110 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5111 }
5112
5113 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5114 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5115 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5116 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5117 } else
5118 I915_WRITE(aud_config, 0);
5119
5120 if (intel_eld_uptodate(connector,
5121 aud_cntrl_st2, eldv,
5122 aud_cntl_st, IBX_ELD_ADDRESS,
5123 hdmiw_hdmiedid))
5124 return;
5125
5126 i = I915_READ(aud_cntrl_st2);
5127 i &= ~eldv;
5128 I915_WRITE(aud_cntrl_st2, i);
5129
5130 if (!eld[0])
5131 return;
5132
5133 i = I915_READ(aud_cntl_st);
5134 i &= ~IBX_ELD_ADDRESS;
5135 I915_WRITE(aud_cntl_st, i);
5136
5137 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5138 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5139 for (i = 0; i < len; i++)
5140 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5141
5142 i = I915_READ(aud_cntrl_st2);
5143 i |= eldv;
5144 I915_WRITE(aud_cntrl_st2, i);
5145 }
5146
5147 void intel_write_eld(struct drm_encoder *encoder,
5148 struct drm_display_mode *mode)
5149 {
5150 struct drm_crtc *crtc = encoder->crtc;
5151 struct drm_connector *connector;
5152 struct drm_device *dev = encoder->dev;
5153 struct drm_i915_private *dev_priv = dev->dev_private;
5154
5155 connector = drm_select_eld(encoder, mode);
5156 if (!connector)
5157 return;
5158
5159 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5160 connector->base.id,
5161 drm_get_connector_name(connector),
5162 connector->encoder->base.id,
5163 drm_get_encoder_name(connector->encoder));
5164
5165 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5166
5167 if (dev_priv->display.write_eld)
5168 dev_priv->display.write_eld(connector, crtc);
5169 }
5170
5171 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5172 void intel_crtc_load_lut(struct drm_crtc *crtc)
5173 {
5174 struct drm_device *dev = crtc->dev;
5175 struct drm_i915_private *dev_priv = dev->dev_private;
5176 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5177 int palreg = PALETTE(intel_crtc->pipe);
5178 int i;
5179
5180 /* The clocks have to be on to load the palette. */
5181 if (!crtc->enabled || !intel_crtc->active)
5182 return;
5183
5184 /* use legacy palette for Ironlake */
5185 if (HAS_PCH_SPLIT(dev))
5186 palreg = LGC_PALETTE(intel_crtc->pipe);
5187
5188 for (i = 0; i < 256; i++) {
5189 I915_WRITE(palreg + 4 * i,
5190 (intel_crtc->lut_r[i] << 16) |
5191 (intel_crtc->lut_g[i] << 8) |
5192 intel_crtc->lut_b[i]);
5193 }
5194 }
5195
5196 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5197 {
5198 struct drm_device *dev = crtc->dev;
5199 struct drm_i915_private *dev_priv = dev->dev_private;
5200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5201 bool visible = base != 0;
5202 u32 cntl;
5203
5204 if (intel_crtc->cursor_visible == visible)
5205 return;
5206
5207 cntl = I915_READ(_CURACNTR);
5208 if (visible) {
5209 /* On these chipsets we can only modify the base whilst
5210 * the cursor is disabled.
5211 */
5212 I915_WRITE(_CURABASE, base);
5213
5214 cntl &= ~(CURSOR_FORMAT_MASK);
5215 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5216 cntl |= CURSOR_ENABLE |
5217 CURSOR_GAMMA_ENABLE |
5218 CURSOR_FORMAT_ARGB;
5219 } else
5220 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5221 I915_WRITE(_CURACNTR, cntl);
5222
5223 intel_crtc->cursor_visible = visible;
5224 }
5225
5226 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5227 {
5228 struct drm_device *dev = crtc->dev;
5229 struct drm_i915_private *dev_priv = dev->dev_private;
5230 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5231 int pipe = intel_crtc->pipe;
5232 bool visible = base != 0;
5233
5234 if (intel_crtc->cursor_visible != visible) {
5235 uint32_t cntl = I915_READ(CURCNTR(pipe));
5236 if (base) {
5237 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5238 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5239 cntl |= pipe << 28; /* Connect to correct pipe */
5240 } else {
5241 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5242 cntl |= CURSOR_MODE_DISABLE;
5243 }
5244 I915_WRITE(CURCNTR(pipe), cntl);
5245
5246 intel_crtc->cursor_visible = visible;
5247 }
5248 /* and commit changes on next vblank */
5249 I915_WRITE(CURBASE(pipe), base);
5250 }
5251
5252 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5253 {
5254 struct drm_device *dev = crtc->dev;
5255 struct drm_i915_private *dev_priv = dev->dev_private;
5256 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5257 int pipe = intel_crtc->pipe;
5258 bool visible = base != 0;
5259
5260 if (intel_crtc->cursor_visible != visible) {
5261 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5262 if (base) {
5263 cntl &= ~CURSOR_MODE;
5264 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5265 } else {
5266 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5267 cntl |= CURSOR_MODE_DISABLE;
5268 }
5269 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5270
5271 intel_crtc->cursor_visible = visible;
5272 }
5273 /* and commit changes on next vblank */
5274 I915_WRITE(CURBASE_IVB(pipe), base);
5275 }
5276
5277 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5278 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5279 bool on)
5280 {
5281 struct drm_device *dev = crtc->dev;
5282 struct drm_i915_private *dev_priv = dev->dev_private;
5283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5284 int pipe = intel_crtc->pipe;
5285 int x = intel_crtc->cursor_x;
5286 int y = intel_crtc->cursor_y;
5287 u32 base, pos;
5288 bool visible;
5289
5290 pos = 0;
5291
5292 if (on && crtc->enabled && crtc->fb) {
5293 base = intel_crtc->cursor_addr;
5294 if (x > (int) crtc->fb->width)
5295 base = 0;
5296
5297 if (y > (int) crtc->fb->height)
5298 base = 0;
5299 } else
5300 base = 0;
5301
5302 if (x < 0) {
5303 if (x + intel_crtc->cursor_width < 0)
5304 base = 0;
5305
5306 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5307 x = -x;
5308 }
5309 pos |= x << CURSOR_X_SHIFT;
5310
5311 if (y < 0) {
5312 if (y + intel_crtc->cursor_height < 0)
5313 base = 0;
5314
5315 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5316 y = -y;
5317 }
5318 pos |= y << CURSOR_Y_SHIFT;
5319
5320 visible = base != 0;
5321 if (!visible && !intel_crtc->cursor_visible)
5322 return;
5323
5324 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5325 I915_WRITE(CURPOS_IVB(pipe), pos);
5326 ivb_update_cursor(crtc, base);
5327 } else {
5328 I915_WRITE(CURPOS(pipe), pos);
5329 if (IS_845G(dev) || IS_I865G(dev))
5330 i845_update_cursor(crtc, base);
5331 else
5332 i9xx_update_cursor(crtc, base);
5333 }
5334 }
5335
5336 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5337 struct drm_file *file,
5338 uint32_t handle,
5339 uint32_t width, uint32_t height)
5340 {
5341 struct drm_device *dev = crtc->dev;
5342 struct drm_i915_private *dev_priv = dev->dev_private;
5343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5344 struct drm_i915_gem_object *obj;
5345 uint32_t addr;
5346 int ret;
5347
5348 DRM_DEBUG_KMS("\n");
5349
5350 /* if we want to turn off the cursor ignore width and height */
5351 if (!handle) {
5352 DRM_DEBUG_KMS("cursor off\n");
5353 addr = 0;
5354 obj = NULL;
5355 mutex_lock(&dev->struct_mutex);
5356 goto finish;
5357 }
5358
5359 /* Currently we only support 64x64 cursors */
5360 if (width != 64 || height != 64) {
5361 DRM_ERROR("we currently only support 64x64 cursors\n");
5362 return -EINVAL;
5363 }
5364
5365 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5366 if (&obj->base == NULL)
5367 return -ENOENT;
5368
5369 if (obj->base.size < width * height * 4) {
5370 DRM_ERROR("buffer is to small\n");
5371 ret = -ENOMEM;
5372 goto fail;
5373 }
5374
5375 /* we only need to pin inside GTT if cursor is non-phy */
5376 mutex_lock(&dev->struct_mutex);
5377 if (!dev_priv->info->cursor_needs_physical) {
5378 if (obj->tiling_mode) {
5379 DRM_ERROR("cursor cannot be tiled\n");
5380 ret = -EINVAL;
5381 goto fail_locked;
5382 }
5383
5384 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5385 if (ret) {
5386 DRM_ERROR("failed to move cursor bo into the GTT\n");
5387 goto fail_locked;
5388 }
5389
5390 ret = i915_gem_object_put_fence(obj);
5391 if (ret) {
5392 DRM_ERROR("failed to release fence for cursor");
5393 goto fail_unpin;
5394 }
5395
5396 addr = obj->gtt_offset;
5397 } else {
5398 int align = IS_I830(dev) ? 16 * 1024 : 256;
5399 ret = i915_gem_attach_phys_object(dev, obj,
5400 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5401 align);
5402 if (ret) {
5403 DRM_ERROR("failed to attach phys object\n");
5404 goto fail_locked;
5405 }
5406 addr = obj->phys_obj->handle->busaddr;
5407 }
5408
5409 if (IS_GEN2(dev))
5410 I915_WRITE(CURSIZE, (height << 12) | width);
5411
5412 finish:
5413 if (intel_crtc->cursor_bo) {
5414 if (dev_priv->info->cursor_needs_physical) {
5415 if (intel_crtc->cursor_bo != obj)
5416 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5417 } else
5418 i915_gem_object_unpin(intel_crtc->cursor_bo);
5419 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5420 }
5421
5422 mutex_unlock(&dev->struct_mutex);
5423
5424 intel_crtc->cursor_addr = addr;
5425 intel_crtc->cursor_bo = obj;
5426 intel_crtc->cursor_width = width;
5427 intel_crtc->cursor_height = height;
5428
5429 intel_crtc_update_cursor(crtc, true);
5430
5431 return 0;
5432 fail_unpin:
5433 i915_gem_object_unpin(obj);
5434 fail_locked:
5435 mutex_unlock(&dev->struct_mutex);
5436 fail:
5437 drm_gem_object_unreference_unlocked(&obj->base);
5438 return ret;
5439 }
5440
5441 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5442 {
5443 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5444
5445 intel_crtc->cursor_x = x;
5446 intel_crtc->cursor_y = y;
5447
5448 intel_crtc_update_cursor(crtc, true);
5449
5450 return 0;
5451 }
5452
5453 /** Sets the color ramps on behalf of RandR */
5454 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5455 u16 blue, int regno)
5456 {
5457 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5458
5459 intel_crtc->lut_r[regno] = red >> 8;
5460 intel_crtc->lut_g[regno] = green >> 8;
5461 intel_crtc->lut_b[regno] = blue >> 8;
5462 }
5463
5464 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5465 u16 *blue, int regno)
5466 {
5467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5468
5469 *red = intel_crtc->lut_r[regno] << 8;
5470 *green = intel_crtc->lut_g[regno] << 8;
5471 *blue = intel_crtc->lut_b[regno] << 8;
5472 }
5473
5474 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5475 u16 *blue, uint32_t start, uint32_t size)
5476 {
5477 int end = (start + size > 256) ? 256 : start + size, i;
5478 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5479
5480 for (i = start; i < end; i++) {
5481 intel_crtc->lut_r[i] = red[i] >> 8;
5482 intel_crtc->lut_g[i] = green[i] >> 8;
5483 intel_crtc->lut_b[i] = blue[i] >> 8;
5484 }
5485
5486 intel_crtc_load_lut(crtc);
5487 }
5488
5489 /**
5490 * Get a pipe with a simple mode set on it for doing load-based monitor
5491 * detection.
5492 *
5493 * It will be up to the load-detect code to adjust the pipe as appropriate for
5494 * its requirements. The pipe will be connected to no other encoders.
5495 *
5496 * Currently this code will only succeed if there is a pipe with no encoders
5497 * configured for it. In the future, it could choose to temporarily disable
5498 * some outputs to free up a pipe for its use.
5499 *
5500 * \return crtc, or NULL if no pipes are available.
5501 */
5502
5503 /* VESA 640x480x72Hz mode to set on the pipe */
5504 static struct drm_display_mode load_detect_mode = {
5505 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5506 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5507 };
5508
5509 static struct drm_framebuffer *
5510 intel_framebuffer_create(struct drm_device *dev,
5511 struct drm_mode_fb_cmd2 *mode_cmd,
5512 struct drm_i915_gem_object *obj)
5513 {
5514 struct intel_framebuffer *intel_fb;
5515 int ret;
5516
5517 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5518 if (!intel_fb) {
5519 drm_gem_object_unreference_unlocked(&obj->base);
5520 return ERR_PTR(-ENOMEM);
5521 }
5522
5523 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5524 if (ret) {
5525 drm_gem_object_unreference_unlocked(&obj->base);
5526 kfree(intel_fb);
5527 return ERR_PTR(ret);
5528 }
5529
5530 return &intel_fb->base;
5531 }
5532
5533 static u32
5534 intel_framebuffer_pitch_for_width(int width, int bpp)
5535 {
5536 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5537 return ALIGN(pitch, 64);
5538 }
5539
5540 static u32
5541 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5542 {
5543 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5544 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5545 }
5546
5547 static struct drm_framebuffer *
5548 intel_framebuffer_create_for_mode(struct drm_device *dev,
5549 struct drm_display_mode *mode,
5550 int depth, int bpp)
5551 {
5552 struct drm_i915_gem_object *obj;
5553 struct drm_mode_fb_cmd2 mode_cmd;
5554
5555 obj = i915_gem_alloc_object(dev,
5556 intel_framebuffer_size_for_mode(mode, bpp));
5557 if (obj == NULL)
5558 return ERR_PTR(-ENOMEM);
5559
5560 mode_cmd.width = mode->hdisplay;
5561 mode_cmd.height = mode->vdisplay;
5562 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5563 bpp);
5564 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5565
5566 return intel_framebuffer_create(dev, &mode_cmd, obj);
5567 }
5568
5569 static struct drm_framebuffer *
5570 mode_fits_in_fbdev(struct drm_device *dev,
5571 struct drm_display_mode *mode)
5572 {
5573 struct drm_i915_private *dev_priv = dev->dev_private;
5574 struct drm_i915_gem_object *obj;
5575 struct drm_framebuffer *fb;
5576
5577 if (dev_priv->fbdev == NULL)
5578 return NULL;
5579
5580 obj = dev_priv->fbdev->ifb.obj;
5581 if (obj == NULL)
5582 return NULL;
5583
5584 fb = &dev_priv->fbdev->ifb.base;
5585 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5586 fb->bits_per_pixel))
5587 return NULL;
5588
5589 if (obj->base.size < mode->vdisplay * fb->pitches[0])
5590 return NULL;
5591
5592 return fb;
5593 }
5594
5595 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5596 struct drm_connector *connector,
5597 struct drm_display_mode *mode,
5598 struct intel_load_detect_pipe *old)
5599 {
5600 struct intel_crtc *intel_crtc;
5601 struct drm_crtc *possible_crtc;
5602 struct drm_encoder *encoder = &intel_encoder->base;
5603 struct drm_crtc *crtc = NULL;
5604 struct drm_device *dev = encoder->dev;
5605 struct drm_framebuffer *old_fb;
5606 int i = -1;
5607
5608 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5609 connector->base.id, drm_get_connector_name(connector),
5610 encoder->base.id, drm_get_encoder_name(encoder));
5611
5612 /*
5613 * Algorithm gets a little messy:
5614 *
5615 * - if the connector already has an assigned crtc, use it (but make
5616 * sure it's on first)
5617 *
5618 * - try to find the first unused crtc that can drive this connector,
5619 * and use that if we find one
5620 */
5621
5622 /* See if we already have a CRTC for this connector */
5623 if (encoder->crtc) {
5624 crtc = encoder->crtc;
5625
5626 intel_crtc = to_intel_crtc(crtc);
5627 old->dpms_mode = intel_crtc->dpms_mode;
5628 old->load_detect_temp = false;
5629
5630 /* Make sure the crtc and connector are running */
5631 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5632 struct drm_encoder_helper_funcs *encoder_funcs;
5633 struct drm_crtc_helper_funcs *crtc_funcs;
5634
5635 crtc_funcs = crtc->helper_private;
5636 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5637
5638 encoder_funcs = encoder->helper_private;
5639 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5640 }
5641
5642 return true;
5643 }
5644
5645 /* Find an unused one (if possible) */
5646 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5647 i++;
5648 if (!(encoder->possible_crtcs & (1 << i)))
5649 continue;
5650 if (!possible_crtc->enabled) {
5651 crtc = possible_crtc;
5652 break;
5653 }
5654 }
5655
5656 /*
5657 * If we didn't find an unused CRTC, don't use any.
5658 */
5659 if (!crtc) {
5660 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5661 return false;
5662 }
5663
5664 encoder->crtc = crtc;
5665 connector->encoder = encoder;
5666
5667 intel_crtc = to_intel_crtc(crtc);
5668 old->dpms_mode = intel_crtc->dpms_mode;
5669 old->load_detect_temp = true;
5670 old->release_fb = NULL;
5671
5672 if (!mode)
5673 mode = &load_detect_mode;
5674
5675 old_fb = crtc->fb;
5676
5677 /* We need a framebuffer large enough to accommodate all accesses
5678 * that the plane may generate whilst we perform load detection.
5679 * We can not rely on the fbcon either being present (we get called
5680 * during its initialisation to detect all boot displays, or it may
5681 * not even exist) or that it is large enough to satisfy the
5682 * requested mode.
5683 */
5684 crtc->fb = mode_fits_in_fbdev(dev, mode);
5685 if (crtc->fb == NULL) {
5686 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5687 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5688 old->release_fb = crtc->fb;
5689 } else
5690 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5691 if (IS_ERR(crtc->fb)) {
5692 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5693 crtc->fb = old_fb;
5694 return false;
5695 }
5696
5697 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5698 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5699 if (old->release_fb)
5700 old->release_fb->funcs->destroy(old->release_fb);
5701 crtc->fb = old_fb;
5702 return false;
5703 }
5704
5705 /* let the connector get through one full cycle before testing */
5706 intel_wait_for_vblank(dev, intel_crtc->pipe);
5707
5708 return true;
5709 }
5710
5711 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5712 struct drm_connector *connector,
5713 struct intel_load_detect_pipe *old)
5714 {
5715 struct drm_encoder *encoder = &intel_encoder->base;
5716 struct drm_device *dev = encoder->dev;
5717 struct drm_crtc *crtc = encoder->crtc;
5718 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5719 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5720
5721 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5722 connector->base.id, drm_get_connector_name(connector),
5723 encoder->base.id, drm_get_encoder_name(encoder));
5724
5725 if (old->load_detect_temp) {
5726 connector->encoder = NULL;
5727 drm_helper_disable_unused_functions(dev);
5728
5729 if (old->release_fb)
5730 old->release_fb->funcs->destroy(old->release_fb);
5731
5732 return;
5733 }
5734
5735 /* Switch crtc and encoder back off if necessary */
5736 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5737 encoder_funcs->dpms(encoder, old->dpms_mode);
5738 crtc_funcs->dpms(crtc, old->dpms_mode);
5739 }
5740 }
5741
5742 /* Returns the clock of the currently programmed mode of the given pipe. */
5743 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5744 {
5745 struct drm_i915_private *dev_priv = dev->dev_private;
5746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5747 int pipe = intel_crtc->pipe;
5748 u32 dpll = I915_READ(DPLL(pipe));
5749 u32 fp;
5750 intel_clock_t clock;
5751
5752 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5753 fp = I915_READ(FP0(pipe));
5754 else
5755 fp = I915_READ(FP1(pipe));
5756
5757 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5758 if (IS_PINEVIEW(dev)) {
5759 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5760 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5761 } else {
5762 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5763 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5764 }
5765
5766 if (!IS_GEN2(dev)) {
5767 if (IS_PINEVIEW(dev))
5768 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5769 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5770 else
5771 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5772 DPLL_FPA01_P1_POST_DIV_SHIFT);
5773
5774 switch (dpll & DPLL_MODE_MASK) {
5775 case DPLLB_MODE_DAC_SERIAL:
5776 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5777 5 : 10;
5778 break;
5779 case DPLLB_MODE_LVDS:
5780 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5781 7 : 14;
5782 break;
5783 default:
5784 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5785 "mode\n", (int)(dpll & DPLL_MODE_MASK));
5786 return 0;
5787 }
5788
5789 /* XXX: Handle the 100Mhz refclk */
5790 intel_clock(dev, 96000, &clock);
5791 } else {
5792 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5793
5794 if (is_lvds) {
5795 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5796 DPLL_FPA01_P1_POST_DIV_SHIFT);
5797 clock.p2 = 14;
5798
5799 if ((dpll & PLL_REF_INPUT_MASK) ==
5800 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5801 /* XXX: might not be 66MHz */
5802 intel_clock(dev, 66000, &clock);
5803 } else
5804 intel_clock(dev, 48000, &clock);
5805 } else {
5806 if (dpll & PLL_P1_DIVIDE_BY_TWO)
5807 clock.p1 = 2;
5808 else {
5809 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5810 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5811 }
5812 if (dpll & PLL_P2_DIVIDE_BY_4)
5813 clock.p2 = 4;
5814 else
5815 clock.p2 = 2;
5816
5817 intel_clock(dev, 48000, &clock);
5818 }
5819 }
5820
5821 /* XXX: It would be nice to validate the clocks, but we can't reuse
5822 * i830PllIsValid() because it relies on the xf86_config connector
5823 * configuration being accurate, which it isn't necessarily.
5824 */
5825
5826 return clock.dot;
5827 }
5828
5829 /** Returns the currently programmed mode of the given pipe. */
5830 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5831 struct drm_crtc *crtc)
5832 {
5833 struct drm_i915_private *dev_priv = dev->dev_private;
5834 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5835 int pipe = intel_crtc->pipe;
5836 struct drm_display_mode *mode;
5837 int htot = I915_READ(HTOTAL(pipe));
5838 int hsync = I915_READ(HSYNC(pipe));
5839 int vtot = I915_READ(VTOTAL(pipe));
5840 int vsync = I915_READ(VSYNC(pipe));
5841
5842 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5843 if (!mode)
5844 return NULL;
5845
5846 mode->clock = intel_crtc_clock_get(dev, crtc);
5847 mode->hdisplay = (htot & 0xffff) + 1;
5848 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5849 mode->hsync_start = (hsync & 0xffff) + 1;
5850 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5851 mode->vdisplay = (vtot & 0xffff) + 1;
5852 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5853 mode->vsync_start = (vsync & 0xffff) + 1;
5854 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5855
5856 drm_mode_set_name(mode);
5857
5858 return mode;
5859 }
5860
5861 #define GPU_IDLE_TIMEOUT 500 /* ms */
5862
5863 /* When this timer fires, we've been idle for awhile */
5864 static void intel_gpu_idle_timer(unsigned long arg)
5865 {
5866 struct drm_device *dev = (struct drm_device *)arg;
5867 drm_i915_private_t *dev_priv = dev->dev_private;
5868
5869 if (!list_empty(&dev_priv->mm.active_list)) {
5870 /* Still processing requests, so just re-arm the timer. */
5871 mod_timer(&dev_priv->idle_timer, jiffies +
5872 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5873 return;
5874 }
5875
5876 dev_priv->busy = false;
5877 queue_work(dev_priv->wq, &dev_priv->idle_work);
5878 }
5879
5880 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5881
5882 static void intel_crtc_idle_timer(unsigned long arg)
5883 {
5884 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5885 struct drm_crtc *crtc = &intel_crtc->base;
5886 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5887 struct intel_framebuffer *intel_fb;
5888
5889 intel_fb = to_intel_framebuffer(crtc->fb);
5890 if (intel_fb && intel_fb->obj->active) {
5891 /* The framebuffer is still being accessed by the GPU. */
5892 mod_timer(&intel_crtc->idle_timer, jiffies +
5893 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5894 return;
5895 }
5896
5897 intel_crtc->busy = false;
5898 queue_work(dev_priv->wq, &dev_priv->idle_work);
5899 }
5900
5901 static void intel_increase_pllclock(struct drm_crtc *crtc)
5902 {
5903 struct drm_device *dev = crtc->dev;
5904 drm_i915_private_t *dev_priv = dev->dev_private;
5905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5906 int pipe = intel_crtc->pipe;
5907 int dpll_reg = DPLL(pipe);
5908 int dpll;
5909
5910 if (HAS_PCH_SPLIT(dev))
5911 return;
5912
5913 if (!dev_priv->lvds_downclock_avail)
5914 return;
5915
5916 dpll = I915_READ(dpll_reg);
5917 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5918 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5919
5920 assert_panel_unlocked(dev_priv, pipe);
5921
5922 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5923 I915_WRITE(dpll_reg, dpll);
5924 intel_wait_for_vblank(dev, pipe);
5925
5926 dpll = I915_READ(dpll_reg);
5927 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5928 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5929 }
5930
5931 /* Schedule downclock */
5932 mod_timer(&intel_crtc->idle_timer, jiffies +
5933 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5934 }
5935
5936 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5937 {
5938 struct drm_device *dev = crtc->dev;
5939 drm_i915_private_t *dev_priv = dev->dev_private;
5940 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5941
5942 if (HAS_PCH_SPLIT(dev))
5943 return;
5944
5945 if (!dev_priv->lvds_downclock_avail)
5946 return;
5947
5948 /*
5949 * Since this is called by a timer, we should never get here in
5950 * the manual case.
5951 */
5952 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5953 int pipe = intel_crtc->pipe;
5954 int dpll_reg = DPLL(pipe);
5955 int dpll;
5956
5957 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5958
5959 assert_panel_unlocked(dev_priv, pipe);
5960
5961 dpll = I915_READ(dpll_reg);
5962 dpll |= DISPLAY_RATE_SELECT_FPA1;
5963 I915_WRITE(dpll_reg, dpll);
5964 intel_wait_for_vblank(dev, pipe);
5965 dpll = I915_READ(dpll_reg);
5966 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5967 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5968 }
5969
5970 }
5971
5972 /**
5973 * intel_idle_update - adjust clocks for idleness
5974 * @work: work struct
5975 *
5976 * Either the GPU or display (or both) went idle. Check the busy status
5977 * here and adjust the CRTC and GPU clocks as necessary.
5978 */
5979 static void intel_idle_update(struct work_struct *work)
5980 {
5981 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5982 idle_work);
5983 struct drm_device *dev = dev_priv->dev;
5984 struct drm_crtc *crtc;
5985 struct intel_crtc *intel_crtc;
5986
5987 if (!i915_powersave)
5988 return;
5989
5990 mutex_lock(&dev->struct_mutex);
5991
5992 i915_update_gfx_val(dev_priv);
5993
5994 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5995 /* Skip inactive CRTCs */
5996 if (!crtc->fb)
5997 continue;
5998
5999 intel_crtc = to_intel_crtc(crtc);
6000 if (!intel_crtc->busy)
6001 intel_decrease_pllclock(crtc);
6002 }
6003
6004
6005 mutex_unlock(&dev->struct_mutex);
6006 }
6007
6008 /**
6009 * intel_mark_busy - mark the GPU and possibly the display busy
6010 * @dev: drm device
6011 * @obj: object we're operating on
6012 *
6013 * Callers can use this function to indicate that the GPU is busy processing
6014 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6015 * buffer), we'll also mark the display as busy, so we know to increase its
6016 * clock frequency.
6017 */
6018 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6019 {
6020 drm_i915_private_t *dev_priv = dev->dev_private;
6021 struct drm_crtc *crtc = NULL;
6022 struct intel_framebuffer *intel_fb;
6023 struct intel_crtc *intel_crtc;
6024
6025 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6026 return;
6027
6028 if (!dev_priv->busy) {
6029 intel_sanitize_pm(dev);
6030 dev_priv->busy = true;
6031 } else
6032 mod_timer(&dev_priv->idle_timer, jiffies +
6033 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6034
6035 if (obj == NULL)
6036 return;
6037
6038 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6039 if (!crtc->fb)
6040 continue;
6041
6042 intel_crtc = to_intel_crtc(crtc);
6043 intel_fb = to_intel_framebuffer(crtc->fb);
6044 if (intel_fb->obj == obj) {
6045 if (!intel_crtc->busy) {
6046 /* Non-busy -> busy, upclock */
6047 intel_increase_pllclock(crtc);
6048 intel_crtc->busy = true;
6049 } else {
6050 /* Busy -> busy, put off timer */
6051 mod_timer(&intel_crtc->idle_timer, jiffies +
6052 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6053 }
6054 }
6055 }
6056 }
6057
6058 static void intel_crtc_destroy(struct drm_crtc *crtc)
6059 {
6060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6061 struct drm_device *dev = crtc->dev;
6062 struct intel_unpin_work *work;
6063 unsigned long flags;
6064
6065 spin_lock_irqsave(&dev->event_lock, flags);
6066 work = intel_crtc->unpin_work;
6067 intel_crtc->unpin_work = NULL;
6068 spin_unlock_irqrestore(&dev->event_lock, flags);
6069
6070 if (work) {
6071 cancel_work_sync(&work->work);
6072 kfree(work);
6073 }
6074
6075 drm_crtc_cleanup(crtc);
6076
6077 kfree(intel_crtc);
6078 }
6079
6080 static void intel_unpin_work_fn(struct work_struct *__work)
6081 {
6082 struct intel_unpin_work *work =
6083 container_of(__work, struct intel_unpin_work, work);
6084
6085 mutex_lock(&work->dev->struct_mutex);
6086 intel_unpin_fb_obj(work->old_fb_obj);
6087 drm_gem_object_unreference(&work->pending_flip_obj->base);
6088 drm_gem_object_unreference(&work->old_fb_obj->base);
6089
6090 intel_update_fbc(work->dev);
6091 mutex_unlock(&work->dev->struct_mutex);
6092 kfree(work);
6093 }
6094
6095 static void do_intel_finish_page_flip(struct drm_device *dev,
6096 struct drm_crtc *crtc)
6097 {
6098 drm_i915_private_t *dev_priv = dev->dev_private;
6099 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6100 struct intel_unpin_work *work;
6101 struct drm_i915_gem_object *obj;
6102 struct drm_pending_vblank_event *e;
6103 struct timeval tnow, tvbl;
6104 unsigned long flags;
6105
6106 /* Ignore early vblank irqs */
6107 if (intel_crtc == NULL)
6108 return;
6109
6110 do_gettimeofday(&tnow);
6111
6112 spin_lock_irqsave(&dev->event_lock, flags);
6113 work = intel_crtc->unpin_work;
6114 if (work == NULL || !work->pending) {
6115 spin_unlock_irqrestore(&dev->event_lock, flags);
6116 return;
6117 }
6118
6119 intel_crtc->unpin_work = NULL;
6120
6121 if (work->event) {
6122 e = work->event;
6123 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6124
6125 /* Called before vblank count and timestamps have
6126 * been updated for the vblank interval of flip
6127 * completion? Need to increment vblank count and
6128 * add one videorefresh duration to returned timestamp
6129 * to account for this. We assume this happened if we
6130 * get called over 0.9 frame durations after the last
6131 * timestamped vblank.
6132 *
6133 * This calculation can not be used with vrefresh rates
6134 * below 5Hz (10Hz to be on the safe side) without
6135 * promoting to 64 integers.
6136 */
6137 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6138 9 * crtc->framedur_ns) {
6139 e->event.sequence++;
6140 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6141 crtc->framedur_ns);
6142 }
6143
6144 e->event.tv_sec = tvbl.tv_sec;
6145 e->event.tv_usec = tvbl.tv_usec;
6146
6147 list_add_tail(&e->base.link,
6148 &e->base.file_priv->event_list);
6149 wake_up_interruptible(&e->base.file_priv->event_wait);
6150 }
6151
6152 drm_vblank_put(dev, intel_crtc->pipe);
6153
6154 spin_unlock_irqrestore(&dev->event_lock, flags);
6155
6156 obj = work->old_fb_obj;
6157
6158 atomic_clear_mask(1 << intel_crtc->plane,
6159 &obj->pending_flip.counter);
6160 if (atomic_read(&obj->pending_flip) == 0)
6161 wake_up(&dev_priv->pending_flip_queue);
6162
6163 schedule_work(&work->work);
6164
6165 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6166 }
6167
6168 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6169 {
6170 drm_i915_private_t *dev_priv = dev->dev_private;
6171 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6172
6173 do_intel_finish_page_flip(dev, crtc);
6174 }
6175
6176 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6177 {
6178 drm_i915_private_t *dev_priv = dev->dev_private;
6179 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6180
6181 do_intel_finish_page_flip(dev, crtc);
6182 }
6183
6184 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6185 {
6186 drm_i915_private_t *dev_priv = dev->dev_private;
6187 struct intel_crtc *intel_crtc =
6188 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6189 unsigned long flags;
6190
6191 spin_lock_irqsave(&dev->event_lock, flags);
6192 if (intel_crtc->unpin_work) {
6193 if ((++intel_crtc->unpin_work->pending) > 1)
6194 DRM_ERROR("Prepared flip multiple times\n");
6195 } else {
6196 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6197 }
6198 spin_unlock_irqrestore(&dev->event_lock, flags);
6199 }
6200
6201 static int intel_gen2_queue_flip(struct drm_device *dev,
6202 struct drm_crtc *crtc,
6203 struct drm_framebuffer *fb,
6204 struct drm_i915_gem_object *obj)
6205 {
6206 struct drm_i915_private *dev_priv = dev->dev_private;
6207 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6208 u32 flip_mask;
6209 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6210 int ret;
6211
6212 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6213 if (ret)
6214 goto err;
6215
6216 ret = intel_ring_begin(ring, 6);
6217 if (ret)
6218 goto err_unpin;
6219
6220 /* Can't queue multiple flips, so wait for the previous
6221 * one to finish before executing the next.
6222 */
6223 if (intel_crtc->plane)
6224 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6225 else
6226 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6227 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6228 intel_ring_emit(ring, MI_NOOP);
6229 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6230 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6231 intel_ring_emit(ring, fb->pitches[0]);
6232 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6233 intel_ring_emit(ring, 0); /* aux display base address, unused */
6234 intel_ring_advance(ring);
6235 return 0;
6236
6237 err_unpin:
6238 intel_unpin_fb_obj(obj);
6239 err:
6240 return ret;
6241 }
6242
6243 static int intel_gen3_queue_flip(struct drm_device *dev,
6244 struct drm_crtc *crtc,
6245 struct drm_framebuffer *fb,
6246 struct drm_i915_gem_object *obj)
6247 {
6248 struct drm_i915_private *dev_priv = dev->dev_private;
6249 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6250 u32 flip_mask;
6251 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6252 int ret;
6253
6254 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6255 if (ret)
6256 goto err;
6257
6258 ret = intel_ring_begin(ring, 6);
6259 if (ret)
6260 goto err_unpin;
6261
6262 if (intel_crtc->plane)
6263 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6264 else
6265 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6266 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6267 intel_ring_emit(ring, MI_NOOP);
6268 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6269 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6270 intel_ring_emit(ring, fb->pitches[0]);
6271 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6272 intel_ring_emit(ring, MI_NOOP);
6273
6274 intel_ring_advance(ring);
6275 return 0;
6276
6277 err_unpin:
6278 intel_unpin_fb_obj(obj);
6279 err:
6280 return ret;
6281 }
6282
6283 static int intel_gen4_queue_flip(struct drm_device *dev,
6284 struct drm_crtc *crtc,
6285 struct drm_framebuffer *fb,
6286 struct drm_i915_gem_object *obj)
6287 {
6288 struct drm_i915_private *dev_priv = dev->dev_private;
6289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6290 uint32_t pf, pipesrc;
6291 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6292 int ret;
6293
6294 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6295 if (ret)
6296 goto err;
6297
6298 ret = intel_ring_begin(ring, 4);
6299 if (ret)
6300 goto err_unpin;
6301
6302 /* i965+ uses the linear or tiled offsets from the
6303 * Display Registers (which do not change across a page-flip)
6304 * so we need only reprogram the base address.
6305 */
6306 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6307 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6308 intel_ring_emit(ring, fb->pitches[0]);
6309 intel_ring_emit(ring,
6310 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6311 obj->tiling_mode);
6312
6313 /* XXX Enabling the panel-fitter across page-flip is so far
6314 * untested on non-native modes, so ignore it for now.
6315 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6316 */
6317 pf = 0;
6318 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6319 intel_ring_emit(ring, pf | pipesrc);
6320 intel_ring_advance(ring);
6321 return 0;
6322
6323 err_unpin:
6324 intel_unpin_fb_obj(obj);
6325 err:
6326 return ret;
6327 }
6328
6329 static int intel_gen6_queue_flip(struct drm_device *dev,
6330 struct drm_crtc *crtc,
6331 struct drm_framebuffer *fb,
6332 struct drm_i915_gem_object *obj)
6333 {
6334 struct drm_i915_private *dev_priv = dev->dev_private;
6335 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6336 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6337 uint32_t pf, pipesrc;
6338 int ret;
6339
6340 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6341 if (ret)
6342 goto err;
6343
6344 ret = intel_ring_begin(ring, 4);
6345 if (ret)
6346 goto err_unpin;
6347
6348 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6349 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6350 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6351 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6352
6353 /* Contrary to the suggestions in the documentation,
6354 * "Enable Panel Fitter" does not seem to be required when page
6355 * flipping with a non-native mode, and worse causes a normal
6356 * modeset to fail.
6357 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6358 */
6359 pf = 0;
6360 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6361 intel_ring_emit(ring, pf | pipesrc);
6362 intel_ring_advance(ring);
6363 return 0;
6364
6365 err_unpin:
6366 intel_unpin_fb_obj(obj);
6367 err:
6368 return ret;
6369 }
6370
6371 /*
6372 * On gen7 we currently use the blit ring because (in early silicon at least)
6373 * the render ring doesn't give us interrpts for page flip completion, which
6374 * means clients will hang after the first flip is queued. Fortunately the
6375 * blit ring generates interrupts properly, so use it instead.
6376 */
6377 static int intel_gen7_queue_flip(struct drm_device *dev,
6378 struct drm_crtc *crtc,
6379 struct drm_framebuffer *fb,
6380 struct drm_i915_gem_object *obj)
6381 {
6382 struct drm_i915_private *dev_priv = dev->dev_private;
6383 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6384 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6385 uint32_t plane_bit = 0;
6386 int ret;
6387
6388 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6389 if (ret)
6390 goto err;
6391
6392 switch(intel_crtc->plane) {
6393 case PLANE_A:
6394 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6395 break;
6396 case PLANE_B:
6397 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6398 break;
6399 case PLANE_C:
6400 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6401 break;
6402 default:
6403 WARN_ONCE(1, "unknown plane in flip command\n");
6404 ret = -ENODEV;
6405 goto err;
6406 }
6407
6408 ret = intel_ring_begin(ring, 4);
6409 if (ret)
6410 goto err_unpin;
6411
6412 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6413 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6414 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6415 intel_ring_emit(ring, (MI_NOOP));
6416 intel_ring_advance(ring);
6417 return 0;
6418
6419 err_unpin:
6420 intel_unpin_fb_obj(obj);
6421 err:
6422 return ret;
6423 }
6424
6425 static int intel_default_queue_flip(struct drm_device *dev,
6426 struct drm_crtc *crtc,
6427 struct drm_framebuffer *fb,
6428 struct drm_i915_gem_object *obj)
6429 {
6430 return -ENODEV;
6431 }
6432
6433 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6434 struct drm_framebuffer *fb,
6435 struct drm_pending_vblank_event *event)
6436 {
6437 struct drm_device *dev = crtc->dev;
6438 struct drm_i915_private *dev_priv = dev->dev_private;
6439 struct intel_framebuffer *intel_fb;
6440 struct drm_i915_gem_object *obj;
6441 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6442 struct intel_unpin_work *work;
6443 unsigned long flags;
6444 int ret;
6445
6446 /* Can't change pixel format via MI display flips. */
6447 if (fb->pixel_format != crtc->fb->pixel_format)
6448 return -EINVAL;
6449
6450 /*
6451 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6452 * Note that pitch changes could also affect these register.
6453 */
6454 if (INTEL_INFO(dev)->gen > 3 &&
6455 (fb->offsets[0] != crtc->fb->offsets[0] ||
6456 fb->pitches[0] != crtc->fb->pitches[0]))
6457 return -EINVAL;
6458
6459 work = kzalloc(sizeof *work, GFP_KERNEL);
6460 if (work == NULL)
6461 return -ENOMEM;
6462
6463 work->event = event;
6464 work->dev = crtc->dev;
6465 intel_fb = to_intel_framebuffer(crtc->fb);
6466 work->old_fb_obj = intel_fb->obj;
6467 INIT_WORK(&work->work, intel_unpin_work_fn);
6468
6469 ret = drm_vblank_get(dev, intel_crtc->pipe);
6470 if (ret)
6471 goto free_work;
6472
6473 /* We borrow the event spin lock for protecting unpin_work */
6474 spin_lock_irqsave(&dev->event_lock, flags);
6475 if (intel_crtc->unpin_work) {
6476 spin_unlock_irqrestore(&dev->event_lock, flags);
6477 kfree(work);
6478 drm_vblank_put(dev, intel_crtc->pipe);
6479
6480 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6481 return -EBUSY;
6482 }
6483 intel_crtc->unpin_work = work;
6484 spin_unlock_irqrestore(&dev->event_lock, flags);
6485
6486 intel_fb = to_intel_framebuffer(fb);
6487 obj = intel_fb->obj;
6488
6489 mutex_lock(&dev->struct_mutex);
6490
6491 /* Reference the objects for the scheduled work. */
6492 drm_gem_object_reference(&work->old_fb_obj->base);
6493 drm_gem_object_reference(&obj->base);
6494
6495 crtc->fb = fb;
6496
6497 work->pending_flip_obj = obj;
6498
6499 work->enable_stall_check = true;
6500
6501 /* Block clients from rendering to the new back buffer until
6502 * the flip occurs and the object is no longer visible.
6503 */
6504 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6505
6506 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6507 if (ret)
6508 goto cleanup_pending;
6509
6510 intel_disable_fbc(dev);
6511 intel_mark_busy(dev, obj);
6512 mutex_unlock(&dev->struct_mutex);
6513
6514 trace_i915_flip_request(intel_crtc->plane, obj);
6515
6516 return 0;
6517
6518 cleanup_pending:
6519 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6520 drm_gem_object_unreference(&work->old_fb_obj->base);
6521 drm_gem_object_unreference(&obj->base);
6522 mutex_unlock(&dev->struct_mutex);
6523
6524 spin_lock_irqsave(&dev->event_lock, flags);
6525 intel_crtc->unpin_work = NULL;
6526 spin_unlock_irqrestore(&dev->event_lock, flags);
6527
6528 drm_vblank_put(dev, intel_crtc->pipe);
6529 free_work:
6530 kfree(work);
6531
6532 return ret;
6533 }
6534
6535 static void intel_sanitize_modesetting(struct drm_device *dev,
6536 int pipe, int plane)
6537 {
6538 struct drm_i915_private *dev_priv = dev->dev_private;
6539 u32 reg, val;
6540 int i;
6541
6542 /* Clear any frame start delays used for debugging left by the BIOS */
6543 for_each_pipe(i) {
6544 reg = PIPECONF(i);
6545 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
6546 }
6547
6548 if (HAS_PCH_SPLIT(dev))
6549 return;
6550
6551 /* Who knows what state these registers were left in by the BIOS or
6552 * grub?
6553 *
6554 * If we leave the registers in a conflicting state (e.g. with the
6555 * display plane reading from the other pipe than the one we intend
6556 * to use) then when we attempt to teardown the active mode, we will
6557 * not disable the pipes and planes in the correct order -- leaving
6558 * a plane reading from a disabled pipe and possibly leading to
6559 * undefined behaviour.
6560 */
6561
6562 reg = DSPCNTR(plane);
6563 val = I915_READ(reg);
6564
6565 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6566 return;
6567 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6568 return;
6569
6570 /* This display plane is active and attached to the other CPU pipe. */
6571 pipe = !pipe;
6572
6573 /* Disable the plane and wait for it to stop reading from the pipe. */
6574 intel_disable_plane(dev_priv, plane, pipe);
6575 intel_disable_pipe(dev_priv, pipe);
6576 }
6577
6578 static void intel_crtc_reset(struct drm_crtc *crtc)
6579 {
6580 struct drm_device *dev = crtc->dev;
6581 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6582
6583 /* Reset flags back to the 'unknown' status so that they
6584 * will be correctly set on the initial modeset.
6585 */
6586 intel_crtc->dpms_mode = -1;
6587
6588 /* We need to fix up any BIOS configuration that conflicts with
6589 * our expectations.
6590 */
6591 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6592 }
6593
6594 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6595 .dpms = intel_crtc_dpms,
6596 .mode_fixup = intel_crtc_mode_fixup,
6597 .mode_set = intel_crtc_mode_set,
6598 .mode_set_base = intel_pipe_set_base,
6599 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6600 .load_lut = intel_crtc_load_lut,
6601 .disable = intel_crtc_disable,
6602 };
6603
6604 static const struct drm_crtc_funcs intel_crtc_funcs = {
6605 .reset = intel_crtc_reset,
6606 .cursor_set = intel_crtc_cursor_set,
6607 .cursor_move = intel_crtc_cursor_move,
6608 .gamma_set = intel_crtc_gamma_set,
6609 .set_config = drm_crtc_helper_set_config,
6610 .destroy = intel_crtc_destroy,
6611 .page_flip = intel_crtc_page_flip,
6612 };
6613
6614 static void intel_pch_pll_init(struct drm_device *dev)
6615 {
6616 drm_i915_private_t *dev_priv = dev->dev_private;
6617 int i;
6618
6619 if (dev_priv->num_pch_pll == 0) {
6620 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
6621 return;
6622 }
6623
6624 for (i = 0; i < dev_priv->num_pch_pll; i++) {
6625 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
6626 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
6627 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
6628 }
6629 }
6630
6631 static void intel_crtc_init(struct drm_device *dev, int pipe)
6632 {
6633 drm_i915_private_t *dev_priv = dev->dev_private;
6634 struct intel_crtc *intel_crtc;
6635 int i;
6636
6637 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6638 if (intel_crtc == NULL)
6639 return;
6640
6641 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6642
6643 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6644 for (i = 0; i < 256; i++) {
6645 intel_crtc->lut_r[i] = i;
6646 intel_crtc->lut_g[i] = i;
6647 intel_crtc->lut_b[i] = i;
6648 }
6649
6650 /* Swap pipes & planes for FBC on pre-965 */
6651 intel_crtc->pipe = pipe;
6652 intel_crtc->plane = pipe;
6653 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6654 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6655 intel_crtc->plane = !pipe;
6656 }
6657
6658 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6659 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6660 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6661 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6662
6663 intel_crtc_reset(&intel_crtc->base);
6664 intel_crtc->active = true; /* force the pipe off on setup_init_config */
6665 intel_crtc->bpp = 24; /* default for pre-Ironlake */
6666
6667 if (HAS_PCH_SPLIT(dev)) {
6668 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6669 intel_helper_funcs.commit = ironlake_crtc_commit;
6670 } else {
6671 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6672 intel_helper_funcs.commit = i9xx_crtc_commit;
6673 }
6674
6675 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6676
6677 intel_crtc->busy = false;
6678
6679 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6680 (unsigned long)intel_crtc);
6681 }
6682
6683 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6684 struct drm_file *file)
6685 {
6686 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6687 struct drm_mode_object *drmmode_obj;
6688 struct intel_crtc *crtc;
6689
6690 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6691 return -ENODEV;
6692
6693 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6694 DRM_MODE_OBJECT_CRTC);
6695
6696 if (!drmmode_obj) {
6697 DRM_ERROR("no such CRTC id\n");
6698 return -EINVAL;
6699 }
6700
6701 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6702 pipe_from_crtc_id->pipe = crtc->pipe;
6703
6704 return 0;
6705 }
6706
6707 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6708 {
6709 struct intel_encoder *encoder;
6710 int index_mask = 0;
6711 int entry = 0;
6712
6713 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6714 if (type_mask & encoder->clone_mask)
6715 index_mask |= (1 << entry);
6716 entry++;
6717 }
6718
6719 return index_mask;
6720 }
6721
6722 static bool has_edp_a(struct drm_device *dev)
6723 {
6724 struct drm_i915_private *dev_priv = dev->dev_private;
6725
6726 if (!IS_MOBILE(dev))
6727 return false;
6728
6729 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6730 return false;
6731
6732 if (IS_GEN5(dev) &&
6733 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6734 return false;
6735
6736 return true;
6737 }
6738
6739 static void intel_setup_outputs(struct drm_device *dev)
6740 {
6741 struct drm_i915_private *dev_priv = dev->dev_private;
6742 struct intel_encoder *encoder;
6743 bool dpd_is_edp = false;
6744 bool has_lvds;
6745
6746 has_lvds = intel_lvds_init(dev);
6747 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6748 /* disable the panel fitter on everything but LVDS */
6749 I915_WRITE(PFIT_CONTROL, 0);
6750 }
6751
6752 if (HAS_PCH_SPLIT(dev)) {
6753 dpd_is_edp = intel_dpd_is_edp(dev);
6754
6755 if (has_edp_a(dev))
6756 intel_dp_init(dev, DP_A);
6757
6758 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6759 intel_dp_init(dev, PCH_DP_D);
6760 }
6761
6762 intel_crt_init(dev);
6763
6764 if (IS_HASWELL(dev)) {
6765 int found;
6766
6767 /* Haswell uses DDI functions to detect digital outputs */
6768 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
6769 /* DDI A only supports eDP */
6770 if (found)
6771 intel_ddi_init(dev, PORT_A);
6772
6773 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
6774 * register */
6775 found = I915_READ(SFUSE_STRAP);
6776
6777 if (found & SFUSE_STRAP_DDIB_DETECTED)
6778 intel_ddi_init(dev, PORT_B);
6779 if (found & SFUSE_STRAP_DDIC_DETECTED)
6780 intel_ddi_init(dev, PORT_C);
6781 if (found & SFUSE_STRAP_DDID_DETECTED)
6782 intel_ddi_init(dev, PORT_D);
6783 } else if (HAS_PCH_SPLIT(dev)) {
6784 int found;
6785
6786 if (I915_READ(HDMIB) & PORT_DETECTED) {
6787 /* PCH SDVOB multiplex with HDMIB */
6788 found = intel_sdvo_init(dev, PCH_SDVOB, true);
6789 if (!found)
6790 intel_hdmi_init(dev, HDMIB);
6791 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6792 intel_dp_init(dev, PCH_DP_B);
6793 }
6794
6795 if (I915_READ(HDMIC) & PORT_DETECTED)
6796 intel_hdmi_init(dev, HDMIC);
6797
6798 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
6799 intel_hdmi_init(dev, HDMID);
6800
6801 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6802 intel_dp_init(dev, PCH_DP_C);
6803
6804 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6805 intel_dp_init(dev, PCH_DP_D);
6806 } else if (IS_VALLEYVIEW(dev)) {
6807 int found;
6808
6809 if (I915_READ(SDVOB) & PORT_DETECTED) {
6810 /* SDVOB multiplex with HDMIB */
6811 found = intel_sdvo_init(dev, SDVOB, true);
6812 if (!found)
6813 intel_hdmi_init(dev, SDVOB);
6814 if (!found && (I915_READ(DP_B) & DP_DETECTED))
6815 intel_dp_init(dev, DP_B);
6816 }
6817
6818 if (I915_READ(SDVOC) & PORT_DETECTED)
6819 intel_hdmi_init(dev, SDVOC);
6820
6821 /* Shares lanes with HDMI on SDVOC */
6822 if (I915_READ(DP_C) & DP_DETECTED)
6823 intel_dp_init(dev, DP_C);
6824 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6825 bool found = false;
6826
6827 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6828 DRM_DEBUG_KMS("probing SDVOB\n");
6829 found = intel_sdvo_init(dev, SDVOB, true);
6830 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6831 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6832 intel_hdmi_init(dev, SDVOB);
6833 }
6834
6835 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6836 DRM_DEBUG_KMS("probing DP_B\n");
6837 intel_dp_init(dev, DP_B);
6838 }
6839 }
6840
6841 /* Before G4X SDVOC doesn't have its own detect register */
6842
6843 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6844 DRM_DEBUG_KMS("probing SDVOC\n");
6845 found = intel_sdvo_init(dev, SDVOC, false);
6846 }
6847
6848 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6849
6850 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6851 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6852 intel_hdmi_init(dev, SDVOC);
6853 }
6854 if (SUPPORTS_INTEGRATED_DP(dev)) {
6855 DRM_DEBUG_KMS("probing DP_C\n");
6856 intel_dp_init(dev, DP_C);
6857 }
6858 }
6859
6860 if (SUPPORTS_INTEGRATED_DP(dev) &&
6861 (I915_READ(DP_D) & DP_DETECTED)) {
6862 DRM_DEBUG_KMS("probing DP_D\n");
6863 intel_dp_init(dev, DP_D);
6864 }
6865 } else if (IS_GEN2(dev))
6866 intel_dvo_init(dev);
6867
6868 if (SUPPORTS_TV(dev))
6869 intel_tv_init(dev);
6870
6871 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6872 encoder->base.possible_crtcs = encoder->crtc_mask;
6873 encoder->base.possible_clones =
6874 intel_encoder_clones(dev, encoder->clone_mask);
6875 }
6876
6877 /* disable all the possible outputs/crtcs before entering KMS mode */
6878 drm_helper_disable_unused_functions(dev);
6879
6880 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6881 ironlake_init_pch_refclk(dev);
6882 }
6883
6884 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6885 {
6886 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6887
6888 drm_framebuffer_cleanup(fb);
6889 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6890
6891 kfree(intel_fb);
6892 }
6893
6894 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6895 struct drm_file *file,
6896 unsigned int *handle)
6897 {
6898 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6899 struct drm_i915_gem_object *obj = intel_fb->obj;
6900
6901 return drm_gem_handle_create(file, &obj->base, handle);
6902 }
6903
6904 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6905 .destroy = intel_user_framebuffer_destroy,
6906 .create_handle = intel_user_framebuffer_create_handle,
6907 };
6908
6909 int intel_framebuffer_init(struct drm_device *dev,
6910 struct intel_framebuffer *intel_fb,
6911 struct drm_mode_fb_cmd2 *mode_cmd,
6912 struct drm_i915_gem_object *obj)
6913 {
6914 int ret;
6915
6916 if (obj->tiling_mode == I915_TILING_Y)
6917 return -EINVAL;
6918
6919 if (mode_cmd->pitches[0] & 63)
6920 return -EINVAL;
6921
6922 switch (mode_cmd->pixel_format) {
6923 case DRM_FORMAT_RGB332:
6924 case DRM_FORMAT_RGB565:
6925 case DRM_FORMAT_XRGB8888:
6926 case DRM_FORMAT_XBGR8888:
6927 case DRM_FORMAT_ARGB8888:
6928 case DRM_FORMAT_XRGB2101010:
6929 case DRM_FORMAT_ARGB2101010:
6930 /* RGB formats are common across chipsets */
6931 break;
6932 case DRM_FORMAT_YUYV:
6933 case DRM_FORMAT_UYVY:
6934 case DRM_FORMAT_YVYU:
6935 case DRM_FORMAT_VYUY:
6936 break;
6937 default:
6938 DRM_DEBUG_KMS("unsupported pixel format %u\n",
6939 mode_cmd->pixel_format);
6940 return -EINVAL;
6941 }
6942
6943 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6944 if (ret) {
6945 DRM_ERROR("framebuffer init failed %d\n", ret);
6946 return ret;
6947 }
6948
6949 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6950 intel_fb->obj = obj;
6951 return 0;
6952 }
6953
6954 static struct drm_framebuffer *
6955 intel_user_framebuffer_create(struct drm_device *dev,
6956 struct drm_file *filp,
6957 struct drm_mode_fb_cmd2 *mode_cmd)
6958 {
6959 struct drm_i915_gem_object *obj;
6960
6961 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6962 mode_cmd->handles[0]));
6963 if (&obj->base == NULL)
6964 return ERR_PTR(-ENOENT);
6965
6966 return intel_framebuffer_create(dev, mode_cmd, obj);
6967 }
6968
6969 static const struct drm_mode_config_funcs intel_mode_funcs = {
6970 .fb_create = intel_user_framebuffer_create,
6971 .output_poll_changed = intel_fb_output_poll_changed,
6972 };
6973
6974 /* Set up chip specific display functions */
6975 static void intel_init_display(struct drm_device *dev)
6976 {
6977 struct drm_i915_private *dev_priv = dev->dev_private;
6978
6979 /* We always want a DPMS function */
6980 if (HAS_PCH_SPLIT(dev)) {
6981 dev_priv->display.dpms = ironlake_crtc_dpms;
6982 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6983 dev_priv->display.off = ironlake_crtc_off;
6984 dev_priv->display.update_plane = ironlake_update_plane;
6985 } else {
6986 dev_priv->display.dpms = i9xx_crtc_dpms;
6987 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6988 dev_priv->display.off = i9xx_crtc_off;
6989 dev_priv->display.update_plane = i9xx_update_plane;
6990 }
6991
6992 /* Returns the core display clock speed */
6993 if (IS_VALLEYVIEW(dev))
6994 dev_priv->display.get_display_clock_speed =
6995 valleyview_get_display_clock_speed;
6996 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6997 dev_priv->display.get_display_clock_speed =
6998 i945_get_display_clock_speed;
6999 else if (IS_I915G(dev))
7000 dev_priv->display.get_display_clock_speed =
7001 i915_get_display_clock_speed;
7002 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7003 dev_priv->display.get_display_clock_speed =
7004 i9xx_misc_get_display_clock_speed;
7005 else if (IS_I915GM(dev))
7006 dev_priv->display.get_display_clock_speed =
7007 i915gm_get_display_clock_speed;
7008 else if (IS_I865G(dev))
7009 dev_priv->display.get_display_clock_speed =
7010 i865_get_display_clock_speed;
7011 else if (IS_I85X(dev))
7012 dev_priv->display.get_display_clock_speed =
7013 i855_get_display_clock_speed;
7014 else /* 852, 830 */
7015 dev_priv->display.get_display_clock_speed =
7016 i830_get_display_clock_speed;
7017
7018 if (HAS_PCH_SPLIT(dev)) {
7019 if (IS_GEN5(dev)) {
7020 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7021 dev_priv->display.write_eld = ironlake_write_eld;
7022 } else if (IS_GEN6(dev)) {
7023 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7024 dev_priv->display.write_eld = ironlake_write_eld;
7025 } else if (IS_IVYBRIDGE(dev)) {
7026 /* FIXME: detect B0+ stepping and use auto training */
7027 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7028 dev_priv->display.write_eld = ironlake_write_eld;
7029 } else if (IS_HASWELL(dev)) {
7030 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7031 dev_priv->display.write_eld = ironlake_write_eld;
7032 } else
7033 dev_priv->display.update_wm = NULL;
7034 } else if (IS_G4X(dev)) {
7035 dev_priv->display.write_eld = g4x_write_eld;
7036 }
7037
7038 /* Default just returns -ENODEV to indicate unsupported */
7039 dev_priv->display.queue_flip = intel_default_queue_flip;
7040
7041 switch (INTEL_INFO(dev)->gen) {
7042 case 2:
7043 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7044 break;
7045
7046 case 3:
7047 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7048 break;
7049
7050 case 4:
7051 case 5:
7052 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7053 break;
7054
7055 case 6:
7056 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7057 break;
7058 case 7:
7059 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7060 break;
7061 }
7062 }
7063
7064 /*
7065 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7066 * resume, or other times. This quirk makes sure that's the case for
7067 * affected systems.
7068 */
7069 static void quirk_pipea_force(struct drm_device *dev)
7070 {
7071 struct drm_i915_private *dev_priv = dev->dev_private;
7072
7073 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7074 DRM_INFO("applying pipe a force quirk\n");
7075 }
7076
7077 /*
7078 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7079 */
7080 static void quirk_ssc_force_disable(struct drm_device *dev)
7081 {
7082 struct drm_i915_private *dev_priv = dev->dev_private;
7083 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7084 DRM_INFO("applying lvds SSC disable quirk\n");
7085 }
7086
7087 /*
7088 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7089 * brightness value
7090 */
7091 static void quirk_invert_brightness(struct drm_device *dev)
7092 {
7093 struct drm_i915_private *dev_priv = dev->dev_private;
7094 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7095 DRM_INFO("applying inverted panel brightness quirk\n");
7096 }
7097
7098 struct intel_quirk {
7099 int device;
7100 int subsystem_vendor;
7101 int subsystem_device;
7102 void (*hook)(struct drm_device *dev);
7103 };
7104
7105 static struct intel_quirk intel_quirks[] = {
7106 /* HP Mini needs pipe A force quirk (LP: #322104) */
7107 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7108
7109 /* Thinkpad R31 needs pipe A force quirk */
7110 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7111 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7112 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7113
7114 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7115 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
7116 /* ThinkPad X40 needs pipe A force quirk */
7117
7118 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7119 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7120
7121 /* 855 & before need to leave pipe A & dpll A up */
7122 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7123 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7124
7125 /* Lenovo U160 cannot use SSC on LVDS */
7126 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7127
7128 /* Sony Vaio Y cannot use SSC on LVDS */
7129 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7130
7131 /* Acer Aspire 5734Z must invert backlight brightness */
7132 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7133 };
7134
7135 static void intel_init_quirks(struct drm_device *dev)
7136 {
7137 struct pci_dev *d = dev->pdev;
7138 int i;
7139
7140 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7141 struct intel_quirk *q = &intel_quirks[i];
7142
7143 if (d->device == q->device &&
7144 (d->subsystem_vendor == q->subsystem_vendor ||
7145 q->subsystem_vendor == PCI_ANY_ID) &&
7146 (d->subsystem_device == q->subsystem_device ||
7147 q->subsystem_device == PCI_ANY_ID))
7148 q->hook(dev);
7149 }
7150 }
7151
7152 /* Disable the VGA plane that we never use */
7153 static void i915_disable_vga(struct drm_device *dev)
7154 {
7155 struct drm_i915_private *dev_priv = dev->dev_private;
7156 u8 sr1;
7157 u32 vga_reg;
7158
7159 if (HAS_PCH_SPLIT(dev))
7160 vga_reg = CPU_VGACNTRL;
7161 else
7162 vga_reg = VGACNTRL;
7163
7164 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7165 outb(SR01, VGA_SR_INDEX);
7166 sr1 = inb(VGA_SR_DATA);
7167 outb(sr1 | 1<<5, VGA_SR_DATA);
7168 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7169 udelay(300);
7170
7171 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7172 POSTING_READ(vga_reg);
7173 }
7174
7175 void intel_modeset_init_hw(struct drm_device *dev)
7176 {
7177 intel_prepare_ddi(dev);
7178
7179 intel_init_clock_gating(dev);
7180
7181 mutex_lock(&dev->struct_mutex);
7182 intel_enable_gt_powersave(dev);
7183 mutex_unlock(&dev->struct_mutex);
7184 }
7185
7186 void intel_modeset_init(struct drm_device *dev)
7187 {
7188 struct drm_i915_private *dev_priv = dev->dev_private;
7189 int i, ret;
7190
7191 drm_mode_config_init(dev);
7192
7193 dev->mode_config.min_width = 0;
7194 dev->mode_config.min_height = 0;
7195
7196 dev->mode_config.preferred_depth = 24;
7197 dev->mode_config.prefer_shadow = 1;
7198
7199 dev->mode_config.funcs = &intel_mode_funcs;
7200
7201 intel_init_quirks(dev);
7202
7203 intel_init_pm(dev);
7204
7205 intel_init_display(dev);
7206
7207 if (IS_GEN2(dev)) {
7208 dev->mode_config.max_width = 2048;
7209 dev->mode_config.max_height = 2048;
7210 } else if (IS_GEN3(dev)) {
7211 dev->mode_config.max_width = 4096;
7212 dev->mode_config.max_height = 4096;
7213 } else {
7214 dev->mode_config.max_width = 8192;
7215 dev->mode_config.max_height = 8192;
7216 }
7217 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
7218
7219 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7220 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7221
7222 for (i = 0; i < dev_priv->num_pipe; i++) {
7223 intel_crtc_init(dev, i);
7224 ret = intel_plane_init(dev, i);
7225 if (ret)
7226 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
7227 }
7228
7229 intel_pch_pll_init(dev);
7230
7231 /* Just disable it once at startup */
7232 i915_disable_vga(dev);
7233 intel_setup_outputs(dev);
7234
7235 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7236 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7237 (unsigned long)dev);
7238 }
7239
7240 void intel_modeset_gem_init(struct drm_device *dev)
7241 {
7242 intel_modeset_init_hw(dev);
7243
7244 intel_setup_overlay(dev);
7245 }
7246
7247 void intel_modeset_cleanup(struct drm_device *dev)
7248 {
7249 struct drm_i915_private *dev_priv = dev->dev_private;
7250 struct drm_crtc *crtc;
7251 struct intel_crtc *intel_crtc;
7252
7253 drm_kms_helper_poll_fini(dev);
7254 mutex_lock(&dev->struct_mutex);
7255
7256 intel_unregister_dsm_handler();
7257
7258
7259 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7260 /* Skip inactive CRTCs */
7261 if (!crtc->fb)
7262 continue;
7263
7264 intel_crtc = to_intel_crtc(crtc);
7265 intel_increase_pllclock(crtc);
7266 }
7267
7268 intel_disable_fbc(dev);
7269
7270 intel_disable_gt_powersave(dev);
7271
7272 ironlake_teardown_rc6(dev);
7273
7274 if (IS_VALLEYVIEW(dev))
7275 vlv_init_dpio(dev);
7276
7277 mutex_unlock(&dev->struct_mutex);
7278
7279 /* Disable the irq before mode object teardown, for the irq might
7280 * enqueue unpin/hotplug work. */
7281 drm_irq_uninstall(dev);
7282 cancel_work_sync(&dev_priv->hotplug_work);
7283 cancel_work_sync(&dev_priv->rps_work);
7284
7285 /* flush any delayed tasks or pending work */
7286 flush_scheduled_work();
7287
7288 /* Shut off idle work before the crtcs get freed. */
7289 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7290 intel_crtc = to_intel_crtc(crtc);
7291 del_timer_sync(&intel_crtc->idle_timer);
7292 }
7293 del_timer_sync(&dev_priv->idle_timer);
7294 cancel_work_sync(&dev_priv->idle_work);
7295
7296 drm_mode_config_cleanup(dev);
7297 }
7298
7299 /*
7300 * Return which encoder is currently attached for connector.
7301 */
7302 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7303 {
7304 return &intel_attached_encoder(connector)->base;
7305 }
7306
7307 void intel_connector_attach_encoder(struct intel_connector *connector,
7308 struct intel_encoder *encoder)
7309 {
7310 connector->encoder = encoder;
7311 drm_mode_connector_attach_encoder(&connector->base,
7312 &encoder->base);
7313 }
7314
7315 /*
7316 * set vga decode state - true == enable VGA decode
7317 */
7318 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7319 {
7320 struct drm_i915_private *dev_priv = dev->dev_private;
7321 u16 gmch_ctrl;
7322
7323 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7324 if (state)
7325 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7326 else
7327 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7328 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7329 return 0;
7330 }
7331
7332 #ifdef CONFIG_DEBUG_FS
7333 #include <linux/seq_file.h>
7334
7335 struct intel_display_error_state {
7336 struct intel_cursor_error_state {
7337 u32 control;
7338 u32 position;
7339 u32 base;
7340 u32 size;
7341 } cursor[2];
7342
7343 struct intel_pipe_error_state {
7344 u32 conf;
7345 u32 source;
7346
7347 u32 htotal;
7348 u32 hblank;
7349 u32 hsync;
7350 u32 vtotal;
7351 u32 vblank;
7352 u32 vsync;
7353 } pipe[2];
7354
7355 struct intel_plane_error_state {
7356 u32 control;
7357 u32 stride;
7358 u32 size;
7359 u32 pos;
7360 u32 addr;
7361 u32 surface;
7362 u32 tile_offset;
7363 } plane[2];
7364 };
7365
7366 struct intel_display_error_state *
7367 intel_display_capture_error_state(struct drm_device *dev)
7368 {
7369 drm_i915_private_t *dev_priv = dev->dev_private;
7370 struct intel_display_error_state *error;
7371 int i;
7372
7373 error = kmalloc(sizeof(*error), GFP_ATOMIC);
7374 if (error == NULL)
7375 return NULL;
7376
7377 for (i = 0; i < 2; i++) {
7378 error->cursor[i].control = I915_READ(CURCNTR(i));
7379 error->cursor[i].position = I915_READ(CURPOS(i));
7380 error->cursor[i].base = I915_READ(CURBASE(i));
7381
7382 error->plane[i].control = I915_READ(DSPCNTR(i));
7383 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7384 error->plane[i].size = I915_READ(DSPSIZE(i));
7385 error->plane[i].pos = I915_READ(DSPPOS(i));
7386 error->plane[i].addr = I915_READ(DSPADDR(i));
7387 if (INTEL_INFO(dev)->gen >= 4) {
7388 error->plane[i].surface = I915_READ(DSPSURF(i));
7389 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7390 }
7391
7392 error->pipe[i].conf = I915_READ(PIPECONF(i));
7393 error->pipe[i].source = I915_READ(PIPESRC(i));
7394 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7395 error->pipe[i].hblank = I915_READ(HBLANK(i));
7396 error->pipe[i].hsync = I915_READ(HSYNC(i));
7397 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7398 error->pipe[i].vblank = I915_READ(VBLANK(i));
7399 error->pipe[i].vsync = I915_READ(VSYNC(i));
7400 }
7401
7402 return error;
7403 }
7404
7405 void
7406 intel_display_print_error_state(struct seq_file *m,
7407 struct drm_device *dev,
7408 struct intel_display_error_state *error)
7409 {
7410 int i;
7411
7412 for (i = 0; i < 2; i++) {
7413 seq_printf(m, "Pipe [%d]:\n", i);
7414 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
7415 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
7416 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
7417 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
7418 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
7419 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
7420 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
7421 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
7422
7423 seq_printf(m, "Plane [%d]:\n", i);
7424 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
7425 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
7426 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
7427 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
7428 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
7429 if (INTEL_INFO(dev)->gen >= 4) {
7430 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
7431 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
7432 }
7433
7434 seq_printf(m, "Cursor [%d]:\n", i);
7435 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
7436 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
7437 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
7438 }
7439 }
7440 #endif