Merge 4.14.24 into android-4.14
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_clflush.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
52 /* Primary plane formats for gen <= 3 */
53 static const uint32_t i8xx_primary_formats[] = {
54 DRM_FORMAT_C8,
55 DRM_FORMAT_RGB565,
56 DRM_FORMAT_XRGB1555,
57 DRM_FORMAT_XRGB8888,
58 };
59
60 /* Primary plane formats for gen >= 4 */
61 static const uint32_t i965_primary_formats[] = {
62 DRM_FORMAT_C8,
63 DRM_FORMAT_RGB565,
64 DRM_FORMAT_XRGB8888,
65 DRM_FORMAT_XBGR8888,
66 DRM_FORMAT_XRGB2101010,
67 DRM_FORMAT_XBGR2101010,
68 };
69
70 static const uint64_t i9xx_format_modifiers[] = {
71 I915_FORMAT_MOD_X_TILED,
72 DRM_FORMAT_MOD_LINEAR,
73 DRM_FORMAT_MOD_INVALID
74 };
75
76 static const uint32_t skl_primary_formats[] = {
77 DRM_FORMAT_C8,
78 DRM_FORMAT_RGB565,
79 DRM_FORMAT_XRGB8888,
80 DRM_FORMAT_XBGR8888,
81 DRM_FORMAT_ARGB8888,
82 DRM_FORMAT_ABGR8888,
83 DRM_FORMAT_XRGB2101010,
84 DRM_FORMAT_XBGR2101010,
85 DRM_FORMAT_YUYV,
86 DRM_FORMAT_YVYU,
87 DRM_FORMAT_UYVY,
88 DRM_FORMAT_VYUY,
89 };
90
91 static const uint64_t skl_format_modifiers_noccs[] = {
92 I915_FORMAT_MOD_Yf_TILED,
93 I915_FORMAT_MOD_Y_TILED,
94 I915_FORMAT_MOD_X_TILED,
95 DRM_FORMAT_MOD_LINEAR,
96 DRM_FORMAT_MOD_INVALID
97 };
98
99 static const uint64_t skl_format_modifiers_ccs[] = {
100 I915_FORMAT_MOD_Yf_TILED_CCS,
101 I915_FORMAT_MOD_Y_TILED_CCS,
102 I915_FORMAT_MOD_Yf_TILED,
103 I915_FORMAT_MOD_Y_TILED,
104 I915_FORMAT_MOD_X_TILED,
105 DRM_FORMAT_MOD_LINEAR,
106 DRM_FORMAT_MOD_INVALID
107 };
108
109 /* Cursor formats */
110 static const uint32_t intel_cursor_formats[] = {
111 DRM_FORMAT_ARGB8888,
112 };
113
114 static const uint64_t cursor_format_modifiers[] = {
115 DRM_FORMAT_MOD_LINEAR,
116 DRM_FORMAT_MOD_INVALID
117 };
118
119 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
120 struct intel_crtc_state *pipe_config);
121 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
122 struct intel_crtc_state *pipe_config);
123
124 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
125 struct drm_i915_gem_object *obj,
126 struct drm_mode_fb_cmd2 *mode_cmd);
127 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
128 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
129 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
130 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
131 struct intel_link_m_n *m_n,
132 struct intel_link_m_n *m2_n2);
133 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
134 static void haswell_set_pipeconf(struct drm_crtc *crtc);
135 static void haswell_set_pipemisc(struct drm_crtc *crtc);
136 static void vlv_prepare_pll(struct intel_crtc *crtc,
137 const struct intel_crtc_state *pipe_config);
138 static void chv_prepare_pll(struct intel_crtc *crtc,
139 const struct intel_crtc_state *pipe_config);
140 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
141 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
142 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
143 struct intel_crtc_state *crtc_state);
144 static void skylake_pfit_enable(struct intel_crtc *crtc);
145 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
146 static void ironlake_pfit_enable(struct intel_crtc *crtc);
147 static void intel_modeset_setup_hw_state(struct drm_device *dev,
148 struct drm_modeset_acquire_ctx *ctx);
149 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
150
151 struct intel_limit {
152 struct {
153 int min, max;
154 } dot, vco, n, m, m1, m2, p, p1;
155
156 struct {
157 int dot_limit;
158 int p2_slow, p2_fast;
159 } p2;
160 };
161
162 /* returns HPLL frequency in kHz */
163 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
164 {
165 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
166
167 /* Obtain SKU information */
168 mutex_lock(&dev_priv->sb_lock);
169 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
170 CCK_FUSE_HPLL_FREQ_MASK;
171 mutex_unlock(&dev_priv->sb_lock);
172
173 return vco_freq[hpll_freq] * 1000;
174 }
175
176 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
177 const char *name, u32 reg, int ref_freq)
178 {
179 u32 val;
180 int divider;
181
182 mutex_lock(&dev_priv->sb_lock);
183 val = vlv_cck_read(dev_priv, reg);
184 mutex_unlock(&dev_priv->sb_lock);
185
186 divider = val & CCK_FREQUENCY_VALUES;
187
188 WARN((val & CCK_FREQUENCY_STATUS) !=
189 (divider << CCK_FREQUENCY_STATUS_SHIFT),
190 "%s change in progress\n", name);
191
192 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
193 }
194
195 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
196 const char *name, u32 reg)
197 {
198 if (dev_priv->hpll_freq == 0)
199 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
200
201 return vlv_get_cck_clock(dev_priv, name, reg,
202 dev_priv->hpll_freq);
203 }
204
205 static void intel_update_czclk(struct drm_i915_private *dev_priv)
206 {
207 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
208 return;
209
210 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
211 CCK_CZ_CLOCK_CONTROL);
212
213 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
214 }
215
216 static inline u32 /* units of 100MHz */
217 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
218 const struct intel_crtc_state *pipe_config)
219 {
220 if (HAS_DDI(dev_priv))
221 return pipe_config->port_clock; /* SPLL */
222 else if (IS_GEN5(dev_priv))
223 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
224 else
225 return 270000;
226 }
227
228 static const struct intel_limit intel_limits_i8xx_dac = {
229 .dot = { .min = 25000, .max = 350000 },
230 .vco = { .min = 908000, .max = 1512000 },
231 .n = { .min = 2, .max = 16 },
232 .m = { .min = 96, .max = 140 },
233 .m1 = { .min = 18, .max = 26 },
234 .m2 = { .min = 6, .max = 16 },
235 .p = { .min = 4, .max = 128 },
236 .p1 = { .min = 2, .max = 33 },
237 .p2 = { .dot_limit = 165000,
238 .p2_slow = 4, .p2_fast = 2 },
239 };
240
241 static const struct intel_limit intel_limits_i8xx_dvo = {
242 .dot = { .min = 25000, .max = 350000 },
243 .vco = { .min = 908000, .max = 1512000 },
244 .n = { .min = 2, .max = 16 },
245 .m = { .min = 96, .max = 140 },
246 .m1 = { .min = 18, .max = 26 },
247 .m2 = { .min = 6, .max = 16 },
248 .p = { .min = 4, .max = 128 },
249 .p1 = { .min = 2, .max = 33 },
250 .p2 = { .dot_limit = 165000,
251 .p2_slow = 4, .p2_fast = 4 },
252 };
253
254 static const struct intel_limit intel_limits_i8xx_lvds = {
255 .dot = { .min = 25000, .max = 350000 },
256 .vco = { .min = 908000, .max = 1512000 },
257 .n = { .min = 2, .max = 16 },
258 .m = { .min = 96, .max = 140 },
259 .m1 = { .min = 18, .max = 26 },
260 .m2 = { .min = 6, .max = 16 },
261 .p = { .min = 4, .max = 128 },
262 .p1 = { .min = 1, .max = 6 },
263 .p2 = { .dot_limit = 165000,
264 .p2_slow = 14, .p2_fast = 7 },
265 };
266
267 static const struct intel_limit intel_limits_i9xx_sdvo = {
268 .dot = { .min = 20000, .max = 400000 },
269 .vco = { .min = 1400000, .max = 2800000 },
270 .n = { .min = 1, .max = 6 },
271 .m = { .min = 70, .max = 120 },
272 .m1 = { .min = 8, .max = 18 },
273 .m2 = { .min = 3, .max = 7 },
274 .p = { .min = 5, .max = 80 },
275 .p1 = { .min = 1, .max = 8 },
276 .p2 = { .dot_limit = 200000,
277 .p2_slow = 10, .p2_fast = 5 },
278 };
279
280 static const struct intel_limit intel_limits_i9xx_lvds = {
281 .dot = { .min = 20000, .max = 400000 },
282 .vco = { .min = 1400000, .max = 2800000 },
283 .n = { .min = 1, .max = 6 },
284 .m = { .min = 70, .max = 120 },
285 .m1 = { .min = 8, .max = 18 },
286 .m2 = { .min = 3, .max = 7 },
287 .p = { .min = 7, .max = 98 },
288 .p1 = { .min = 1, .max = 8 },
289 .p2 = { .dot_limit = 112000,
290 .p2_slow = 14, .p2_fast = 7 },
291 };
292
293
294 static const struct intel_limit intel_limits_g4x_sdvo = {
295 .dot = { .min = 25000, .max = 270000 },
296 .vco = { .min = 1750000, .max = 3500000},
297 .n = { .min = 1, .max = 4 },
298 .m = { .min = 104, .max = 138 },
299 .m1 = { .min = 17, .max = 23 },
300 .m2 = { .min = 5, .max = 11 },
301 .p = { .min = 10, .max = 30 },
302 .p1 = { .min = 1, .max = 3},
303 .p2 = { .dot_limit = 270000,
304 .p2_slow = 10,
305 .p2_fast = 10
306 },
307 };
308
309 static const struct intel_limit intel_limits_g4x_hdmi = {
310 .dot = { .min = 22000, .max = 400000 },
311 .vco = { .min = 1750000, .max = 3500000},
312 .n = { .min = 1, .max = 4 },
313 .m = { .min = 104, .max = 138 },
314 .m1 = { .min = 16, .max = 23 },
315 .m2 = { .min = 5, .max = 11 },
316 .p = { .min = 5, .max = 80 },
317 .p1 = { .min = 1, .max = 8},
318 .p2 = { .dot_limit = 165000,
319 .p2_slow = 10, .p2_fast = 5 },
320 };
321
322 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
323 .dot = { .min = 20000, .max = 115000 },
324 .vco = { .min = 1750000, .max = 3500000 },
325 .n = { .min = 1, .max = 3 },
326 .m = { .min = 104, .max = 138 },
327 .m1 = { .min = 17, .max = 23 },
328 .m2 = { .min = 5, .max = 11 },
329 .p = { .min = 28, .max = 112 },
330 .p1 = { .min = 2, .max = 8 },
331 .p2 = { .dot_limit = 0,
332 .p2_slow = 14, .p2_fast = 14
333 },
334 };
335
336 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
337 .dot = { .min = 80000, .max = 224000 },
338 .vco = { .min = 1750000, .max = 3500000 },
339 .n = { .min = 1, .max = 3 },
340 .m = { .min = 104, .max = 138 },
341 .m1 = { .min = 17, .max = 23 },
342 .m2 = { .min = 5, .max = 11 },
343 .p = { .min = 14, .max = 42 },
344 .p1 = { .min = 2, .max = 6 },
345 .p2 = { .dot_limit = 0,
346 .p2_slow = 7, .p2_fast = 7
347 },
348 };
349
350 static const struct intel_limit intel_limits_pineview_sdvo = {
351 .dot = { .min = 20000, .max = 400000},
352 .vco = { .min = 1700000, .max = 3500000 },
353 /* Pineview's Ncounter is a ring counter */
354 .n = { .min = 3, .max = 6 },
355 .m = { .min = 2, .max = 256 },
356 /* Pineview only has one combined m divider, which we treat as m2. */
357 .m1 = { .min = 0, .max = 0 },
358 .m2 = { .min = 0, .max = 254 },
359 .p = { .min = 5, .max = 80 },
360 .p1 = { .min = 1, .max = 8 },
361 .p2 = { .dot_limit = 200000,
362 .p2_slow = 10, .p2_fast = 5 },
363 };
364
365 static const struct intel_limit intel_limits_pineview_lvds = {
366 .dot = { .min = 20000, .max = 400000 },
367 .vco = { .min = 1700000, .max = 3500000 },
368 .n = { .min = 3, .max = 6 },
369 .m = { .min = 2, .max = 256 },
370 .m1 = { .min = 0, .max = 0 },
371 .m2 = { .min = 0, .max = 254 },
372 .p = { .min = 7, .max = 112 },
373 .p1 = { .min = 1, .max = 8 },
374 .p2 = { .dot_limit = 112000,
375 .p2_slow = 14, .p2_fast = 14 },
376 };
377
378 /* Ironlake / Sandybridge
379 *
380 * We calculate clock using (register_value + 2) for N/M1/M2, so here
381 * the range value for them is (actual_value - 2).
382 */
383 static const struct intel_limit intel_limits_ironlake_dac = {
384 .dot = { .min = 25000, .max = 350000 },
385 .vco = { .min = 1760000, .max = 3510000 },
386 .n = { .min = 1, .max = 5 },
387 .m = { .min = 79, .max = 127 },
388 .m1 = { .min = 12, .max = 22 },
389 .m2 = { .min = 5, .max = 9 },
390 .p = { .min = 5, .max = 80 },
391 .p1 = { .min = 1, .max = 8 },
392 .p2 = { .dot_limit = 225000,
393 .p2_slow = 10, .p2_fast = 5 },
394 };
395
396 static const struct intel_limit intel_limits_ironlake_single_lvds = {
397 .dot = { .min = 25000, .max = 350000 },
398 .vco = { .min = 1760000, .max = 3510000 },
399 .n = { .min = 1, .max = 3 },
400 .m = { .min = 79, .max = 118 },
401 .m1 = { .min = 12, .max = 22 },
402 .m2 = { .min = 5, .max = 9 },
403 .p = { .min = 28, .max = 112 },
404 .p1 = { .min = 2, .max = 8 },
405 .p2 = { .dot_limit = 225000,
406 .p2_slow = 14, .p2_fast = 14 },
407 };
408
409 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
410 .dot = { .min = 25000, .max = 350000 },
411 .vco = { .min = 1760000, .max = 3510000 },
412 .n = { .min = 1, .max = 3 },
413 .m = { .min = 79, .max = 127 },
414 .m1 = { .min = 12, .max = 22 },
415 .m2 = { .min = 5, .max = 9 },
416 .p = { .min = 14, .max = 56 },
417 .p1 = { .min = 2, .max = 8 },
418 .p2 = { .dot_limit = 225000,
419 .p2_slow = 7, .p2_fast = 7 },
420 };
421
422 /* LVDS 100mhz refclk limits. */
423 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
424 .dot = { .min = 25000, .max = 350000 },
425 .vco = { .min = 1760000, .max = 3510000 },
426 .n = { .min = 1, .max = 2 },
427 .m = { .min = 79, .max = 126 },
428 .m1 = { .min = 12, .max = 22 },
429 .m2 = { .min = 5, .max = 9 },
430 .p = { .min = 28, .max = 112 },
431 .p1 = { .min = 2, .max = 8 },
432 .p2 = { .dot_limit = 225000,
433 .p2_slow = 14, .p2_fast = 14 },
434 };
435
436 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
437 .dot = { .min = 25000, .max = 350000 },
438 .vco = { .min = 1760000, .max = 3510000 },
439 .n = { .min = 1, .max = 3 },
440 .m = { .min = 79, .max = 126 },
441 .m1 = { .min = 12, .max = 22 },
442 .m2 = { .min = 5, .max = 9 },
443 .p = { .min = 14, .max = 42 },
444 .p1 = { .min = 2, .max = 6 },
445 .p2 = { .dot_limit = 225000,
446 .p2_slow = 7, .p2_fast = 7 },
447 };
448
449 static const struct intel_limit intel_limits_vlv = {
450 /*
451 * These are the data rate limits (measured in fast clocks)
452 * since those are the strictest limits we have. The fast
453 * clock and actual rate limits are more relaxed, so checking
454 * them would make no difference.
455 */
456 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
457 .vco = { .min = 4000000, .max = 6000000 },
458 .n = { .min = 1, .max = 7 },
459 .m1 = { .min = 2, .max = 3 },
460 .m2 = { .min = 11, .max = 156 },
461 .p1 = { .min = 2, .max = 3 },
462 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
463 };
464
465 static const struct intel_limit intel_limits_chv = {
466 /*
467 * These are the data rate limits (measured in fast clocks)
468 * since those are the strictest limits we have. The fast
469 * clock and actual rate limits are more relaxed, so checking
470 * them would make no difference.
471 */
472 .dot = { .min = 25000 * 5, .max = 540000 * 5},
473 .vco = { .min = 4800000, .max = 6480000 },
474 .n = { .min = 1, .max = 1 },
475 .m1 = { .min = 2, .max = 2 },
476 .m2 = { .min = 24 << 22, .max = 175 << 22 },
477 .p1 = { .min = 2, .max = 4 },
478 .p2 = { .p2_slow = 1, .p2_fast = 14 },
479 };
480
481 static const struct intel_limit intel_limits_bxt = {
482 /* FIXME: find real dot limits */
483 .dot = { .min = 0, .max = INT_MAX },
484 .vco = { .min = 4800000, .max = 6700000 },
485 .n = { .min = 1, .max = 1 },
486 .m1 = { .min = 2, .max = 2 },
487 /* FIXME: find real m2 limits */
488 .m2 = { .min = 2 << 22, .max = 255 << 22 },
489 .p1 = { .min = 2, .max = 4 },
490 .p2 = { .p2_slow = 1, .p2_fast = 20 },
491 };
492
493 static bool
494 needs_modeset(struct drm_crtc_state *state)
495 {
496 return drm_atomic_crtc_needs_modeset(state);
497 }
498
499 /*
500 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
501 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
502 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
503 * The helpers' return value is the rate of the clock that is fed to the
504 * display engine's pipe which can be the above fast dot clock rate or a
505 * divided-down version of it.
506 */
507 /* m1 is reserved as 0 in Pineview, n is a ring counter */
508 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
509 {
510 clock->m = clock->m2 + 2;
511 clock->p = clock->p1 * clock->p2;
512 if (WARN_ON(clock->n == 0 || clock->p == 0))
513 return 0;
514 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
515 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
516
517 return clock->dot;
518 }
519
520 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
521 {
522 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
523 }
524
525 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
526 {
527 clock->m = i9xx_dpll_compute_m(clock);
528 clock->p = clock->p1 * clock->p2;
529 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
530 return 0;
531 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
532 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
533
534 return clock->dot;
535 }
536
537 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
538 {
539 clock->m = clock->m1 * clock->m2;
540 clock->p = clock->p1 * clock->p2;
541 if (WARN_ON(clock->n == 0 || clock->p == 0))
542 return 0;
543 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
544 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
545
546 return clock->dot / 5;
547 }
548
549 int chv_calc_dpll_params(int refclk, struct dpll *clock)
550 {
551 clock->m = clock->m1 * clock->m2;
552 clock->p = clock->p1 * clock->p2;
553 if (WARN_ON(clock->n == 0 || clock->p == 0))
554 return 0;
555 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 clock->n << 22);
557 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558
559 return clock->dot / 5;
560 }
561
562 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
563 /**
564 * Returns whether the given set of divisors are valid for a given refclk with
565 * the given connectors.
566 */
567
568 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
569 const struct intel_limit *limit,
570 const struct dpll *clock)
571 {
572 if (clock->n < limit->n.min || limit->n.max < clock->n)
573 INTELPllInvalid("n out of range\n");
574 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
575 INTELPllInvalid("p1 out of range\n");
576 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
577 INTELPllInvalid("m2 out of range\n");
578 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
579 INTELPllInvalid("m1 out of range\n");
580
581 if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
582 !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
583 if (clock->m1 <= clock->m2)
584 INTELPllInvalid("m1 <= m2\n");
585
586 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
587 !IS_GEN9_LP(dev_priv)) {
588 if (clock->p < limit->p.min || limit->p.max < clock->p)
589 INTELPllInvalid("p out of range\n");
590 if (clock->m < limit->m.min || limit->m.max < clock->m)
591 INTELPllInvalid("m out of range\n");
592 }
593
594 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
595 INTELPllInvalid("vco out of range\n");
596 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
597 * connector, etc., rather than just a single range.
598 */
599 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
600 INTELPllInvalid("dot out of range\n");
601
602 return true;
603 }
604
605 static int
606 i9xx_select_p2_div(const struct intel_limit *limit,
607 const struct intel_crtc_state *crtc_state,
608 int target)
609 {
610 struct drm_device *dev = crtc_state->base.crtc->dev;
611
612 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
613 /*
614 * For LVDS just rely on its current settings for dual-channel.
615 * We haven't figured out how to reliably set up different
616 * single/dual channel state, if we even can.
617 */
618 if (intel_is_dual_link_lvds(dev))
619 return limit->p2.p2_fast;
620 else
621 return limit->p2.p2_slow;
622 } else {
623 if (target < limit->p2.dot_limit)
624 return limit->p2.p2_slow;
625 else
626 return limit->p2.p2_fast;
627 }
628 }
629
630 /*
631 * Returns a set of divisors for the desired target clock with the given
632 * refclk, or FALSE. The returned values represent the clock equation:
633 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
634 *
635 * Target and reference clocks are specified in kHz.
636 *
637 * If match_clock is provided, then best_clock P divider must match the P
638 * divider from @match_clock used for LVDS downclocking.
639 */
640 static bool
641 i9xx_find_best_dpll(const struct intel_limit *limit,
642 struct intel_crtc_state *crtc_state,
643 int target, int refclk, struct dpll *match_clock,
644 struct dpll *best_clock)
645 {
646 struct drm_device *dev = crtc_state->base.crtc->dev;
647 struct dpll clock;
648 int err = target;
649
650 memset(best_clock, 0, sizeof(*best_clock));
651
652 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
653
654 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
655 clock.m1++) {
656 for (clock.m2 = limit->m2.min;
657 clock.m2 <= limit->m2.max; clock.m2++) {
658 if (clock.m2 >= clock.m1)
659 break;
660 for (clock.n = limit->n.min;
661 clock.n <= limit->n.max; clock.n++) {
662 for (clock.p1 = limit->p1.min;
663 clock.p1 <= limit->p1.max; clock.p1++) {
664 int this_err;
665
666 i9xx_calc_dpll_params(refclk, &clock);
667 if (!intel_PLL_is_valid(to_i915(dev),
668 limit,
669 &clock))
670 continue;
671 if (match_clock &&
672 clock.p != match_clock->p)
673 continue;
674
675 this_err = abs(clock.dot - target);
676 if (this_err < err) {
677 *best_clock = clock;
678 err = this_err;
679 }
680 }
681 }
682 }
683 }
684
685 return (err != target);
686 }
687
688 /*
689 * Returns a set of divisors for the desired target clock with the given
690 * refclk, or FALSE. The returned values represent the clock equation:
691 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
692 *
693 * Target and reference clocks are specified in kHz.
694 *
695 * If match_clock is provided, then best_clock P divider must match the P
696 * divider from @match_clock used for LVDS downclocking.
697 */
698 static bool
699 pnv_find_best_dpll(const struct intel_limit *limit,
700 struct intel_crtc_state *crtc_state,
701 int target, int refclk, struct dpll *match_clock,
702 struct dpll *best_clock)
703 {
704 struct drm_device *dev = crtc_state->base.crtc->dev;
705 struct dpll clock;
706 int err = target;
707
708 memset(best_clock, 0, sizeof(*best_clock));
709
710 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
711
712 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
713 clock.m1++) {
714 for (clock.m2 = limit->m2.min;
715 clock.m2 <= limit->m2.max; clock.m2++) {
716 for (clock.n = limit->n.min;
717 clock.n <= limit->n.max; clock.n++) {
718 for (clock.p1 = limit->p1.min;
719 clock.p1 <= limit->p1.max; clock.p1++) {
720 int this_err;
721
722 pnv_calc_dpll_params(refclk, &clock);
723 if (!intel_PLL_is_valid(to_i915(dev),
724 limit,
725 &clock))
726 continue;
727 if (match_clock &&
728 clock.p != match_clock->p)
729 continue;
730
731 this_err = abs(clock.dot - target);
732 if (this_err < err) {
733 *best_clock = clock;
734 err = this_err;
735 }
736 }
737 }
738 }
739 }
740
741 return (err != target);
742 }
743
744 /*
745 * Returns a set of divisors for the desired target clock with the given
746 * refclk, or FALSE. The returned values represent the clock equation:
747 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
748 *
749 * Target and reference clocks are specified in kHz.
750 *
751 * If match_clock is provided, then best_clock P divider must match the P
752 * divider from @match_clock used for LVDS downclocking.
753 */
754 static bool
755 g4x_find_best_dpll(const struct intel_limit *limit,
756 struct intel_crtc_state *crtc_state,
757 int target, int refclk, struct dpll *match_clock,
758 struct dpll *best_clock)
759 {
760 struct drm_device *dev = crtc_state->base.crtc->dev;
761 struct dpll clock;
762 int max_n;
763 bool found = false;
764 /* approximately equals target * 0.00585 */
765 int err_most = (target >> 8) + (target >> 9);
766
767 memset(best_clock, 0, sizeof(*best_clock));
768
769 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
770
771 max_n = limit->n.max;
772 /* based on hardware requirement, prefer smaller n to precision */
773 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
774 /* based on hardware requirement, prefere larger m1,m2 */
775 for (clock.m1 = limit->m1.max;
776 clock.m1 >= limit->m1.min; clock.m1--) {
777 for (clock.m2 = limit->m2.max;
778 clock.m2 >= limit->m2.min; clock.m2--) {
779 for (clock.p1 = limit->p1.max;
780 clock.p1 >= limit->p1.min; clock.p1--) {
781 int this_err;
782
783 i9xx_calc_dpll_params(refclk, &clock);
784 if (!intel_PLL_is_valid(to_i915(dev),
785 limit,
786 &clock))
787 continue;
788
789 this_err = abs(clock.dot - target);
790 if (this_err < err_most) {
791 *best_clock = clock;
792 err_most = this_err;
793 max_n = clock.n;
794 found = true;
795 }
796 }
797 }
798 }
799 }
800 return found;
801 }
802
803 /*
804 * Check if the calculated PLL configuration is more optimal compared to the
805 * best configuration and error found so far. Return the calculated error.
806 */
807 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
808 const struct dpll *calculated_clock,
809 const struct dpll *best_clock,
810 unsigned int best_error_ppm,
811 unsigned int *error_ppm)
812 {
813 /*
814 * For CHV ignore the error and consider only the P value.
815 * Prefer a bigger P value based on HW requirements.
816 */
817 if (IS_CHERRYVIEW(to_i915(dev))) {
818 *error_ppm = 0;
819
820 return calculated_clock->p > best_clock->p;
821 }
822
823 if (WARN_ON_ONCE(!target_freq))
824 return false;
825
826 *error_ppm = div_u64(1000000ULL *
827 abs(target_freq - calculated_clock->dot),
828 target_freq);
829 /*
830 * Prefer a better P value over a better (smaller) error if the error
831 * is small. Ensure this preference for future configurations too by
832 * setting the error to 0.
833 */
834 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
835 *error_ppm = 0;
836
837 return true;
838 }
839
840 return *error_ppm + 10 < best_error_ppm;
841 }
842
843 /*
844 * Returns a set of divisors for the desired target clock with the given
845 * refclk, or FALSE. The returned values represent the clock equation:
846 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
847 */
848 static bool
849 vlv_find_best_dpll(const struct intel_limit *limit,
850 struct intel_crtc_state *crtc_state,
851 int target, int refclk, struct dpll *match_clock,
852 struct dpll *best_clock)
853 {
854 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
855 struct drm_device *dev = crtc->base.dev;
856 struct dpll clock;
857 unsigned int bestppm = 1000000;
858 /* min update 19.2 MHz */
859 int max_n = min(limit->n.max, refclk / 19200);
860 bool found = false;
861
862 target *= 5; /* fast clock */
863
864 memset(best_clock, 0, sizeof(*best_clock));
865
866 /* based on hardware requirement, prefer smaller n to precision */
867 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
868 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
869 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
870 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
871 clock.p = clock.p1 * clock.p2;
872 /* based on hardware requirement, prefer bigger m1,m2 values */
873 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
874 unsigned int ppm;
875
876 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
877 refclk * clock.m1);
878
879 vlv_calc_dpll_params(refclk, &clock);
880
881 if (!intel_PLL_is_valid(to_i915(dev),
882 limit,
883 &clock))
884 continue;
885
886 if (!vlv_PLL_is_optimal(dev, target,
887 &clock,
888 best_clock,
889 bestppm, &ppm))
890 continue;
891
892 *best_clock = clock;
893 bestppm = ppm;
894 found = true;
895 }
896 }
897 }
898 }
899
900 return found;
901 }
902
903 /*
904 * Returns a set of divisors for the desired target clock with the given
905 * refclk, or FALSE. The returned values represent the clock equation:
906 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
907 */
908 static bool
909 chv_find_best_dpll(const struct intel_limit *limit,
910 struct intel_crtc_state *crtc_state,
911 int target, int refclk, struct dpll *match_clock,
912 struct dpll *best_clock)
913 {
914 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
915 struct drm_device *dev = crtc->base.dev;
916 unsigned int best_error_ppm;
917 struct dpll clock;
918 uint64_t m2;
919 int found = false;
920
921 memset(best_clock, 0, sizeof(*best_clock));
922 best_error_ppm = 1000000;
923
924 /*
925 * Based on hardware doc, the n always set to 1, and m1 always
926 * set to 2. If requires to support 200Mhz refclk, we need to
927 * revisit this because n may not 1 anymore.
928 */
929 clock.n = 1, clock.m1 = 2;
930 target *= 5; /* fast clock */
931
932 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
933 for (clock.p2 = limit->p2.p2_fast;
934 clock.p2 >= limit->p2.p2_slow;
935 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
936 unsigned int error_ppm;
937
938 clock.p = clock.p1 * clock.p2;
939
940 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
941 clock.n) << 22, refclk * clock.m1);
942
943 if (m2 > INT_MAX/clock.m1)
944 continue;
945
946 clock.m2 = m2;
947
948 chv_calc_dpll_params(refclk, &clock);
949
950 if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
951 continue;
952
953 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
954 best_error_ppm, &error_ppm))
955 continue;
956
957 *best_clock = clock;
958 best_error_ppm = error_ppm;
959 found = true;
960 }
961 }
962
963 return found;
964 }
965
966 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
967 struct dpll *best_clock)
968 {
969 int refclk = 100000;
970 const struct intel_limit *limit = &intel_limits_bxt;
971
972 return chv_find_best_dpll(limit, crtc_state,
973 target_clock, refclk, NULL, best_clock);
974 }
975
976 bool intel_crtc_active(struct intel_crtc *crtc)
977 {
978 /* Be paranoid as we can arrive here with only partial
979 * state retrieved from the hardware during setup.
980 *
981 * We can ditch the adjusted_mode.crtc_clock check as soon
982 * as Haswell has gained clock readout/fastboot support.
983 *
984 * We can ditch the crtc->primary->fb check as soon as we can
985 * properly reconstruct framebuffers.
986 *
987 * FIXME: The intel_crtc->active here should be switched to
988 * crtc->state->active once we have proper CRTC states wired up
989 * for atomic.
990 */
991 return crtc->active && crtc->base.primary->state->fb &&
992 crtc->config->base.adjusted_mode.crtc_clock;
993 }
994
995 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
996 enum pipe pipe)
997 {
998 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
999
1000 return crtc->config->cpu_transcoder;
1001 }
1002
1003 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1004 enum pipe pipe)
1005 {
1006 i915_reg_t reg = PIPEDSL(pipe);
1007 u32 line1, line2;
1008 u32 line_mask;
1009
1010 if (IS_GEN2(dev_priv))
1011 line_mask = DSL_LINEMASK_GEN2;
1012 else
1013 line_mask = DSL_LINEMASK_GEN3;
1014
1015 line1 = I915_READ(reg) & line_mask;
1016 msleep(5);
1017 line2 = I915_READ(reg) & line_mask;
1018
1019 return line1 != line2;
1020 }
1021
1022 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1023 {
1024 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1025 enum pipe pipe = crtc->pipe;
1026
1027 /* Wait for the display line to settle/start moving */
1028 if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1029 DRM_ERROR("pipe %c scanline %s wait timed out\n",
1030 pipe_name(pipe), onoff(state));
1031 }
1032
1033 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1034 {
1035 wait_for_pipe_scanline_moving(crtc, false);
1036 }
1037
1038 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1039 {
1040 wait_for_pipe_scanline_moving(crtc, true);
1041 }
1042
1043 /*
1044 * intel_wait_for_pipe_off - wait for pipe to turn off
1045 * @crtc: crtc whose pipe to wait for
1046 *
1047 * After disabling a pipe, we can't wait for vblank in the usual way,
1048 * spinning on the vblank interrupt status bit, since we won't actually
1049 * see an interrupt when the pipe is disabled.
1050 *
1051 * On Gen4 and above:
1052 * wait for the pipe register state bit to turn off
1053 *
1054 * Otherwise:
1055 * wait for the display line value to settle (it usually
1056 * ends up stopping at the start of the next frame).
1057 *
1058 */
1059 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1060 {
1061 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1062 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1063
1064 if (INTEL_GEN(dev_priv) >= 4) {
1065 i915_reg_t reg = PIPECONF(cpu_transcoder);
1066
1067 /* Wait for the Pipe State to go off */
1068 if (intel_wait_for_register(dev_priv,
1069 reg, I965_PIPECONF_ACTIVE, 0,
1070 100))
1071 WARN(1, "pipe_off wait timed out\n");
1072 } else {
1073 intel_wait_for_pipe_scanline_stopped(crtc);
1074 }
1075 }
1076
1077 /* Only for pre-ILK configs */
1078 void assert_pll(struct drm_i915_private *dev_priv,
1079 enum pipe pipe, bool state)
1080 {
1081 u32 val;
1082 bool cur_state;
1083
1084 val = I915_READ(DPLL(pipe));
1085 cur_state = !!(val & DPLL_VCO_ENABLE);
1086 I915_STATE_WARN(cur_state != state,
1087 "PLL state assertion failure (expected %s, current %s)\n",
1088 onoff(state), onoff(cur_state));
1089 }
1090
1091 /* XXX: the dsi pll is shared between MIPI DSI ports */
1092 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1093 {
1094 u32 val;
1095 bool cur_state;
1096
1097 mutex_lock(&dev_priv->sb_lock);
1098 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1099 mutex_unlock(&dev_priv->sb_lock);
1100
1101 cur_state = val & DSI_PLL_VCO_EN;
1102 I915_STATE_WARN(cur_state != state,
1103 "DSI PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state), onoff(cur_state));
1105 }
1106
1107 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1108 enum pipe pipe, bool state)
1109 {
1110 bool cur_state;
1111 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1112 pipe);
1113
1114 if (HAS_DDI(dev_priv)) {
1115 /* DDI does not have a specific FDI_TX register */
1116 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1117 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1118 } else {
1119 u32 val = I915_READ(FDI_TX_CTL(pipe));
1120 cur_state = !!(val & FDI_TX_ENABLE);
1121 }
1122 I915_STATE_WARN(cur_state != state,
1123 "FDI TX state assertion failure (expected %s, current %s)\n",
1124 onoff(state), onoff(cur_state));
1125 }
1126 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1127 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1128
1129 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1130 enum pipe pipe, bool state)
1131 {
1132 u32 val;
1133 bool cur_state;
1134
1135 val = I915_READ(FDI_RX_CTL(pipe));
1136 cur_state = !!(val & FDI_RX_ENABLE);
1137 I915_STATE_WARN(cur_state != state,
1138 "FDI RX state assertion failure (expected %s, current %s)\n",
1139 onoff(state), onoff(cur_state));
1140 }
1141 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1142 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1143
1144 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1145 enum pipe pipe)
1146 {
1147 u32 val;
1148
1149 /* ILK FDI PLL is always enabled */
1150 if (IS_GEN5(dev_priv))
1151 return;
1152
1153 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1154 if (HAS_DDI(dev_priv))
1155 return;
1156
1157 val = I915_READ(FDI_TX_CTL(pipe));
1158 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1159 }
1160
1161 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1162 enum pipe pipe, bool state)
1163 {
1164 u32 val;
1165 bool cur_state;
1166
1167 val = I915_READ(FDI_RX_CTL(pipe));
1168 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1169 I915_STATE_WARN(cur_state != state,
1170 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1171 onoff(state), onoff(cur_state));
1172 }
1173
1174 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1175 {
1176 i915_reg_t pp_reg;
1177 u32 val;
1178 enum pipe panel_pipe = PIPE_A;
1179 bool locked = true;
1180
1181 if (WARN_ON(HAS_DDI(dev_priv)))
1182 return;
1183
1184 if (HAS_PCH_SPLIT(dev_priv)) {
1185 u32 port_sel;
1186
1187 pp_reg = PP_CONTROL(0);
1188 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1189
1190 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1191 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1192 panel_pipe = PIPE_B;
1193 /* XXX: else fix for eDP */
1194 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1195 /* presumably write lock depends on pipe, not port select */
1196 pp_reg = PP_CONTROL(pipe);
1197 panel_pipe = pipe;
1198 } else {
1199 pp_reg = PP_CONTROL(0);
1200 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1201 panel_pipe = PIPE_B;
1202 }
1203
1204 val = I915_READ(pp_reg);
1205 if (!(val & PANEL_POWER_ON) ||
1206 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1207 locked = false;
1208
1209 I915_STATE_WARN(panel_pipe == pipe && locked,
1210 "panel assertion failure, pipe %c regs locked\n",
1211 pipe_name(pipe));
1212 }
1213
1214 void assert_pipe(struct drm_i915_private *dev_priv,
1215 enum pipe pipe, bool state)
1216 {
1217 bool cur_state;
1218 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1219 pipe);
1220 enum intel_display_power_domain power_domain;
1221
1222 /* we keep both pipes enabled on 830 */
1223 if (IS_I830(dev_priv))
1224 state = true;
1225
1226 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1227 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1228 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1229 cur_state = !!(val & PIPECONF_ENABLE);
1230
1231 intel_display_power_put(dev_priv, power_domain);
1232 } else {
1233 cur_state = false;
1234 }
1235
1236 I915_STATE_WARN(cur_state != state,
1237 "pipe %c assertion failure (expected %s, current %s)\n",
1238 pipe_name(pipe), onoff(state), onoff(cur_state));
1239 }
1240
1241 static void assert_plane(struct intel_plane *plane, bool state)
1242 {
1243 bool cur_state = plane->get_hw_state(plane);
1244
1245 I915_STATE_WARN(cur_state != state,
1246 "%s assertion failure (expected %s, current %s)\n",
1247 plane->base.name, onoff(state), onoff(cur_state));
1248 }
1249
1250 #define assert_plane_enabled(p) assert_plane(p, true)
1251 #define assert_plane_disabled(p) assert_plane(p, false)
1252
1253 static void assert_planes_disabled(struct intel_crtc *crtc)
1254 {
1255 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1256 struct intel_plane *plane;
1257
1258 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1259 assert_plane_disabled(plane);
1260 }
1261
1262 static void assert_vblank_disabled(struct drm_crtc *crtc)
1263 {
1264 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1265 drm_crtc_vblank_put(crtc);
1266 }
1267
1268 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1269 enum pipe pipe)
1270 {
1271 u32 val;
1272 bool enabled;
1273
1274 val = I915_READ(PCH_TRANSCONF(pipe));
1275 enabled = !!(val & TRANS_ENABLE);
1276 I915_STATE_WARN(enabled,
1277 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1278 pipe_name(pipe));
1279 }
1280
1281 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1282 enum pipe pipe, u32 port_sel, u32 val)
1283 {
1284 if ((val & DP_PORT_EN) == 0)
1285 return false;
1286
1287 if (HAS_PCH_CPT(dev_priv)) {
1288 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1289 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1290 return false;
1291 } else if (IS_CHERRYVIEW(dev_priv)) {
1292 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1293 return false;
1294 } else {
1295 if ((val & DP_PIPE_MASK) != (pipe << 30))
1296 return false;
1297 }
1298 return true;
1299 }
1300
1301 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1302 enum pipe pipe, u32 val)
1303 {
1304 if ((val & SDVO_ENABLE) == 0)
1305 return false;
1306
1307 if (HAS_PCH_CPT(dev_priv)) {
1308 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1309 return false;
1310 } else if (IS_CHERRYVIEW(dev_priv)) {
1311 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1312 return false;
1313 } else {
1314 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1315 return false;
1316 }
1317 return true;
1318 }
1319
1320 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe, u32 val)
1322 {
1323 if ((val & LVDS_PORT_EN) == 0)
1324 return false;
1325
1326 if (HAS_PCH_CPT(dev_priv)) {
1327 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1328 return false;
1329 } else {
1330 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1331 return false;
1332 }
1333 return true;
1334 }
1335
1336 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1337 enum pipe pipe, u32 val)
1338 {
1339 if ((val & ADPA_DAC_ENABLE) == 0)
1340 return false;
1341 if (HAS_PCH_CPT(dev_priv)) {
1342 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1343 return false;
1344 } else {
1345 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1346 return false;
1347 }
1348 return true;
1349 }
1350
1351 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1352 enum pipe pipe, i915_reg_t reg,
1353 u32 port_sel)
1354 {
1355 u32 val = I915_READ(reg);
1356 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1357 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1358 i915_mmio_reg_offset(reg), pipe_name(pipe));
1359
1360 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1361 && (val & DP_PIPEB_SELECT),
1362 "IBX PCH dp port still using transcoder B\n");
1363 }
1364
1365 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, i915_reg_t reg)
1367 {
1368 u32 val = I915_READ(reg);
1369 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1370 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1371 i915_mmio_reg_offset(reg), pipe_name(pipe));
1372
1373 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1374 && (val & SDVO_PIPE_B_SELECT),
1375 "IBX PCH hdmi port still using transcoder B\n");
1376 }
1377
1378 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1379 enum pipe pipe)
1380 {
1381 u32 val;
1382
1383 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1384 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1385 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1386
1387 val = I915_READ(PCH_ADPA);
1388 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1389 "PCH VGA enabled on transcoder %c, should be disabled\n",
1390 pipe_name(pipe));
1391
1392 val = I915_READ(PCH_LVDS);
1393 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1394 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1395 pipe_name(pipe));
1396
1397 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1398 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1399 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1400 }
1401
1402 static void _vlv_enable_pll(struct intel_crtc *crtc,
1403 const struct intel_crtc_state *pipe_config)
1404 {
1405 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1406 enum pipe pipe = crtc->pipe;
1407
1408 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1409 POSTING_READ(DPLL(pipe));
1410 udelay(150);
1411
1412 if (intel_wait_for_register(dev_priv,
1413 DPLL(pipe),
1414 DPLL_LOCK_VLV,
1415 DPLL_LOCK_VLV,
1416 1))
1417 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1418 }
1419
1420 static void vlv_enable_pll(struct intel_crtc *crtc,
1421 const struct intel_crtc_state *pipe_config)
1422 {
1423 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1424 enum pipe pipe = crtc->pipe;
1425
1426 assert_pipe_disabled(dev_priv, pipe);
1427
1428 /* PLL is protected by panel, make sure we can write it */
1429 assert_panel_unlocked(dev_priv, pipe);
1430
1431 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1432 _vlv_enable_pll(crtc, pipe_config);
1433
1434 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1435 POSTING_READ(DPLL_MD(pipe));
1436 }
1437
1438
1439 static void _chv_enable_pll(struct intel_crtc *crtc,
1440 const struct intel_crtc_state *pipe_config)
1441 {
1442 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1443 enum pipe pipe = crtc->pipe;
1444 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1445 u32 tmp;
1446
1447 mutex_lock(&dev_priv->sb_lock);
1448
1449 /* Enable back the 10bit clock to display controller */
1450 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1451 tmp |= DPIO_DCLKP_EN;
1452 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1453
1454 mutex_unlock(&dev_priv->sb_lock);
1455
1456 /*
1457 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1458 */
1459 udelay(1);
1460
1461 /* Enable PLL */
1462 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1463
1464 /* Check PLL is locked */
1465 if (intel_wait_for_register(dev_priv,
1466 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1467 1))
1468 DRM_ERROR("PLL %d failed to lock\n", pipe);
1469 }
1470
1471 static void chv_enable_pll(struct intel_crtc *crtc,
1472 const struct intel_crtc_state *pipe_config)
1473 {
1474 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1475 enum pipe pipe = crtc->pipe;
1476
1477 assert_pipe_disabled(dev_priv, pipe);
1478
1479 /* PLL is protected by panel, make sure we can write it */
1480 assert_panel_unlocked(dev_priv, pipe);
1481
1482 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1483 _chv_enable_pll(crtc, pipe_config);
1484
1485 if (pipe != PIPE_A) {
1486 /*
1487 * WaPixelRepeatModeFixForC0:chv
1488 *
1489 * DPLLCMD is AWOL. Use chicken bits to propagate
1490 * the value from DPLLBMD to either pipe B or C.
1491 */
1492 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1493 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1494 I915_WRITE(CBR4_VLV, 0);
1495 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1496
1497 /*
1498 * DPLLB VGA mode also seems to cause problems.
1499 * We should always have it disabled.
1500 */
1501 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1502 } else {
1503 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1504 POSTING_READ(DPLL_MD(pipe));
1505 }
1506 }
1507
1508 static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
1509 {
1510 struct intel_crtc *crtc;
1511 int count = 0;
1512
1513 for_each_intel_crtc(&dev_priv->drm, crtc) {
1514 count += crtc->base.state->active &&
1515 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1516 }
1517
1518 return count;
1519 }
1520
1521 static void i9xx_enable_pll(struct intel_crtc *crtc)
1522 {
1523 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1524 i915_reg_t reg = DPLL(crtc->pipe);
1525 u32 dpll = crtc->config->dpll_hw_state.dpll;
1526 int i;
1527
1528 assert_pipe_disabled(dev_priv, crtc->pipe);
1529
1530 /* PLL is protected by panel, make sure we can write it */
1531 if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
1532 assert_panel_unlocked(dev_priv, crtc->pipe);
1533
1534 /* Enable DVO 2x clock on both PLLs if necessary */
1535 if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
1536 /*
1537 * It appears to be important that we don't enable this
1538 * for the current pipe before otherwise configuring the
1539 * PLL. No idea how this should be handled if multiple
1540 * DVO outputs are enabled simultaneosly.
1541 */
1542 dpll |= DPLL_DVO_2X_MODE;
1543 I915_WRITE(DPLL(!crtc->pipe),
1544 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1545 }
1546
1547 /*
1548 * Apparently we need to have VGA mode enabled prior to changing
1549 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1550 * dividers, even though the register value does change.
1551 */
1552 I915_WRITE(reg, 0);
1553
1554 I915_WRITE(reg, dpll);
1555
1556 /* Wait for the clocks to stabilize. */
1557 POSTING_READ(reg);
1558 udelay(150);
1559
1560 if (INTEL_GEN(dev_priv) >= 4) {
1561 I915_WRITE(DPLL_MD(crtc->pipe),
1562 crtc->config->dpll_hw_state.dpll_md);
1563 } else {
1564 /* The pixel multiplier can only be updated once the
1565 * DPLL is enabled and the clocks are stable.
1566 *
1567 * So write it again.
1568 */
1569 I915_WRITE(reg, dpll);
1570 }
1571
1572 /* We do this three times for luck */
1573 for (i = 0; i < 3; i++) {
1574 I915_WRITE(reg, dpll);
1575 POSTING_READ(reg);
1576 udelay(150); /* wait for warmup */
1577 }
1578 }
1579
1580 /**
1581 * i9xx_disable_pll - disable a PLL
1582 * @dev_priv: i915 private structure
1583 * @pipe: pipe PLL to disable
1584 *
1585 * Disable the PLL for @pipe, making sure the pipe is off first.
1586 *
1587 * Note! This is for pre-ILK only.
1588 */
1589 static void i9xx_disable_pll(struct intel_crtc *crtc)
1590 {
1591 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1592 enum pipe pipe = crtc->pipe;
1593
1594 /* Disable DVO 2x clock on both PLLs if necessary */
1595 if (IS_I830(dev_priv) &&
1596 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1597 !intel_num_dvo_pipes(dev_priv)) {
1598 I915_WRITE(DPLL(PIPE_B),
1599 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1600 I915_WRITE(DPLL(PIPE_A),
1601 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1602 }
1603
1604 /* Don't disable pipe or pipe PLLs if needed */
1605 if (IS_I830(dev_priv))
1606 return;
1607
1608 /* Make sure the pipe isn't still relying on us */
1609 assert_pipe_disabled(dev_priv, pipe);
1610
1611 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1612 POSTING_READ(DPLL(pipe));
1613 }
1614
1615 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1616 {
1617 u32 val;
1618
1619 /* Make sure the pipe isn't still relying on us */
1620 assert_pipe_disabled(dev_priv, pipe);
1621
1622 val = DPLL_INTEGRATED_REF_CLK_VLV |
1623 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1624 if (pipe != PIPE_A)
1625 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1626
1627 I915_WRITE(DPLL(pipe), val);
1628 POSTING_READ(DPLL(pipe));
1629 }
1630
1631 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1632 {
1633 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1634 u32 val;
1635
1636 /* Make sure the pipe isn't still relying on us */
1637 assert_pipe_disabled(dev_priv, pipe);
1638
1639 val = DPLL_SSC_REF_CLK_CHV |
1640 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1641 if (pipe != PIPE_A)
1642 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1643
1644 I915_WRITE(DPLL(pipe), val);
1645 POSTING_READ(DPLL(pipe));
1646
1647 mutex_lock(&dev_priv->sb_lock);
1648
1649 /* Disable 10bit clock to display controller */
1650 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1651 val &= ~DPIO_DCLKP_EN;
1652 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1653
1654 mutex_unlock(&dev_priv->sb_lock);
1655 }
1656
1657 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1658 struct intel_digital_port *dport,
1659 unsigned int expected_mask)
1660 {
1661 u32 port_mask;
1662 i915_reg_t dpll_reg;
1663
1664 switch (dport->port) {
1665 case PORT_B:
1666 port_mask = DPLL_PORTB_READY_MASK;
1667 dpll_reg = DPLL(0);
1668 break;
1669 case PORT_C:
1670 port_mask = DPLL_PORTC_READY_MASK;
1671 dpll_reg = DPLL(0);
1672 expected_mask <<= 4;
1673 break;
1674 case PORT_D:
1675 port_mask = DPLL_PORTD_READY_MASK;
1676 dpll_reg = DPIO_PHY_STATUS;
1677 break;
1678 default:
1679 BUG();
1680 }
1681
1682 if (intel_wait_for_register(dev_priv,
1683 dpll_reg, port_mask, expected_mask,
1684 1000))
1685 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1686 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1687 }
1688
1689 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1690 enum pipe pipe)
1691 {
1692 struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
1693 pipe);
1694 i915_reg_t reg;
1695 uint32_t val, pipeconf_val;
1696
1697 /* Make sure PCH DPLL is enabled */
1698 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1699
1700 /* FDI must be feeding us bits for PCH ports */
1701 assert_fdi_tx_enabled(dev_priv, pipe);
1702 assert_fdi_rx_enabled(dev_priv, pipe);
1703
1704 if (HAS_PCH_CPT(dev_priv)) {
1705 /* Workaround: Set the timing override bit before enabling the
1706 * pch transcoder. */
1707 reg = TRANS_CHICKEN2(pipe);
1708 val = I915_READ(reg);
1709 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1710 I915_WRITE(reg, val);
1711 }
1712
1713 reg = PCH_TRANSCONF(pipe);
1714 val = I915_READ(reg);
1715 pipeconf_val = I915_READ(PIPECONF(pipe));
1716
1717 if (HAS_PCH_IBX(dev_priv)) {
1718 /*
1719 * Make the BPC in transcoder be consistent with
1720 * that in pipeconf reg. For HDMI we must use 8bpc
1721 * here for both 8bpc and 12bpc.
1722 */
1723 val &= ~PIPECONF_BPC_MASK;
1724 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1725 val |= PIPECONF_8BPC;
1726 else
1727 val |= pipeconf_val & PIPECONF_BPC_MASK;
1728 }
1729
1730 val &= ~TRANS_INTERLACE_MASK;
1731 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1732 if (HAS_PCH_IBX(dev_priv) &&
1733 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1734 val |= TRANS_LEGACY_INTERLACED_ILK;
1735 else
1736 val |= TRANS_INTERLACED;
1737 else
1738 val |= TRANS_PROGRESSIVE;
1739
1740 I915_WRITE(reg, val | TRANS_ENABLE);
1741 if (intel_wait_for_register(dev_priv,
1742 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1743 100))
1744 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1745 }
1746
1747 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1748 enum transcoder cpu_transcoder)
1749 {
1750 u32 val, pipeconf_val;
1751
1752 /* FDI must be feeding us bits for PCH ports */
1753 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1754 assert_fdi_rx_enabled(dev_priv, PIPE_A);
1755
1756 /* Workaround: set timing override bit. */
1757 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1758 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1759 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1760
1761 val = TRANS_ENABLE;
1762 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1763
1764 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1765 PIPECONF_INTERLACED_ILK)
1766 val |= TRANS_INTERLACED;
1767 else
1768 val |= TRANS_PROGRESSIVE;
1769
1770 I915_WRITE(LPT_TRANSCONF, val);
1771 if (intel_wait_for_register(dev_priv,
1772 LPT_TRANSCONF,
1773 TRANS_STATE_ENABLE,
1774 TRANS_STATE_ENABLE,
1775 100))
1776 DRM_ERROR("Failed to enable PCH transcoder\n");
1777 }
1778
1779 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1780 enum pipe pipe)
1781 {
1782 i915_reg_t reg;
1783 uint32_t val;
1784
1785 /* FDI relies on the transcoder */
1786 assert_fdi_tx_disabled(dev_priv, pipe);
1787 assert_fdi_rx_disabled(dev_priv, pipe);
1788
1789 /* Ports must be off as well */
1790 assert_pch_ports_disabled(dev_priv, pipe);
1791
1792 reg = PCH_TRANSCONF(pipe);
1793 val = I915_READ(reg);
1794 val &= ~TRANS_ENABLE;
1795 I915_WRITE(reg, val);
1796 /* wait for PCH transcoder off, transcoder state */
1797 if (intel_wait_for_register(dev_priv,
1798 reg, TRANS_STATE_ENABLE, 0,
1799 50))
1800 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1801
1802 if (HAS_PCH_CPT(dev_priv)) {
1803 /* Workaround: Clear the timing override chicken bit again. */
1804 reg = TRANS_CHICKEN2(pipe);
1805 val = I915_READ(reg);
1806 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1807 I915_WRITE(reg, val);
1808 }
1809 }
1810
1811 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1812 {
1813 u32 val;
1814
1815 val = I915_READ(LPT_TRANSCONF);
1816 val &= ~TRANS_ENABLE;
1817 I915_WRITE(LPT_TRANSCONF, val);
1818 /* wait for PCH transcoder off, transcoder state */
1819 if (intel_wait_for_register(dev_priv,
1820 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1821 50))
1822 DRM_ERROR("Failed to disable PCH transcoder\n");
1823
1824 /* Workaround: clear timing override bit. */
1825 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1826 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1827 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1828 }
1829
1830 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1831 {
1832 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1833
1834 WARN_ON(!crtc->config->has_pch_encoder);
1835
1836 if (HAS_PCH_LPT(dev_priv))
1837 return PIPE_A;
1838 else
1839 return crtc->pipe;
1840 }
1841
1842 /**
1843 * intel_enable_pipe - enable a pipe, asserting requirements
1844 * @crtc: crtc responsible for the pipe
1845 *
1846 * Enable @crtc's pipe, making sure that various hardware specific requirements
1847 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1848 */
1849 static void intel_enable_pipe(struct intel_crtc *crtc)
1850 {
1851 struct drm_device *dev = crtc->base.dev;
1852 struct drm_i915_private *dev_priv = to_i915(dev);
1853 enum pipe pipe = crtc->pipe;
1854 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1855 i915_reg_t reg;
1856 u32 val;
1857
1858 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1859
1860 assert_planes_disabled(crtc);
1861
1862 /*
1863 * A pipe without a PLL won't actually be able to drive bits from
1864 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1865 * need the check.
1866 */
1867 if (HAS_GMCH_DISPLAY(dev_priv)) {
1868 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1869 assert_dsi_pll_enabled(dev_priv);
1870 else
1871 assert_pll_enabled(dev_priv, pipe);
1872 } else {
1873 if (crtc->config->has_pch_encoder) {
1874 /* if driving the PCH, we need FDI enabled */
1875 assert_fdi_rx_pll_enabled(dev_priv,
1876 intel_crtc_pch_transcoder(crtc));
1877 assert_fdi_tx_pll_enabled(dev_priv,
1878 (enum pipe) cpu_transcoder);
1879 }
1880 /* FIXME: assert CPU port conditions for SNB+ */
1881 }
1882
1883 reg = PIPECONF(cpu_transcoder);
1884 val = I915_READ(reg);
1885 if (val & PIPECONF_ENABLE) {
1886 /* we keep both pipes enabled on 830 */
1887 WARN_ON(!IS_I830(dev_priv));
1888 return;
1889 }
1890
1891 I915_WRITE(reg, val | PIPECONF_ENABLE);
1892 POSTING_READ(reg);
1893
1894 /*
1895 * Until the pipe starts PIPEDSL reads will return a stale value,
1896 * which causes an apparent vblank timestamp jump when PIPEDSL
1897 * resets to its proper value. That also messes up the frame count
1898 * when it's derived from the timestamps. So let's wait for the
1899 * pipe to start properly before we call drm_crtc_vblank_on()
1900 */
1901 if (dev->max_vblank_count == 0)
1902 intel_wait_for_pipe_scanline_moving(crtc);
1903 }
1904
1905 /**
1906 * intel_disable_pipe - disable a pipe, asserting requirements
1907 * @crtc: crtc whose pipes is to be disabled
1908 *
1909 * Disable the pipe of @crtc, making sure that various hardware
1910 * specific requirements are met, if applicable, e.g. plane
1911 * disabled, panel fitter off, etc.
1912 *
1913 * Will wait until the pipe has shut down before returning.
1914 */
1915 static void intel_disable_pipe(struct intel_crtc *crtc)
1916 {
1917 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1918 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1919 enum pipe pipe = crtc->pipe;
1920 i915_reg_t reg;
1921 u32 val;
1922
1923 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1924
1925 /*
1926 * Make sure planes won't keep trying to pump pixels to us,
1927 * or we might hang the display.
1928 */
1929 assert_planes_disabled(crtc);
1930
1931 reg = PIPECONF(cpu_transcoder);
1932 val = I915_READ(reg);
1933 if ((val & PIPECONF_ENABLE) == 0)
1934 return;
1935
1936 /*
1937 * Double wide has implications for planes
1938 * so best keep it disabled when not needed.
1939 */
1940 if (crtc->config->double_wide)
1941 val &= ~PIPECONF_DOUBLE_WIDE;
1942
1943 /* Don't disable pipe or pipe PLLs if needed */
1944 if (!IS_I830(dev_priv))
1945 val &= ~PIPECONF_ENABLE;
1946
1947 I915_WRITE(reg, val);
1948 if ((val & PIPECONF_ENABLE) == 0)
1949 intel_wait_for_pipe_off(crtc);
1950 }
1951
1952 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1953 {
1954 return IS_GEN2(dev_priv) ? 2048 : 4096;
1955 }
1956
1957 static unsigned int
1958 intel_tile_width_bytes(const struct drm_framebuffer *fb, int plane)
1959 {
1960 struct drm_i915_private *dev_priv = to_i915(fb->dev);
1961 unsigned int cpp = fb->format->cpp[plane];
1962
1963 switch (fb->modifier) {
1964 case DRM_FORMAT_MOD_LINEAR:
1965 return cpp;
1966 case I915_FORMAT_MOD_X_TILED:
1967 if (IS_GEN2(dev_priv))
1968 return 128;
1969 else
1970 return 512;
1971 case I915_FORMAT_MOD_Y_TILED_CCS:
1972 if (plane == 1)
1973 return 128;
1974 /* fall through */
1975 case I915_FORMAT_MOD_Y_TILED:
1976 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
1977 return 128;
1978 else
1979 return 512;
1980 case I915_FORMAT_MOD_Yf_TILED_CCS:
1981 if (plane == 1)
1982 return 128;
1983 /* fall through */
1984 case I915_FORMAT_MOD_Yf_TILED:
1985 switch (cpp) {
1986 case 1:
1987 return 64;
1988 case 2:
1989 case 4:
1990 return 128;
1991 case 8:
1992 case 16:
1993 return 256;
1994 default:
1995 MISSING_CASE(cpp);
1996 return cpp;
1997 }
1998 break;
1999 default:
2000 MISSING_CASE(fb->modifier);
2001 return cpp;
2002 }
2003 }
2004
2005 static unsigned int
2006 intel_tile_height(const struct drm_framebuffer *fb, int plane)
2007 {
2008 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
2009 return 1;
2010 else
2011 return intel_tile_size(to_i915(fb->dev)) /
2012 intel_tile_width_bytes(fb, plane);
2013 }
2014
2015 /* Return the tile dimensions in pixel units */
2016 static void intel_tile_dims(const struct drm_framebuffer *fb, int plane,
2017 unsigned int *tile_width,
2018 unsigned int *tile_height)
2019 {
2020 unsigned int tile_width_bytes = intel_tile_width_bytes(fb, plane);
2021 unsigned int cpp = fb->format->cpp[plane];
2022
2023 *tile_width = tile_width_bytes / cpp;
2024 *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
2025 }
2026
2027 unsigned int
2028 intel_fb_align_height(const struct drm_framebuffer *fb,
2029 int plane, unsigned int height)
2030 {
2031 unsigned int tile_height = intel_tile_height(fb, plane);
2032
2033 return ALIGN(height, tile_height);
2034 }
2035
2036 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2037 {
2038 unsigned int size = 0;
2039 int i;
2040
2041 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2042 size += rot_info->plane[i].width * rot_info->plane[i].height;
2043
2044 return size;
2045 }
2046
2047 static void
2048 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2049 const struct drm_framebuffer *fb,
2050 unsigned int rotation)
2051 {
2052 view->type = I915_GGTT_VIEW_NORMAL;
2053 if (drm_rotation_90_or_270(rotation)) {
2054 view->type = I915_GGTT_VIEW_ROTATED;
2055 view->rotated = to_intel_framebuffer(fb)->rot_info;
2056 }
2057 }
2058
2059 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2060 {
2061 if (IS_I830(dev_priv))
2062 return 16 * 1024;
2063 else if (IS_I85X(dev_priv))
2064 return 256;
2065 else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2066 return 32;
2067 else
2068 return 4 * 1024;
2069 }
2070
2071 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2072 {
2073 if (INTEL_INFO(dev_priv)->gen >= 9)
2074 return 256 * 1024;
2075 else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2076 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2077 return 128 * 1024;
2078 else if (INTEL_INFO(dev_priv)->gen >= 4)
2079 return 4 * 1024;
2080 else
2081 return 0;
2082 }
2083
2084 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2085 int plane)
2086 {
2087 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2088
2089 /* AUX_DIST needs only 4K alignment */
2090 if (plane == 1)
2091 return 4096;
2092
2093 switch (fb->modifier) {
2094 case DRM_FORMAT_MOD_LINEAR:
2095 return intel_linear_alignment(dev_priv);
2096 case I915_FORMAT_MOD_X_TILED:
2097 if (INTEL_GEN(dev_priv) >= 9)
2098 return 256 * 1024;
2099 return 0;
2100 case I915_FORMAT_MOD_Y_TILED_CCS:
2101 case I915_FORMAT_MOD_Yf_TILED_CCS:
2102 case I915_FORMAT_MOD_Y_TILED:
2103 case I915_FORMAT_MOD_Yf_TILED:
2104 return 1 * 1024 * 1024;
2105 default:
2106 MISSING_CASE(fb->modifier);
2107 return 0;
2108 }
2109 }
2110
2111 struct i915_vma *
2112 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2113 {
2114 struct drm_device *dev = fb->dev;
2115 struct drm_i915_private *dev_priv = to_i915(dev);
2116 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2117 struct i915_ggtt_view view;
2118 struct i915_vma *vma;
2119 u32 alignment;
2120
2121 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2122
2123 alignment = intel_surf_alignment(fb, 0);
2124
2125 intel_fill_fb_ggtt_view(&view, fb, rotation);
2126
2127 /* Note that the w/a also requires 64 PTE of padding following the
2128 * bo. We currently fill all unused PTE with the shadow page and so
2129 * we should always have valid PTE following the scanout preventing
2130 * the VT-d warning.
2131 */
2132 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2133 alignment = 256 * 1024;
2134
2135 /*
2136 * Global gtt pte registers are special registers which actually forward
2137 * writes to a chunk of system memory. Which means that there is no risk
2138 * that the register values disappear as soon as we call
2139 * intel_runtime_pm_put(), so it is correct to wrap only the
2140 * pin/unpin/fence and not more.
2141 */
2142 intel_runtime_pm_get(dev_priv);
2143
2144 atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2145
2146 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2147 if (IS_ERR(vma))
2148 goto err;
2149
2150 if (i915_vma_is_map_and_fenceable(vma)) {
2151 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2152 * fence, whereas 965+ only requires a fence if using
2153 * framebuffer compression. For simplicity, we always, when
2154 * possible, install a fence as the cost is not that onerous.
2155 *
2156 * If we fail to fence the tiled scanout, then either the
2157 * modeset will reject the change (which is highly unlikely as
2158 * the affected systems, all but one, do not have unmappable
2159 * space) or we will not be able to enable full powersaving
2160 * techniques (also likely not to apply due to various limits
2161 * FBC and the like impose on the size of the buffer, which
2162 * presumably we violated anyway with this unmappable buffer).
2163 * Anyway, it is presumably better to stumble onwards with
2164 * something and try to run the system in a "less than optimal"
2165 * mode that matches the user configuration.
2166 */
2167 if (i915_vma_get_fence(vma) == 0)
2168 i915_vma_pin_fence(vma);
2169 }
2170
2171 i915_vma_get(vma);
2172 err:
2173 atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2174
2175 intel_runtime_pm_put(dev_priv);
2176 return vma;
2177 }
2178
2179 void intel_unpin_fb_vma(struct i915_vma *vma)
2180 {
2181 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
2182
2183 i915_vma_unpin_fence(vma);
2184 i915_gem_object_unpin_from_display_plane(vma);
2185 i915_vma_put(vma);
2186 }
2187
2188 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2189 unsigned int rotation)
2190 {
2191 if (drm_rotation_90_or_270(rotation))
2192 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2193 else
2194 return fb->pitches[plane];
2195 }
2196
2197 /*
2198 * Convert the x/y offsets into a linear offset.
2199 * Only valid with 0/180 degree rotation, which is fine since linear
2200 * offset is only used with linear buffers on pre-hsw and tiled buffers
2201 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2202 */
2203 u32 intel_fb_xy_to_linear(int x, int y,
2204 const struct intel_plane_state *state,
2205 int plane)
2206 {
2207 const struct drm_framebuffer *fb = state->base.fb;
2208 unsigned int cpp = fb->format->cpp[plane];
2209 unsigned int pitch = fb->pitches[plane];
2210
2211 return y * pitch + x * cpp;
2212 }
2213
2214 /*
2215 * Add the x/y offsets derived from fb->offsets[] to the user
2216 * specified plane src x/y offsets. The resulting x/y offsets
2217 * specify the start of scanout from the beginning of the gtt mapping.
2218 */
2219 void intel_add_fb_offsets(int *x, int *y,
2220 const struct intel_plane_state *state,
2221 int plane)
2222
2223 {
2224 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2225 unsigned int rotation = state->base.rotation;
2226
2227 if (drm_rotation_90_or_270(rotation)) {
2228 *x += intel_fb->rotated[plane].x;
2229 *y += intel_fb->rotated[plane].y;
2230 } else {
2231 *x += intel_fb->normal[plane].x;
2232 *y += intel_fb->normal[plane].y;
2233 }
2234 }
2235
2236 static u32 __intel_adjust_tile_offset(int *x, int *y,
2237 unsigned int tile_width,
2238 unsigned int tile_height,
2239 unsigned int tile_size,
2240 unsigned int pitch_tiles,
2241 u32 old_offset,
2242 u32 new_offset)
2243 {
2244 unsigned int pitch_pixels = pitch_tiles * tile_width;
2245 unsigned int tiles;
2246
2247 WARN_ON(old_offset & (tile_size - 1));
2248 WARN_ON(new_offset & (tile_size - 1));
2249 WARN_ON(new_offset > old_offset);
2250
2251 tiles = (old_offset - new_offset) / tile_size;
2252
2253 *y += tiles / pitch_tiles * tile_height;
2254 *x += tiles % pitch_tiles * tile_width;
2255
2256 /* minimize x in case it got needlessly big */
2257 *y += *x / pitch_pixels * tile_height;
2258 *x %= pitch_pixels;
2259
2260 return new_offset;
2261 }
2262
2263 static u32 _intel_adjust_tile_offset(int *x, int *y,
2264 const struct drm_framebuffer *fb, int plane,
2265 unsigned int rotation,
2266 u32 old_offset, u32 new_offset)
2267 {
2268 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2269 unsigned int cpp = fb->format->cpp[plane];
2270 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2271
2272 WARN_ON(new_offset > old_offset);
2273
2274 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2275 unsigned int tile_size, tile_width, tile_height;
2276 unsigned int pitch_tiles;
2277
2278 tile_size = intel_tile_size(dev_priv);
2279 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2280
2281 if (drm_rotation_90_or_270(rotation)) {
2282 pitch_tiles = pitch / tile_height;
2283 swap(tile_width, tile_height);
2284 } else {
2285 pitch_tiles = pitch / (tile_width * cpp);
2286 }
2287
2288 __intel_adjust_tile_offset(x, y, tile_width, tile_height,
2289 tile_size, pitch_tiles,
2290 old_offset, new_offset);
2291 } else {
2292 old_offset += *y * pitch + *x * cpp;
2293
2294 *y = (old_offset - new_offset) / pitch;
2295 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2296 }
2297
2298 return new_offset;
2299 }
2300
2301 /*
2302 * Adjust the tile offset by moving the difference into
2303 * the x/y offsets.
2304 */
2305 static u32 intel_adjust_tile_offset(int *x, int *y,
2306 const struct intel_plane_state *state, int plane,
2307 u32 old_offset, u32 new_offset)
2308 {
2309 return _intel_adjust_tile_offset(x, y, state->base.fb, plane,
2310 state->base.rotation,
2311 old_offset, new_offset);
2312 }
2313
2314 /*
2315 * Computes the linear offset to the base tile and adjusts
2316 * x, y. bytes per pixel is assumed to be a power-of-two.
2317 *
2318 * In the 90/270 rotated case, x and y are assumed
2319 * to be already rotated to match the rotated GTT view, and
2320 * pitch is the tile_height aligned framebuffer height.
2321 *
2322 * This function is used when computing the derived information
2323 * under intel_framebuffer, so using any of that information
2324 * here is not allowed. Anything under drm_framebuffer can be
2325 * used. This is why the user has to pass in the pitch since it
2326 * is specified in the rotated orientation.
2327 */
2328 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2329 int *x, int *y,
2330 const struct drm_framebuffer *fb, int plane,
2331 unsigned int pitch,
2332 unsigned int rotation,
2333 u32 alignment)
2334 {
2335 uint64_t fb_modifier = fb->modifier;
2336 unsigned int cpp = fb->format->cpp[plane];
2337 u32 offset, offset_aligned;
2338
2339 if (alignment)
2340 alignment--;
2341
2342 if (fb_modifier != DRM_FORMAT_MOD_LINEAR) {
2343 unsigned int tile_size, tile_width, tile_height;
2344 unsigned int tile_rows, tiles, pitch_tiles;
2345
2346 tile_size = intel_tile_size(dev_priv);
2347 intel_tile_dims(fb, plane, &tile_width, &tile_height);
2348
2349 if (drm_rotation_90_or_270(rotation)) {
2350 pitch_tiles = pitch / tile_height;
2351 swap(tile_width, tile_height);
2352 } else {
2353 pitch_tiles = pitch / (tile_width * cpp);
2354 }
2355
2356 tile_rows = *y / tile_height;
2357 *y %= tile_height;
2358
2359 tiles = *x / tile_width;
2360 *x %= tile_width;
2361
2362 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2363 offset_aligned = offset & ~alignment;
2364
2365 __intel_adjust_tile_offset(x, y, tile_width, tile_height,
2366 tile_size, pitch_tiles,
2367 offset, offset_aligned);
2368 } else {
2369 offset = *y * pitch + *x * cpp;
2370 offset_aligned = offset & ~alignment;
2371
2372 *y = (offset & alignment) / pitch;
2373 *x = ((offset & alignment) - *y * pitch) / cpp;
2374 }
2375
2376 return offset_aligned;
2377 }
2378
2379 u32 intel_compute_tile_offset(int *x, int *y,
2380 const struct intel_plane_state *state,
2381 int plane)
2382 {
2383 struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2384 struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2385 const struct drm_framebuffer *fb = state->base.fb;
2386 unsigned int rotation = state->base.rotation;
2387 int pitch = intel_fb_pitch(fb, plane, rotation);
2388 u32 alignment;
2389
2390 if (intel_plane->id == PLANE_CURSOR)
2391 alignment = intel_cursor_alignment(dev_priv);
2392 else
2393 alignment = intel_surf_alignment(fb, plane);
2394
2395 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2396 rotation, alignment);
2397 }
2398
2399 /* Convert the fb->offset[] into x/y offsets */
2400 static int intel_fb_offset_to_xy(int *x, int *y,
2401 const struct drm_framebuffer *fb, int plane)
2402 {
2403 struct drm_i915_private *dev_priv = to_i915(fb->dev);
2404
2405 if (fb->modifier != DRM_FORMAT_MOD_LINEAR &&
2406 fb->offsets[plane] % intel_tile_size(dev_priv))
2407 return -EINVAL;
2408
2409 *x = 0;
2410 *y = 0;
2411
2412 _intel_adjust_tile_offset(x, y,
2413 fb, plane, DRM_MODE_ROTATE_0,
2414 fb->offsets[plane], 0);
2415
2416 return 0;
2417 }
2418
2419 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2420 {
2421 switch (fb_modifier) {
2422 case I915_FORMAT_MOD_X_TILED:
2423 return I915_TILING_X;
2424 case I915_FORMAT_MOD_Y_TILED:
2425 case I915_FORMAT_MOD_Y_TILED_CCS:
2426 return I915_TILING_Y;
2427 default:
2428 return I915_TILING_NONE;
2429 }
2430 }
2431
2432 static const struct drm_format_info ccs_formats[] = {
2433 { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2434 { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2435 { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2436 { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2, .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2437 };
2438
2439 static const struct drm_format_info *
2440 lookup_format_info(const struct drm_format_info formats[],
2441 int num_formats, u32 format)
2442 {
2443 int i;
2444
2445 for (i = 0; i < num_formats; i++) {
2446 if (formats[i].format == format)
2447 return &formats[i];
2448 }
2449
2450 return NULL;
2451 }
2452
2453 static const struct drm_format_info *
2454 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2455 {
2456 switch (cmd->modifier[0]) {
2457 case I915_FORMAT_MOD_Y_TILED_CCS:
2458 case I915_FORMAT_MOD_Yf_TILED_CCS:
2459 return lookup_format_info(ccs_formats,
2460 ARRAY_SIZE(ccs_formats),
2461 cmd->pixel_format);
2462 default:
2463 return NULL;
2464 }
2465 }
2466
2467 static int
2468 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2469 struct drm_framebuffer *fb)
2470 {
2471 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2472 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2473 u32 gtt_offset_rotated = 0;
2474 unsigned int max_size = 0;
2475 int i, num_planes = fb->format->num_planes;
2476 unsigned int tile_size = intel_tile_size(dev_priv);
2477
2478 for (i = 0; i < num_planes; i++) {
2479 unsigned int width, height;
2480 unsigned int cpp, size;
2481 u32 offset;
2482 int x, y;
2483 int ret;
2484
2485 cpp = fb->format->cpp[i];
2486 width = drm_framebuffer_plane_width(fb->width, fb, i);
2487 height = drm_framebuffer_plane_height(fb->height, fb, i);
2488
2489 ret = intel_fb_offset_to_xy(&x, &y, fb, i);
2490 if (ret) {
2491 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2492 i, fb->offsets[i]);
2493 return ret;
2494 }
2495
2496 if ((fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2497 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) && i == 1) {
2498 int hsub = fb->format->hsub;
2499 int vsub = fb->format->vsub;
2500 int tile_width, tile_height;
2501 int main_x, main_y;
2502 int ccs_x, ccs_y;
2503
2504 intel_tile_dims(fb, i, &tile_width, &tile_height);
2505 tile_width *= hsub;
2506 tile_height *= vsub;
2507
2508 ccs_x = (x * hsub) % tile_width;
2509 ccs_y = (y * vsub) % tile_height;
2510 main_x = intel_fb->normal[0].x % tile_width;
2511 main_y = intel_fb->normal[0].y % tile_height;
2512
2513 /*
2514 * CCS doesn't have its own x/y offset register, so the intra CCS tile
2515 * x/y offsets must match between CCS and the main surface.
2516 */
2517 if (main_x != ccs_x || main_y != ccs_y) {
2518 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2519 main_x, main_y,
2520 ccs_x, ccs_y,
2521 intel_fb->normal[0].x,
2522 intel_fb->normal[0].y,
2523 x, y);
2524 return -EINVAL;
2525 }
2526 }
2527
2528 /*
2529 * The fence (if used) is aligned to the start of the object
2530 * so having the framebuffer wrap around across the edge of the
2531 * fenced region doesn't really work. We have no API to configure
2532 * the fence start offset within the object (nor could we probably
2533 * on gen2/3). So it's just easier if we just require that the
2534 * fb layout agrees with the fence layout. We already check that the
2535 * fb stride matches the fence stride elsewhere.
2536 */
2537 if (i == 0 && i915_gem_object_is_tiled(intel_fb->obj) &&
2538 (x + width) * cpp > fb->pitches[i]) {
2539 DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2540 i, fb->offsets[i]);
2541 return -EINVAL;
2542 }
2543
2544 /*
2545 * First pixel of the framebuffer from
2546 * the start of the normal gtt mapping.
2547 */
2548 intel_fb->normal[i].x = x;
2549 intel_fb->normal[i].y = y;
2550
2551 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2552 fb, i, fb->pitches[i],
2553 DRM_MODE_ROTATE_0, tile_size);
2554 offset /= tile_size;
2555
2556 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
2557 unsigned int tile_width, tile_height;
2558 unsigned int pitch_tiles;
2559 struct drm_rect r;
2560
2561 intel_tile_dims(fb, i, &tile_width, &tile_height);
2562
2563 rot_info->plane[i].offset = offset;
2564 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2565 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2566 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2567
2568 intel_fb->rotated[i].pitch =
2569 rot_info->plane[i].height * tile_height;
2570
2571 /* how many tiles does this plane need */
2572 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2573 /*
2574 * If the plane isn't horizontally tile aligned,
2575 * we need one more tile.
2576 */
2577 if (x != 0)
2578 size++;
2579
2580 /* rotate the x/y offsets to match the GTT view */
2581 r.x1 = x;
2582 r.y1 = y;
2583 r.x2 = x + width;
2584 r.y2 = y + height;
2585 drm_rect_rotate(&r,
2586 rot_info->plane[i].width * tile_width,
2587 rot_info->plane[i].height * tile_height,
2588 DRM_MODE_ROTATE_270);
2589 x = r.x1;
2590 y = r.y1;
2591
2592 /* rotate the tile dimensions to match the GTT view */
2593 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2594 swap(tile_width, tile_height);
2595
2596 /*
2597 * We only keep the x/y offsets, so push all of the
2598 * gtt offset into the x/y offsets.
2599 */
2600 __intel_adjust_tile_offset(&x, &y,
2601 tile_width, tile_height,
2602 tile_size, pitch_tiles,
2603 gtt_offset_rotated * tile_size, 0);
2604
2605 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2606
2607 /*
2608 * First pixel of the framebuffer from
2609 * the start of the rotated gtt mapping.
2610 */
2611 intel_fb->rotated[i].x = x;
2612 intel_fb->rotated[i].y = y;
2613 } else {
2614 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2615 x * cpp, tile_size);
2616 }
2617
2618 /* how many tiles in total needed in the bo */
2619 max_size = max(max_size, offset + size);
2620 }
2621
2622 if (max_size * tile_size > intel_fb->obj->base.size) {
2623 DRM_DEBUG_KMS("fb too big for bo (need %u bytes, have %zu bytes)\n",
2624 max_size * tile_size, intel_fb->obj->base.size);
2625 return -EINVAL;
2626 }
2627
2628 return 0;
2629 }
2630
2631 static int i9xx_format_to_fourcc(int format)
2632 {
2633 switch (format) {
2634 case DISPPLANE_8BPP:
2635 return DRM_FORMAT_C8;
2636 case DISPPLANE_BGRX555:
2637 return DRM_FORMAT_XRGB1555;
2638 case DISPPLANE_BGRX565:
2639 return DRM_FORMAT_RGB565;
2640 default:
2641 case DISPPLANE_BGRX888:
2642 return DRM_FORMAT_XRGB8888;
2643 case DISPPLANE_RGBX888:
2644 return DRM_FORMAT_XBGR8888;
2645 case DISPPLANE_BGRX101010:
2646 return DRM_FORMAT_XRGB2101010;
2647 case DISPPLANE_RGBX101010:
2648 return DRM_FORMAT_XBGR2101010;
2649 }
2650 }
2651
2652 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2653 {
2654 switch (format) {
2655 case PLANE_CTL_FORMAT_RGB_565:
2656 return DRM_FORMAT_RGB565;
2657 default:
2658 case PLANE_CTL_FORMAT_XRGB_8888:
2659 if (rgb_order) {
2660 if (alpha)
2661 return DRM_FORMAT_ABGR8888;
2662 else
2663 return DRM_FORMAT_XBGR8888;
2664 } else {
2665 if (alpha)
2666 return DRM_FORMAT_ARGB8888;
2667 else
2668 return DRM_FORMAT_XRGB8888;
2669 }
2670 case PLANE_CTL_FORMAT_XRGB_2101010:
2671 if (rgb_order)
2672 return DRM_FORMAT_XBGR2101010;
2673 else
2674 return DRM_FORMAT_XRGB2101010;
2675 }
2676 }
2677
2678 static bool
2679 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2680 struct intel_initial_plane_config *plane_config)
2681 {
2682 struct drm_device *dev = crtc->base.dev;
2683 struct drm_i915_private *dev_priv = to_i915(dev);
2684 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2685 struct drm_i915_gem_object *obj = NULL;
2686 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2687 struct drm_framebuffer *fb = &plane_config->fb->base;
2688 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2689 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2690 PAGE_SIZE);
2691
2692 size_aligned -= base_aligned;
2693
2694 if (plane_config->size == 0)
2695 return false;
2696
2697 /* If the FB is too big, just don't use it since fbdev is not very
2698 * important and we should probably use that space with FBC or other
2699 * features. */
2700 if (size_aligned * 2 > ggtt->stolen_usable_size)
2701 return false;
2702
2703 mutex_lock(&dev->struct_mutex);
2704 obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
2705 base_aligned,
2706 base_aligned,
2707 size_aligned);
2708 mutex_unlock(&dev->struct_mutex);
2709 if (!obj)
2710 return false;
2711
2712 if (plane_config->tiling == I915_TILING_X)
2713 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2714
2715 mode_cmd.pixel_format = fb->format->format;
2716 mode_cmd.width = fb->width;
2717 mode_cmd.height = fb->height;
2718 mode_cmd.pitches[0] = fb->pitches[0];
2719 mode_cmd.modifier[0] = fb->modifier;
2720 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2721
2722 if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
2723 DRM_DEBUG_KMS("intel fb init failed\n");
2724 goto out_unref_obj;
2725 }
2726
2727
2728 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2729 return true;
2730
2731 out_unref_obj:
2732 i915_gem_object_put(obj);
2733 return false;
2734 }
2735
2736 static void
2737 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
2738 struct intel_plane_state *plane_state,
2739 bool visible)
2740 {
2741 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2742
2743 plane_state->base.visible = visible;
2744
2745 /* FIXME pre-g4x don't work like this */
2746 if (visible) {
2747 crtc_state->base.plane_mask |= BIT(drm_plane_index(&plane->base));
2748 crtc_state->active_planes |= BIT(plane->id);
2749 } else {
2750 crtc_state->base.plane_mask &= ~BIT(drm_plane_index(&plane->base));
2751 crtc_state->active_planes &= ~BIT(plane->id);
2752 }
2753
2754 DRM_DEBUG_KMS("%s active planes 0x%x\n",
2755 crtc_state->base.crtc->name,
2756 crtc_state->active_planes);
2757 }
2758
2759 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
2760 struct intel_plane *plane)
2761 {
2762 struct intel_crtc_state *crtc_state =
2763 to_intel_crtc_state(crtc->base.state);
2764 struct intel_plane_state *plane_state =
2765 to_intel_plane_state(plane->base.state);
2766
2767 intel_set_plane_visible(crtc_state, plane_state, false);
2768
2769 if (plane->id == PLANE_PRIMARY)
2770 intel_pre_disable_primary_noatomic(&crtc->base);
2771
2772 trace_intel_disable_plane(&plane->base, crtc);
2773 plane->disable_plane(plane, crtc);
2774 }
2775
2776 static void
2777 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2778 struct intel_initial_plane_config *plane_config)
2779 {
2780 struct drm_device *dev = intel_crtc->base.dev;
2781 struct drm_i915_private *dev_priv = to_i915(dev);
2782 struct drm_crtc *c;
2783 struct drm_i915_gem_object *obj;
2784 struct drm_plane *primary = intel_crtc->base.primary;
2785 struct drm_plane_state *plane_state = primary->state;
2786 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2787 struct intel_plane *intel_plane = to_intel_plane(primary);
2788 struct intel_plane_state *intel_state =
2789 to_intel_plane_state(plane_state);
2790 struct drm_framebuffer *fb;
2791
2792 if (!plane_config->fb)
2793 return;
2794
2795 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2796 fb = &plane_config->fb->base;
2797 goto valid_fb;
2798 }
2799
2800 kfree(plane_config->fb);
2801
2802 /*
2803 * Failed to alloc the obj, check to see if we should share
2804 * an fb with another CRTC instead
2805 */
2806 for_each_crtc(dev, c) {
2807 struct intel_plane_state *state;
2808
2809 if (c == &intel_crtc->base)
2810 continue;
2811
2812 if (!to_intel_crtc(c)->active)
2813 continue;
2814
2815 state = to_intel_plane_state(c->primary->state);
2816 if (!state->vma)
2817 continue;
2818
2819 if (intel_plane_ggtt_offset(state) == plane_config->base) {
2820 fb = c->primary->fb;
2821 drm_framebuffer_reference(fb);
2822 goto valid_fb;
2823 }
2824 }
2825
2826 /*
2827 * We've failed to reconstruct the BIOS FB. Current display state
2828 * indicates that the primary plane is visible, but has a NULL FB,
2829 * which will lead to problems later if we don't fix it up. The
2830 * simplest solution is to just disable the primary plane now and
2831 * pretend the BIOS never had it enabled.
2832 */
2833 intel_plane_disable_noatomic(intel_crtc, intel_plane);
2834
2835 return;
2836
2837 valid_fb:
2838 mutex_lock(&dev->struct_mutex);
2839 intel_state->vma =
2840 intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
2841 mutex_unlock(&dev->struct_mutex);
2842 if (IS_ERR(intel_state->vma)) {
2843 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
2844 intel_crtc->pipe, PTR_ERR(intel_state->vma));
2845
2846 intel_state->vma = NULL;
2847 drm_framebuffer_unreference(fb);
2848 return;
2849 }
2850
2851 plane_state->src_x = 0;
2852 plane_state->src_y = 0;
2853 plane_state->src_w = fb->width << 16;
2854 plane_state->src_h = fb->height << 16;
2855
2856 plane_state->crtc_x = 0;
2857 plane_state->crtc_y = 0;
2858 plane_state->crtc_w = fb->width;
2859 plane_state->crtc_h = fb->height;
2860
2861 intel_state->base.src = drm_plane_state_src(plane_state);
2862 intel_state->base.dst = drm_plane_state_dest(plane_state);
2863
2864 obj = intel_fb_obj(fb);
2865 if (i915_gem_object_is_tiled(obj))
2866 dev_priv->preserve_bios_swizzle = true;
2867
2868 drm_framebuffer_reference(fb);
2869 primary->fb = primary->state->fb = fb;
2870 primary->crtc = primary->state->crtc = &intel_crtc->base;
2871
2872 intel_set_plane_visible(to_intel_crtc_state(crtc_state),
2873 to_intel_plane_state(plane_state),
2874 true);
2875
2876 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2877 &obj->frontbuffer_bits);
2878 }
2879
2880 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2881 unsigned int rotation)
2882 {
2883 int cpp = fb->format->cpp[plane];
2884
2885 switch (fb->modifier) {
2886 case DRM_FORMAT_MOD_LINEAR:
2887 case I915_FORMAT_MOD_X_TILED:
2888 switch (cpp) {
2889 case 8:
2890 return 4096;
2891 case 4:
2892 case 2:
2893 case 1:
2894 return 8192;
2895 default:
2896 MISSING_CASE(cpp);
2897 break;
2898 }
2899 break;
2900 case I915_FORMAT_MOD_Y_TILED_CCS:
2901 case I915_FORMAT_MOD_Yf_TILED_CCS:
2902 /* FIXME AUX plane? */
2903 case I915_FORMAT_MOD_Y_TILED:
2904 case I915_FORMAT_MOD_Yf_TILED:
2905 switch (cpp) {
2906 case 8:
2907 return 2048;
2908 case 4:
2909 return 4096;
2910 case 2:
2911 case 1:
2912 return 8192;
2913 default:
2914 MISSING_CASE(cpp);
2915 break;
2916 }
2917 break;
2918 default:
2919 MISSING_CASE(fb->modifier);
2920 }
2921
2922 return 2048;
2923 }
2924
2925 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
2926 int main_x, int main_y, u32 main_offset)
2927 {
2928 const struct drm_framebuffer *fb = plane_state->base.fb;
2929 int hsub = fb->format->hsub;
2930 int vsub = fb->format->vsub;
2931 int aux_x = plane_state->aux.x;
2932 int aux_y = plane_state->aux.y;
2933 u32 aux_offset = plane_state->aux.offset;
2934 u32 alignment = intel_surf_alignment(fb, 1);
2935
2936 while (aux_offset >= main_offset && aux_y <= main_y) {
2937 int x, y;
2938
2939 if (aux_x == main_x && aux_y == main_y)
2940 break;
2941
2942 if (aux_offset == 0)
2943 break;
2944
2945 x = aux_x / hsub;
2946 y = aux_y / vsub;
2947 aux_offset = intel_adjust_tile_offset(&x, &y, plane_state, 1,
2948 aux_offset, aux_offset - alignment);
2949 aux_x = x * hsub + aux_x % hsub;
2950 aux_y = y * vsub + aux_y % vsub;
2951 }
2952
2953 if (aux_x != main_x || aux_y != main_y)
2954 return false;
2955
2956 plane_state->aux.offset = aux_offset;
2957 plane_state->aux.x = aux_x;
2958 plane_state->aux.y = aux_y;
2959
2960 return true;
2961 }
2962
2963 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2964 {
2965 const struct drm_framebuffer *fb = plane_state->base.fb;
2966 unsigned int rotation = plane_state->base.rotation;
2967 int x = plane_state->base.src.x1 >> 16;
2968 int y = plane_state->base.src.y1 >> 16;
2969 int w = drm_rect_width(&plane_state->base.src) >> 16;
2970 int h = drm_rect_height(&plane_state->base.src) >> 16;
2971 int max_width = skl_max_plane_width(fb, 0, rotation);
2972 int max_height = 4096;
2973 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2974
2975 if (w > max_width || h > max_height) {
2976 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2977 w, h, max_width, max_height);
2978 return -EINVAL;
2979 }
2980
2981 intel_add_fb_offsets(&x, &y, plane_state, 0);
2982 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2983 alignment = intel_surf_alignment(fb, 0);
2984
2985 /*
2986 * AUX surface offset is specified as the distance from the
2987 * main surface offset, and it must be non-negative. Make
2988 * sure that is what we will get.
2989 */
2990 if (offset > aux_offset)
2991 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2992 offset, aux_offset & ~(alignment - 1));
2993
2994 /*
2995 * When using an X-tiled surface, the plane blows up
2996 * if the x offset + width exceed the stride.
2997 *
2998 * TODO: linear and Y-tiled seem fine, Yf untested,
2999 */
3000 if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3001 int cpp = fb->format->cpp[0];
3002
3003 while ((x + w) * cpp > fb->pitches[0]) {
3004 if (offset == 0) {
3005 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
3006 return -EINVAL;
3007 }
3008
3009 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
3010 offset, offset - alignment);
3011 }
3012 }
3013
3014 /*
3015 * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3016 * they match with the main surface x/y offsets.
3017 */
3018 if (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
3019 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) {
3020 while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) {
3021 if (offset == 0)
3022 break;
3023
3024 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
3025 offset, offset - alignment);
3026 }
3027
3028 if (x != plane_state->aux.x || y != plane_state->aux.y) {
3029 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3030 return -EINVAL;
3031 }
3032 }
3033
3034 plane_state->main.offset = offset;
3035 plane_state->main.x = x;
3036 plane_state->main.y = y;
3037
3038 return 0;
3039 }
3040
3041 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3042 {
3043 const struct drm_framebuffer *fb = plane_state->base.fb;
3044 unsigned int rotation = plane_state->base.rotation;
3045 int max_width = skl_max_plane_width(fb, 1, rotation);
3046 int max_height = 4096;
3047 int x = plane_state->base.src.x1 >> 17;
3048 int y = plane_state->base.src.y1 >> 17;
3049 int w = drm_rect_width(&plane_state->base.src) >> 17;
3050 int h = drm_rect_height(&plane_state->base.src) >> 17;
3051 u32 offset;
3052
3053 intel_add_fb_offsets(&x, &y, plane_state, 1);
3054 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
3055
3056 /* FIXME not quite sure how/if these apply to the chroma plane */
3057 if (w > max_width || h > max_height) {
3058 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3059 w, h, max_width, max_height);
3060 return -EINVAL;
3061 }
3062
3063 plane_state->aux.offset = offset;
3064 plane_state->aux.x = x;
3065 plane_state->aux.y = y;
3066
3067 return 0;
3068 }
3069
3070 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3071 {
3072 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3073 struct intel_crtc *crtc = to_intel_crtc(plane_state->base.crtc);
3074 const struct drm_framebuffer *fb = plane_state->base.fb;
3075 int src_x = plane_state->base.src.x1 >> 16;
3076 int src_y = plane_state->base.src.y1 >> 16;
3077 int hsub = fb->format->hsub;
3078 int vsub = fb->format->vsub;
3079 int x = src_x / hsub;
3080 int y = src_y / vsub;
3081 u32 offset;
3082
3083 switch (plane->id) {
3084 case PLANE_PRIMARY:
3085 case PLANE_SPRITE0:
3086 break;
3087 default:
3088 DRM_DEBUG_KMS("RC support only on plane 1 and 2\n");
3089 return -EINVAL;
3090 }
3091
3092 if (crtc->pipe == PIPE_C) {
3093 DRM_DEBUG_KMS("No RC support on pipe C\n");
3094 return -EINVAL;
3095 }
3096
3097 if (plane_state->base.rotation & ~(DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180)) {
3098 DRM_DEBUG_KMS("RC support only with 0/180 degree rotation %x\n",
3099 plane_state->base.rotation);
3100 return -EINVAL;
3101 }
3102
3103 intel_add_fb_offsets(&x, &y, plane_state, 1);
3104 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
3105
3106 plane_state->aux.offset = offset;
3107 plane_state->aux.x = x * hsub + src_x % hsub;
3108 plane_state->aux.y = y * vsub + src_y % vsub;
3109
3110 return 0;
3111 }
3112
3113 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3114 {
3115 const struct drm_framebuffer *fb = plane_state->base.fb;
3116 unsigned int rotation = plane_state->base.rotation;
3117 int ret;
3118
3119 if (!plane_state->base.visible)
3120 return 0;
3121
3122 /* Rotate src coordinates to match rotated GTT view */
3123 if (drm_rotation_90_or_270(rotation))
3124 drm_rect_rotate(&plane_state->base.src,
3125 fb->width << 16, fb->height << 16,
3126 DRM_MODE_ROTATE_270);
3127
3128 /*
3129 * Handle the AUX surface first since
3130 * the main surface setup depends on it.
3131 */
3132 if (fb->format->format == DRM_FORMAT_NV12) {
3133 ret = skl_check_nv12_aux_surface(plane_state);
3134 if (ret)
3135 return ret;
3136 } else if (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
3137 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS) {
3138 ret = skl_check_ccs_aux_surface(plane_state);
3139 if (ret)
3140 return ret;
3141 } else {
3142 plane_state->aux.offset = ~0xfff;
3143 plane_state->aux.x = 0;
3144 plane_state->aux.y = 0;
3145 }
3146
3147 ret = skl_check_main_surface(plane_state);
3148 if (ret)
3149 return ret;
3150
3151 return 0;
3152 }
3153
3154 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
3155 const struct intel_plane_state *plane_state)
3156 {
3157 struct drm_i915_private *dev_priv =
3158 to_i915(plane_state->base.plane->dev);
3159 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3160 const struct drm_framebuffer *fb = plane_state->base.fb;
3161 unsigned int rotation = plane_state->base.rotation;
3162 u32 dspcntr;
3163
3164 dspcntr = DISPLAY_PLANE_ENABLE | DISPPLANE_GAMMA_ENABLE;
3165
3166 if (IS_G4X(dev_priv) || IS_GEN5(dev_priv) ||
3167 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
3168 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3169
3170 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3171 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3172
3173 if (INTEL_GEN(dev_priv) < 4)
3174 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
3175
3176 switch (fb->format->format) {
3177 case DRM_FORMAT_C8:
3178 dspcntr |= DISPPLANE_8BPP;
3179 break;
3180 case DRM_FORMAT_XRGB1555:
3181 dspcntr |= DISPPLANE_BGRX555;
3182 break;
3183 case DRM_FORMAT_RGB565:
3184 dspcntr |= DISPPLANE_BGRX565;
3185 break;
3186 case DRM_FORMAT_XRGB8888:
3187 dspcntr |= DISPPLANE_BGRX888;
3188 break;
3189 case DRM_FORMAT_XBGR8888:
3190 dspcntr |= DISPPLANE_RGBX888;
3191 break;
3192 case DRM_FORMAT_XRGB2101010:
3193 dspcntr |= DISPPLANE_BGRX101010;
3194 break;
3195 case DRM_FORMAT_XBGR2101010:
3196 dspcntr |= DISPPLANE_RGBX101010;
3197 break;
3198 default:
3199 MISSING_CASE(fb->format->format);
3200 return 0;
3201 }
3202
3203 if (INTEL_GEN(dev_priv) >= 4 &&
3204 fb->modifier == I915_FORMAT_MOD_X_TILED)
3205 dspcntr |= DISPPLANE_TILED;
3206
3207 if (rotation & DRM_MODE_ROTATE_180)
3208 dspcntr |= DISPPLANE_ROTATE_180;
3209
3210 if (rotation & DRM_MODE_REFLECT_X)
3211 dspcntr |= DISPPLANE_MIRROR;
3212
3213 return dspcntr;
3214 }
3215
3216 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3217 {
3218 struct drm_i915_private *dev_priv =
3219 to_i915(plane_state->base.plane->dev);
3220 int src_x = plane_state->base.src.x1 >> 16;
3221 int src_y = plane_state->base.src.y1 >> 16;
3222 u32 offset;
3223
3224 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3225
3226 if (INTEL_GEN(dev_priv) >= 4)
3227 offset = intel_compute_tile_offset(&src_x, &src_y,
3228 plane_state, 0);
3229 else
3230 offset = 0;
3231
3232 /* HSW/BDW do this automagically in hardware */
3233 if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3234 unsigned int rotation = plane_state->base.rotation;
3235 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3236 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3237
3238 if (rotation & DRM_MODE_ROTATE_180) {
3239 src_x += src_w - 1;
3240 src_y += src_h - 1;
3241 } else if (rotation & DRM_MODE_REFLECT_X) {
3242 src_x += src_w - 1;
3243 }
3244 }
3245
3246 plane_state->main.offset = offset;
3247 plane_state->main.x = src_x;
3248 plane_state->main.y = src_y;
3249
3250 return 0;
3251 }
3252
3253 static void i9xx_update_primary_plane(struct intel_plane *primary,
3254 const struct intel_crtc_state *crtc_state,
3255 const struct intel_plane_state *plane_state)
3256 {
3257 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3258 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3259 const struct drm_framebuffer *fb = plane_state->base.fb;
3260 enum plane plane = primary->plane;
3261 u32 linear_offset;
3262 u32 dspcntr = plane_state->ctl;
3263 i915_reg_t reg = DSPCNTR(plane);
3264 int x = plane_state->main.x;
3265 int y = plane_state->main.y;
3266 unsigned long irqflags;
3267
3268 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3269
3270 if (INTEL_GEN(dev_priv) >= 4)
3271 crtc->dspaddr_offset = plane_state->main.offset;
3272 else
3273 crtc->dspaddr_offset = linear_offset;
3274
3275 crtc->adjusted_x = x;
3276 crtc->adjusted_y = y;
3277
3278 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3279
3280 if (INTEL_GEN(dev_priv) < 4) {
3281 /* pipesrc and dspsize control the size that is scaled from,
3282 * which should always be the user's requested size.
3283 */
3284 I915_WRITE_FW(DSPSIZE(plane),
3285 ((crtc_state->pipe_src_h - 1) << 16) |
3286 (crtc_state->pipe_src_w - 1));
3287 I915_WRITE_FW(DSPPOS(plane), 0);
3288 } else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
3289 I915_WRITE_FW(PRIMSIZE(plane),
3290 ((crtc_state->pipe_src_h - 1) << 16) |
3291 (crtc_state->pipe_src_w - 1));
3292 I915_WRITE_FW(PRIMPOS(plane), 0);
3293 I915_WRITE_FW(PRIMCNSTALPHA(plane), 0);
3294 }
3295
3296 I915_WRITE_FW(reg, dspcntr);
3297
3298 I915_WRITE_FW(DSPSTRIDE(plane), fb->pitches[0]);
3299 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3300 I915_WRITE_FW(DSPSURF(plane),
3301 intel_plane_ggtt_offset(plane_state) +
3302 crtc->dspaddr_offset);
3303 I915_WRITE_FW(DSPOFFSET(plane), (y << 16) | x);
3304 } else if (INTEL_GEN(dev_priv) >= 4) {
3305 I915_WRITE_FW(DSPSURF(plane),
3306 intel_plane_ggtt_offset(plane_state) +
3307 crtc->dspaddr_offset);
3308 I915_WRITE_FW(DSPTILEOFF(plane), (y << 16) | x);
3309 I915_WRITE_FW(DSPLINOFF(plane), linear_offset);
3310 } else {
3311 I915_WRITE_FW(DSPADDR(plane),
3312 intel_plane_ggtt_offset(plane_state) +
3313 crtc->dspaddr_offset);
3314 }
3315 POSTING_READ_FW(reg);
3316
3317 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3318 }
3319
3320 static void i9xx_disable_primary_plane(struct intel_plane *primary,
3321 struct intel_crtc *crtc)
3322 {
3323 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3324 enum plane plane = primary->plane;
3325 unsigned long irqflags;
3326
3327 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3328
3329 I915_WRITE_FW(DSPCNTR(plane), 0);
3330 if (INTEL_INFO(dev_priv)->gen >= 4)
3331 I915_WRITE_FW(DSPSURF(plane), 0);
3332 else
3333 I915_WRITE_FW(DSPADDR(plane), 0);
3334 POSTING_READ_FW(DSPCNTR(plane));
3335
3336 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3337 }
3338
3339 static bool i9xx_plane_get_hw_state(struct intel_plane *primary)
3340 {
3341
3342 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3343 enum intel_display_power_domain power_domain;
3344 enum plane plane = primary->plane;
3345 enum pipe pipe = primary->pipe;
3346 bool ret;
3347
3348 /*
3349 * Not 100% correct for planes that can move between pipes,
3350 * but that's only the case for gen2-4 which don't have any
3351 * display power wells.
3352 */
3353 power_domain = POWER_DOMAIN_PIPE(pipe);
3354 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3355 return false;
3356
3357 ret = I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE;
3358
3359 intel_display_power_put(dev_priv, power_domain);
3360
3361 return ret;
3362 }
3363
3364 static u32
3365 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int plane)
3366 {
3367 if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
3368 return 64;
3369 else
3370 return intel_tile_width_bytes(fb, plane);
3371 }
3372
3373 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3374 {
3375 struct drm_device *dev = intel_crtc->base.dev;
3376 struct drm_i915_private *dev_priv = to_i915(dev);
3377
3378 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3379 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3380 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3381 }
3382
3383 /*
3384 * This function detaches (aka. unbinds) unused scalers in hardware
3385 */
3386 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3387 {
3388 struct intel_crtc_scaler_state *scaler_state;
3389 int i;
3390
3391 scaler_state = &intel_crtc->config->scaler_state;
3392
3393 /* loop through and disable scalers that aren't in use */
3394 for (i = 0; i < intel_crtc->num_scalers; i++) {
3395 if (!scaler_state->scalers[i].in_use)
3396 skl_detach_scaler(intel_crtc, i);
3397 }
3398 }
3399
3400 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3401 unsigned int rotation)
3402 {
3403 u32 stride;
3404
3405 if (plane >= fb->format->num_planes)
3406 return 0;
3407
3408 stride = intel_fb_pitch(fb, plane, rotation);
3409
3410 /*
3411 * The stride is either expressed as a multiple of 64 bytes chunks for
3412 * linear buffers or in number of tiles for tiled buffers.
3413 */
3414 if (drm_rotation_90_or_270(rotation))
3415 stride /= intel_tile_height(fb, plane);
3416 else
3417 stride /= intel_fb_stride_alignment(fb, plane);
3418
3419 return stride;
3420 }
3421
3422 static u32 skl_plane_ctl_format(uint32_t pixel_format)
3423 {
3424 switch (pixel_format) {
3425 case DRM_FORMAT_C8:
3426 return PLANE_CTL_FORMAT_INDEXED;
3427 case DRM_FORMAT_RGB565:
3428 return PLANE_CTL_FORMAT_RGB_565;
3429 case DRM_FORMAT_XBGR8888:
3430 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3431 case DRM_FORMAT_XRGB8888:
3432 return PLANE_CTL_FORMAT_XRGB_8888;
3433 /*
3434 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3435 * to be already pre-multiplied. We need to add a knob (or a different
3436 * DRM_FORMAT) for user-space to configure that.
3437 */
3438 case DRM_FORMAT_ABGR8888:
3439 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3440 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3441 case DRM_FORMAT_ARGB8888:
3442 return PLANE_CTL_FORMAT_XRGB_8888 |
3443 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3444 case DRM_FORMAT_XRGB2101010:
3445 return PLANE_CTL_FORMAT_XRGB_2101010;
3446 case DRM_FORMAT_XBGR2101010:
3447 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3448 case DRM_FORMAT_YUYV:
3449 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3450 case DRM_FORMAT_YVYU:
3451 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3452 case DRM_FORMAT_UYVY:
3453 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3454 case DRM_FORMAT_VYUY:
3455 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3456 default:
3457 MISSING_CASE(pixel_format);
3458 }
3459
3460 return 0;
3461 }
3462
3463 static u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3464 {
3465 switch (fb_modifier) {
3466 case DRM_FORMAT_MOD_LINEAR:
3467 break;
3468 case I915_FORMAT_MOD_X_TILED:
3469 return PLANE_CTL_TILED_X;
3470 case I915_FORMAT_MOD_Y_TILED:
3471 return PLANE_CTL_TILED_Y;
3472 case I915_FORMAT_MOD_Y_TILED_CCS:
3473 return PLANE_CTL_TILED_Y | PLANE_CTL_DECOMPRESSION_ENABLE;
3474 case I915_FORMAT_MOD_Yf_TILED:
3475 return PLANE_CTL_TILED_YF;
3476 case I915_FORMAT_MOD_Yf_TILED_CCS:
3477 return PLANE_CTL_TILED_YF | PLANE_CTL_DECOMPRESSION_ENABLE;
3478 default:
3479 MISSING_CASE(fb_modifier);
3480 }
3481
3482 return 0;
3483 }
3484
3485 static u32 skl_plane_ctl_rotation(unsigned int rotation)
3486 {
3487 switch (rotation) {
3488 case DRM_MODE_ROTATE_0:
3489 break;
3490 /*
3491 * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
3492 * while i915 HW rotation is clockwise, thats why this swapping.
3493 */
3494 case DRM_MODE_ROTATE_90:
3495 return PLANE_CTL_ROTATE_270;
3496 case DRM_MODE_ROTATE_180:
3497 return PLANE_CTL_ROTATE_180;
3498 case DRM_MODE_ROTATE_270:
3499 return PLANE_CTL_ROTATE_90;
3500 default:
3501 MISSING_CASE(rotation);
3502 }
3503
3504 return 0;
3505 }
3506
3507 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
3508 const struct intel_plane_state *plane_state)
3509 {
3510 struct drm_i915_private *dev_priv =
3511 to_i915(plane_state->base.plane->dev);
3512 const struct drm_framebuffer *fb = plane_state->base.fb;
3513 unsigned int rotation = plane_state->base.rotation;
3514 const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
3515 u32 plane_ctl;
3516
3517 plane_ctl = PLANE_CTL_ENABLE;
3518
3519 if (!IS_GEMINILAKE(dev_priv) && !IS_CANNONLAKE(dev_priv)) {
3520 plane_ctl |=
3521 PLANE_CTL_PIPE_GAMMA_ENABLE |
3522 PLANE_CTL_PIPE_CSC_ENABLE |
3523 PLANE_CTL_PLANE_GAMMA_DISABLE;
3524 }
3525
3526 plane_ctl |= skl_plane_ctl_format(fb->format->format);
3527 plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
3528 plane_ctl |= skl_plane_ctl_rotation(rotation);
3529
3530 if (key->flags & I915_SET_COLORKEY_DESTINATION)
3531 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
3532 else if (key->flags & I915_SET_COLORKEY_SOURCE)
3533 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
3534
3535 return plane_ctl;
3536 }
3537
3538 static void skylake_update_primary_plane(struct intel_plane *plane,
3539 const struct intel_crtc_state *crtc_state,
3540 const struct intel_plane_state *plane_state)
3541 {
3542 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3543 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3544 const struct drm_framebuffer *fb = plane_state->base.fb;
3545 enum plane_id plane_id = plane->id;
3546 enum pipe pipe = plane->pipe;
3547 u32 plane_ctl = plane_state->ctl;
3548 unsigned int rotation = plane_state->base.rotation;
3549 u32 stride = skl_plane_stride(fb, 0, rotation);
3550 u32 aux_stride = skl_plane_stride(fb, 1, rotation);
3551 u32 surf_addr = plane_state->main.offset;
3552 int scaler_id = plane_state->scaler_id;
3553 int src_x = plane_state->main.x;
3554 int src_y = plane_state->main.y;
3555 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3556 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3557 int dst_x = plane_state->base.dst.x1;
3558 int dst_y = plane_state->base.dst.y1;
3559 int dst_w = drm_rect_width(&plane_state->base.dst);
3560 int dst_h = drm_rect_height(&plane_state->base.dst);
3561 unsigned long irqflags;
3562
3563 /* Sizes are 0 based */
3564 src_w--;
3565 src_h--;
3566 dst_w--;
3567 dst_h--;
3568
3569 crtc->dspaddr_offset = surf_addr;
3570
3571 crtc->adjusted_x = src_x;
3572 crtc->adjusted_y = src_y;
3573
3574 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3575
3576 if (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
3577 I915_WRITE_FW(PLANE_COLOR_CTL(pipe, plane_id),
3578 PLANE_COLOR_PIPE_GAMMA_ENABLE |
3579 PLANE_COLOR_PIPE_CSC_ENABLE |
3580 PLANE_COLOR_PLANE_GAMMA_DISABLE);
3581 }
3582
3583 I915_WRITE_FW(PLANE_CTL(pipe, plane_id), plane_ctl);
3584 I915_WRITE_FW(PLANE_OFFSET(pipe, plane_id), (src_y << 16) | src_x);
3585 I915_WRITE_FW(PLANE_STRIDE(pipe, plane_id), stride);
3586 I915_WRITE_FW(PLANE_SIZE(pipe, plane_id), (src_h << 16) | src_w);
3587 I915_WRITE_FW(PLANE_AUX_DIST(pipe, plane_id),
3588 (plane_state->aux.offset - surf_addr) | aux_stride);
3589 I915_WRITE_FW(PLANE_AUX_OFFSET(pipe, plane_id),
3590 (plane_state->aux.y << 16) | plane_state->aux.x);
3591
3592 if (scaler_id >= 0) {
3593 uint32_t ps_ctrl = 0;
3594
3595 WARN_ON(!dst_w || !dst_h);
3596 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(plane_id) |
3597 crtc_state->scaler_state.scalers[scaler_id].mode;
3598 I915_WRITE_FW(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3599 I915_WRITE_FW(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3600 I915_WRITE_FW(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3601 I915_WRITE_FW(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3602 I915_WRITE_FW(PLANE_POS(pipe, plane_id), 0);
3603 } else {
3604 I915_WRITE_FW(PLANE_POS(pipe, plane_id), (dst_y << 16) | dst_x);
3605 }
3606
3607 I915_WRITE_FW(PLANE_SURF(pipe, plane_id),
3608 intel_plane_ggtt_offset(plane_state) + surf_addr);
3609
3610 POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3611
3612 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3613 }
3614
3615 static void skylake_disable_primary_plane(struct intel_plane *primary,
3616 struct intel_crtc *crtc)
3617 {
3618 struct drm_i915_private *dev_priv = to_i915(primary->base.dev);
3619 enum plane_id plane_id = primary->id;
3620 enum pipe pipe = primary->pipe;
3621 unsigned long irqflags;
3622
3623 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3624
3625 I915_WRITE_FW(PLANE_CTL(pipe, plane_id), 0);
3626 I915_WRITE_FW(PLANE_SURF(pipe, plane_id), 0);
3627 POSTING_READ_FW(PLANE_SURF(pipe, plane_id));
3628
3629 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3630 }
3631
3632 static int
3633 __intel_display_resume(struct drm_device *dev,
3634 struct drm_atomic_state *state,
3635 struct drm_modeset_acquire_ctx *ctx)
3636 {
3637 struct drm_crtc_state *crtc_state;
3638 struct drm_crtc *crtc;
3639 int i, ret;
3640
3641 intel_modeset_setup_hw_state(dev, ctx);
3642 i915_redisable_vga(to_i915(dev));
3643
3644 if (!state)
3645 return 0;
3646
3647 /*
3648 * We've duplicated the state, pointers to the old state are invalid.
3649 *
3650 * Don't attempt to use the old state until we commit the duplicated state.
3651 */
3652 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
3653 /*
3654 * Force recalculation even if we restore
3655 * current state. With fast modeset this may not result
3656 * in a modeset when the state is compatible.
3657 */
3658 crtc_state->mode_changed = true;
3659 }
3660
3661 /* ignore any reset values/BIOS leftovers in the WM registers */
3662 if (!HAS_GMCH_DISPLAY(to_i915(dev)))
3663 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3664
3665 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
3666
3667 WARN_ON(ret == -EDEADLK);
3668 return ret;
3669 }
3670
3671 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3672 {
3673 return intel_has_gpu_reset(dev_priv) &&
3674 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3675 }
3676
3677 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3678 {
3679 struct drm_device *dev = &dev_priv->drm;
3680 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3681 struct drm_atomic_state *state;
3682 int ret;
3683
3684
3685 /* reset doesn't touch the display */
3686 if (!i915.force_reset_modeset_test &&
3687 !gpu_reset_clobbers_display(dev_priv))
3688 return;
3689
3690 /* We have a modeset vs reset deadlock, defensively unbreak it. */
3691 set_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
3692 wake_up_all(&dev_priv->gpu_error.wait_queue);
3693
3694 if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
3695 DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
3696 i915_gem_set_wedged(dev_priv);
3697 }
3698
3699 /*
3700 * Need mode_config.mutex so that we don't
3701 * trample ongoing ->detect() and whatnot.
3702 */
3703 mutex_lock(&dev->mode_config.mutex);
3704 drm_modeset_acquire_init(ctx, 0);
3705 while (1) {
3706 ret = drm_modeset_lock_all_ctx(dev, ctx);
3707 if (ret != -EDEADLK)
3708 break;
3709
3710 drm_modeset_backoff(ctx);
3711 }
3712 /*
3713 * Disabling the crtcs gracefully seems nicer. Also the
3714 * g33 docs say we should at least disable all the planes.
3715 */
3716 state = drm_atomic_helper_duplicate_state(dev, ctx);
3717 if (IS_ERR(state)) {
3718 ret = PTR_ERR(state);
3719 DRM_ERROR("Duplicating state failed with %i\n", ret);
3720 return;
3721 }
3722
3723 ret = drm_atomic_helper_disable_all(dev, ctx);
3724 if (ret) {
3725 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3726 drm_atomic_state_put(state);
3727 return;
3728 }
3729
3730 dev_priv->modeset_restore_state = state;
3731 state->acquire_ctx = ctx;
3732 }
3733
3734 void intel_finish_reset(struct drm_i915_private *dev_priv)
3735 {
3736 struct drm_device *dev = &dev_priv->drm;
3737 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3738 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3739 int ret;
3740
3741 /* reset doesn't touch the display */
3742 if (!i915.force_reset_modeset_test &&
3743 !gpu_reset_clobbers_display(dev_priv))
3744 return;
3745
3746 if (!state)
3747 goto unlock;
3748
3749 dev_priv->modeset_restore_state = NULL;
3750
3751 /* reset doesn't touch the display */
3752 if (!gpu_reset_clobbers_display(dev_priv)) {
3753 /* for testing only restore the display */
3754 ret = __intel_display_resume(dev, state, ctx);
3755 if (ret)
3756 DRM_ERROR("Restoring old state failed with %i\n", ret);
3757 } else {
3758 /*
3759 * The display has been reset as well,
3760 * so need a full re-initialization.
3761 */
3762 intel_runtime_pm_disable_interrupts(dev_priv);
3763 intel_runtime_pm_enable_interrupts(dev_priv);
3764
3765 intel_pps_unlock_regs_wa(dev_priv);
3766 intel_modeset_init_hw(dev);
3767 intel_init_clock_gating(dev_priv);
3768
3769 spin_lock_irq(&dev_priv->irq_lock);
3770 if (dev_priv->display.hpd_irq_setup)
3771 dev_priv->display.hpd_irq_setup(dev_priv);
3772 spin_unlock_irq(&dev_priv->irq_lock);
3773
3774 ret = __intel_display_resume(dev, state, ctx);
3775 if (ret)
3776 DRM_ERROR("Restoring old state failed with %i\n", ret);
3777
3778 intel_hpd_init(dev_priv);
3779 }
3780
3781 drm_atomic_state_put(state);
3782 unlock:
3783 drm_modeset_drop_locks(ctx);
3784 drm_modeset_acquire_fini(ctx);
3785 mutex_unlock(&dev->mode_config.mutex);
3786
3787 clear_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags);
3788 }
3789
3790 static void intel_update_pipe_config(struct intel_crtc *crtc,
3791 struct intel_crtc_state *old_crtc_state)
3792 {
3793 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3794 struct intel_crtc_state *pipe_config =
3795 to_intel_crtc_state(crtc->base.state);
3796
3797 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3798 crtc->base.mode = crtc->base.state->mode;
3799
3800 /*
3801 * Update pipe size and adjust fitter if needed: the reason for this is
3802 * that in compute_mode_changes we check the native mode (not the pfit
3803 * mode) to see if we can flip rather than do a full mode set. In the
3804 * fastboot case, we'll flip, but if we don't update the pipesrc and
3805 * pfit state, we'll end up with a big fb scanned out into the wrong
3806 * sized surface.
3807 */
3808
3809 I915_WRITE(PIPESRC(crtc->pipe),
3810 ((pipe_config->pipe_src_w - 1) << 16) |
3811 (pipe_config->pipe_src_h - 1));
3812
3813 /* on skylake this is done by detaching scalers */
3814 if (INTEL_GEN(dev_priv) >= 9) {
3815 skl_detach_scalers(crtc);
3816
3817 if (pipe_config->pch_pfit.enabled)
3818 skylake_pfit_enable(crtc);
3819 } else if (HAS_PCH_SPLIT(dev_priv)) {
3820 if (pipe_config->pch_pfit.enabled)
3821 ironlake_pfit_enable(crtc);
3822 else if (old_crtc_state->pch_pfit.enabled)
3823 ironlake_pfit_disable(crtc, true);
3824 }
3825 }
3826
3827 static void intel_fdi_normal_train(struct intel_crtc *crtc)
3828 {
3829 struct drm_device *dev = crtc->base.dev;
3830 struct drm_i915_private *dev_priv = to_i915(dev);
3831 int pipe = crtc->pipe;
3832 i915_reg_t reg;
3833 u32 temp;
3834
3835 /* enable normal train */
3836 reg = FDI_TX_CTL(pipe);
3837 temp = I915_READ(reg);
3838 if (IS_IVYBRIDGE(dev_priv)) {
3839 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3840 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3841 } else {
3842 temp &= ~FDI_LINK_TRAIN_NONE;
3843 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3844 }
3845 I915_WRITE(reg, temp);
3846
3847 reg = FDI_RX_CTL(pipe);
3848 temp = I915_READ(reg);
3849 if (HAS_PCH_CPT(dev_priv)) {
3850 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3851 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3852 } else {
3853 temp &= ~FDI_LINK_TRAIN_NONE;
3854 temp |= FDI_LINK_TRAIN_NONE;
3855 }
3856 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3857
3858 /* wait one idle pattern time */
3859 POSTING_READ(reg);
3860 udelay(1000);
3861
3862 /* IVB wants error correction enabled */
3863 if (IS_IVYBRIDGE(dev_priv))
3864 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3865 FDI_FE_ERRC_ENABLE);
3866 }
3867
3868 /* The FDI link training functions for ILK/Ibexpeak. */
3869 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
3870 const struct intel_crtc_state *crtc_state)
3871 {
3872 struct drm_device *dev = crtc->base.dev;
3873 struct drm_i915_private *dev_priv = to_i915(dev);
3874 int pipe = crtc->pipe;
3875 i915_reg_t reg;
3876 u32 temp, tries;
3877
3878 /* FDI needs bits from pipe first */
3879 assert_pipe_enabled(dev_priv, pipe);
3880
3881 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3882 for train result */
3883 reg = FDI_RX_IMR(pipe);
3884 temp = I915_READ(reg);
3885 temp &= ~FDI_RX_SYMBOL_LOCK;
3886 temp &= ~FDI_RX_BIT_LOCK;
3887 I915_WRITE(reg, temp);
3888 I915_READ(reg);
3889 udelay(150);
3890
3891 /* enable CPU FDI TX and PCH FDI RX */
3892 reg = FDI_TX_CTL(pipe);
3893 temp = I915_READ(reg);
3894 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3895 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3896 temp &= ~FDI_LINK_TRAIN_NONE;
3897 temp |= FDI_LINK_TRAIN_PATTERN_1;
3898 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3899
3900 reg = FDI_RX_CTL(pipe);
3901 temp = I915_READ(reg);
3902 temp &= ~FDI_LINK_TRAIN_NONE;
3903 temp |= FDI_LINK_TRAIN_PATTERN_1;
3904 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3905
3906 POSTING_READ(reg);
3907 udelay(150);
3908
3909 /* Ironlake workaround, enable clock pointer after FDI enable*/
3910 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3911 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3912 FDI_RX_PHASE_SYNC_POINTER_EN);
3913
3914 reg = FDI_RX_IIR(pipe);
3915 for (tries = 0; tries < 5; tries++) {
3916 temp = I915_READ(reg);
3917 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3918
3919 if ((temp & FDI_RX_BIT_LOCK)) {
3920 DRM_DEBUG_KMS("FDI train 1 done.\n");
3921 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3922 break;
3923 }
3924 }
3925 if (tries == 5)
3926 DRM_ERROR("FDI train 1 fail!\n");
3927
3928 /* Train 2 */
3929 reg = FDI_TX_CTL(pipe);
3930 temp = I915_READ(reg);
3931 temp &= ~FDI_LINK_TRAIN_NONE;
3932 temp |= FDI_LINK_TRAIN_PATTERN_2;
3933 I915_WRITE(reg, temp);
3934
3935 reg = FDI_RX_CTL(pipe);
3936 temp = I915_READ(reg);
3937 temp &= ~FDI_LINK_TRAIN_NONE;
3938 temp |= FDI_LINK_TRAIN_PATTERN_2;
3939 I915_WRITE(reg, temp);
3940
3941 POSTING_READ(reg);
3942 udelay(150);
3943
3944 reg = FDI_RX_IIR(pipe);
3945 for (tries = 0; tries < 5; tries++) {
3946 temp = I915_READ(reg);
3947 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3948
3949 if (temp & FDI_RX_SYMBOL_LOCK) {
3950 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3951 DRM_DEBUG_KMS("FDI train 2 done.\n");
3952 break;
3953 }
3954 }
3955 if (tries == 5)
3956 DRM_ERROR("FDI train 2 fail!\n");
3957
3958 DRM_DEBUG_KMS("FDI train done\n");
3959
3960 }
3961
3962 static const int snb_b_fdi_train_param[] = {
3963 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3964 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3965 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3966 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3967 };
3968
3969 /* The FDI link training functions for SNB/Cougarpoint. */
3970 static void gen6_fdi_link_train(struct intel_crtc *crtc,
3971 const struct intel_crtc_state *crtc_state)
3972 {
3973 struct drm_device *dev = crtc->base.dev;
3974 struct drm_i915_private *dev_priv = to_i915(dev);
3975 int pipe = crtc->pipe;
3976 i915_reg_t reg;
3977 u32 temp, i, retry;
3978
3979 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3980 for train result */
3981 reg = FDI_RX_IMR(pipe);
3982 temp = I915_READ(reg);
3983 temp &= ~FDI_RX_SYMBOL_LOCK;
3984 temp &= ~FDI_RX_BIT_LOCK;
3985 I915_WRITE(reg, temp);
3986
3987 POSTING_READ(reg);
3988 udelay(150);
3989
3990 /* enable CPU FDI TX and PCH FDI RX */
3991 reg = FDI_TX_CTL(pipe);
3992 temp = I915_READ(reg);
3993 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3994 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
3995 temp &= ~FDI_LINK_TRAIN_NONE;
3996 temp |= FDI_LINK_TRAIN_PATTERN_1;
3997 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3998 /* SNB-B */
3999 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4000 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4001
4002 I915_WRITE(FDI_RX_MISC(pipe),
4003 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4004
4005 reg = FDI_RX_CTL(pipe);
4006 temp = I915_READ(reg);
4007 if (HAS_PCH_CPT(dev_priv)) {
4008 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4009 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4010 } else {
4011 temp &= ~FDI_LINK_TRAIN_NONE;
4012 temp |= FDI_LINK_TRAIN_PATTERN_1;
4013 }
4014 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4015
4016 POSTING_READ(reg);
4017 udelay(150);
4018
4019 for (i = 0; i < 4; i++) {
4020 reg = FDI_TX_CTL(pipe);
4021 temp = I915_READ(reg);
4022 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4023 temp |= snb_b_fdi_train_param[i];
4024 I915_WRITE(reg, temp);
4025
4026 POSTING_READ(reg);
4027 udelay(500);
4028
4029 for (retry = 0; retry < 5; retry++) {
4030 reg = FDI_RX_IIR(pipe);
4031 temp = I915_READ(reg);
4032 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4033 if (temp & FDI_RX_BIT_LOCK) {
4034 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4035 DRM_DEBUG_KMS("FDI train 1 done.\n");
4036 break;
4037 }
4038 udelay(50);
4039 }
4040 if (retry < 5)
4041 break;
4042 }
4043 if (i == 4)
4044 DRM_ERROR("FDI train 1 fail!\n");
4045
4046 /* Train 2 */
4047 reg = FDI_TX_CTL(pipe);
4048 temp = I915_READ(reg);
4049 temp &= ~FDI_LINK_TRAIN_NONE;
4050 temp |= FDI_LINK_TRAIN_PATTERN_2;
4051 if (IS_GEN6(dev_priv)) {
4052 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4053 /* SNB-B */
4054 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4055 }
4056 I915_WRITE(reg, temp);
4057
4058 reg = FDI_RX_CTL(pipe);
4059 temp = I915_READ(reg);
4060 if (HAS_PCH_CPT(dev_priv)) {
4061 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4062 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4063 } else {
4064 temp &= ~FDI_LINK_TRAIN_NONE;
4065 temp |= FDI_LINK_TRAIN_PATTERN_2;
4066 }
4067 I915_WRITE(reg, temp);
4068
4069 POSTING_READ(reg);
4070 udelay(150);
4071
4072 for (i = 0; i < 4; i++) {
4073 reg = FDI_TX_CTL(pipe);
4074 temp = I915_READ(reg);
4075 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4076 temp |= snb_b_fdi_train_param[i];
4077 I915_WRITE(reg, temp);
4078
4079 POSTING_READ(reg);
4080 udelay(500);
4081
4082 for (retry = 0; retry < 5; retry++) {
4083 reg = FDI_RX_IIR(pipe);
4084 temp = I915_READ(reg);
4085 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4086 if (temp & FDI_RX_SYMBOL_LOCK) {
4087 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4088 DRM_DEBUG_KMS("FDI train 2 done.\n");
4089 break;
4090 }
4091 udelay(50);
4092 }
4093 if (retry < 5)
4094 break;
4095 }
4096 if (i == 4)
4097 DRM_ERROR("FDI train 2 fail!\n");
4098
4099 DRM_DEBUG_KMS("FDI train done.\n");
4100 }
4101
4102 /* Manual link training for Ivy Bridge A0 parts */
4103 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
4104 const struct intel_crtc_state *crtc_state)
4105 {
4106 struct drm_device *dev = crtc->base.dev;
4107 struct drm_i915_private *dev_priv = to_i915(dev);
4108 int pipe = crtc->pipe;
4109 i915_reg_t reg;
4110 u32 temp, i, j;
4111
4112 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4113 for train result */
4114 reg = FDI_RX_IMR(pipe);
4115 temp = I915_READ(reg);
4116 temp &= ~FDI_RX_SYMBOL_LOCK;
4117 temp &= ~FDI_RX_BIT_LOCK;
4118 I915_WRITE(reg, temp);
4119
4120 POSTING_READ(reg);
4121 udelay(150);
4122
4123 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4124 I915_READ(FDI_RX_IIR(pipe)));
4125
4126 /* Try each vswing and preemphasis setting twice before moving on */
4127 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4128 /* disable first in case we need to retry */
4129 reg = FDI_TX_CTL(pipe);
4130 temp = I915_READ(reg);
4131 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4132 temp &= ~FDI_TX_ENABLE;
4133 I915_WRITE(reg, temp);
4134
4135 reg = FDI_RX_CTL(pipe);
4136 temp = I915_READ(reg);
4137 temp &= ~FDI_LINK_TRAIN_AUTO;
4138 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4139 temp &= ~FDI_RX_ENABLE;
4140 I915_WRITE(reg, temp);
4141
4142 /* enable CPU FDI TX and PCH FDI RX */
4143 reg = FDI_TX_CTL(pipe);
4144 temp = I915_READ(reg);
4145 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4146 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4147 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4148 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4149 temp |= snb_b_fdi_train_param[j/2];
4150 temp |= FDI_COMPOSITE_SYNC;
4151 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4152
4153 I915_WRITE(FDI_RX_MISC(pipe),
4154 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4155
4156 reg = FDI_RX_CTL(pipe);
4157 temp = I915_READ(reg);
4158 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4159 temp |= FDI_COMPOSITE_SYNC;
4160 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4161
4162 POSTING_READ(reg);
4163 udelay(1); /* should be 0.5us */
4164
4165 for (i = 0; i < 4; i++) {
4166 reg = FDI_RX_IIR(pipe);
4167 temp = I915_READ(reg);
4168 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4169
4170 if (temp & FDI_RX_BIT_LOCK ||
4171 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4172 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4173 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4174 i);
4175 break;
4176 }
4177 udelay(1); /* should be 0.5us */
4178 }
4179 if (i == 4) {
4180 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4181 continue;
4182 }
4183
4184 /* Train 2 */
4185 reg = FDI_TX_CTL(pipe);
4186 temp = I915_READ(reg);
4187 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4188 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4189 I915_WRITE(reg, temp);
4190
4191 reg = FDI_RX_CTL(pipe);
4192 temp = I915_READ(reg);
4193 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4194 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4195 I915_WRITE(reg, temp);
4196
4197 POSTING_READ(reg);
4198 udelay(2); /* should be 1.5us */
4199
4200 for (i = 0; i < 4; i++) {
4201 reg = FDI_RX_IIR(pipe);
4202 temp = I915_READ(reg);
4203 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4204
4205 if (temp & FDI_RX_SYMBOL_LOCK ||
4206 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4207 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4208 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4209 i);
4210 goto train_done;
4211 }
4212 udelay(2); /* should be 1.5us */
4213 }
4214 if (i == 4)
4215 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4216 }
4217
4218 train_done:
4219 DRM_DEBUG_KMS("FDI train done.\n");
4220 }
4221
4222 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4223 {
4224 struct drm_device *dev = intel_crtc->base.dev;
4225 struct drm_i915_private *dev_priv = to_i915(dev);
4226 int pipe = intel_crtc->pipe;
4227 i915_reg_t reg;
4228 u32 temp;
4229
4230 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4231 reg = FDI_RX_CTL(pipe);
4232 temp = I915_READ(reg);
4233 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4234 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4235 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4236 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4237
4238 POSTING_READ(reg);
4239 udelay(200);
4240
4241 /* Switch from Rawclk to PCDclk */
4242 temp = I915_READ(reg);
4243 I915_WRITE(reg, temp | FDI_PCDCLK);
4244
4245 POSTING_READ(reg);
4246 udelay(200);
4247
4248 /* Enable CPU FDI TX PLL, always on for Ironlake */
4249 reg = FDI_TX_CTL(pipe);
4250 temp = I915_READ(reg);
4251 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4252 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4253
4254 POSTING_READ(reg);
4255 udelay(100);
4256 }
4257 }
4258
4259 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4260 {
4261 struct drm_device *dev = intel_crtc->base.dev;
4262 struct drm_i915_private *dev_priv = to_i915(dev);
4263 int pipe = intel_crtc->pipe;
4264 i915_reg_t reg;
4265 u32 temp;
4266
4267 /* Switch from PCDclk to Rawclk */
4268 reg = FDI_RX_CTL(pipe);
4269 temp = I915_READ(reg);
4270 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4271
4272 /* Disable CPU FDI TX PLL */
4273 reg = FDI_TX_CTL(pipe);
4274 temp = I915_READ(reg);
4275 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4276
4277 POSTING_READ(reg);
4278 udelay(100);
4279
4280 reg = FDI_RX_CTL(pipe);
4281 temp = I915_READ(reg);
4282 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4283
4284 /* Wait for the clocks to turn off. */
4285 POSTING_READ(reg);
4286 udelay(100);
4287 }
4288
4289 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4290 {
4291 struct drm_device *dev = crtc->dev;
4292 struct drm_i915_private *dev_priv = to_i915(dev);
4293 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4294 int pipe = intel_crtc->pipe;
4295 i915_reg_t reg;
4296 u32 temp;
4297
4298 /* disable CPU FDI tx and PCH FDI rx */
4299 reg = FDI_TX_CTL(pipe);
4300 temp = I915_READ(reg);
4301 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4302 POSTING_READ(reg);
4303
4304 reg = FDI_RX_CTL(pipe);
4305 temp = I915_READ(reg);
4306 temp &= ~(0x7 << 16);
4307 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4308 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4309
4310 POSTING_READ(reg);
4311 udelay(100);
4312
4313 /* Ironlake workaround, disable clock pointer after downing FDI */
4314 if (HAS_PCH_IBX(dev_priv))
4315 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4316
4317 /* still set train pattern 1 */
4318 reg = FDI_TX_CTL(pipe);
4319 temp = I915_READ(reg);
4320 temp &= ~FDI_LINK_TRAIN_NONE;
4321 temp |= FDI_LINK_TRAIN_PATTERN_1;
4322 I915_WRITE(reg, temp);
4323
4324 reg = FDI_RX_CTL(pipe);
4325 temp = I915_READ(reg);
4326 if (HAS_PCH_CPT(dev_priv)) {
4327 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4328 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4329 } else {
4330 temp &= ~FDI_LINK_TRAIN_NONE;
4331 temp |= FDI_LINK_TRAIN_PATTERN_1;
4332 }
4333 /* BPC in FDI rx is consistent with that in PIPECONF */
4334 temp &= ~(0x07 << 16);
4335 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4336 I915_WRITE(reg, temp);
4337
4338 POSTING_READ(reg);
4339 udelay(100);
4340 }
4341
4342 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
4343 {
4344 struct drm_crtc *crtc;
4345 bool cleanup_done;
4346
4347 drm_for_each_crtc(crtc, &dev_priv->drm) {
4348 struct drm_crtc_commit *commit;
4349 spin_lock(&crtc->commit_lock);
4350 commit = list_first_entry_or_null(&crtc->commit_list,
4351 struct drm_crtc_commit, commit_entry);
4352 cleanup_done = commit ?
4353 try_wait_for_completion(&commit->cleanup_done) : true;
4354 spin_unlock(&crtc->commit_lock);
4355
4356 if (cleanup_done)
4357 continue;
4358
4359 drm_crtc_wait_one_vblank(crtc);
4360
4361 return true;
4362 }
4363
4364 return false;
4365 }
4366
4367 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4368 {
4369 u32 temp;
4370
4371 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4372
4373 mutex_lock(&dev_priv->sb_lock);
4374
4375 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4376 temp |= SBI_SSCCTL_DISABLE;
4377 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4378
4379 mutex_unlock(&dev_priv->sb_lock);
4380 }
4381
4382 /* Program iCLKIP clock to the desired frequency */
4383 static void lpt_program_iclkip(struct intel_crtc *crtc)
4384 {
4385 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4386 int clock = crtc->config->base.adjusted_mode.crtc_clock;
4387 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4388 u32 temp;
4389
4390 lpt_disable_iclkip(dev_priv);
4391
4392 /* The iCLK virtual clock root frequency is in MHz,
4393 * but the adjusted_mode->crtc_clock in in KHz. To get the
4394 * divisors, it is necessary to divide one by another, so we
4395 * convert the virtual clock precision to KHz here for higher
4396 * precision.
4397 */
4398 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4399 u32 iclk_virtual_root_freq = 172800 * 1000;
4400 u32 iclk_pi_range = 64;
4401 u32 desired_divisor;
4402
4403 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4404 clock << auxdiv);
4405 divsel = (desired_divisor / iclk_pi_range) - 2;
4406 phaseinc = desired_divisor % iclk_pi_range;
4407
4408 /*
4409 * Near 20MHz is a corner case which is
4410 * out of range for the 7-bit divisor
4411 */
4412 if (divsel <= 0x7f)
4413 break;
4414 }
4415
4416 /* This should not happen with any sane values */
4417 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4418 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4419 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4420 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4421
4422 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4423 clock,
4424 auxdiv,
4425 divsel,
4426 phasedir,
4427 phaseinc);
4428
4429 mutex_lock(&dev_priv->sb_lock);
4430
4431 /* Program SSCDIVINTPHASE6 */
4432 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4433 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4434 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4435 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4436 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4437 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4438 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4439 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4440
4441 /* Program SSCAUXDIV */
4442 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4443 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4444 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4445 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4446
4447 /* Enable modulator and associated divider */
4448 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4449 temp &= ~SBI_SSCCTL_DISABLE;
4450 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4451
4452 mutex_unlock(&dev_priv->sb_lock);
4453
4454 /* Wait for initialization time */
4455 udelay(24);
4456
4457 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4458 }
4459
4460 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4461 {
4462 u32 divsel, phaseinc, auxdiv;
4463 u32 iclk_virtual_root_freq = 172800 * 1000;
4464 u32 iclk_pi_range = 64;
4465 u32 desired_divisor;
4466 u32 temp;
4467
4468 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4469 return 0;
4470
4471 mutex_lock(&dev_priv->sb_lock);
4472
4473 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4474 if (temp & SBI_SSCCTL_DISABLE) {
4475 mutex_unlock(&dev_priv->sb_lock);
4476 return 0;
4477 }
4478
4479 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4480 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4481 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4482 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4483 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4484
4485 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4486 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4487 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4488
4489 mutex_unlock(&dev_priv->sb_lock);
4490
4491 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4492
4493 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4494 desired_divisor << auxdiv);
4495 }
4496
4497 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4498 enum pipe pch_transcoder)
4499 {
4500 struct drm_device *dev = crtc->base.dev;
4501 struct drm_i915_private *dev_priv = to_i915(dev);
4502 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4503
4504 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4505 I915_READ(HTOTAL(cpu_transcoder)));
4506 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4507 I915_READ(HBLANK(cpu_transcoder)));
4508 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4509 I915_READ(HSYNC(cpu_transcoder)));
4510
4511 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4512 I915_READ(VTOTAL(cpu_transcoder)));
4513 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4514 I915_READ(VBLANK(cpu_transcoder)));
4515 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4516 I915_READ(VSYNC(cpu_transcoder)));
4517 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4518 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4519 }
4520
4521 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4522 {
4523 struct drm_i915_private *dev_priv = to_i915(dev);
4524 uint32_t temp;
4525
4526 temp = I915_READ(SOUTH_CHICKEN1);
4527 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4528 return;
4529
4530 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4531 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4532
4533 temp &= ~FDI_BC_BIFURCATION_SELECT;
4534 if (enable)
4535 temp |= FDI_BC_BIFURCATION_SELECT;
4536
4537 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4538 I915_WRITE(SOUTH_CHICKEN1, temp);
4539 POSTING_READ(SOUTH_CHICKEN1);
4540 }
4541
4542 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4543 {
4544 struct drm_device *dev = intel_crtc->base.dev;
4545
4546 switch (intel_crtc->pipe) {
4547 case PIPE_A:
4548 break;
4549 case PIPE_B:
4550 if (intel_crtc->config->fdi_lanes > 2)
4551 cpt_set_fdi_bc_bifurcation(dev, false);
4552 else
4553 cpt_set_fdi_bc_bifurcation(dev, true);
4554
4555 break;
4556 case PIPE_C:
4557 cpt_set_fdi_bc_bifurcation(dev, true);
4558
4559 break;
4560 default:
4561 BUG();
4562 }
4563 }
4564
4565 /* Return which DP Port should be selected for Transcoder DP control */
4566 static enum port
4567 intel_trans_dp_port_sel(struct intel_crtc *crtc)
4568 {
4569 struct drm_device *dev = crtc->base.dev;
4570 struct intel_encoder *encoder;
4571
4572 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
4573 if (encoder->type == INTEL_OUTPUT_DP ||
4574 encoder->type == INTEL_OUTPUT_EDP)
4575 return enc_to_dig_port(&encoder->base)->port;
4576 }
4577
4578 return -1;
4579 }
4580
4581 /*
4582 * Enable PCH resources required for PCH ports:
4583 * - PCH PLLs
4584 * - FDI training & RX/TX
4585 * - update transcoder timings
4586 * - DP transcoding bits
4587 * - transcoder
4588 */
4589 static void ironlake_pch_enable(const struct intel_crtc_state *crtc_state)
4590 {
4591 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4592 struct drm_device *dev = crtc->base.dev;
4593 struct drm_i915_private *dev_priv = to_i915(dev);
4594 int pipe = crtc->pipe;
4595 u32 temp;
4596
4597 assert_pch_transcoder_disabled(dev_priv, pipe);
4598
4599 if (IS_IVYBRIDGE(dev_priv))
4600 ivybridge_update_fdi_bc_bifurcation(crtc);
4601
4602 /* Write the TU size bits before fdi link training, so that error
4603 * detection works. */
4604 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4605 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4606
4607 /* For PCH output, training FDI link */
4608 dev_priv->display.fdi_link_train(crtc, crtc_state);
4609
4610 /* We need to program the right clock selection before writing the pixel
4611 * mutliplier into the DPLL. */
4612 if (HAS_PCH_CPT(dev_priv)) {
4613 u32 sel;
4614
4615 temp = I915_READ(PCH_DPLL_SEL);
4616 temp |= TRANS_DPLL_ENABLE(pipe);
4617 sel = TRANS_DPLLB_SEL(pipe);
4618 if (crtc_state->shared_dpll ==
4619 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4620 temp |= sel;
4621 else
4622 temp &= ~sel;
4623 I915_WRITE(PCH_DPLL_SEL, temp);
4624 }
4625
4626 /* XXX: pch pll's can be enabled any time before we enable the PCH
4627 * transcoder, and we actually should do this to not upset any PCH
4628 * transcoder that already use the clock when we share it.
4629 *
4630 * Note that enable_shared_dpll tries to do the right thing, but
4631 * get_shared_dpll unconditionally resets the pll - we need that to have
4632 * the right LVDS enable sequence. */
4633 intel_enable_shared_dpll(crtc);
4634
4635 /* set transcoder timing, panel must allow it */
4636 assert_panel_unlocked(dev_priv, pipe);
4637 ironlake_pch_transcoder_set_timings(crtc, pipe);
4638
4639 intel_fdi_normal_train(crtc);
4640
4641 /* For PCH DP, enable TRANS_DP_CTL */
4642 if (HAS_PCH_CPT(dev_priv) &&
4643 intel_crtc_has_dp_encoder(crtc_state)) {
4644 const struct drm_display_mode *adjusted_mode =
4645 &crtc_state->base.adjusted_mode;
4646 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4647 i915_reg_t reg = TRANS_DP_CTL(pipe);
4648 temp = I915_READ(reg);
4649 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4650 TRANS_DP_SYNC_MASK |
4651 TRANS_DP_BPC_MASK);
4652 temp |= TRANS_DP_OUTPUT_ENABLE;
4653 temp |= bpc << 9; /* same format but at 11:9 */
4654
4655 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4656 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4657 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4658 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4659
4660 switch (intel_trans_dp_port_sel(crtc)) {
4661 case PORT_B:
4662 temp |= TRANS_DP_PORT_SEL_B;
4663 break;
4664 case PORT_C:
4665 temp |= TRANS_DP_PORT_SEL_C;
4666 break;
4667 case PORT_D:
4668 temp |= TRANS_DP_PORT_SEL_D;
4669 break;
4670 default:
4671 BUG();
4672 }
4673
4674 I915_WRITE(reg, temp);
4675 }
4676
4677 ironlake_enable_pch_transcoder(dev_priv, pipe);
4678 }
4679
4680 static void lpt_pch_enable(const struct intel_crtc_state *crtc_state)
4681 {
4682 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4683 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4684 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
4685
4686 assert_pch_transcoder_disabled(dev_priv, PIPE_A);
4687
4688 lpt_program_iclkip(crtc);
4689
4690 /* Set transcoder timing. */
4691 ironlake_pch_transcoder_set_timings(crtc, PIPE_A);
4692
4693 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4694 }
4695
4696 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4697 {
4698 struct drm_i915_private *dev_priv = to_i915(dev);
4699 i915_reg_t dslreg = PIPEDSL(pipe);
4700 u32 temp;
4701
4702 temp = I915_READ(dslreg);
4703 udelay(500);
4704 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4705 if (wait_for(I915_READ(dslreg) != temp, 5))
4706 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4707 }
4708 }
4709
4710 static int
4711 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4712 unsigned int scaler_user, int *scaler_id,
4713 int src_w, int src_h, int dst_w, int dst_h)
4714 {
4715 struct intel_crtc_scaler_state *scaler_state =
4716 &crtc_state->scaler_state;
4717 struct intel_crtc *intel_crtc =
4718 to_intel_crtc(crtc_state->base.crtc);
4719 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4720 const struct drm_display_mode *adjusted_mode =
4721 &crtc_state->base.adjusted_mode;
4722 int need_scaling;
4723
4724 /*
4725 * Src coordinates are already rotated by 270 degrees for
4726 * the 90/270 degree plane rotation cases (to match the
4727 * GTT mapping), hence no need to account for rotation here.
4728 */
4729 need_scaling = src_w != dst_w || src_h != dst_h;
4730
4731 if (crtc_state->ycbcr420 && scaler_user == SKL_CRTC_INDEX)
4732 need_scaling = true;
4733
4734 /*
4735 * Scaling/fitting not supported in IF-ID mode in GEN9+
4736 * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
4737 * Once NV12 is enabled, handle it here while allocating scaler
4738 * for NV12.
4739 */
4740 if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable &&
4741 need_scaling && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4742 DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
4743 return -EINVAL;
4744 }
4745
4746 /*
4747 * if plane is being disabled or scaler is no more required or force detach
4748 * - free scaler binded to this plane/crtc
4749 * - in order to do this, update crtc->scaler_usage
4750 *
4751 * Here scaler state in crtc_state is set free so that
4752 * scaler can be assigned to other user. Actual register
4753 * update to free the scaler is done in plane/panel-fit programming.
4754 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4755 */
4756 if (force_detach || !need_scaling) {
4757 if (*scaler_id >= 0) {
4758 scaler_state->scaler_users &= ~(1 << scaler_user);
4759 scaler_state->scalers[*scaler_id].in_use = 0;
4760
4761 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4762 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4763 intel_crtc->pipe, scaler_user, *scaler_id,
4764 scaler_state->scaler_users);
4765 *scaler_id = -1;
4766 }
4767 return 0;
4768 }
4769
4770 /* range checks */
4771 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4772 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4773
4774 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4775 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4776 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4777 "size is out of scaler range\n",
4778 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4779 return -EINVAL;
4780 }
4781
4782 /* mark this plane as a scaler user in crtc_state */
4783 scaler_state->scaler_users |= (1 << scaler_user);
4784 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4785 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4786 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4787 scaler_state->scaler_users);
4788
4789 return 0;
4790 }
4791
4792 /**
4793 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4794 *
4795 * @state: crtc's scaler state
4796 *
4797 * Return
4798 * 0 - scaler_usage updated successfully
4799 * error - requested scaling cannot be supported or other error condition
4800 */
4801 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4802 {
4803 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4804
4805 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4806 &state->scaler_state.scaler_id,
4807 state->pipe_src_w, state->pipe_src_h,
4808 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4809 }
4810
4811 /**
4812 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4813 *
4814 * @state: crtc's scaler state
4815 * @plane_state: atomic plane state to update
4816 *
4817 * Return
4818 * 0 - scaler_usage updated successfully
4819 * error - requested scaling cannot be supported or other error condition
4820 */
4821 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4822 struct intel_plane_state *plane_state)
4823 {
4824
4825 struct intel_plane *intel_plane =
4826 to_intel_plane(plane_state->base.plane);
4827 struct drm_framebuffer *fb = plane_state->base.fb;
4828 int ret;
4829
4830 bool force_detach = !fb || !plane_state->base.visible;
4831
4832 ret = skl_update_scaler(crtc_state, force_detach,
4833 drm_plane_index(&intel_plane->base),
4834 &plane_state->scaler_id,
4835 drm_rect_width(&plane_state->base.src) >> 16,
4836 drm_rect_height(&plane_state->base.src) >> 16,
4837 drm_rect_width(&plane_state->base.dst),
4838 drm_rect_height(&plane_state->base.dst));
4839
4840 if (ret || plane_state->scaler_id < 0)
4841 return ret;
4842
4843 /* check colorkey */
4844 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4845 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4846 intel_plane->base.base.id,
4847 intel_plane->base.name);
4848 return -EINVAL;
4849 }
4850
4851 /* Check src format */
4852 switch (fb->format->format) {
4853 case DRM_FORMAT_RGB565:
4854 case DRM_FORMAT_XBGR8888:
4855 case DRM_FORMAT_XRGB8888:
4856 case DRM_FORMAT_ABGR8888:
4857 case DRM_FORMAT_ARGB8888:
4858 case DRM_FORMAT_XRGB2101010:
4859 case DRM_FORMAT_XBGR2101010:
4860 case DRM_FORMAT_YUYV:
4861 case DRM_FORMAT_YVYU:
4862 case DRM_FORMAT_UYVY:
4863 case DRM_FORMAT_VYUY:
4864 break;
4865 default:
4866 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4867 intel_plane->base.base.id, intel_plane->base.name,
4868 fb->base.id, fb->format->format);
4869 return -EINVAL;
4870 }
4871
4872 return 0;
4873 }
4874
4875 static void skylake_scaler_disable(struct intel_crtc *crtc)
4876 {
4877 int i;
4878
4879 for (i = 0; i < crtc->num_scalers; i++)
4880 skl_detach_scaler(crtc, i);
4881 }
4882
4883 static void skylake_pfit_enable(struct intel_crtc *crtc)
4884 {
4885 struct drm_device *dev = crtc->base.dev;
4886 struct drm_i915_private *dev_priv = to_i915(dev);
4887 int pipe = crtc->pipe;
4888 struct intel_crtc_scaler_state *scaler_state =
4889 &crtc->config->scaler_state;
4890
4891 if (crtc->config->pch_pfit.enabled) {
4892 int id;
4893
4894 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4895 return;
4896
4897 id = scaler_state->scaler_id;
4898 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4899 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4900 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4901 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4902 }
4903 }
4904
4905 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4906 {
4907 struct drm_device *dev = crtc->base.dev;
4908 struct drm_i915_private *dev_priv = to_i915(dev);
4909 int pipe = crtc->pipe;
4910
4911 if (crtc->config->pch_pfit.enabled) {
4912 /* Force use of hard-coded filter coefficients
4913 * as some pre-programmed values are broken,
4914 * e.g. x201.
4915 */
4916 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
4917 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4918 PF_PIPE_SEL_IVB(pipe));
4919 else
4920 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4921 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4922 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4923 }
4924 }
4925
4926 void hsw_enable_ips(struct intel_crtc *crtc)
4927 {
4928 struct drm_device *dev = crtc->base.dev;
4929 struct drm_i915_private *dev_priv = to_i915(dev);
4930
4931 if (!crtc->config->ips_enabled)
4932 return;
4933
4934 /*
4935 * We can only enable IPS after we enable a plane and wait for a vblank
4936 * This function is called from post_plane_update, which is run after
4937 * a vblank wait.
4938 */
4939
4940 assert_plane_enabled(to_intel_plane(crtc->base.primary));
4941
4942 if (IS_BROADWELL(dev_priv)) {
4943 mutex_lock(&dev_priv->rps.hw_lock);
4944 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4945 mutex_unlock(&dev_priv->rps.hw_lock);
4946 /* Quoting Art Runyan: "its not safe to expect any particular
4947 * value in IPS_CTL bit 31 after enabling IPS through the
4948 * mailbox." Moreover, the mailbox may return a bogus state,
4949 * so we need to just enable it and continue on.
4950 */
4951 } else {
4952 I915_WRITE(IPS_CTL, IPS_ENABLE);
4953 /* The bit only becomes 1 in the next vblank, so this wait here
4954 * is essentially intel_wait_for_vblank. If we don't have this
4955 * and don't wait for vblanks until the end of crtc_enable, then
4956 * the HW state readout code will complain that the expected
4957 * IPS_CTL value is not the one we read. */
4958 if (intel_wait_for_register(dev_priv,
4959 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4960 50))
4961 DRM_ERROR("Timed out waiting for IPS enable\n");
4962 }
4963 }
4964
4965 void hsw_disable_ips(struct intel_crtc *crtc)
4966 {
4967 struct drm_device *dev = crtc->base.dev;
4968 struct drm_i915_private *dev_priv = to_i915(dev);
4969
4970 if (!crtc->config->ips_enabled)
4971 return;
4972
4973 assert_plane_enabled(to_intel_plane(crtc->base.primary));
4974
4975 if (IS_BROADWELL(dev_priv)) {
4976 mutex_lock(&dev_priv->rps.hw_lock);
4977 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4978 mutex_unlock(&dev_priv->rps.hw_lock);
4979 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4980 if (intel_wait_for_register(dev_priv,
4981 IPS_CTL, IPS_ENABLE, 0,
4982 42))
4983 DRM_ERROR("Timed out waiting for IPS disable\n");
4984 } else {
4985 I915_WRITE(IPS_CTL, 0);
4986 POSTING_READ(IPS_CTL);
4987 }
4988
4989 /* We need to wait for a vblank before we can disable the plane. */
4990 intel_wait_for_vblank(dev_priv, crtc->pipe);
4991 }
4992
4993 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4994 {
4995 if (intel_crtc->overlay) {
4996 struct drm_device *dev = intel_crtc->base.dev;
4997
4998 mutex_lock(&dev->struct_mutex);
4999 (void) intel_overlay_switch_off(intel_crtc->overlay);
5000 mutex_unlock(&dev->struct_mutex);
5001 }
5002
5003 /* Let userspace switch the overlay on again. In most cases userspace
5004 * has to recompute where to put it anyway.
5005 */
5006 }
5007
5008 /**
5009 * intel_post_enable_primary - Perform operations after enabling primary plane
5010 * @crtc: the CRTC whose primary plane was just enabled
5011 *
5012 * Performs potentially sleeping operations that must be done after the primary
5013 * plane is enabled, such as updating FBC and IPS. Note that this may be
5014 * called due to an explicit primary plane update, or due to an implicit
5015 * re-enable that is caused when a sprite plane is updated to no longer
5016 * completely hide the primary plane.
5017 */
5018 static void
5019 intel_post_enable_primary(struct drm_crtc *crtc)
5020 {
5021 struct drm_device *dev = crtc->dev;
5022 struct drm_i915_private *dev_priv = to_i915(dev);
5023 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5024 int pipe = intel_crtc->pipe;
5025
5026 /*
5027 * FIXME IPS should be fine as long as one plane is
5028 * enabled, but in practice it seems to have problems
5029 * when going from primary only to sprite only and vice
5030 * versa.
5031 */
5032 hsw_enable_ips(intel_crtc);
5033
5034 /*
5035 * Gen2 reports pipe underruns whenever all planes are disabled.
5036 * So don't enable underrun reporting before at least some planes
5037 * are enabled.
5038 * FIXME: Need to fix the logic to work when we turn off all planes
5039 * but leave the pipe running.
5040 */
5041 if (IS_GEN2(dev_priv))
5042 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5043
5044 /* Underruns don't always raise interrupts, so check manually. */
5045 intel_check_cpu_fifo_underruns(dev_priv);
5046 intel_check_pch_fifo_underruns(dev_priv);
5047 }
5048
5049 /* FIXME move all this to pre_plane_update() with proper state tracking */
5050 static void
5051 intel_pre_disable_primary(struct drm_crtc *crtc)
5052 {
5053 struct drm_device *dev = crtc->dev;
5054 struct drm_i915_private *dev_priv = to_i915(dev);
5055 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5056 int pipe = intel_crtc->pipe;
5057
5058 /*
5059 * Gen2 reports pipe underruns whenever all planes are disabled.
5060 * So diasble underrun reporting before all the planes get disabled.
5061 * FIXME: Need to fix the logic to work when we turn off all planes
5062 * but leave the pipe running.
5063 */
5064 if (IS_GEN2(dev_priv))
5065 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5066
5067 /*
5068 * FIXME IPS should be fine as long as one plane is
5069 * enabled, but in practice it seems to have problems
5070 * when going from primary only to sprite only and vice
5071 * versa.
5072 */
5073 hsw_disable_ips(intel_crtc);
5074 }
5075
5076 /* FIXME get rid of this and use pre_plane_update */
5077 static void
5078 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5079 {
5080 struct drm_device *dev = crtc->dev;
5081 struct drm_i915_private *dev_priv = to_i915(dev);
5082 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5083 int pipe = intel_crtc->pipe;
5084
5085 intel_pre_disable_primary(crtc);
5086
5087 /*
5088 * Vblank time updates from the shadow to live plane control register
5089 * are blocked if the memory self-refresh mode is active at that
5090 * moment. So to make sure the plane gets truly disabled, disable
5091 * first the self-refresh mode. The self-refresh enable bit in turn
5092 * will be checked/applied by the HW only at the next frame start
5093 * event which is after the vblank start event, so we need to have a
5094 * wait-for-vblank between disabling the plane and the pipe.
5095 */
5096 if (HAS_GMCH_DISPLAY(dev_priv) &&
5097 intel_set_memory_cxsr(dev_priv, false))
5098 intel_wait_for_vblank(dev_priv, pipe);
5099 }
5100
5101 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5102 {
5103 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5104 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5105 struct intel_crtc_state *pipe_config =
5106 to_intel_crtc_state(crtc->base.state);
5107 struct drm_plane *primary = crtc->base.primary;
5108 struct drm_plane_state *old_pri_state =
5109 drm_atomic_get_existing_plane_state(old_state, primary);
5110
5111 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5112
5113 if (pipe_config->update_wm_post && pipe_config->base.active)
5114 intel_update_watermarks(crtc);
5115
5116 if (old_pri_state) {
5117 struct intel_plane_state *primary_state =
5118 to_intel_plane_state(primary->state);
5119 struct intel_plane_state *old_primary_state =
5120 to_intel_plane_state(old_pri_state);
5121
5122 intel_fbc_post_update(crtc);
5123
5124 if (primary_state->base.visible &&
5125 (needs_modeset(&pipe_config->base) ||
5126 !old_primary_state->base.visible))
5127 intel_post_enable_primary(&crtc->base);
5128 }
5129 }
5130
5131 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
5132 struct intel_crtc_state *pipe_config)
5133 {
5134 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5135 struct drm_device *dev = crtc->base.dev;
5136 struct drm_i915_private *dev_priv = to_i915(dev);
5137 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5138 struct drm_plane *primary = crtc->base.primary;
5139 struct drm_plane_state *old_pri_state =
5140 drm_atomic_get_existing_plane_state(old_state, primary);
5141 bool modeset = needs_modeset(&pipe_config->base);
5142 struct intel_atomic_state *old_intel_state =
5143 to_intel_atomic_state(old_state);
5144
5145 if (old_pri_state) {
5146 struct intel_plane_state *primary_state =
5147 to_intel_plane_state(primary->state);
5148 struct intel_plane_state *old_primary_state =
5149 to_intel_plane_state(old_pri_state);
5150
5151 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5152
5153 if (old_primary_state->base.visible &&
5154 (modeset || !primary_state->base.visible))
5155 intel_pre_disable_primary(&crtc->base);
5156 }
5157
5158 /*
5159 * Vblank time updates from the shadow to live plane control register
5160 * are blocked if the memory self-refresh mode is active at that
5161 * moment. So to make sure the plane gets truly disabled, disable
5162 * first the self-refresh mode. The self-refresh enable bit in turn
5163 * will be checked/applied by the HW only at the next frame start
5164 * event which is after the vblank start event, so we need to have a
5165 * wait-for-vblank between disabling the plane and the pipe.
5166 */
5167 if (HAS_GMCH_DISPLAY(dev_priv) && old_crtc_state->base.active &&
5168 pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
5169 intel_wait_for_vblank(dev_priv, crtc->pipe);
5170
5171 /*
5172 * IVB workaround: must disable low power watermarks for at least
5173 * one frame before enabling scaling. LP watermarks can be re-enabled
5174 * when scaling is disabled.
5175 *
5176 * WaCxSRDisabledForSpriteScaling:ivb
5177 */
5178 if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev))
5179 intel_wait_for_vblank(dev_priv, crtc->pipe);
5180
5181 /*
5182 * If we're doing a modeset, we're done. No need to do any pre-vblank
5183 * watermark programming here.
5184 */
5185 if (needs_modeset(&pipe_config->base))
5186 return;
5187
5188 /*
5189 * For platforms that support atomic watermarks, program the
5190 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5191 * will be the intermediate values that are safe for both pre- and
5192 * post- vblank; when vblank happens, the 'active' values will be set
5193 * to the final 'target' values and we'll do this again to get the
5194 * optimal watermarks. For gen9+ platforms, the values we program here
5195 * will be the final target values which will get automatically latched
5196 * at vblank time; no further programming will be necessary.
5197 *
5198 * If a platform hasn't been transitioned to atomic watermarks yet,
5199 * we'll continue to update watermarks the old way, if flags tell
5200 * us to.
5201 */
5202 if (dev_priv->display.initial_watermarks != NULL)
5203 dev_priv->display.initial_watermarks(old_intel_state,
5204 pipe_config);
5205 else if (pipe_config->update_wm_pre)
5206 intel_update_watermarks(crtc);
5207 }
5208
5209 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5210 {
5211 struct drm_device *dev = crtc->dev;
5212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5213 struct drm_plane *p;
5214 int pipe = intel_crtc->pipe;
5215
5216 intel_crtc_dpms_overlay_disable(intel_crtc);
5217
5218 drm_for_each_plane_mask(p, dev, plane_mask)
5219 to_intel_plane(p)->disable_plane(to_intel_plane(p), intel_crtc);
5220
5221 /*
5222 * FIXME: Once we grow proper nuclear flip support out of this we need
5223 * to compute the mask of flip planes precisely. For the time being
5224 * consider this a flip to a NULL plane.
5225 */
5226 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5227 }
5228
5229 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5230 struct intel_crtc_state *crtc_state,
5231 struct drm_atomic_state *old_state)
5232 {
5233 struct drm_connector_state *conn_state;
5234 struct drm_connector *conn;
5235 int i;
5236
5237 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5238 struct intel_encoder *encoder =
5239 to_intel_encoder(conn_state->best_encoder);
5240
5241 if (conn_state->crtc != crtc)
5242 continue;
5243
5244 if (encoder->pre_pll_enable)
5245 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5246 }
5247 }
5248
5249 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5250 struct intel_crtc_state *crtc_state,
5251 struct drm_atomic_state *old_state)
5252 {
5253 struct drm_connector_state *conn_state;
5254 struct drm_connector *conn;
5255 int i;
5256
5257 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5258 struct intel_encoder *encoder =
5259 to_intel_encoder(conn_state->best_encoder);
5260
5261 if (conn_state->crtc != crtc)
5262 continue;
5263
5264 if (encoder->pre_enable)
5265 encoder->pre_enable(encoder, crtc_state, conn_state);
5266 }
5267 }
5268
5269 static void intel_encoders_enable(struct drm_crtc *crtc,
5270 struct intel_crtc_state *crtc_state,
5271 struct drm_atomic_state *old_state)
5272 {
5273 struct drm_connector_state *conn_state;
5274 struct drm_connector *conn;
5275 int i;
5276
5277 for_each_new_connector_in_state(old_state, conn, conn_state, i) {
5278 struct intel_encoder *encoder =
5279 to_intel_encoder(conn_state->best_encoder);
5280
5281 if (conn_state->crtc != crtc)
5282 continue;
5283
5284 encoder->enable(encoder, crtc_state, conn_state);
5285 intel_opregion_notify_encoder(encoder, true);
5286 }
5287 }
5288
5289 static void intel_encoders_disable(struct drm_crtc *crtc,
5290 struct intel_crtc_state *old_crtc_state,
5291 struct drm_atomic_state *old_state)
5292 {
5293 struct drm_connector_state *old_conn_state;
5294 struct drm_connector *conn;
5295 int i;
5296
5297 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5298 struct intel_encoder *encoder =
5299 to_intel_encoder(old_conn_state->best_encoder);
5300
5301 if (old_conn_state->crtc != crtc)
5302 continue;
5303
5304 intel_opregion_notify_encoder(encoder, false);
5305 encoder->disable(encoder, old_crtc_state, old_conn_state);
5306 }
5307 }
5308
5309 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5310 struct intel_crtc_state *old_crtc_state,
5311 struct drm_atomic_state *old_state)
5312 {
5313 struct drm_connector_state *old_conn_state;
5314 struct drm_connector *conn;
5315 int i;
5316
5317 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5318 struct intel_encoder *encoder =
5319 to_intel_encoder(old_conn_state->best_encoder);
5320
5321 if (old_conn_state->crtc != crtc)
5322 continue;
5323
5324 if (encoder->post_disable)
5325 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5326 }
5327 }
5328
5329 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5330 struct intel_crtc_state *old_crtc_state,
5331 struct drm_atomic_state *old_state)
5332 {
5333 struct drm_connector_state *old_conn_state;
5334 struct drm_connector *conn;
5335 int i;
5336
5337 for_each_old_connector_in_state(old_state, conn, old_conn_state, i) {
5338 struct intel_encoder *encoder =
5339 to_intel_encoder(old_conn_state->best_encoder);
5340
5341 if (old_conn_state->crtc != crtc)
5342 continue;
5343
5344 if (encoder->post_pll_disable)
5345 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5346 }
5347 }
5348
5349 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5350 struct drm_atomic_state *old_state)
5351 {
5352 struct drm_crtc *crtc = pipe_config->base.crtc;
5353 struct drm_device *dev = crtc->dev;
5354 struct drm_i915_private *dev_priv = to_i915(dev);
5355 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5356 int pipe = intel_crtc->pipe;
5357 struct intel_atomic_state *old_intel_state =
5358 to_intel_atomic_state(old_state);
5359
5360 if (WARN_ON(intel_crtc->active))
5361 return;
5362
5363 /*
5364 * Sometimes spurious CPU pipe underruns happen during FDI
5365 * training, at least with VGA+HDMI cloning. Suppress them.
5366 *
5367 * On ILK we get an occasional spurious CPU pipe underruns
5368 * between eDP port A enable and vdd enable. Also PCH port
5369 * enable seems to result in the occasional CPU pipe underrun.
5370 *
5371 * Spurious PCH underruns also occur during PCH enabling.
5372 */
5373 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5374 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5375 if (intel_crtc->config->has_pch_encoder)
5376 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5377
5378 if (intel_crtc->config->has_pch_encoder)
5379 intel_prepare_shared_dpll(intel_crtc);
5380
5381 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5382 intel_dp_set_m_n(intel_crtc, M1_N1);
5383
5384 intel_set_pipe_timings(intel_crtc);
5385 intel_set_pipe_src_size(intel_crtc);
5386
5387 if (intel_crtc->config->has_pch_encoder) {
5388 intel_cpu_transcoder_set_m_n(intel_crtc,
5389 &intel_crtc->config->fdi_m_n, NULL);
5390 }
5391
5392 ironlake_set_pipeconf(crtc);
5393
5394 intel_crtc->active = true;
5395
5396 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5397
5398 if (intel_crtc->config->has_pch_encoder) {
5399 /* Note: FDI PLL enabling _must_ be done before we enable the
5400 * cpu pipes, hence this is separate from all the other fdi/pch
5401 * enabling. */
5402 ironlake_fdi_pll_enable(intel_crtc);
5403 } else {
5404 assert_fdi_tx_disabled(dev_priv, pipe);
5405 assert_fdi_rx_disabled(dev_priv, pipe);
5406 }
5407
5408 ironlake_pfit_enable(intel_crtc);
5409
5410 /*
5411 * On ILK+ LUT must be loaded before the pipe is running but with
5412 * clocks enabled
5413 */
5414 intel_color_load_luts(&pipe_config->base);
5415
5416 if (dev_priv->display.initial_watermarks != NULL)
5417 dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
5418 intel_enable_pipe(intel_crtc);
5419
5420 if (intel_crtc->config->has_pch_encoder)
5421 ironlake_pch_enable(pipe_config);
5422
5423 assert_vblank_disabled(crtc);
5424 drm_crtc_vblank_on(crtc);
5425
5426 intel_encoders_enable(crtc, pipe_config, old_state);
5427
5428 if (HAS_PCH_CPT(dev_priv))
5429 cpt_verify_modeset(dev, intel_crtc->pipe);
5430
5431 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5432 if (intel_crtc->config->has_pch_encoder)
5433 intel_wait_for_vblank(dev_priv, pipe);
5434 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5435 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5436 }
5437
5438 /* IPS only exists on ULT machines and is tied to pipe A. */
5439 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5440 {
5441 return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
5442 }
5443
5444 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5445 struct drm_atomic_state *old_state)
5446 {
5447 struct drm_crtc *crtc = pipe_config->base.crtc;
5448 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5449 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5450 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5451 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5452 struct intel_atomic_state *old_intel_state =
5453 to_intel_atomic_state(old_state);
5454
5455 if (WARN_ON(intel_crtc->active))
5456 return;
5457
5458 if (intel_crtc->config->has_pch_encoder)
5459 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
5460
5461 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5462
5463 if (intel_crtc->config->shared_dpll)
5464 intel_enable_shared_dpll(intel_crtc);
5465
5466 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5467 intel_dp_set_m_n(intel_crtc, M1_N1);
5468
5469 if (!transcoder_is_dsi(cpu_transcoder))
5470 intel_set_pipe_timings(intel_crtc);
5471
5472 intel_set_pipe_src_size(intel_crtc);
5473
5474 if (cpu_transcoder != TRANSCODER_EDP &&
5475 !transcoder_is_dsi(cpu_transcoder)) {
5476 I915_WRITE(PIPE_MULT(cpu_transcoder),
5477 intel_crtc->config->pixel_multiplier - 1);
5478 }
5479
5480 if (intel_crtc->config->has_pch_encoder) {
5481 intel_cpu_transcoder_set_m_n(intel_crtc,
5482 &intel_crtc->config->fdi_m_n, NULL);
5483 }
5484
5485 if (!transcoder_is_dsi(cpu_transcoder))
5486 haswell_set_pipeconf(crtc);
5487
5488 haswell_set_pipemisc(crtc);
5489
5490 intel_color_set_csc(&pipe_config->base);
5491
5492 intel_crtc->active = true;
5493
5494 if (intel_crtc->config->has_pch_encoder)
5495 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5496 else
5497 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5498
5499 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5500
5501 if (intel_crtc->config->has_pch_encoder)
5502 dev_priv->display.fdi_link_train(intel_crtc, pipe_config);
5503
5504 if (!transcoder_is_dsi(cpu_transcoder))
5505 intel_ddi_enable_pipe_clock(pipe_config);
5506
5507 if (INTEL_GEN(dev_priv) >= 9)
5508 skylake_pfit_enable(intel_crtc);
5509 else
5510 ironlake_pfit_enable(intel_crtc);
5511
5512 /*
5513 * On ILK+ LUT must be loaded before the pipe is running but with
5514 * clocks enabled
5515 */
5516 intel_color_load_luts(&pipe_config->base);
5517
5518 intel_ddi_set_pipe_settings(pipe_config);
5519 if (!transcoder_is_dsi(cpu_transcoder))
5520 intel_ddi_enable_transcoder_func(pipe_config);
5521
5522 if (dev_priv->display.initial_watermarks != NULL)
5523 dev_priv->display.initial_watermarks(old_intel_state, pipe_config);
5524
5525 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5526 if (!transcoder_is_dsi(cpu_transcoder))
5527 intel_enable_pipe(intel_crtc);
5528
5529 if (intel_crtc->config->has_pch_encoder)
5530 lpt_pch_enable(pipe_config);
5531
5532 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5533 intel_ddi_set_vc_payload_alloc(pipe_config, true);
5534
5535 assert_vblank_disabled(crtc);
5536 drm_crtc_vblank_on(crtc);
5537
5538 intel_encoders_enable(crtc, pipe_config, old_state);
5539
5540 if (intel_crtc->config->has_pch_encoder) {
5541 intel_wait_for_vblank(dev_priv, pipe);
5542 intel_wait_for_vblank(dev_priv, pipe);
5543 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5544 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
5545 }
5546
5547 /* If we change the relative order between pipe/planes enabling, we need
5548 * to change the workaround. */
5549 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5550 if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
5551 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5552 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
5553 }
5554 }
5555
5556 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5557 {
5558 struct drm_device *dev = crtc->base.dev;
5559 struct drm_i915_private *dev_priv = to_i915(dev);
5560 int pipe = crtc->pipe;
5561
5562 /* To avoid upsetting the power well on haswell only disable the pfit if
5563 * it's in use. The hw state code will make sure we get this right. */
5564 if (force || crtc->config->pch_pfit.enabled) {
5565 I915_WRITE(PF_CTL(pipe), 0);
5566 I915_WRITE(PF_WIN_POS(pipe), 0);
5567 I915_WRITE(PF_WIN_SZ(pipe), 0);
5568 }
5569 }
5570
5571 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5572 struct drm_atomic_state *old_state)
5573 {
5574 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5575 struct drm_device *dev = crtc->dev;
5576 struct drm_i915_private *dev_priv = to_i915(dev);
5577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5578 int pipe = intel_crtc->pipe;
5579
5580 /*
5581 * Sometimes spurious CPU pipe underruns happen when the
5582 * pipe is already disabled, but FDI RX/TX is still enabled.
5583 * Happens at least with VGA+HDMI cloning. Suppress them.
5584 */
5585 if (intel_crtc->config->has_pch_encoder) {
5586 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5587 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5588 }
5589
5590 intel_encoders_disable(crtc, old_crtc_state, old_state);
5591
5592 drm_crtc_vblank_off(crtc);
5593 assert_vblank_disabled(crtc);
5594
5595 intel_disable_pipe(intel_crtc);
5596
5597 ironlake_pfit_disable(intel_crtc, false);
5598
5599 if (intel_crtc->config->has_pch_encoder)
5600 ironlake_fdi_disable(crtc);
5601
5602 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5603
5604 if (intel_crtc->config->has_pch_encoder) {
5605 ironlake_disable_pch_transcoder(dev_priv, pipe);
5606
5607 if (HAS_PCH_CPT(dev_priv)) {
5608 i915_reg_t reg;
5609 u32 temp;
5610
5611 /* disable TRANS_DP_CTL */
5612 reg = TRANS_DP_CTL(pipe);
5613 temp = I915_READ(reg);
5614 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5615 TRANS_DP_PORT_SEL_MASK);
5616 temp |= TRANS_DP_PORT_SEL_NONE;
5617 I915_WRITE(reg, temp);
5618
5619 /* disable DPLL_SEL */
5620 temp = I915_READ(PCH_DPLL_SEL);
5621 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5622 I915_WRITE(PCH_DPLL_SEL, temp);
5623 }
5624
5625 ironlake_fdi_pll_disable(intel_crtc);
5626 }
5627
5628 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5629 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5630 }
5631
5632 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5633 struct drm_atomic_state *old_state)
5634 {
5635 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5636 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5637 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5638 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5639
5640 if (intel_crtc->config->has_pch_encoder)
5641 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
5642
5643 intel_encoders_disable(crtc, old_crtc_state, old_state);
5644
5645 drm_crtc_vblank_off(crtc);
5646 assert_vblank_disabled(crtc);
5647
5648 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5649 if (!transcoder_is_dsi(cpu_transcoder))
5650 intel_disable_pipe(intel_crtc);
5651
5652 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
5653 intel_ddi_set_vc_payload_alloc(intel_crtc->config, false);
5654
5655 if (!transcoder_is_dsi(cpu_transcoder))
5656 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5657
5658 if (INTEL_GEN(dev_priv) >= 9)
5659 skylake_scaler_disable(intel_crtc);
5660 else
5661 ironlake_pfit_disable(intel_crtc, false);
5662
5663 if (!transcoder_is_dsi(cpu_transcoder))
5664 intel_ddi_disable_pipe_clock(intel_crtc->config);
5665
5666 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5667
5668 if (old_crtc_state->has_pch_encoder)
5669 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
5670 }
5671
5672 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5673 {
5674 struct drm_device *dev = crtc->base.dev;
5675 struct drm_i915_private *dev_priv = to_i915(dev);
5676 struct intel_crtc_state *pipe_config = crtc->config;
5677
5678 if (!pipe_config->gmch_pfit.control)
5679 return;
5680
5681 /*
5682 * The panel fitter should only be adjusted whilst the pipe is disabled,
5683 * according to register description and PRM.
5684 */
5685 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5686 assert_pipe_disabled(dev_priv, crtc->pipe);
5687
5688 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5689 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5690
5691 /* Border color in case we don't scale up to the full screen. Black by
5692 * default, change to something else for debugging. */
5693 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5694 }
5695
5696 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
5697 {
5698 switch (port) {
5699 case PORT_A:
5700 return POWER_DOMAIN_PORT_DDI_A_LANES;
5701 case PORT_B:
5702 return POWER_DOMAIN_PORT_DDI_B_LANES;
5703 case PORT_C:
5704 return POWER_DOMAIN_PORT_DDI_C_LANES;
5705 case PORT_D:
5706 return POWER_DOMAIN_PORT_DDI_D_LANES;
5707 case PORT_E:
5708 return POWER_DOMAIN_PORT_DDI_E_LANES;
5709 default:
5710 MISSING_CASE(port);
5711 return POWER_DOMAIN_PORT_OTHER;
5712 }
5713 }
5714
5715 static u64 get_crtc_power_domains(struct drm_crtc *crtc,
5716 struct intel_crtc_state *crtc_state)
5717 {
5718 struct drm_device *dev = crtc->dev;
5719 struct drm_i915_private *dev_priv = to_i915(dev);
5720 struct drm_encoder *encoder;
5721 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5722 enum pipe pipe = intel_crtc->pipe;
5723 u64 mask;
5724 enum transcoder transcoder = crtc_state->cpu_transcoder;
5725
5726 if (!crtc_state->base.active)
5727 return 0;
5728
5729 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5730 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5731 if (crtc_state->pch_pfit.enabled ||
5732 crtc_state->pch_pfit.force_thru)
5733 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5734
5735 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5736 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5737
5738 mask |= BIT_ULL(intel_encoder->power_domain);
5739 }
5740
5741 if (HAS_DDI(dev_priv) && crtc_state->has_audio)
5742 mask |= BIT(POWER_DOMAIN_AUDIO);
5743
5744 if (crtc_state->shared_dpll)
5745 mask |= BIT_ULL(POWER_DOMAIN_PLLS);
5746
5747 return mask;
5748 }
5749
5750 static u64
5751 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5752 struct intel_crtc_state *crtc_state)
5753 {
5754 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5756 enum intel_display_power_domain domain;
5757 u64 domains, new_domains, old_domains;
5758
5759 old_domains = intel_crtc->enabled_power_domains;
5760 intel_crtc->enabled_power_domains = new_domains =
5761 get_crtc_power_domains(crtc, crtc_state);
5762
5763 domains = new_domains & ~old_domains;
5764
5765 for_each_power_domain(domain, domains)
5766 intel_display_power_get(dev_priv, domain);
5767
5768 return old_domains & ~new_domains;
5769 }
5770
5771 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5772 u64 domains)
5773 {
5774 enum intel_display_power_domain domain;
5775
5776 for_each_power_domain(domain, domains)
5777 intel_display_power_put(dev_priv, domain);
5778 }
5779
5780 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
5781 struct drm_atomic_state *old_state)
5782 {
5783 struct intel_atomic_state *old_intel_state =
5784 to_intel_atomic_state(old_state);
5785 struct drm_crtc *crtc = pipe_config->base.crtc;
5786 struct drm_device *dev = crtc->dev;
5787 struct drm_i915_private *dev_priv = to_i915(dev);
5788 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5789 int pipe = intel_crtc->pipe;
5790
5791 if (WARN_ON(intel_crtc->active))
5792 return;
5793
5794 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5795 intel_dp_set_m_n(intel_crtc, M1_N1);
5796
5797 intel_set_pipe_timings(intel_crtc);
5798 intel_set_pipe_src_size(intel_crtc);
5799
5800 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
5801 struct drm_i915_private *dev_priv = to_i915(dev);
5802
5803 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5804 I915_WRITE(CHV_CANVAS(pipe), 0);
5805 }
5806
5807 i9xx_set_pipeconf(intel_crtc);
5808
5809 intel_crtc->active = true;
5810
5811 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5812
5813 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5814
5815 if (IS_CHERRYVIEW(dev_priv)) {
5816 chv_prepare_pll(intel_crtc, intel_crtc->config);
5817 chv_enable_pll(intel_crtc, intel_crtc->config);
5818 } else {
5819 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5820 vlv_enable_pll(intel_crtc, intel_crtc->config);
5821 }
5822
5823 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5824
5825 i9xx_pfit_enable(intel_crtc);
5826
5827 intel_color_load_luts(&pipe_config->base);
5828
5829 dev_priv->display.initial_watermarks(old_intel_state,
5830 pipe_config);
5831 intel_enable_pipe(intel_crtc);
5832
5833 assert_vblank_disabled(crtc);
5834 drm_crtc_vblank_on(crtc);
5835
5836 intel_encoders_enable(crtc, pipe_config, old_state);
5837 }
5838
5839 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5840 {
5841 struct drm_device *dev = crtc->base.dev;
5842 struct drm_i915_private *dev_priv = to_i915(dev);
5843
5844 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5845 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5846 }
5847
5848 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
5849 struct drm_atomic_state *old_state)
5850 {
5851 struct intel_atomic_state *old_intel_state =
5852 to_intel_atomic_state(old_state);
5853 struct drm_crtc *crtc = pipe_config->base.crtc;
5854 struct drm_device *dev = crtc->dev;
5855 struct drm_i915_private *dev_priv = to_i915(dev);
5856 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5857 enum pipe pipe = intel_crtc->pipe;
5858
5859 if (WARN_ON(intel_crtc->active))
5860 return;
5861
5862 i9xx_set_pll_dividers(intel_crtc);
5863
5864 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5865 intel_dp_set_m_n(intel_crtc, M1_N1);
5866
5867 intel_set_pipe_timings(intel_crtc);
5868 intel_set_pipe_src_size(intel_crtc);
5869
5870 i9xx_set_pipeconf(intel_crtc);
5871
5872 intel_crtc->active = true;
5873
5874 if (!IS_GEN2(dev_priv))
5875 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5876
5877 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5878
5879 i9xx_enable_pll(intel_crtc);
5880
5881 i9xx_pfit_enable(intel_crtc);
5882
5883 intel_color_load_luts(&pipe_config->base);
5884
5885 if (dev_priv->display.initial_watermarks != NULL)
5886 dev_priv->display.initial_watermarks(old_intel_state,
5887 intel_crtc->config);
5888 else
5889 intel_update_watermarks(intel_crtc);
5890 intel_enable_pipe(intel_crtc);
5891
5892 assert_vblank_disabled(crtc);
5893 drm_crtc_vblank_on(crtc);
5894
5895 intel_encoders_enable(crtc, pipe_config, old_state);
5896 }
5897
5898 static void i9xx_pfit_disable(struct intel_crtc *crtc)
5899 {
5900 struct drm_device *dev = crtc->base.dev;
5901 struct drm_i915_private *dev_priv = to_i915(dev);
5902
5903 if (!crtc->config->gmch_pfit.control)
5904 return;
5905
5906 assert_pipe_disabled(dev_priv, crtc->pipe);
5907
5908 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5909 I915_READ(PFIT_CONTROL));
5910 I915_WRITE(PFIT_CONTROL, 0);
5911 }
5912
5913 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
5914 struct drm_atomic_state *old_state)
5915 {
5916 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5917 struct drm_device *dev = crtc->dev;
5918 struct drm_i915_private *dev_priv = to_i915(dev);
5919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5920 int pipe = intel_crtc->pipe;
5921
5922 /*
5923 * On gen2 planes are double buffered but the pipe isn't, so we must
5924 * wait for planes to fully turn off before disabling the pipe.
5925 */
5926 if (IS_GEN2(dev_priv))
5927 intel_wait_for_vblank(dev_priv, pipe);
5928
5929 intel_encoders_disable(crtc, old_crtc_state, old_state);
5930
5931 drm_crtc_vblank_off(crtc);
5932 assert_vblank_disabled(crtc);
5933
5934 intel_disable_pipe(intel_crtc);
5935
5936 i9xx_pfit_disable(intel_crtc);
5937
5938 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5939
5940 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
5941 if (IS_CHERRYVIEW(dev_priv))
5942 chv_disable_pll(dev_priv, pipe);
5943 else if (IS_VALLEYVIEW(dev_priv))
5944 vlv_disable_pll(dev_priv, pipe);
5945 else
5946 i9xx_disable_pll(intel_crtc);
5947 }
5948
5949 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
5950
5951 if (!IS_GEN2(dev_priv))
5952 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5953
5954 if (!dev_priv->display.initial_watermarks)
5955 intel_update_watermarks(intel_crtc);
5956
5957 /* clock the pipe down to 640x480@60 to potentially save power */
5958 if (IS_I830(dev_priv))
5959 i830_enable_pipe(dev_priv, pipe);
5960 }
5961
5962 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
5963 struct drm_modeset_acquire_ctx *ctx)
5964 {
5965 struct intel_encoder *encoder;
5966 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5967 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5968 enum intel_display_power_domain domain;
5969 struct intel_plane *plane;
5970 u64 domains;
5971 struct drm_atomic_state *state;
5972 struct intel_crtc_state *crtc_state;
5973 int ret;
5974
5975 if (!intel_crtc->active)
5976 return;
5977
5978 for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) {
5979 const struct intel_plane_state *plane_state =
5980 to_intel_plane_state(plane->base.state);
5981
5982 if (plane_state->base.visible)
5983 intel_plane_disable_noatomic(intel_crtc, plane);
5984 }
5985
5986 state = drm_atomic_state_alloc(crtc->dev);
5987 if (!state) {
5988 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
5989 crtc->base.id, crtc->name);
5990 return;
5991 }
5992
5993 state->acquire_ctx = ctx;
5994
5995 /* Everything's already locked, -EDEADLK can't happen. */
5996 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5997 ret = drm_atomic_add_affected_connectors(state, crtc);
5998
5999 WARN_ON(IS_ERR(crtc_state) || ret);
6000
6001 dev_priv->display.crtc_disable(crtc_state, state);
6002
6003 drm_atomic_state_put(state);
6004
6005 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6006 crtc->base.id, crtc->name);
6007
6008 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6009 crtc->state->active = false;
6010 intel_crtc->active = false;
6011 crtc->enabled = false;
6012 crtc->state->connector_mask = 0;
6013 crtc->state->encoder_mask = 0;
6014
6015 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6016 encoder->base.crtc = NULL;
6017
6018 intel_fbc_disable(intel_crtc);
6019 intel_update_watermarks(intel_crtc);
6020 intel_disable_shared_dpll(intel_crtc);
6021
6022 domains = intel_crtc->enabled_power_domains;
6023 for_each_power_domain(domain, domains)
6024 intel_display_power_put(dev_priv, domain);
6025 intel_crtc->enabled_power_domains = 0;
6026
6027 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6028 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6029 }
6030
6031 /*
6032 * turn all crtc's off, but do not adjust state
6033 * This has to be paired with a call to intel_modeset_setup_hw_state.
6034 */
6035 int intel_display_suspend(struct drm_device *dev)
6036 {
6037 struct drm_i915_private *dev_priv = to_i915(dev);
6038 struct drm_atomic_state *state;
6039 int ret;
6040
6041 state = drm_atomic_helper_suspend(dev);
6042 ret = PTR_ERR_OR_ZERO(state);
6043 if (ret)
6044 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6045 else
6046 dev_priv->modeset_restore_state = state;
6047 return ret;
6048 }
6049
6050 void intel_encoder_destroy(struct drm_encoder *encoder)
6051 {
6052 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6053
6054 drm_encoder_cleanup(encoder);
6055 kfree(intel_encoder);
6056 }
6057
6058 /* Cross check the actual hw state with our own modeset state tracking (and it's
6059 * internal consistency). */
6060 static void intel_connector_verify_state(struct drm_crtc_state *crtc_state,
6061 struct drm_connector_state *conn_state)
6062 {
6063 struct intel_connector *connector = to_intel_connector(conn_state->connector);
6064
6065 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6066 connector->base.base.id,
6067 connector->base.name);
6068
6069 if (connector->get_hw_state(connector)) {
6070 struct intel_encoder *encoder = connector->encoder;
6071
6072 I915_STATE_WARN(!crtc_state,
6073 "connector enabled without attached crtc\n");
6074
6075 if (!crtc_state)
6076 return;
6077
6078 I915_STATE_WARN(!crtc_state->active,
6079 "connector is active, but attached crtc isn't\n");
6080
6081 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6082 return;
6083
6084 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6085 "atomic encoder doesn't match attached encoder\n");
6086
6087 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6088 "attached encoder crtc differs from connector crtc\n");
6089 } else {
6090 I915_STATE_WARN(crtc_state && crtc_state->active,
6091 "attached crtc is active, but connector isn't\n");
6092 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
6093 "best encoder set without crtc!\n");
6094 }
6095 }
6096
6097 int intel_connector_init(struct intel_connector *connector)
6098 {
6099 struct intel_digital_connector_state *conn_state;
6100
6101 /*
6102 * Allocate enough memory to hold intel_digital_connector_state,
6103 * This might be a few bytes too many, but for connectors that don't
6104 * need it we'll free the state and allocate a smaller one on the first
6105 * succesful commit anyway.
6106 */
6107 conn_state = kzalloc(sizeof(*conn_state), GFP_KERNEL);
6108 if (!conn_state)
6109 return -ENOMEM;
6110
6111 __drm_atomic_helper_connector_reset(&connector->base,
6112 &conn_state->base);
6113
6114 return 0;
6115 }
6116
6117 struct intel_connector *intel_connector_alloc(void)
6118 {
6119 struct intel_connector *connector;
6120
6121 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6122 if (!connector)
6123 return NULL;
6124
6125 if (intel_connector_init(connector) < 0) {
6126 kfree(connector);
6127 return NULL;
6128 }
6129
6130 return connector;
6131 }
6132
6133 /* Simple connector->get_hw_state implementation for encoders that support only
6134 * one connector and no cloning and hence the encoder state determines the state
6135 * of the connector. */
6136 bool intel_connector_get_hw_state(struct intel_connector *connector)
6137 {
6138 enum pipe pipe = 0;
6139 struct intel_encoder *encoder = connector->encoder;
6140
6141 return encoder->get_hw_state(encoder, &pipe);
6142 }
6143
6144 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6145 {
6146 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6147 return crtc_state->fdi_lanes;
6148
6149 return 0;
6150 }
6151
6152 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6153 struct intel_crtc_state *pipe_config)
6154 {
6155 struct drm_i915_private *dev_priv = to_i915(dev);
6156 struct drm_atomic_state *state = pipe_config->base.state;
6157 struct intel_crtc *other_crtc;
6158 struct intel_crtc_state *other_crtc_state;
6159
6160 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6161 pipe_name(pipe), pipe_config->fdi_lanes);
6162 if (pipe_config->fdi_lanes > 4) {
6163 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6164 pipe_name(pipe), pipe_config->fdi_lanes);
6165 return -EINVAL;
6166 }
6167
6168 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
6169 if (pipe_config->fdi_lanes > 2) {
6170 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6171 pipe_config->fdi_lanes);
6172 return -EINVAL;
6173 } else {
6174 return 0;
6175 }
6176 }
6177
6178 if (INTEL_INFO(dev_priv)->num_pipes == 2)
6179 return 0;
6180
6181 /* Ivybridge 3 pipe is really complicated */
6182 switch (pipe) {
6183 case PIPE_A:
6184 return 0;
6185 case PIPE_B:
6186 if (pipe_config->fdi_lanes <= 2)
6187 return 0;
6188
6189 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
6190 other_crtc_state =
6191 intel_atomic_get_crtc_state(state, other_crtc);
6192 if (IS_ERR(other_crtc_state))
6193 return PTR_ERR(other_crtc_state);
6194
6195 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6196 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6197 pipe_name(pipe), pipe_config->fdi_lanes);
6198 return -EINVAL;
6199 }
6200 return 0;
6201 case PIPE_C:
6202 if (pipe_config->fdi_lanes > 2) {
6203 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6204 pipe_name(pipe), pipe_config->fdi_lanes);
6205 return -EINVAL;
6206 }
6207
6208 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
6209 other_crtc_state =
6210 intel_atomic_get_crtc_state(state, other_crtc);
6211 if (IS_ERR(other_crtc_state))
6212 return PTR_ERR(other_crtc_state);
6213
6214 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6215 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6216 return -EINVAL;
6217 }
6218 return 0;
6219 default:
6220 BUG();
6221 }
6222 }
6223
6224 #define RETRY 1
6225 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6226 struct intel_crtc_state *pipe_config)
6227 {
6228 struct drm_device *dev = intel_crtc->base.dev;
6229 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6230 int lane, link_bw, fdi_dotclock, ret;
6231 bool needs_recompute = false;
6232
6233 retry:
6234 /* FDI is a binary signal running at ~2.7GHz, encoding
6235 * each output octet as 10 bits. The actual frequency
6236 * is stored as a divider into a 100MHz clock, and the
6237 * mode pixel clock is stored in units of 1KHz.
6238 * Hence the bw of each lane in terms of the mode signal
6239 * is:
6240 */
6241 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
6242
6243 fdi_dotclock = adjusted_mode->crtc_clock;
6244
6245 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6246 pipe_config->pipe_bpp);
6247
6248 pipe_config->fdi_lanes = lane;
6249
6250 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6251 link_bw, &pipe_config->fdi_m_n, false);
6252
6253 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6254 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6255 pipe_config->pipe_bpp -= 2*3;
6256 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6257 pipe_config->pipe_bpp);
6258 needs_recompute = true;
6259 pipe_config->bw_constrained = true;
6260
6261 goto retry;
6262 }
6263
6264 if (needs_recompute)
6265 return RETRY;
6266
6267 return ret;
6268 }
6269
6270 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6271 struct intel_crtc_state *pipe_config)
6272 {
6273 if (pipe_config->pipe_bpp > 24)
6274 return false;
6275
6276 /* HSW can handle pixel rate up to cdclk? */
6277 if (IS_HASWELL(dev_priv))
6278 return true;
6279
6280 /*
6281 * We compare against max which means we must take
6282 * the increased cdclk requirement into account when
6283 * calculating the new cdclk.
6284 *
6285 * Should measure whether using a lower cdclk w/o IPS
6286 */
6287 return pipe_config->pixel_rate <=
6288 dev_priv->max_cdclk_freq * 95 / 100;
6289 }
6290
6291 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6292 struct intel_crtc_state *pipe_config)
6293 {
6294 struct drm_device *dev = crtc->base.dev;
6295 struct drm_i915_private *dev_priv = to_i915(dev);
6296
6297 pipe_config->ips_enabled = i915.enable_ips &&
6298 hsw_crtc_supports_ips(crtc) &&
6299 pipe_config_supports_ips(dev_priv, pipe_config);
6300 }
6301
6302 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6303 {
6304 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6305
6306 /* GDG double wide on either pipe, otherwise pipe A only */
6307 return INTEL_INFO(dev_priv)->gen < 4 &&
6308 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6309 }
6310
6311 static uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
6312 {
6313 uint32_t pixel_rate;
6314
6315 pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
6316
6317 /*
6318 * We only use IF-ID interlacing. If we ever use
6319 * PF-ID we'll need to adjust the pixel_rate here.
6320 */
6321
6322 if (pipe_config->pch_pfit.enabled) {
6323 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
6324 uint32_t pfit_size = pipe_config->pch_pfit.size;
6325
6326 pipe_w = pipe_config->pipe_src_w;
6327 pipe_h = pipe_config->pipe_src_h;
6328
6329 pfit_w = (pfit_size >> 16) & 0xFFFF;
6330 pfit_h = pfit_size & 0xFFFF;
6331 if (pipe_w < pfit_w)
6332 pipe_w = pfit_w;
6333 if (pipe_h < pfit_h)
6334 pipe_h = pfit_h;
6335
6336 if (WARN_ON(!pfit_w || !pfit_h))
6337 return pixel_rate;
6338
6339 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
6340 pfit_w * pfit_h);
6341 }
6342
6343 return pixel_rate;
6344 }
6345
6346 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
6347 {
6348 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
6349
6350 if (HAS_GMCH_DISPLAY(dev_priv))
6351 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
6352 crtc_state->pixel_rate =
6353 crtc_state->base.adjusted_mode.crtc_clock;
6354 else
6355 crtc_state->pixel_rate =
6356 ilk_pipe_pixel_rate(crtc_state);
6357 }
6358
6359 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6360 struct intel_crtc_state *pipe_config)
6361 {
6362 struct drm_device *dev = crtc->base.dev;
6363 struct drm_i915_private *dev_priv = to_i915(dev);
6364 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6365 int clock_limit = dev_priv->max_dotclk_freq;
6366
6367 if (INTEL_GEN(dev_priv) < 4) {
6368 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6369
6370 /*
6371 * Enable double wide mode when the dot clock
6372 * is > 90% of the (display) core speed.
6373 */
6374 if (intel_crtc_supports_double_wide(crtc) &&
6375 adjusted_mode->crtc_clock > clock_limit) {
6376 clock_limit = dev_priv->max_dotclk_freq;
6377 pipe_config->double_wide = true;
6378 }
6379 }
6380
6381 if (adjusted_mode->crtc_clock > clock_limit) {
6382 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6383 adjusted_mode->crtc_clock, clock_limit,
6384 yesno(pipe_config->double_wide));
6385 return -EINVAL;
6386 }
6387
6388 if (pipe_config->ycbcr420 && pipe_config->base.ctm) {
6389 /*
6390 * There is only one pipe CSC unit per pipe, and we need that
6391 * for output conversion from RGB->YCBCR. So if CTM is already
6392 * applied we can't support YCBCR420 output.
6393 */
6394 DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
6395 return -EINVAL;
6396 }
6397
6398 /*
6399 * Pipe horizontal size must be even in:
6400 * - DVO ganged mode
6401 * - LVDS dual channel mode
6402 * - Double wide pipe
6403 */
6404 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6405 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6406 pipe_config->pipe_src_w &= ~1;
6407
6408 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6409 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6410 */
6411 if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
6412 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6413 return -EINVAL;
6414
6415 intel_crtc_compute_pixel_rate(pipe_config);
6416
6417 if (HAS_IPS(dev_priv))
6418 hsw_compute_ips_config(crtc, pipe_config);
6419
6420 if (pipe_config->has_pch_encoder)
6421 return ironlake_fdi_compute_config(crtc, pipe_config);
6422
6423 return 0;
6424 }
6425
6426 static void
6427 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6428 {
6429 while (*num > DATA_LINK_M_N_MASK ||
6430 *den > DATA_LINK_M_N_MASK) {
6431 *num >>= 1;
6432 *den >>= 1;
6433 }
6434 }
6435
6436 static void compute_m_n(unsigned int m, unsigned int n,
6437 uint32_t *ret_m, uint32_t *ret_n,
6438 bool reduce_m_n)
6439 {
6440 /*
6441 * Reduce M/N as much as possible without loss in precision. Several DP
6442 * dongles in particular seem to be fussy about too large *link* M/N
6443 * values. The passed in values are more likely to have the least
6444 * significant bits zero than M after rounding below, so do this first.
6445 */
6446 if (reduce_m_n) {
6447 while ((m & 1) == 0 && (n & 1) == 0) {
6448 m >>= 1;
6449 n >>= 1;
6450 }
6451 }
6452
6453 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6454 *ret_m = div_u64((uint64_t) m * *ret_n, n);
6455 intel_reduce_m_n_ratio(ret_m, ret_n);
6456 }
6457
6458 void
6459 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6460 int pixel_clock, int link_clock,
6461 struct intel_link_m_n *m_n,
6462 bool reduce_m_n)
6463 {
6464 m_n->tu = 64;
6465
6466 compute_m_n(bits_per_pixel * pixel_clock,
6467 link_clock * nlanes * 8,
6468 &m_n->gmch_m, &m_n->gmch_n,
6469 reduce_m_n);
6470
6471 compute_m_n(pixel_clock, link_clock,
6472 &m_n->link_m, &m_n->link_n,
6473 reduce_m_n);
6474 }
6475
6476 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6477 {
6478 if (i915.panel_use_ssc >= 0)
6479 return i915.panel_use_ssc != 0;
6480 return dev_priv->vbt.lvds_use_ssc
6481 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6482 }
6483
6484 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6485 {
6486 return (1 << dpll->n) << 16 | dpll->m2;
6487 }
6488
6489 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6490 {
6491 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6492 }
6493
6494 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6495 struct intel_crtc_state *crtc_state,
6496 struct dpll *reduced_clock)
6497 {
6498 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6499 u32 fp, fp2 = 0;
6500
6501 if (IS_PINEVIEW(dev_priv)) {
6502 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6503 if (reduced_clock)
6504 fp2 = pnv_dpll_compute_fp(reduced_clock);
6505 } else {
6506 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6507 if (reduced_clock)
6508 fp2 = i9xx_dpll_compute_fp(reduced_clock);
6509 }
6510
6511 crtc_state->dpll_hw_state.fp0 = fp;
6512
6513 crtc->lowfreq_avail = false;
6514 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6515 reduced_clock) {
6516 crtc_state->dpll_hw_state.fp1 = fp2;
6517 crtc->lowfreq_avail = true;
6518 } else {
6519 crtc_state->dpll_hw_state.fp1 = fp;
6520 }
6521 }
6522
6523 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6524 pipe)
6525 {
6526 u32 reg_val;
6527
6528 /*
6529 * PLLB opamp always calibrates to max value of 0x3f, force enable it
6530 * and set it to a reasonable value instead.
6531 */
6532 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6533 reg_val &= 0xffffff00;
6534 reg_val |= 0x00000030;
6535 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6536
6537 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6538 reg_val &= 0x00ffffff;
6539 reg_val |= 0x8c000000;
6540 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6541
6542 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6543 reg_val &= 0xffffff00;
6544 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6545
6546 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6547 reg_val &= 0x00ffffff;
6548 reg_val |= 0xb0000000;
6549 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6550 }
6551
6552 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6553 struct intel_link_m_n *m_n)
6554 {
6555 struct drm_device *dev = crtc->base.dev;
6556 struct drm_i915_private *dev_priv = to_i915(dev);
6557 int pipe = crtc->pipe;
6558
6559 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6560 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
6561 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
6562 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
6563 }
6564
6565 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
6566 struct intel_link_m_n *m_n,
6567 struct intel_link_m_n *m2_n2)
6568 {
6569 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6570 int pipe = crtc->pipe;
6571 enum transcoder transcoder = crtc->config->cpu_transcoder;
6572
6573 if (INTEL_GEN(dev_priv) >= 5) {
6574 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
6575 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
6576 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
6577 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
6578 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
6579 * for gen < 8) and if DRRS is supported (to make sure the
6580 * registers are not unnecessarily accessed).
6581 */
6582 if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
6583 INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
6584 I915_WRITE(PIPE_DATA_M2(transcoder),
6585 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
6586 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
6587 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
6588 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
6589 }
6590 } else {
6591 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
6592 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
6593 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
6594 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
6595 }
6596 }
6597
6598 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
6599 {
6600 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
6601
6602 if (m_n == M1_N1) {
6603 dp_m_n = &crtc->config->dp_m_n;
6604 dp_m2_n2 = &crtc->config->dp_m2_n2;
6605 } else if (m_n == M2_N2) {
6606
6607 /*
6608 * M2_N2 registers are not supported. Hence m2_n2 divider value
6609 * needs to be programmed into M1_N1.
6610 */
6611 dp_m_n = &crtc->config->dp_m2_n2;
6612 } else {
6613 DRM_ERROR("Unsupported divider value\n");
6614 return;
6615 }
6616
6617 if (crtc->config->has_pch_encoder)
6618 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
6619 else
6620 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
6621 }
6622
6623 static void vlv_compute_dpll(struct intel_crtc *crtc,
6624 struct intel_crtc_state *pipe_config)
6625 {
6626 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
6627 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6628 if (crtc->pipe != PIPE_A)
6629 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6630
6631 /* DPLL not used with DSI, but still need the rest set up */
6632 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6633 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
6634 DPLL_EXT_BUFFER_ENABLE_VLV;
6635
6636 pipe_config->dpll_hw_state.dpll_md =
6637 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6638 }
6639
6640 static void chv_compute_dpll(struct intel_crtc *crtc,
6641 struct intel_crtc_state *pipe_config)
6642 {
6643 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
6644 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
6645 if (crtc->pipe != PIPE_A)
6646 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6647
6648 /* DPLL not used with DSI, but still need the rest set up */
6649 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
6650 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
6651
6652 pipe_config->dpll_hw_state.dpll_md =
6653 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6654 }
6655
6656 static void vlv_prepare_pll(struct intel_crtc *crtc,
6657 const struct intel_crtc_state *pipe_config)
6658 {
6659 struct drm_device *dev = crtc->base.dev;
6660 struct drm_i915_private *dev_priv = to_i915(dev);
6661 enum pipe pipe = crtc->pipe;
6662 u32 mdiv;
6663 u32 bestn, bestm1, bestm2, bestp1, bestp2;
6664 u32 coreclk, reg_val;
6665
6666 /* Enable Refclk */
6667 I915_WRITE(DPLL(pipe),
6668 pipe_config->dpll_hw_state.dpll &
6669 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
6670
6671 /* No need to actually set up the DPLL with DSI */
6672 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6673 return;
6674
6675 mutex_lock(&dev_priv->sb_lock);
6676
6677 bestn = pipe_config->dpll.n;
6678 bestm1 = pipe_config->dpll.m1;
6679 bestm2 = pipe_config->dpll.m2;
6680 bestp1 = pipe_config->dpll.p1;
6681 bestp2 = pipe_config->dpll.p2;
6682
6683 /* See eDP HDMI DPIO driver vbios notes doc */
6684
6685 /* PLL B needs special handling */
6686 if (pipe == PIPE_B)
6687 vlv_pllb_recal_opamp(dev_priv, pipe);
6688
6689 /* Set up Tx target for periodic Rcomp update */
6690 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
6691
6692 /* Disable target IRef on PLL */
6693 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
6694 reg_val &= 0x00ffffff;
6695 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
6696
6697 /* Disable fast lock */
6698 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
6699
6700 /* Set idtafcrecal before PLL is enabled */
6701 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
6702 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
6703 mdiv |= ((bestn << DPIO_N_SHIFT));
6704 mdiv |= (1 << DPIO_K_SHIFT);
6705
6706 /*
6707 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
6708 * but we don't support that).
6709 * Note: don't use the DAC post divider as it seems unstable.
6710 */
6711 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
6712 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6713
6714 mdiv |= DPIO_ENABLE_CALIBRATION;
6715 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
6716
6717 /* Set HBR and RBR LPF coefficients */
6718 if (pipe_config->port_clock == 162000 ||
6719 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
6720 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
6721 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6722 0x009f0003);
6723 else
6724 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6725 0x00d0000f);
6726
6727 if (intel_crtc_has_dp_encoder(pipe_config)) {
6728 /* Use SSC source */
6729 if (pipe == PIPE_A)
6730 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6731 0x0df40000);
6732 else
6733 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6734 0x0df70000);
6735 } else { /* HDMI or VGA */
6736 /* Use bend source */
6737 if (pipe == PIPE_A)
6738 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6739 0x0df70000);
6740 else
6741 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6742 0x0df40000);
6743 }
6744
6745 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6746 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6747 if (intel_crtc_has_dp_encoder(crtc->config))
6748 coreclk |= 0x01000000;
6749 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6750
6751 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6752 mutex_unlock(&dev_priv->sb_lock);
6753 }
6754
6755 static void chv_prepare_pll(struct intel_crtc *crtc,
6756 const struct intel_crtc_state *pipe_config)
6757 {
6758 struct drm_device *dev = crtc->base.dev;
6759 struct drm_i915_private *dev_priv = to_i915(dev);
6760 enum pipe pipe = crtc->pipe;
6761 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6762 u32 loopfilter, tribuf_calcntr;
6763 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6764 u32 dpio_val;
6765 int vco;
6766
6767 /* Enable Refclk and SSC */
6768 I915_WRITE(DPLL(pipe),
6769 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6770
6771 /* No need to actually set up the DPLL with DSI */
6772 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
6773 return;
6774
6775 bestn = pipe_config->dpll.n;
6776 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6777 bestm1 = pipe_config->dpll.m1;
6778 bestm2 = pipe_config->dpll.m2 >> 22;
6779 bestp1 = pipe_config->dpll.p1;
6780 bestp2 = pipe_config->dpll.p2;
6781 vco = pipe_config->dpll.vco;
6782 dpio_val = 0;
6783 loopfilter = 0;
6784
6785 mutex_lock(&dev_priv->sb_lock);
6786
6787 /* p1 and p2 divider */
6788 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6789 5 << DPIO_CHV_S1_DIV_SHIFT |
6790 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6791 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6792 1 << DPIO_CHV_K_DIV_SHIFT);
6793
6794 /* Feedback post-divider - m2 */
6795 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6796
6797 /* Feedback refclk divider - n and m1 */
6798 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6799 DPIO_CHV_M1_DIV_BY_2 |
6800 1 << DPIO_CHV_N_DIV_SHIFT);
6801
6802 /* M2 fraction division */
6803 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6804
6805 /* M2 fraction division enable */
6806 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
6807 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
6808 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
6809 if (bestm2_frac)
6810 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
6811 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
6812
6813 /* Program digital lock detect threshold */
6814 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
6815 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
6816 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
6817 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
6818 if (!bestm2_frac)
6819 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
6820 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
6821
6822 /* Loop filter */
6823 if (vco == 5400000) {
6824 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
6825 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
6826 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
6827 tribuf_calcntr = 0x9;
6828 } else if (vco <= 6200000) {
6829 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
6830 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
6831 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6832 tribuf_calcntr = 0x9;
6833 } else if (vco <= 6480000) {
6834 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6835 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6836 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6837 tribuf_calcntr = 0x8;
6838 } else {
6839 /* Not supported. Apply the same limits as in the max case */
6840 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
6841 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
6842 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
6843 tribuf_calcntr = 0;
6844 }
6845 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6846
6847 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
6848 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
6849 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
6850 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
6851
6852 /* AFC Recal */
6853 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6854 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6855 DPIO_AFC_RECAL);
6856
6857 mutex_unlock(&dev_priv->sb_lock);
6858 }
6859
6860 /**
6861 * vlv_force_pll_on - forcibly enable just the PLL
6862 * @dev_priv: i915 private structure
6863 * @pipe: pipe PLL to enable
6864 * @dpll: PLL configuration
6865 *
6866 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6867 * in cases where we need the PLL enabled even when @pipe is not going to
6868 * be enabled.
6869 */
6870 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
6871 const struct dpll *dpll)
6872 {
6873 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
6874 struct intel_crtc_state *pipe_config;
6875
6876 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
6877 if (!pipe_config)
6878 return -ENOMEM;
6879
6880 pipe_config->base.crtc = &crtc->base;
6881 pipe_config->pixel_multiplier = 1;
6882 pipe_config->dpll = *dpll;
6883
6884 if (IS_CHERRYVIEW(dev_priv)) {
6885 chv_compute_dpll(crtc, pipe_config);
6886 chv_prepare_pll(crtc, pipe_config);
6887 chv_enable_pll(crtc, pipe_config);
6888 } else {
6889 vlv_compute_dpll(crtc, pipe_config);
6890 vlv_prepare_pll(crtc, pipe_config);
6891 vlv_enable_pll(crtc, pipe_config);
6892 }
6893
6894 kfree(pipe_config);
6895
6896 return 0;
6897 }
6898
6899 /**
6900 * vlv_force_pll_off - forcibly disable just the PLL
6901 * @dev_priv: i915 private structure
6902 * @pipe: pipe PLL to disable
6903 *
6904 * Disable the PLL for @pipe. To be used in cases where we need
6905 * the PLL enabled even when @pipe is not going to be enabled.
6906 */
6907 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
6908 {
6909 if (IS_CHERRYVIEW(dev_priv))
6910 chv_disable_pll(dev_priv, pipe);
6911 else
6912 vlv_disable_pll(dev_priv, pipe);
6913 }
6914
6915 static void i9xx_compute_dpll(struct intel_crtc *crtc,
6916 struct intel_crtc_state *crtc_state,
6917 struct dpll *reduced_clock)
6918 {
6919 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6920 u32 dpll;
6921 struct dpll *clock = &crtc_state->dpll;
6922
6923 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6924
6925 dpll = DPLL_VGA_MODE_DIS;
6926
6927 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
6928 dpll |= DPLLB_MODE_LVDS;
6929 else
6930 dpll |= DPLLB_MODE_DAC_SERIAL;
6931
6932 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
6933 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
6934 dpll |= (crtc_state->pixel_multiplier - 1)
6935 << SDVO_MULTIPLIER_SHIFT_HIRES;
6936 }
6937
6938 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
6939 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
6940 dpll |= DPLL_SDVO_HIGH_SPEED;
6941
6942 if (intel_crtc_has_dp_encoder(crtc_state))
6943 dpll |= DPLL_SDVO_HIGH_SPEED;
6944
6945 /* compute bitmask from p1 value */
6946 if (IS_PINEVIEW(dev_priv))
6947 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6948 else {
6949 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6950 if (IS_G4X(dev_priv) && reduced_clock)
6951 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6952 }
6953 switch (clock->p2) {
6954 case 5:
6955 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6956 break;
6957 case 7:
6958 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6959 break;
6960 case 10:
6961 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6962 break;
6963 case 14:
6964 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6965 break;
6966 }
6967 if (INTEL_GEN(dev_priv) >= 4)
6968 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6969
6970 if (crtc_state->sdvo_tv_clock)
6971 dpll |= PLL_REF_INPUT_TVCLKINBC;
6972 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6973 intel_panel_use_ssc(dev_priv))
6974 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6975 else
6976 dpll |= PLL_REF_INPUT_DREFCLK;
6977
6978 dpll |= DPLL_VCO_ENABLE;
6979 crtc_state->dpll_hw_state.dpll = dpll;
6980
6981 if (INTEL_GEN(dev_priv) >= 4) {
6982 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6983 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6984 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6985 }
6986 }
6987
6988 static void i8xx_compute_dpll(struct intel_crtc *crtc,
6989 struct intel_crtc_state *crtc_state,
6990 struct dpll *reduced_clock)
6991 {
6992 struct drm_device *dev = crtc->base.dev;
6993 struct drm_i915_private *dev_priv = to_i915(dev);
6994 u32 dpll;
6995 struct dpll *clock = &crtc_state->dpll;
6996
6997 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6998
6999 dpll = DPLL_VGA_MODE_DIS;
7000
7001 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7002 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7003 } else {
7004 if (clock->p1 == 2)
7005 dpll |= PLL_P1_DIVIDE_BY_TWO;
7006 else
7007 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7008 if (clock->p2 == 4)
7009 dpll |= PLL_P2_DIVIDE_BY_4;
7010 }
7011
7012 if (!IS_I830(dev_priv) &&
7013 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
7014 dpll |= DPLL_DVO_2X_MODE;
7015
7016 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7017 intel_panel_use_ssc(dev_priv))
7018 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7019 else
7020 dpll |= PLL_REF_INPUT_DREFCLK;
7021
7022 dpll |= DPLL_VCO_ENABLE;
7023 crtc_state->dpll_hw_state.dpll = dpll;
7024 }
7025
7026 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7027 {
7028 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7029 enum pipe pipe = intel_crtc->pipe;
7030 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7031 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7032 uint32_t crtc_vtotal, crtc_vblank_end;
7033 int vsyncshift = 0;
7034
7035 /* We need to be careful not to changed the adjusted mode, for otherwise
7036 * the hw state checker will get angry at the mismatch. */
7037 crtc_vtotal = adjusted_mode->crtc_vtotal;
7038 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7039
7040 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7041 /* the chip adds 2 halflines automatically */
7042 crtc_vtotal -= 1;
7043 crtc_vblank_end -= 1;
7044
7045 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7046 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7047 else
7048 vsyncshift = adjusted_mode->crtc_hsync_start -
7049 adjusted_mode->crtc_htotal / 2;
7050 if (vsyncshift < 0)
7051 vsyncshift += adjusted_mode->crtc_htotal;
7052 }
7053
7054 if (INTEL_GEN(dev_priv) > 3)
7055 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7056
7057 I915_WRITE(HTOTAL(cpu_transcoder),
7058 (adjusted_mode->crtc_hdisplay - 1) |
7059 ((adjusted_mode->crtc_htotal - 1) << 16));
7060 I915_WRITE(HBLANK(cpu_transcoder),
7061 (adjusted_mode->crtc_hblank_start - 1) |
7062 ((adjusted_mode->crtc_hblank_end - 1) << 16));
7063 I915_WRITE(HSYNC(cpu_transcoder),
7064 (adjusted_mode->crtc_hsync_start - 1) |
7065 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7066
7067 I915_WRITE(VTOTAL(cpu_transcoder),
7068 (adjusted_mode->crtc_vdisplay - 1) |
7069 ((crtc_vtotal - 1) << 16));
7070 I915_WRITE(VBLANK(cpu_transcoder),
7071 (adjusted_mode->crtc_vblank_start - 1) |
7072 ((crtc_vblank_end - 1) << 16));
7073 I915_WRITE(VSYNC(cpu_transcoder),
7074 (adjusted_mode->crtc_vsync_start - 1) |
7075 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7076
7077 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7078 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7079 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7080 * bits. */
7081 if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
7082 (pipe == PIPE_B || pipe == PIPE_C))
7083 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7084
7085 }
7086
7087 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7088 {
7089 struct drm_device *dev = intel_crtc->base.dev;
7090 struct drm_i915_private *dev_priv = to_i915(dev);
7091 enum pipe pipe = intel_crtc->pipe;
7092
7093 /* pipesrc controls the size that is scaled from, which should
7094 * always be the user's requested size.
7095 */
7096 I915_WRITE(PIPESRC(pipe),
7097 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7098 (intel_crtc->config->pipe_src_h - 1));
7099 }
7100
7101 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7102 struct intel_crtc_state *pipe_config)
7103 {
7104 struct drm_device *dev = crtc->base.dev;
7105 struct drm_i915_private *dev_priv = to_i915(dev);
7106 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7107 uint32_t tmp;
7108
7109 tmp = I915_READ(HTOTAL(cpu_transcoder));
7110 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7111 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7112 tmp = I915_READ(HBLANK(cpu_transcoder));
7113 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7114 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7115 tmp = I915_READ(HSYNC(cpu_transcoder));
7116 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7117 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7118
7119 tmp = I915_READ(VTOTAL(cpu_transcoder));
7120 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7121 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7122 tmp = I915_READ(VBLANK(cpu_transcoder));
7123 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7124 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7125 tmp = I915_READ(VSYNC(cpu_transcoder));
7126 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7127 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7128
7129 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7130 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7131 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7132 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7133 }
7134 }
7135
7136 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7137 struct intel_crtc_state *pipe_config)
7138 {
7139 struct drm_device *dev = crtc->base.dev;
7140 struct drm_i915_private *dev_priv = to_i915(dev);
7141 u32 tmp;
7142
7143 tmp = I915_READ(PIPESRC(crtc->pipe));
7144 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7145 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7146
7147 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7148 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7149 }
7150
7151 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7152 struct intel_crtc_state *pipe_config)
7153 {
7154 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7155 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7156 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7157 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7158
7159 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7160 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7161 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7162 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7163
7164 mode->flags = pipe_config->base.adjusted_mode.flags;
7165 mode->type = DRM_MODE_TYPE_DRIVER;
7166
7167 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7168
7169 mode->hsync = drm_mode_hsync(mode);
7170 mode->vrefresh = drm_mode_vrefresh(mode);
7171 drm_mode_set_name(mode);
7172 }
7173
7174 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7175 {
7176 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
7177 uint32_t pipeconf;
7178
7179 pipeconf = 0;
7180
7181 /* we keep both pipes enabled on 830 */
7182 if (IS_I830(dev_priv))
7183 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7184
7185 if (intel_crtc->config->double_wide)
7186 pipeconf |= PIPECONF_DOUBLE_WIDE;
7187
7188 /* only g4x and later have fancy bpc/dither controls */
7189 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7190 IS_CHERRYVIEW(dev_priv)) {
7191 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7192 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7193 pipeconf |= PIPECONF_DITHER_EN |
7194 PIPECONF_DITHER_TYPE_SP;
7195
7196 switch (intel_crtc->config->pipe_bpp) {
7197 case 18:
7198 pipeconf |= PIPECONF_6BPC;
7199 break;
7200 case 24:
7201 pipeconf |= PIPECONF_8BPC;
7202 break;
7203 case 30:
7204 pipeconf |= PIPECONF_10BPC;
7205 break;
7206 default:
7207 /* Case prevented by intel_choose_pipe_bpp_dither. */
7208 BUG();
7209 }
7210 }
7211
7212 if (HAS_PIPE_CXSR(dev_priv)) {
7213 if (intel_crtc->lowfreq_avail) {
7214 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7215 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7216 } else {
7217 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7218 }
7219 }
7220
7221 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7222 if (INTEL_GEN(dev_priv) < 4 ||
7223 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
7224 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7225 else
7226 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7227 } else
7228 pipeconf |= PIPECONF_PROGRESSIVE;
7229
7230 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7231 intel_crtc->config->limited_color_range)
7232 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7233
7234 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7235 POSTING_READ(PIPECONF(intel_crtc->pipe));
7236 }
7237
7238 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7239 struct intel_crtc_state *crtc_state)
7240 {
7241 struct drm_device *dev = crtc->base.dev;
7242 struct drm_i915_private *dev_priv = to_i915(dev);
7243 const struct intel_limit *limit;
7244 int refclk = 48000;
7245
7246 memset(&crtc_state->dpll_hw_state, 0,
7247 sizeof(crtc_state->dpll_hw_state));
7248
7249 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7250 if (intel_panel_use_ssc(dev_priv)) {
7251 refclk = dev_priv->vbt.lvds_ssc_freq;
7252 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7253 }
7254
7255 limit = &intel_limits_i8xx_lvds;
7256 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
7257 limit = &intel_limits_i8xx_dvo;
7258 } else {
7259 limit = &intel_limits_i8xx_dac;
7260 }
7261
7262 if (!crtc_state->clock_set &&
7263 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7264 refclk, NULL, &crtc_state->dpll)) {
7265 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7266 return -EINVAL;
7267 }
7268
7269 i8xx_compute_dpll(crtc, crtc_state, NULL);
7270
7271 return 0;
7272 }
7273
7274 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7275 struct intel_crtc_state *crtc_state)
7276 {
7277 struct drm_device *dev = crtc->base.dev;
7278 struct drm_i915_private *dev_priv = to_i915(dev);
7279 const struct intel_limit *limit;
7280 int refclk = 96000;
7281
7282 memset(&crtc_state->dpll_hw_state, 0,
7283 sizeof(crtc_state->dpll_hw_state));
7284
7285 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7286 if (intel_panel_use_ssc(dev_priv)) {
7287 refclk = dev_priv->vbt.lvds_ssc_freq;
7288 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7289 }
7290
7291 if (intel_is_dual_link_lvds(dev))
7292 limit = &intel_limits_g4x_dual_channel_lvds;
7293 else
7294 limit = &intel_limits_g4x_single_channel_lvds;
7295 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7296 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7297 limit = &intel_limits_g4x_hdmi;
7298 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7299 limit = &intel_limits_g4x_sdvo;
7300 } else {
7301 /* The option is for other outputs */
7302 limit = &intel_limits_i9xx_sdvo;
7303 }
7304
7305 if (!crtc_state->clock_set &&
7306 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7307 refclk, NULL, &crtc_state->dpll)) {
7308 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7309 return -EINVAL;
7310 }
7311
7312 i9xx_compute_dpll(crtc, crtc_state, NULL);
7313
7314 return 0;
7315 }
7316
7317 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7318 struct intel_crtc_state *crtc_state)
7319 {
7320 struct drm_device *dev = crtc->base.dev;
7321 struct drm_i915_private *dev_priv = to_i915(dev);
7322 const struct intel_limit *limit;
7323 int refclk = 96000;
7324
7325 memset(&crtc_state->dpll_hw_state, 0,
7326 sizeof(crtc_state->dpll_hw_state));
7327
7328 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7329 if (intel_panel_use_ssc(dev_priv)) {
7330 refclk = dev_priv->vbt.lvds_ssc_freq;
7331 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7332 }
7333
7334 limit = &intel_limits_pineview_lvds;
7335 } else {
7336 limit = &intel_limits_pineview_sdvo;
7337 }
7338
7339 if (!crtc_state->clock_set &&
7340 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7341 refclk, NULL, &crtc_state->dpll)) {
7342 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7343 return -EINVAL;
7344 }
7345
7346 i9xx_compute_dpll(crtc, crtc_state, NULL);
7347
7348 return 0;
7349 }
7350
7351 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7352 struct intel_crtc_state *crtc_state)
7353 {
7354 struct drm_device *dev = crtc->base.dev;
7355 struct drm_i915_private *dev_priv = to_i915(dev);
7356 const struct intel_limit *limit;
7357 int refclk = 96000;
7358
7359 memset(&crtc_state->dpll_hw_state, 0,
7360 sizeof(crtc_state->dpll_hw_state));
7361
7362 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7363 if (intel_panel_use_ssc(dev_priv)) {
7364 refclk = dev_priv->vbt.lvds_ssc_freq;
7365 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7366 }
7367
7368 limit = &intel_limits_i9xx_lvds;
7369 } else {
7370 limit = &intel_limits_i9xx_sdvo;
7371 }
7372
7373 if (!crtc_state->clock_set &&
7374 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7375 refclk, NULL, &crtc_state->dpll)) {
7376 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7377 return -EINVAL;
7378 }
7379
7380 i9xx_compute_dpll(crtc, crtc_state, NULL);
7381
7382 return 0;
7383 }
7384
7385 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7386 struct intel_crtc_state *crtc_state)
7387 {
7388 int refclk = 100000;
7389 const struct intel_limit *limit = &intel_limits_chv;
7390
7391 memset(&crtc_state->dpll_hw_state, 0,
7392 sizeof(crtc_state->dpll_hw_state));
7393
7394 if (!crtc_state->clock_set &&
7395 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7396 refclk, NULL, &crtc_state->dpll)) {
7397 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7398 return -EINVAL;
7399 }
7400
7401 chv_compute_dpll(crtc, crtc_state);
7402
7403 return 0;
7404 }
7405
7406 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7407 struct intel_crtc_state *crtc_state)
7408 {
7409 int refclk = 100000;
7410 const struct intel_limit *limit = &intel_limits_vlv;
7411
7412 memset(&crtc_state->dpll_hw_state, 0,
7413 sizeof(crtc_state->dpll_hw_state));
7414
7415 if (!crtc_state->clock_set &&
7416 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7417 refclk, NULL, &crtc_state->dpll)) {
7418 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7419 return -EINVAL;
7420 }
7421
7422 vlv_compute_dpll(crtc, crtc_state);
7423
7424 return 0;
7425 }
7426
7427 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7428 struct intel_crtc_state *pipe_config)
7429 {
7430 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7431 uint32_t tmp;
7432
7433 if (INTEL_GEN(dev_priv) <= 3 &&
7434 (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
7435 return;
7436
7437 tmp = I915_READ(PFIT_CONTROL);
7438 if (!(tmp & PFIT_ENABLE))
7439 return;
7440
7441 /* Check whether the pfit is attached to our pipe. */
7442 if (INTEL_GEN(dev_priv) < 4) {
7443 if (crtc->pipe != PIPE_B)
7444 return;
7445 } else {
7446 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7447 return;
7448 }
7449
7450 pipe_config->gmch_pfit.control = tmp;
7451 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7452 }
7453
7454 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7455 struct intel_crtc_state *pipe_config)
7456 {
7457 struct drm_device *dev = crtc->base.dev;
7458 struct drm_i915_private *dev_priv = to_i915(dev);
7459 int pipe = pipe_config->cpu_transcoder;
7460 struct dpll clock;
7461 u32 mdiv;
7462 int refclk = 100000;
7463
7464 /* In case of DSI, DPLL will not be used */
7465 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7466 return;
7467
7468 mutex_lock(&dev_priv->sb_lock);
7469 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7470 mutex_unlock(&dev_priv->sb_lock);
7471
7472 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7473 clock.m2 = mdiv & DPIO_M2DIV_MASK;
7474 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7475 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7476 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7477
7478 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7479 }
7480
7481 static void
7482 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7483 struct intel_initial_plane_config *plane_config)
7484 {
7485 struct drm_device *dev = crtc->base.dev;
7486 struct drm_i915_private *dev_priv = to_i915(dev);
7487 u32 val, base, offset;
7488 int pipe = crtc->pipe, plane = crtc->plane;
7489 int fourcc, pixel_format;
7490 unsigned int aligned_height;
7491 struct drm_framebuffer *fb;
7492 struct intel_framebuffer *intel_fb;
7493
7494 val = I915_READ(DSPCNTR(plane));
7495 if (!(val & DISPLAY_PLANE_ENABLE))
7496 return;
7497
7498 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7499 if (!intel_fb) {
7500 DRM_DEBUG_KMS("failed to alloc fb\n");
7501 return;
7502 }
7503
7504 fb = &intel_fb->base;
7505
7506 fb->dev = dev;
7507
7508 if (INTEL_GEN(dev_priv) >= 4) {
7509 if (val & DISPPLANE_TILED) {
7510 plane_config->tiling = I915_TILING_X;
7511 fb->modifier = I915_FORMAT_MOD_X_TILED;
7512 }
7513 }
7514
7515 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7516 fourcc = i9xx_format_to_fourcc(pixel_format);
7517 fb->format = drm_format_info(fourcc);
7518
7519 if (INTEL_GEN(dev_priv) >= 4) {
7520 if (plane_config->tiling)
7521 offset = I915_READ(DSPTILEOFF(plane));
7522 else
7523 offset = I915_READ(DSPLINOFF(plane));
7524 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7525 } else {
7526 base = I915_READ(DSPADDR(plane));
7527 }
7528 plane_config->base = base;
7529
7530 val = I915_READ(PIPESRC(pipe));
7531 fb->width = ((val >> 16) & 0xfff) + 1;
7532 fb->height = ((val >> 0) & 0xfff) + 1;
7533
7534 val = I915_READ(DSPSTRIDE(pipe));
7535 fb->pitches[0] = val & 0xffffffc0;
7536
7537 aligned_height = intel_fb_align_height(fb, 0, fb->height);
7538
7539 plane_config->size = fb->pitches[0] * aligned_height;
7540
7541 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7542 pipe_name(pipe), plane, fb->width, fb->height,
7543 fb->format->cpp[0] * 8, base, fb->pitches[0],
7544 plane_config->size);
7545
7546 plane_config->fb = intel_fb;
7547 }
7548
7549 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7550 struct intel_crtc_state *pipe_config)
7551 {
7552 struct drm_device *dev = crtc->base.dev;
7553 struct drm_i915_private *dev_priv = to_i915(dev);
7554 int pipe = pipe_config->cpu_transcoder;
7555 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7556 struct dpll clock;
7557 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7558 int refclk = 100000;
7559
7560 /* In case of DSI, DPLL will not be used */
7561 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7562 return;
7563
7564 mutex_lock(&dev_priv->sb_lock);
7565 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7566 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7567 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7568 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7569 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7570 mutex_unlock(&dev_priv->sb_lock);
7571
7572 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7573 clock.m2 = (pll_dw0 & 0xff) << 22;
7574 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7575 clock.m2 |= pll_dw2 & 0x3fffff;
7576 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7577 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7578 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7579
7580 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
7581 }
7582
7583 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7584 struct intel_crtc_state *pipe_config)
7585 {
7586 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7587 enum intel_display_power_domain power_domain;
7588 uint32_t tmp;
7589 bool ret;
7590
7591 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
7592 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
7593 return false;
7594
7595 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7596 pipe_config->shared_dpll = NULL;
7597
7598 ret = false;
7599
7600 tmp = I915_READ(PIPECONF(crtc->pipe));
7601 if (!(tmp & PIPECONF_ENABLE))
7602 goto out;
7603
7604 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
7605 IS_CHERRYVIEW(dev_priv)) {
7606 switch (tmp & PIPECONF_BPC_MASK) {
7607 case PIPECONF_6BPC:
7608 pipe_config->pipe_bpp = 18;
7609 break;
7610 case PIPECONF_8BPC:
7611 pipe_config->pipe_bpp = 24;
7612 break;
7613 case PIPECONF_10BPC:
7614 pipe_config->pipe_bpp = 30;
7615 break;
7616 default:
7617 break;
7618 }
7619 }
7620
7621 if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7622 (tmp & PIPECONF_COLOR_RANGE_SELECT))
7623 pipe_config->limited_color_range = true;
7624
7625 if (INTEL_GEN(dev_priv) < 4)
7626 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7627
7628 intel_get_pipe_timings(crtc, pipe_config);
7629 intel_get_pipe_src_size(crtc, pipe_config);
7630
7631 i9xx_get_pfit_config(crtc, pipe_config);
7632
7633 if (INTEL_GEN(dev_priv) >= 4) {
7634 /* No way to read it out on pipes B and C */
7635 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
7636 tmp = dev_priv->chv_dpll_md[crtc->pipe];
7637 else
7638 tmp = I915_READ(DPLL_MD(crtc->pipe));
7639 pipe_config->pixel_multiplier =
7640 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7641 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7642 pipe_config->dpll_hw_state.dpll_md = tmp;
7643 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
7644 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
7645 tmp = I915_READ(DPLL(crtc->pipe));
7646 pipe_config->pixel_multiplier =
7647 ((tmp & SDVO_MULTIPLIER_MASK)
7648 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7649 } else {
7650 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7651 * port and will be fixed up in the encoder->get_config
7652 * function. */
7653 pipe_config->pixel_multiplier = 1;
7654 }
7655 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7656 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
7657 /*
7658 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7659 * on 830. Filter it out here so that we don't
7660 * report errors due to that.
7661 */
7662 if (IS_I830(dev_priv))
7663 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7664
7665 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7666 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7667 } else {
7668 /* Mask out read-only status bits. */
7669 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7670 DPLL_PORTC_READY_MASK |
7671 DPLL_PORTB_READY_MASK);
7672 }
7673
7674 if (IS_CHERRYVIEW(dev_priv))
7675 chv_crtc_clock_get(crtc, pipe_config);
7676 else if (IS_VALLEYVIEW(dev_priv))
7677 vlv_crtc_clock_get(crtc, pipe_config);
7678 else
7679 i9xx_crtc_clock_get(crtc, pipe_config);
7680
7681 /*
7682 * Normally the dotclock is filled in by the encoder .get_config()
7683 * but in case the pipe is enabled w/o any ports we need a sane
7684 * default.
7685 */
7686 pipe_config->base.adjusted_mode.crtc_clock =
7687 pipe_config->port_clock / pipe_config->pixel_multiplier;
7688
7689 ret = true;
7690
7691 out:
7692 intel_display_power_put(dev_priv, power_domain);
7693
7694 return ret;
7695 }
7696
7697 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
7698 {
7699 struct intel_encoder *encoder;
7700 int i;
7701 u32 val, final;
7702 bool has_lvds = false;
7703 bool has_cpu_edp = false;
7704 bool has_panel = false;
7705 bool has_ck505 = false;
7706 bool can_ssc = false;
7707 bool using_ssc_source = false;
7708
7709 /* We need to take the global config into account */
7710 for_each_intel_encoder(&dev_priv->drm, encoder) {
7711 switch (encoder->type) {
7712 case INTEL_OUTPUT_LVDS:
7713 has_panel = true;
7714 has_lvds = true;
7715 break;
7716 case INTEL_OUTPUT_EDP:
7717 has_panel = true;
7718 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
7719 has_cpu_edp = true;
7720 break;
7721 default:
7722 break;
7723 }
7724 }
7725
7726 if (HAS_PCH_IBX(dev_priv)) {
7727 has_ck505 = dev_priv->vbt.display_clock_mode;
7728 can_ssc = has_ck505;
7729 } else {
7730 has_ck505 = false;
7731 can_ssc = true;
7732 }
7733
7734 /* Check if any DPLLs are using the SSC source */
7735 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
7736 u32 temp = I915_READ(PCH_DPLL(i));
7737
7738 if (!(temp & DPLL_VCO_ENABLE))
7739 continue;
7740
7741 if ((temp & PLL_REF_INPUT_MASK) ==
7742 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
7743 using_ssc_source = true;
7744 break;
7745 }
7746 }
7747
7748 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
7749 has_panel, has_lvds, has_ck505, using_ssc_source);
7750
7751 /* Ironlake: try to setup display ref clock before DPLL
7752 * enabling. This is only under driver's control after
7753 * PCH B stepping, previous chipset stepping should be
7754 * ignoring this setting.
7755 */
7756 val = I915_READ(PCH_DREF_CONTROL);
7757
7758 /* As we must carefully and slowly disable/enable each source in turn,
7759 * compute the final state we want first and check if we need to
7760 * make any changes at all.
7761 */
7762 final = val;
7763 final &= ~DREF_NONSPREAD_SOURCE_MASK;
7764 if (has_ck505)
7765 final |= DREF_NONSPREAD_CK505_ENABLE;
7766 else
7767 final |= DREF_NONSPREAD_SOURCE_ENABLE;
7768
7769 final &= ~DREF_SSC_SOURCE_MASK;
7770 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7771 final &= ~DREF_SSC1_ENABLE;
7772
7773 if (has_panel) {
7774 final |= DREF_SSC_SOURCE_ENABLE;
7775
7776 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7777 final |= DREF_SSC1_ENABLE;
7778
7779 if (has_cpu_edp) {
7780 if (intel_panel_use_ssc(dev_priv) && can_ssc)
7781 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7782 else
7783 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7784 } else
7785 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7786 } else if (using_ssc_source) {
7787 final |= DREF_SSC_SOURCE_ENABLE;
7788 final |= DREF_SSC1_ENABLE;
7789 }
7790
7791 if (final == val)
7792 return;
7793
7794 /* Always enable nonspread source */
7795 val &= ~DREF_NONSPREAD_SOURCE_MASK;
7796
7797 if (has_ck505)
7798 val |= DREF_NONSPREAD_CK505_ENABLE;
7799 else
7800 val |= DREF_NONSPREAD_SOURCE_ENABLE;
7801
7802 if (has_panel) {
7803 val &= ~DREF_SSC_SOURCE_MASK;
7804 val |= DREF_SSC_SOURCE_ENABLE;
7805
7806 /* SSC must be turned on before enabling the CPU output */
7807 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7808 DRM_DEBUG_KMS("Using SSC on panel\n");
7809 val |= DREF_SSC1_ENABLE;
7810 } else
7811 val &= ~DREF_SSC1_ENABLE;
7812
7813 /* Get SSC going before enabling the outputs */
7814 I915_WRITE(PCH_DREF_CONTROL, val);
7815 POSTING_READ(PCH_DREF_CONTROL);
7816 udelay(200);
7817
7818 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7819
7820 /* Enable CPU source on CPU attached eDP */
7821 if (has_cpu_edp) {
7822 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
7823 DRM_DEBUG_KMS("Using SSC on eDP\n");
7824 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
7825 } else
7826 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
7827 } else
7828 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7829
7830 I915_WRITE(PCH_DREF_CONTROL, val);
7831 POSTING_READ(PCH_DREF_CONTROL);
7832 udelay(200);
7833 } else {
7834 DRM_DEBUG_KMS("Disabling CPU source output\n");
7835
7836 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
7837
7838 /* Turn off CPU output */
7839 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
7840
7841 I915_WRITE(PCH_DREF_CONTROL, val);
7842 POSTING_READ(PCH_DREF_CONTROL);
7843 udelay(200);
7844
7845 if (!using_ssc_source) {
7846 DRM_DEBUG_KMS("Disabling SSC source\n");
7847
7848 /* Turn off the SSC source */
7849 val &= ~DREF_SSC_SOURCE_MASK;
7850 val |= DREF_SSC_SOURCE_DISABLE;
7851
7852 /* Turn off SSC1 */
7853 val &= ~DREF_SSC1_ENABLE;
7854
7855 I915_WRITE(PCH_DREF_CONTROL, val);
7856 POSTING_READ(PCH_DREF_CONTROL);
7857 udelay(200);
7858 }
7859 }
7860
7861 BUG_ON(val != final);
7862 }
7863
7864 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
7865 {
7866 uint32_t tmp;
7867
7868 tmp = I915_READ(SOUTH_CHICKEN2);
7869 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
7870 I915_WRITE(SOUTH_CHICKEN2, tmp);
7871
7872 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
7873 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
7874 DRM_ERROR("FDI mPHY reset assert timeout\n");
7875
7876 tmp = I915_READ(SOUTH_CHICKEN2);
7877 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
7878 I915_WRITE(SOUTH_CHICKEN2, tmp);
7879
7880 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
7881 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
7882 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
7883 }
7884
7885 /* WaMPhyProgramming:hsw */
7886 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
7887 {
7888 uint32_t tmp;
7889
7890 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
7891 tmp &= ~(0xFF << 24);
7892 tmp |= (0x12 << 24);
7893 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
7894
7895 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
7896 tmp |= (1 << 11);
7897 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
7898
7899 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
7900 tmp |= (1 << 11);
7901 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7902
7903 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7904 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7905 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7906
7907 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7908 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7909 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7910
7911 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7912 tmp &= ~(7 << 13);
7913 tmp |= (5 << 13);
7914 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7915
7916 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7917 tmp &= ~(7 << 13);
7918 tmp |= (5 << 13);
7919 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7920
7921 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7922 tmp &= ~0xFF;
7923 tmp |= 0x1C;
7924 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7925
7926 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7927 tmp &= ~0xFF;
7928 tmp |= 0x1C;
7929 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7930
7931 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7932 tmp &= ~(0xFF << 16);
7933 tmp |= (0x1C << 16);
7934 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7935
7936 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7937 tmp &= ~(0xFF << 16);
7938 tmp |= (0x1C << 16);
7939 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7940
7941 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7942 tmp |= (1 << 27);
7943 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7944
7945 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7946 tmp |= (1 << 27);
7947 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7948
7949 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7950 tmp &= ~(0xF << 28);
7951 tmp |= (4 << 28);
7952 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7953
7954 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7955 tmp &= ~(0xF << 28);
7956 tmp |= (4 << 28);
7957 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7958 }
7959
7960 /* Implements 3 different sequences from BSpec chapter "Display iCLK
7961 * Programming" based on the parameters passed:
7962 * - Sequence to enable CLKOUT_DP
7963 * - Sequence to enable CLKOUT_DP without spread
7964 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7965 */
7966 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
7967 bool with_spread, bool with_fdi)
7968 {
7969 uint32_t reg, tmp;
7970
7971 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7972 with_spread = true;
7973 if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
7974 with_fdi, "LP PCH doesn't have FDI\n"))
7975 with_fdi = false;
7976
7977 mutex_lock(&dev_priv->sb_lock);
7978
7979 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7980 tmp &= ~SBI_SSCCTL_DISABLE;
7981 tmp |= SBI_SSCCTL_PATHALT;
7982 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7983
7984 udelay(24);
7985
7986 if (with_spread) {
7987 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7988 tmp &= ~SBI_SSCCTL_PATHALT;
7989 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7990
7991 if (with_fdi) {
7992 lpt_reset_fdi_mphy(dev_priv);
7993 lpt_program_fdi_mphy(dev_priv);
7994 }
7995 }
7996
7997 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
7998 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7999 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8000 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8001
8002 mutex_unlock(&dev_priv->sb_lock);
8003 }
8004
8005 /* Sequence to disable CLKOUT_DP */
8006 static void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
8007 {
8008 uint32_t reg, tmp;
8009
8010 mutex_lock(&dev_priv->sb_lock);
8011
8012 reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
8013 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8014 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8015 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8016
8017 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8018 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8019 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8020 tmp |= SBI_SSCCTL_PATHALT;
8021 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8022 udelay(32);
8023 }
8024 tmp |= SBI_SSCCTL_DISABLE;
8025 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8026 }
8027
8028 mutex_unlock(&dev_priv->sb_lock);
8029 }
8030
8031 #define BEND_IDX(steps) ((50 + (steps)) / 5)
8032
8033 static const uint16_t sscdivintphase[] = {
8034 [BEND_IDX( 50)] = 0x3B23,
8035 [BEND_IDX( 45)] = 0x3B23,
8036 [BEND_IDX( 40)] = 0x3C23,
8037 [BEND_IDX( 35)] = 0x3C23,
8038 [BEND_IDX( 30)] = 0x3D23,
8039 [BEND_IDX( 25)] = 0x3D23,
8040 [BEND_IDX( 20)] = 0x3E23,
8041 [BEND_IDX( 15)] = 0x3E23,
8042 [BEND_IDX( 10)] = 0x3F23,
8043 [BEND_IDX( 5)] = 0x3F23,
8044 [BEND_IDX( 0)] = 0x0025,
8045 [BEND_IDX( -5)] = 0x0025,
8046 [BEND_IDX(-10)] = 0x0125,
8047 [BEND_IDX(-15)] = 0x0125,
8048 [BEND_IDX(-20)] = 0x0225,
8049 [BEND_IDX(-25)] = 0x0225,
8050 [BEND_IDX(-30)] = 0x0325,
8051 [BEND_IDX(-35)] = 0x0325,
8052 [BEND_IDX(-40)] = 0x0425,
8053 [BEND_IDX(-45)] = 0x0425,
8054 [BEND_IDX(-50)] = 0x0525,
8055 };
8056
8057 /*
8058 * Bend CLKOUT_DP
8059 * steps -50 to 50 inclusive, in steps of 5
8060 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8061 * change in clock period = -(steps / 10) * 5.787 ps
8062 */
8063 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8064 {
8065 uint32_t tmp;
8066 int idx = BEND_IDX(steps);
8067
8068 if (WARN_ON(steps % 5 != 0))
8069 return;
8070
8071 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8072 return;
8073
8074 mutex_lock(&dev_priv->sb_lock);
8075
8076 if (steps % 10 != 0)
8077 tmp = 0xAAAAAAAB;
8078 else
8079 tmp = 0x00000000;
8080 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8081
8082 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8083 tmp &= 0xffff0000;
8084 tmp |= sscdivintphase[idx];
8085 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8086
8087 mutex_unlock(&dev_priv->sb_lock);
8088 }
8089
8090 #undef BEND_IDX
8091
8092 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
8093 {
8094 struct intel_encoder *encoder;
8095 bool has_vga = false;
8096
8097 for_each_intel_encoder(&dev_priv->drm, encoder) {
8098 switch (encoder->type) {
8099 case INTEL_OUTPUT_ANALOG:
8100 has_vga = true;
8101 break;
8102 default:
8103 break;
8104 }
8105 }
8106
8107 if (has_vga) {
8108 lpt_bend_clkout_dp(dev_priv, 0);
8109 lpt_enable_clkout_dp(dev_priv, true, true);
8110 } else {
8111 lpt_disable_clkout_dp(dev_priv);
8112 }
8113 }
8114
8115 /*
8116 * Initialize reference clocks when the driver loads
8117 */
8118 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
8119 {
8120 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
8121 ironlake_init_pch_refclk(dev_priv);
8122 else if (HAS_PCH_LPT(dev_priv))
8123 lpt_init_pch_refclk(dev_priv);
8124 }
8125
8126 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8127 {
8128 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8129 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8130 int pipe = intel_crtc->pipe;
8131 uint32_t val;
8132
8133 val = 0;
8134
8135 switch (intel_crtc->config->pipe_bpp) {
8136 case 18:
8137 val |= PIPECONF_6BPC;
8138 break;
8139 case 24:
8140 val |= PIPECONF_8BPC;
8141 break;
8142 case 30:
8143 val |= PIPECONF_10BPC;
8144 break;
8145 case 36:
8146 val |= PIPECONF_12BPC;
8147 break;
8148 default:
8149 /* Case prevented by intel_choose_pipe_bpp_dither. */
8150 BUG();
8151 }
8152
8153 if (intel_crtc->config->dither)
8154 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8155
8156 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8157 val |= PIPECONF_INTERLACED_ILK;
8158 else
8159 val |= PIPECONF_PROGRESSIVE;
8160
8161 if (intel_crtc->config->limited_color_range)
8162 val |= PIPECONF_COLOR_RANGE_SELECT;
8163
8164 I915_WRITE(PIPECONF(pipe), val);
8165 POSTING_READ(PIPECONF(pipe));
8166 }
8167
8168 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8169 {
8170 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8172 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8173 u32 val = 0;
8174
8175 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
8176 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8177
8178 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8179 val |= PIPECONF_INTERLACED_ILK;
8180 else
8181 val |= PIPECONF_PROGRESSIVE;
8182
8183 I915_WRITE(PIPECONF(cpu_transcoder), val);
8184 POSTING_READ(PIPECONF(cpu_transcoder));
8185 }
8186
8187 static void haswell_set_pipemisc(struct drm_crtc *crtc)
8188 {
8189 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
8190 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8191 struct intel_crtc_state *config = intel_crtc->config;
8192
8193 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8194 u32 val = 0;
8195
8196 switch (intel_crtc->config->pipe_bpp) {
8197 case 18:
8198 val |= PIPEMISC_DITHER_6_BPC;
8199 break;
8200 case 24:
8201 val |= PIPEMISC_DITHER_8_BPC;
8202 break;
8203 case 30:
8204 val |= PIPEMISC_DITHER_10_BPC;
8205 break;
8206 case 36:
8207 val |= PIPEMISC_DITHER_12_BPC;
8208 break;
8209 default:
8210 /* Case prevented by pipe_config_set_bpp. */
8211 BUG();
8212 }
8213
8214 if (intel_crtc->config->dither)
8215 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8216
8217 if (config->ycbcr420) {
8218 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV |
8219 PIPEMISC_YUV420_ENABLE |
8220 PIPEMISC_YUV420_MODE_FULL_BLEND;
8221 }
8222
8223 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
8224 }
8225 }
8226
8227 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8228 {
8229 /*
8230 * Account for spread spectrum to avoid
8231 * oversubscribing the link. Max center spread
8232 * is 2.5%; use 5% for safety's sake.
8233 */
8234 u32 bps = target_clock * bpp * 21 / 20;
8235 return DIV_ROUND_UP(bps, link_bw * 8);
8236 }
8237
8238 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8239 {
8240 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8241 }
8242
8243 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8244 struct intel_crtc_state *crtc_state,
8245 struct dpll *reduced_clock)
8246 {
8247 struct drm_crtc *crtc = &intel_crtc->base;
8248 struct drm_device *dev = crtc->dev;
8249 struct drm_i915_private *dev_priv = to_i915(dev);
8250 u32 dpll, fp, fp2;
8251 int factor;
8252
8253 /* Enable autotuning of the PLL clock (if permissible) */
8254 factor = 21;
8255 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8256 if ((intel_panel_use_ssc(dev_priv) &&
8257 dev_priv->vbt.lvds_ssc_freq == 100000) ||
8258 (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
8259 factor = 25;
8260 } else if (crtc_state->sdvo_tv_clock)
8261 factor = 20;
8262
8263 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8264
8265 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8266 fp |= FP_CB_TUNE;
8267
8268 if (reduced_clock) {
8269 fp2 = i9xx_dpll_compute_fp(reduced_clock);
8270
8271 if (reduced_clock->m < factor * reduced_clock->n)
8272 fp2 |= FP_CB_TUNE;
8273 } else {
8274 fp2 = fp;
8275 }
8276
8277 dpll = 0;
8278
8279 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8280 dpll |= DPLLB_MODE_LVDS;
8281 else
8282 dpll |= DPLLB_MODE_DAC_SERIAL;
8283
8284 dpll |= (crtc_state->pixel_multiplier - 1)
8285 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8286
8287 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8288 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8289 dpll |= DPLL_SDVO_HIGH_SPEED;
8290
8291 if (intel_crtc_has_dp_encoder(crtc_state))
8292 dpll |= DPLL_SDVO_HIGH_SPEED;
8293
8294 /*
8295 * The high speed IO clock is only really required for
8296 * SDVO/HDMI/DP, but we also enable it for CRT to make it
8297 * possible to share the DPLL between CRT and HDMI. Enabling
8298 * the clock needlessly does no real harm, except use up a
8299 * bit of power potentially.
8300 *
8301 * We'll limit this to IVB with 3 pipes, since it has only two
8302 * DPLLs and so DPLL sharing is the only way to get three pipes
8303 * driving PCH ports at the same time. On SNB we could do this,
8304 * and potentially avoid enabling the second DPLL, but it's not
8305 * clear if it''s a win or loss power wise. No point in doing
8306 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
8307 */
8308 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
8309 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
8310 dpll |= DPLL_SDVO_HIGH_SPEED;
8311
8312 /* compute bitmask from p1 value */
8313 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8314 /* also FPA1 */
8315 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8316
8317 switch (crtc_state->dpll.p2) {
8318 case 5:
8319 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8320 break;
8321 case 7:
8322 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8323 break;
8324 case 10:
8325 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8326 break;
8327 case 14:
8328 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8329 break;
8330 }
8331
8332 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8333 intel_panel_use_ssc(dev_priv))
8334 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8335 else
8336 dpll |= PLL_REF_INPUT_DREFCLK;
8337
8338 dpll |= DPLL_VCO_ENABLE;
8339
8340 crtc_state->dpll_hw_state.dpll = dpll;
8341 crtc_state->dpll_hw_state.fp0 = fp;
8342 crtc_state->dpll_hw_state.fp1 = fp2;
8343 }
8344
8345 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8346 struct intel_crtc_state *crtc_state)
8347 {
8348 struct drm_device *dev = crtc->base.dev;
8349 struct drm_i915_private *dev_priv = to_i915(dev);
8350 const struct intel_limit *limit;
8351 int refclk = 120000;
8352
8353 memset(&crtc_state->dpll_hw_state, 0,
8354 sizeof(crtc_state->dpll_hw_state));
8355
8356 crtc->lowfreq_avail = false;
8357
8358 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8359 if (!crtc_state->has_pch_encoder)
8360 return 0;
8361
8362 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8363 if (intel_panel_use_ssc(dev_priv)) {
8364 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8365 dev_priv->vbt.lvds_ssc_freq);
8366 refclk = dev_priv->vbt.lvds_ssc_freq;
8367 }
8368
8369 if (intel_is_dual_link_lvds(dev)) {
8370 if (refclk == 100000)
8371 limit = &intel_limits_ironlake_dual_lvds_100m;
8372 else
8373 limit = &intel_limits_ironlake_dual_lvds;
8374 } else {
8375 if (refclk == 100000)
8376 limit = &intel_limits_ironlake_single_lvds_100m;
8377 else
8378 limit = &intel_limits_ironlake_single_lvds;
8379 }
8380 } else {
8381 limit = &intel_limits_ironlake_dac;
8382 }
8383
8384 if (!crtc_state->clock_set &&
8385 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8386 refclk, NULL, &crtc_state->dpll)) {
8387 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8388 return -EINVAL;
8389 }
8390
8391 ironlake_compute_dpll(crtc, crtc_state, NULL);
8392
8393 if (!intel_get_shared_dpll(crtc, crtc_state, NULL)) {
8394 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8395 pipe_name(crtc->pipe));
8396 return -EINVAL;
8397 }
8398
8399 return 0;
8400 }
8401
8402 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8403 struct intel_link_m_n *m_n)
8404 {
8405 struct drm_device *dev = crtc->base.dev;
8406 struct drm_i915_private *dev_priv = to_i915(dev);
8407 enum pipe pipe = crtc->pipe;
8408
8409 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8410 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8411 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8412 & ~TU_SIZE_MASK;
8413 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8414 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8415 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8416 }
8417
8418 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8419 enum transcoder transcoder,
8420 struct intel_link_m_n *m_n,
8421 struct intel_link_m_n *m2_n2)
8422 {
8423 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8424 enum pipe pipe = crtc->pipe;
8425
8426 if (INTEL_GEN(dev_priv) >= 5) {
8427 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8428 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8429 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8430 & ~TU_SIZE_MASK;
8431 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8432 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8433 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8434 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8435 * gen < 8) and if DRRS is supported (to make sure the
8436 * registers are not unnecessarily read).
8437 */
8438 if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
8439 crtc->config->has_drrs) {
8440 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8441 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8442 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8443 & ~TU_SIZE_MASK;
8444 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8445 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8446 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8447 }
8448 } else {
8449 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8450 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8451 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8452 & ~TU_SIZE_MASK;
8453 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8454 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8455 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8456 }
8457 }
8458
8459 void intel_dp_get_m_n(struct intel_crtc *crtc,
8460 struct intel_crtc_state *pipe_config)
8461 {
8462 if (pipe_config->has_pch_encoder)
8463 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8464 else
8465 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8466 &pipe_config->dp_m_n,
8467 &pipe_config->dp_m2_n2);
8468 }
8469
8470 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8471 struct intel_crtc_state *pipe_config)
8472 {
8473 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8474 &pipe_config->fdi_m_n, NULL);
8475 }
8476
8477 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8478 struct intel_crtc_state *pipe_config)
8479 {
8480 struct drm_device *dev = crtc->base.dev;
8481 struct drm_i915_private *dev_priv = to_i915(dev);
8482 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8483 uint32_t ps_ctrl = 0;
8484 int id = -1;
8485 int i;
8486
8487 /* find scaler attached to this pipe */
8488 for (i = 0; i < crtc->num_scalers; i++) {
8489 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8490 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8491 id = i;
8492 pipe_config->pch_pfit.enabled = true;
8493 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8494 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8495 break;
8496 }
8497 }
8498
8499 scaler_state->scaler_id = id;
8500 if (id >= 0) {
8501 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8502 } else {
8503 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8504 }
8505 }
8506
8507 static void
8508 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8509 struct intel_initial_plane_config *plane_config)
8510 {
8511 struct drm_device *dev = crtc->base.dev;
8512 struct drm_i915_private *dev_priv = to_i915(dev);
8513 u32 val, base, offset, stride_mult, tiling;
8514 int pipe = crtc->pipe;
8515 int fourcc, pixel_format;
8516 unsigned int aligned_height;
8517 struct drm_framebuffer *fb;
8518 struct intel_framebuffer *intel_fb;
8519
8520 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8521 if (!intel_fb) {
8522 DRM_DEBUG_KMS("failed to alloc fb\n");
8523 return;
8524 }
8525
8526 fb = &intel_fb->base;
8527
8528 fb->dev = dev;
8529
8530 val = I915_READ(PLANE_CTL(pipe, 0));
8531 if (!(val & PLANE_CTL_ENABLE))
8532 goto error;
8533
8534 pixel_format = val & PLANE_CTL_FORMAT_MASK;
8535 fourcc = skl_format_to_fourcc(pixel_format,
8536 val & PLANE_CTL_ORDER_RGBX,
8537 val & PLANE_CTL_ALPHA_MASK);
8538 fb->format = drm_format_info(fourcc);
8539
8540 tiling = val & PLANE_CTL_TILED_MASK;
8541 switch (tiling) {
8542 case PLANE_CTL_TILED_LINEAR:
8543 fb->modifier = DRM_FORMAT_MOD_LINEAR;
8544 break;
8545 case PLANE_CTL_TILED_X:
8546 plane_config->tiling = I915_TILING_X;
8547 fb->modifier = I915_FORMAT_MOD_X_TILED;
8548 break;
8549 case PLANE_CTL_TILED_Y:
8550 if (val & PLANE_CTL_DECOMPRESSION_ENABLE)
8551 fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS;
8552 else
8553 fb->modifier = I915_FORMAT_MOD_Y_TILED;
8554 break;
8555 case PLANE_CTL_TILED_YF:
8556 if (val & PLANE_CTL_DECOMPRESSION_ENABLE)
8557 fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
8558 else
8559 fb->modifier = I915_FORMAT_MOD_Yf_TILED;
8560 break;
8561 default:
8562 MISSING_CASE(tiling);
8563 goto error;
8564 }
8565
8566 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8567 plane_config->base = base;
8568
8569 offset = I915_READ(PLANE_OFFSET(pipe, 0));
8570
8571 val = I915_READ(PLANE_SIZE(pipe, 0));
8572 fb->height = ((val >> 16) & 0xfff) + 1;
8573 fb->width = ((val >> 0) & 0x1fff) + 1;
8574
8575 val = I915_READ(PLANE_STRIDE(pipe, 0));
8576 stride_mult = intel_fb_stride_alignment(fb, 0);
8577 fb->pitches[0] = (val & 0x3ff) * stride_mult;
8578
8579 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8580
8581 plane_config->size = fb->pitches[0] * aligned_height;
8582
8583 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8584 pipe_name(pipe), fb->width, fb->height,
8585 fb->format->cpp[0] * 8, base, fb->pitches[0],
8586 plane_config->size);
8587
8588 plane_config->fb = intel_fb;
8589 return;
8590
8591 error:
8592 kfree(intel_fb);
8593 }
8594
8595 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8596 struct intel_crtc_state *pipe_config)
8597 {
8598 struct drm_device *dev = crtc->base.dev;
8599 struct drm_i915_private *dev_priv = to_i915(dev);
8600 uint32_t tmp;
8601
8602 tmp = I915_READ(PF_CTL(crtc->pipe));
8603
8604 if (tmp & PF_ENABLE) {
8605 pipe_config->pch_pfit.enabled = true;
8606 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8607 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8608
8609 /* We currently do not free assignements of panel fitters on
8610 * ivb/hsw (since we don't use the higher upscaling modes which
8611 * differentiates them) so just WARN about this case for now. */
8612 if (IS_GEN7(dev_priv)) {
8613 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8614 PF_PIPE_SEL_IVB(crtc->pipe));
8615 }
8616 }
8617 }
8618
8619 static void
8620 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8621 struct intel_initial_plane_config *plane_config)
8622 {
8623 struct drm_device *dev = crtc->base.dev;
8624 struct drm_i915_private *dev_priv = to_i915(dev);
8625 u32 val, base, offset;
8626 int pipe = crtc->pipe;
8627 int fourcc, pixel_format;
8628 unsigned int aligned_height;
8629 struct drm_framebuffer *fb;
8630 struct intel_framebuffer *intel_fb;
8631
8632 val = I915_READ(DSPCNTR(pipe));
8633 if (!(val & DISPLAY_PLANE_ENABLE))
8634 return;
8635
8636 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8637 if (!intel_fb) {
8638 DRM_DEBUG_KMS("failed to alloc fb\n");
8639 return;
8640 }
8641
8642 fb = &intel_fb->base;
8643
8644 fb->dev = dev;
8645
8646 if (INTEL_GEN(dev_priv) >= 4) {
8647 if (val & DISPPLANE_TILED) {
8648 plane_config->tiling = I915_TILING_X;
8649 fb->modifier = I915_FORMAT_MOD_X_TILED;
8650 }
8651 }
8652
8653 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8654 fourcc = i9xx_format_to_fourcc(pixel_format);
8655 fb->format = drm_format_info(fourcc);
8656
8657 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
8658 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8659 offset = I915_READ(DSPOFFSET(pipe));
8660 } else {
8661 if (plane_config->tiling)
8662 offset = I915_READ(DSPTILEOFF(pipe));
8663 else
8664 offset = I915_READ(DSPLINOFF(pipe));
8665 }
8666 plane_config->base = base;
8667
8668 val = I915_READ(PIPESRC(pipe));
8669 fb->width = ((val >> 16) & 0xfff) + 1;
8670 fb->height = ((val >> 0) & 0xfff) + 1;
8671
8672 val = I915_READ(DSPSTRIDE(pipe));
8673 fb->pitches[0] = val & 0xffffffc0;
8674
8675 aligned_height = intel_fb_align_height(fb, 0, fb->height);
8676
8677 plane_config->size = fb->pitches[0] * aligned_height;
8678
8679 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8680 pipe_name(pipe), fb->width, fb->height,
8681 fb->format->cpp[0] * 8, base, fb->pitches[0],
8682 plane_config->size);
8683
8684 plane_config->fb = intel_fb;
8685 }
8686
8687 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
8688 struct intel_crtc_state *pipe_config)
8689 {
8690 struct drm_device *dev = crtc->base.dev;
8691 struct drm_i915_private *dev_priv = to_i915(dev);
8692 enum intel_display_power_domain power_domain;
8693 uint32_t tmp;
8694 bool ret;
8695
8696 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8697 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8698 return false;
8699
8700 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8701 pipe_config->shared_dpll = NULL;
8702
8703 ret = false;
8704 tmp = I915_READ(PIPECONF(crtc->pipe));
8705 if (!(tmp & PIPECONF_ENABLE))
8706 goto out;
8707
8708 switch (tmp & PIPECONF_BPC_MASK) {
8709 case PIPECONF_6BPC:
8710 pipe_config->pipe_bpp = 18;
8711 break;
8712 case PIPECONF_8BPC:
8713 pipe_config->pipe_bpp = 24;
8714 break;
8715 case PIPECONF_10BPC:
8716 pipe_config->pipe_bpp = 30;
8717 break;
8718 case PIPECONF_12BPC:
8719 pipe_config->pipe_bpp = 36;
8720 break;
8721 default:
8722 break;
8723 }
8724
8725 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
8726 pipe_config->limited_color_range = true;
8727
8728 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
8729 struct intel_shared_dpll *pll;
8730 enum intel_dpll_id pll_id;
8731
8732 pipe_config->has_pch_encoder = true;
8733
8734 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
8735 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8736 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8737
8738 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8739
8740 if (HAS_PCH_IBX(dev_priv)) {
8741 /*
8742 * The pipe->pch transcoder and pch transcoder->pll
8743 * mapping is fixed.
8744 */
8745 pll_id = (enum intel_dpll_id) crtc->pipe;
8746 } else {
8747 tmp = I915_READ(PCH_DPLL_SEL);
8748 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8749 pll_id = DPLL_ID_PCH_PLL_B;
8750 else
8751 pll_id= DPLL_ID_PCH_PLL_A;
8752 }
8753
8754 pipe_config->shared_dpll =
8755 intel_get_shared_dpll_by_id(dev_priv, pll_id);
8756 pll = pipe_config->shared_dpll;
8757
8758 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
8759 &pipe_config->dpll_hw_state));
8760
8761 tmp = pipe_config->dpll_hw_state.dpll;
8762 pipe_config->pixel_multiplier =
8763 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
8764 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
8765
8766 ironlake_pch_clock_get(crtc, pipe_config);
8767 } else {
8768 pipe_config->pixel_multiplier = 1;
8769 }
8770
8771 intel_get_pipe_timings(crtc, pipe_config);
8772 intel_get_pipe_src_size(crtc, pipe_config);
8773
8774 ironlake_get_pfit_config(crtc, pipe_config);
8775
8776 ret = true;
8777
8778 out:
8779 intel_display_power_put(dev_priv, power_domain);
8780
8781 return ret;
8782 }
8783
8784 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
8785 {
8786 struct drm_device *dev = &dev_priv->drm;
8787 struct intel_crtc *crtc;
8788
8789 for_each_intel_crtc(dev, crtc)
8790 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
8791 pipe_name(crtc->pipe));
8792
8793 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_CTL_DRIVER(HSW_DISP_PW_GLOBAL)),
8794 "Display power well on\n");
8795 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
8796 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
8797 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
8798 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
8799 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
8800 "CPU PWM1 enabled\n");
8801 if (IS_HASWELL(dev_priv))
8802 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
8803 "CPU PWM2 enabled\n");
8804 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
8805 "PCH PWM1 enabled\n");
8806 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
8807 "Utility pin enabled\n");
8808 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
8809
8810 /*
8811 * In theory we can still leave IRQs enabled, as long as only the HPD
8812 * interrupts remain enabled. We used to check for that, but since it's
8813 * gen-specific and since we only disable LCPLL after we fully disable
8814 * the interrupts, the check below should be enough.
8815 */
8816 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
8817 }
8818
8819 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
8820 {
8821 if (IS_HASWELL(dev_priv))
8822 return I915_READ(D_COMP_HSW);
8823 else
8824 return I915_READ(D_COMP_BDW);
8825 }
8826
8827 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
8828 {
8829 if (IS_HASWELL(dev_priv)) {
8830 mutex_lock(&dev_priv->rps.hw_lock);
8831 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
8832 val))
8833 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
8834 mutex_unlock(&dev_priv->rps.hw_lock);
8835 } else {
8836 I915_WRITE(D_COMP_BDW, val);
8837 POSTING_READ(D_COMP_BDW);
8838 }
8839 }
8840
8841 /*
8842 * This function implements pieces of two sequences from BSpec:
8843 * - Sequence for display software to disable LCPLL
8844 * - Sequence for display software to allow package C8+
8845 * The steps implemented here are just the steps that actually touch the LCPLL
8846 * register. Callers should take care of disabling all the display engine
8847 * functions, doing the mode unset, fixing interrupts, etc.
8848 */
8849 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
8850 bool switch_to_fclk, bool allow_power_down)
8851 {
8852 uint32_t val;
8853
8854 assert_can_disable_lcpll(dev_priv);
8855
8856 val = I915_READ(LCPLL_CTL);
8857
8858 if (switch_to_fclk) {
8859 val |= LCPLL_CD_SOURCE_FCLK;
8860 I915_WRITE(LCPLL_CTL, val);
8861
8862 if (wait_for_us(I915_READ(LCPLL_CTL) &
8863 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8864 DRM_ERROR("Switching to FCLK failed\n");
8865
8866 val = I915_READ(LCPLL_CTL);
8867 }
8868
8869 val |= LCPLL_PLL_DISABLE;
8870 I915_WRITE(LCPLL_CTL, val);
8871 POSTING_READ(LCPLL_CTL);
8872
8873 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
8874 DRM_ERROR("LCPLL still locked\n");
8875
8876 val = hsw_read_dcomp(dev_priv);
8877 val |= D_COMP_COMP_DISABLE;
8878 hsw_write_dcomp(dev_priv, val);
8879 ndelay(100);
8880
8881 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8882 1))
8883 DRM_ERROR("D_COMP RCOMP still in progress\n");
8884
8885 if (allow_power_down) {
8886 val = I915_READ(LCPLL_CTL);
8887 val |= LCPLL_POWER_DOWN_ALLOW;
8888 I915_WRITE(LCPLL_CTL, val);
8889 POSTING_READ(LCPLL_CTL);
8890 }
8891 }
8892
8893 /*
8894 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8895 * source.
8896 */
8897 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8898 {
8899 uint32_t val;
8900
8901 val = I915_READ(LCPLL_CTL);
8902
8903 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8904 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8905 return;
8906
8907 /*
8908 * Make sure we're not on PC8 state before disabling PC8, otherwise
8909 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8910 */
8911 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8912
8913 if (val & LCPLL_POWER_DOWN_ALLOW) {
8914 val &= ~LCPLL_POWER_DOWN_ALLOW;
8915 I915_WRITE(LCPLL_CTL, val);
8916 POSTING_READ(LCPLL_CTL);
8917 }
8918
8919 val = hsw_read_dcomp(dev_priv);
8920 val |= D_COMP_COMP_FORCE;
8921 val &= ~D_COMP_COMP_DISABLE;
8922 hsw_write_dcomp(dev_priv, val);
8923
8924 val = I915_READ(LCPLL_CTL);
8925 val &= ~LCPLL_PLL_DISABLE;
8926 I915_WRITE(LCPLL_CTL, val);
8927
8928 if (intel_wait_for_register(dev_priv,
8929 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
8930 5))
8931 DRM_ERROR("LCPLL not locked yet\n");
8932
8933 if (val & LCPLL_CD_SOURCE_FCLK) {
8934 val = I915_READ(LCPLL_CTL);
8935 val &= ~LCPLL_CD_SOURCE_FCLK;
8936 I915_WRITE(LCPLL_CTL, val);
8937
8938 if (wait_for_us((I915_READ(LCPLL_CTL) &
8939 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8940 DRM_ERROR("Switching back to LCPLL failed\n");
8941 }
8942
8943 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8944 intel_update_cdclk(dev_priv);
8945 }
8946
8947 /*
8948 * Package states C8 and deeper are really deep PC states that can only be
8949 * reached when all the devices on the system allow it, so even if the graphics
8950 * device allows PC8+, it doesn't mean the system will actually get to these
8951 * states. Our driver only allows PC8+ when going into runtime PM.
8952 *
8953 * The requirements for PC8+ are that all the outputs are disabled, the power
8954 * well is disabled and most interrupts are disabled, and these are also
8955 * requirements for runtime PM. When these conditions are met, we manually do
8956 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8957 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8958 * hang the machine.
8959 *
8960 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8961 * the state of some registers, so when we come back from PC8+ we need to
8962 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8963 * need to take care of the registers kept by RC6. Notice that this happens even
8964 * if we don't put the device in PCI D3 state (which is what currently happens
8965 * because of the runtime PM support).
8966 *
8967 * For more, read "Display Sequences for Package C8" on the hardware
8968 * documentation.
8969 */
8970 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8971 {
8972 uint32_t val;
8973
8974 DRM_DEBUG_KMS("Enabling package C8+\n");
8975
8976 if (HAS_PCH_LPT_LP(dev_priv)) {
8977 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8978 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8979 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8980 }
8981
8982 lpt_disable_clkout_dp(dev_priv);
8983 hsw_disable_lcpll(dev_priv, true, true);
8984 }
8985
8986 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8987 {
8988 uint32_t val;
8989
8990 DRM_DEBUG_KMS("Disabling package C8+\n");
8991
8992 hsw_restore_lcpll(dev_priv);
8993 lpt_init_pch_refclk(dev_priv);
8994
8995 if (HAS_PCH_LPT_LP(dev_priv)) {
8996 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8997 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8998 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8999 }
9000 }
9001
9002 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9003 struct intel_crtc_state *crtc_state)
9004 {
9005 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
9006 struct intel_encoder *encoder =
9007 intel_ddi_get_crtc_new_encoder(crtc_state);
9008
9009 if (!intel_get_shared_dpll(crtc, crtc_state, encoder)) {
9010 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9011 pipe_name(crtc->pipe));
9012 return -EINVAL;
9013 }
9014 }
9015
9016 crtc->lowfreq_avail = false;
9017
9018 return 0;
9019 }
9020
9021 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
9022 enum port port,
9023 struct intel_crtc_state *pipe_config)
9024 {
9025 enum intel_dpll_id id;
9026 u32 temp;
9027
9028 temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
9029 id = temp >> (port * 2);
9030
9031 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
9032 return;
9033
9034 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9035 }
9036
9037 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9038 enum port port,
9039 struct intel_crtc_state *pipe_config)
9040 {
9041 enum intel_dpll_id id;
9042
9043 switch (port) {
9044 case PORT_A:
9045 id = DPLL_ID_SKL_DPLL0;
9046 break;
9047 case PORT_B:
9048 id = DPLL_ID_SKL_DPLL1;
9049 break;
9050 case PORT_C:
9051 id = DPLL_ID_SKL_DPLL2;
9052 break;
9053 default:
9054 DRM_ERROR("Incorrect port type\n");
9055 return;
9056 }
9057
9058 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9059 }
9060
9061 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9062 enum port port,
9063 struct intel_crtc_state *pipe_config)
9064 {
9065 enum intel_dpll_id id;
9066 u32 temp;
9067
9068 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9069 id = temp >> (port * 3 + 1);
9070
9071 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
9072 return;
9073
9074 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9075 }
9076
9077 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9078 enum port port,
9079 struct intel_crtc_state *pipe_config)
9080 {
9081 enum intel_dpll_id id;
9082 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9083
9084 switch (ddi_pll_sel) {
9085 case PORT_CLK_SEL_WRPLL1:
9086 id = DPLL_ID_WRPLL1;
9087 break;
9088 case PORT_CLK_SEL_WRPLL2:
9089 id = DPLL_ID_WRPLL2;
9090 break;
9091 case PORT_CLK_SEL_SPLL:
9092 id = DPLL_ID_SPLL;
9093 break;
9094 case PORT_CLK_SEL_LCPLL_810:
9095 id = DPLL_ID_LCPLL_810;
9096 break;
9097 case PORT_CLK_SEL_LCPLL_1350:
9098 id = DPLL_ID_LCPLL_1350;
9099 break;
9100 case PORT_CLK_SEL_LCPLL_2700:
9101 id = DPLL_ID_LCPLL_2700;
9102 break;
9103 default:
9104 MISSING_CASE(ddi_pll_sel);
9105 /* fall through */
9106 case PORT_CLK_SEL_NONE:
9107 return;
9108 }
9109
9110 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
9111 }
9112
9113 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9114 struct intel_crtc_state *pipe_config,
9115 u64 *power_domain_mask)
9116 {
9117 struct drm_device *dev = crtc->base.dev;
9118 struct drm_i915_private *dev_priv = to_i915(dev);
9119 enum intel_display_power_domain power_domain;
9120 u32 tmp;
9121
9122 /*
9123 * The pipe->transcoder mapping is fixed with the exception of the eDP
9124 * transcoder handled below.
9125 */
9126 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9127
9128 /*
9129 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9130 * consistency and less surprising code; it's in always on power).
9131 */
9132 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9133 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9134 enum pipe trans_edp_pipe;
9135 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9136 default:
9137 WARN(1, "unknown pipe linked to edp transcoder\n");
9138 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9139 case TRANS_DDI_EDP_INPUT_A_ON:
9140 trans_edp_pipe = PIPE_A;
9141 break;
9142 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9143 trans_edp_pipe = PIPE_B;
9144 break;
9145 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9146 trans_edp_pipe = PIPE_C;
9147 break;
9148 }
9149
9150 if (trans_edp_pipe == crtc->pipe)
9151 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9152 }
9153
9154 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9155 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9156 return false;
9157 *power_domain_mask |= BIT_ULL(power_domain);
9158
9159 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9160
9161 return tmp & PIPECONF_ENABLE;
9162 }
9163
9164 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9165 struct intel_crtc_state *pipe_config,
9166 u64 *power_domain_mask)
9167 {
9168 struct drm_device *dev = crtc->base.dev;
9169 struct drm_i915_private *dev_priv = to_i915(dev);
9170 enum intel_display_power_domain power_domain;
9171 enum port port;
9172 enum transcoder cpu_transcoder;
9173 u32 tmp;
9174
9175 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9176 if (port == PORT_A)
9177 cpu_transcoder = TRANSCODER_DSI_A;
9178 else
9179 cpu_transcoder = TRANSCODER_DSI_C;
9180
9181 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9182 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9183 continue;
9184 *power_domain_mask |= BIT_ULL(power_domain);
9185
9186 /*
9187 * The PLL needs to be enabled with a valid divider
9188 * configuration, otherwise accessing DSI registers will hang
9189 * the machine. See BSpec North Display Engine
9190 * registers/MIPI[BXT]. We can break out here early, since we
9191 * need the same DSI PLL to be enabled for both DSI ports.
9192 */
9193 if (!intel_dsi_pll_is_enabled(dev_priv))
9194 break;
9195
9196 /* XXX: this works for video mode only */
9197 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9198 if (!(tmp & DPI_ENABLE))
9199 continue;
9200
9201 tmp = I915_READ(MIPI_CTRL(port));
9202 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9203 continue;
9204
9205 pipe_config->cpu_transcoder = cpu_transcoder;
9206 break;
9207 }
9208
9209 return transcoder_is_dsi(pipe_config->cpu_transcoder);
9210 }
9211
9212 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9213 struct intel_crtc_state *pipe_config)
9214 {
9215 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9216 struct intel_shared_dpll *pll;
9217 enum port port;
9218 uint32_t tmp;
9219
9220 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9221
9222 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9223
9224 if (IS_CANNONLAKE(dev_priv))
9225 cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
9226 else if (IS_GEN9_BC(dev_priv))
9227 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9228 else if (IS_GEN9_LP(dev_priv))
9229 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9230 else
9231 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9232
9233 pll = pipe_config->shared_dpll;
9234 if (pll) {
9235 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9236 &pipe_config->dpll_hw_state));
9237 }
9238
9239 /*
9240 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9241 * DDI E. So just check whether this pipe is wired to DDI E and whether
9242 * the PCH transcoder is on.
9243 */
9244 if (INTEL_GEN(dev_priv) < 9 &&
9245 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9246 pipe_config->has_pch_encoder = true;
9247
9248 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9249 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9250 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9251
9252 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9253 }
9254 }
9255
9256 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9257 struct intel_crtc_state *pipe_config)
9258 {
9259 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9260 enum intel_display_power_domain power_domain;
9261 u64 power_domain_mask;
9262 bool active;
9263
9264 intel_crtc_init_scalers(crtc, pipe_config);
9265
9266 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9267 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9268 return false;
9269 power_domain_mask = BIT_ULL(power_domain);
9270
9271 pipe_config->shared_dpll = NULL;
9272
9273 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
9274
9275 if (IS_GEN9_LP(dev_priv) &&
9276 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
9277 WARN_ON(active);
9278 active = true;
9279 }
9280
9281 if (!active)
9282 goto out;
9283
9284 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9285 haswell_get_ddi_port_state(crtc, pipe_config);
9286 intel_get_pipe_timings(crtc, pipe_config);
9287 }
9288
9289 intel_get_pipe_src_size(crtc, pipe_config);
9290
9291 pipe_config->gamma_mode =
9292 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
9293
9294 if (IS_BROADWELL(dev_priv) || dev_priv->info.gen >= 9) {
9295 u32 tmp = I915_READ(PIPEMISC(crtc->pipe));
9296 bool clrspace_yuv = tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV;
9297
9298 if (IS_GEMINILAKE(dev_priv) || dev_priv->info.gen >= 10) {
9299 bool blend_mode_420 = tmp &
9300 PIPEMISC_YUV420_MODE_FULL_BLEND;
9301
9302 pipe_config->ycbcr420 = tmp & PIPEMISC_YUV420_ENABLE;
9303 if (pipe_config->ycbcr420 != clrspace_yuv ||
9304 pipe_config->ycbcr420 != blend_mode_420)
9305 DRM_DEBUG_KMS("Bad 4:2:0 mode (%08x)\n", tmp);
9306 } else if (clrspace_yuv) {
9307 DRM_DEBUG_KMS("YCbCr 4:2:0 Unsupported\n");
9308 }
9309 }
9310
9311 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9312 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
9313 power_domain_mask |= BIT_ULL(power_domain);
9314 if (INTEL_GEN(dev_priv) >= 9)
9315 skylake_get_pfit_config(crtc, pipe_config);
9316 else
9317 ironlake_get_pfit_config(crtc, pipe_config);
9318 }
9319
9320 if (IS_HASWELL(dev_priv))
9321 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9322 (I915_READ(IPS_CTL) & IPS_ENABLE);
9323
9324 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
9325 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
9326 pipe_config->pixel_multiplier =
9327 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9328 } else {
9329 pipe_config->pixel_multiplier = 1;
9330 }
9331
9332 out:
9333 for_each_power_domain(power_domain, power_domain_mask)
9334 intel_display_power_put(dev_priv, power_domain);
9335
9336 return active;
9337 }
9338
9339 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
9340 {
9341 struct drm_i915_private *dev_priv =
9342 to_i915(plane_state->base.plane->dev);
9343 const struct drm_framebuffer *fb = plane_state->base.fb;
9344 const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9345 u32 base;
9346
9347 if (INTEL_INFO(dev_priv)->cursor_needs_physical)
9348 base = obj->phys_handle->busaddr;
9349 else
9350 base = intel_plane_ggtt_offset(plane_state);
9351
9352 base += plane_state->main.offset;
9353
9354 /* ILK+ do this automagically */
9355 if (HAS_GMCH_DISPLAY(dev_priv) &&
9356 plane_state->base.rotation & DRM_MODE_ROTATE_180)
9357 base += (plane_state->base.crtc_h *
9358 plane_state->base.crtc_w - 1) * fb->format->cpp[0];
9359
9360 return base;
9361 }
9362
9363 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
9364 {
9365 int x = plane_state->base.crtc_x;
9366 int y = plane_state->base.crtc_y;
9367 u32 pos = 0;
9368
9369 if (x < 0) {
9370 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9371 x = -x;
9372 }
9373 pos |= x << CURSOR_X_SHIFT;
9374
9375 if (y < 0) {
9376 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9377 y = -y;
9378 }
9379 pos |= y << CURSOR_Y_SHIFT;
9380
9381 return pos;
9382 }
9383
9384 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
9385 {
9386 const struct drm_mode_config *config =
9387 &plane_state->base.plane->dev->mode_config;
9388 int width = plane_state->base.crtc_w;
9389 int height = plane_state->base.crtc_h;
9390
9391 return width > 0 && width <= config->cursor_width &&
9392 height > 0 && height <= config->cursor_height;
9393 }
9394
9395 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
9396 struct intel_plane_state *plane_state)
9397 {
9398 const struct drm_framebuffer *fb = plane_state->base.fb;
9399 int src_x, src_y;
9400 u32 offset;
9401 int ret;
9402
9403 ret = drm_plane_helper_check_state(&plane_state->base,
9404 &plane_state->clip,
9405 DRM_PLANE_HELPER_NO_SCALING,
9406 DRM_PLANE_HELPER_NO_SCALING,
9407 true, true);
9408 if (ret)
9409 return ret;
9410
9411 if (!fb)
9412 return 0;
9413
9414 if (fb->modifier != DRM_FORMAT_MOD_LINEAR) {
9415 DRM_DEBUG_KMS("cursor cannot be tiled\n");
9416 return -EINVAL;
9417 }
9418
9419 src_x = plane_state->base.src_x >> 16;
9420 src_y = plane_state->base.src_y >> 16;
9421
9422 intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
9423 offset = intel_compute_tile_offset(&src_x, &src_y, plane_state, 0);
9424
9425 if (src_x != 0 || src_y != 0) {
9426 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
9427 return -EINVAL;
9428 }
9429
9430 plane_state->main.offset = offset;
9431
9432 return 0;
9433 }
9434
9435 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
9436 const struct intel_plane_state *plane_state)
9437 {
9438 const struct drm_framebuffer *fb = plane_state->base.fb;
9439
9440 return CURSOR_ENABLE |
9441 CURSOR_GAMMA_ENABLE |
9442 CURSOR_FORMAT_ARGB |
9443 CURSOR_STRIDE(fb->pitches[0]);
9444 }
9445
9446 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
9447 {
9448 int width = plane_state->base.crtc_w;
9449
9450 /*
9451 * 845g/865g are only limited by the width of their cursors,
9452 * the height is arbitrary up to the precision of the register.
9453 */
9454 return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
9455 }
9456
9457 static int i845_check_cursor(struct intel_plane *plane,
9458 struct intel_crtc_state *crtc_state,
9459 struct intel_plane_state *plane_state)
9460 {
9461 const struct drm_framebuffer *fb = plane_state->base.fb;
9462 int ret;
9463
9464 ret = intel_check_cursor(crtc_state, plane_state);
9465 if (ret)
9466 return ret;
9467
9468 /* if we want to turn off the cursor ignore width and height */
9469 if (!fb)
9470 return 0;
9471
9472 /* Check for which cursor types we support */
9473 if (!i845_cursor_size_ok(plane_state)) {
9474 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9475 plane_state->base.crtc_w,
9476 plane_state->base.crtc_h);
9477 return -EINVAL;
9478 }
9479
9480 switch (fb->pitches[0]) {
9481 case 256:
9482 case 512:
9483 case 1024:
9484 case 2048:
9485 break;
9486 default:
9487 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
9488 fb->pitches[0]);
9489 return -EINVAL;
9490 }
9491
9492 plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
9493
9494 return 0;
9495 }
9496
9497 static void i845_update_cursor(struct intel_plane *plane,
9498 const struct intel_crtc_state *crtc_state,
9499 const struct intel_plane_state *plane_state)
9500 {
9501 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9502 u32 cntl = 0, base = 0, pos = 0, size = 0;
9503 unsigned long irqflags;
9504
9505 if (plane_state && plane_state->base.visible) {
9506 unsigned int width = plane_state->base.crtc_w;
9507 unsigned int height = plane_state->base.crtc_h;
9508
9509 cntl = plane_state->ctl;
9510 size = (height << 12) | width;
9511
9512 base = intel_cursor_base(plane_state);
9513 pos = intel_cursor_position(plane_state);
9514 }
9515
9516 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9517
9518 /* On these chipsets we can only modify the base/size/stride
9519 * whilst the cursor is disabled.
9520 */
9521 if (plane->cursor.base != base ||
9522 plane->cursor.size != size ||
9523 plane->cursor.cntl != cntl) {
9524 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
9525 I915_WRITE_FW(CURBASE(PIPE_A), base);
9526 I915_WRITE_FW(CURSIZE, size);
9527 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9528 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
9529
9530 plane->cursor.base = base;
9531 plane->cursor.size = size;
9532 plane->cursor.cntl = cntl;
9533 } else {
9534 I915_WRITE_FW(CURPOS(PIPE_A), pos);
9535 }
9536
9537 POSTING_READ_FW(CURCNTR(PIPE_A));
9538
9539 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9540 }
9541
9542 static void i845_disable_cursor(struct intel_plane *plane,
9543 struct intel_crtc *crtc)
9544 {
9545 i845_update_cursor(plane, NULL, NULL);
9546 }
9547
9548 static bool i845_cursor_get_hw_state(struct intel_plane *plane)
9549 {
9550 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9551 enum intel_display_power_domain power_domain;
9552 bool ret;
9553
9554 power_domain = POWER_DOMAIN_PIPE(PIPE_A);
9555 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9556 return false;
9557
9558 ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
9559
9560 intel_display_power_put(dev_priv, power_domain);
9561
9562 return ret;
9563 }
9564
9565 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
9566 const struct intel_plane_state *plane_state)
9567 {
9568 struct drm_i915_private *dev_priv =
9569 to_i915(plane_state->base.plane->dev);
9570 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9571 u32 cntl;
9572
9573 cntl = MCURSOR_GAMMA_ENABLE;
9574
9575 if (HAS_DDI(dev_priv))
9576 cntl |= CURSOR_PIPE_CSC_ENABLE;
9577
9578 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
9579
9580 switch (plane_state->base.crtc_w) {
9581 case 64:
9582 cntl |= CURSOR_MODE_64_ARGB_AX;
9583 break;
9584 case 128:
9585 cntl |= CURSOR_MODE_128_ARGB_AX;
9586 break;
9587 case 256:
9588 cntl |= CURSOR_MODE_256_ARGB_AX;
9589 break;
9590 default:
9591 MISSING_CASE(plane_state->base.crtc_w);
9592 return 0;
9593 }
9594
9595 if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
9596 cntl |= CURSOR_ROTATE_180;
9597
9598 return cntl;
9599 }
9600
9601 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
9602 {
9603 struct drm_i915_private *dev_priv =
9604 to_i915(plane_state->base.plane->dev);
9605 int width = plane_state->base.crtc_w;
9606 int height = plane_state->base.crtc_h;
9607
9608 if (!intel_cursor_size_ok(plane_state))
9609 return false;
9610
9611 /* Cursor width is limited to a few power-of-two sizes */
9612 switch (width) {
9613 case 256:
9614 case 128:
9615 case 64:
9616 break;
9617 default:
9618 return false;
9619 }
9620
9621 /*
9622 * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
9623 * height from 8 lines up to the cursor width, when the
9624 * cursor is not rotated. Everything else requires square
9625 * cursors.
9626 */
9627 if (HAS_CUR_FBC(dev_priv) &&
9628 plane_state->base.rotation & DRM_MODE_ROTATE_0) {
9629 if (height < 8 || height > width)
9630 return false;
9631 } else {
9632 if (height != width)
9633 return false;
9634 }
9635
9636 return true;
9637 }
9638
9639 static int i9xx_check_cursor(struct intel_plane *plane,
9640 struct intel_crtc_state *crtc_state,
9641 struct intel_plane_state *plane_state)
9642 {
9643 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9644 const struct drm_framebuffer *fb = plane_state->base.fb;
9645 enum pipe pipe = plane->pipe;
9646 int ret;
9647
9648 ret = intel_check_cursor(crtc_state, plane_state);
9649 if (ret)
9650 return ret;
9651
9652 /* if we want to turn off the cursor ignore width and height */
9653 if (!fb)
9654 return 0;
9655
9656 /* Check for which cursor types we support */
9657 if (!i9xx_cursor_size_ok(plane_state)) {
9658 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
9659 plane_state->base.crtc_w,
9660 plane_state->base.crtc_h);
9661 return -EINVAL;
9662 }
9663
9664 if (fb->pitches[0] != plane_state->base.crtc_w * fb->format->cpp[0]) {
9665 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
9666 fb->pitches[0], plane_state->base.crtc_w);
9667 return -EINVAL;
9668 }
9669
9670 /*
9671 * There's something wrong with the cursor on CHV pipe C.
9672 * If it straddles the left edge of the screen then
9673 * moving it away from the edge or disabling it often
9674 * results in a pipe underrun, and often that can lead to
9675 * dead pipe (constant underrun reported, and it scans
9676 * out just a solid color). To recover from that, the
9677 * display power well must be turned off and on again.
9678 * Refuse the put the cursor into that compromised position.
9679 */
9680 if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
9681 plane_state->base.visible && plane_state->base.crtc_x < 0) {
9682 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
9683 return -EINVAL;
9684 }
9685
9686 plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
9687
9688 return 0;
9689 }
9690
9691 static void i9xx_update_cursor(struct intel_plane *plane,
9692 const struct intel_crtc_state *crtc_state,
9693 const struct intel_plane_state *plane_state)
9694 {
9695 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9696 enum pipe pipe = plane->pipe;
9697 u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
9698 unsigned long irqflags;
9699
9700 if (plane_state && plane_state->base.visible) {
9701 cntl = plane_state->ctl;
9702
9703 if (plane_state->base.crtc_h != plane_state->base.crtc_w)
9704 fbc_ctl = CUR_FBC_CTL_EN | (plane_state->base.crtc_h - 1);
9705
9706 base = intel_cursor_base(plane_state);
9707 pos = intel_cursor_position(plane_state);
9708 }
9709
9710 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
9711
9712 /*
9713 * On some platforms writing CURCNTR first will also
9714 * cause CURPOS to be armed by the CURBASE write.
9715 * Without the CURCNTR write the CURPOS write would
9716 * arm itself. Thus we always start the full update
9717 * with a CURCNTR write.
9718 *
9719 * On other platforms CURPOS always requires the
9720 * CURBASE write to arm the update. Additonally
9721 * a write to any of the cursor register will cancel
9722 * an already armed cursor update. Thus leaving out
9723 * the CURBASE write after CURPOS could lead to a
9724 * cursor that doesn't appear to move, or even change
9725 * shape. Thus we always write CURBASE.
9726 *
9727 * CURCNTR and CUR_FBC_CTL are always
9728 * armed by the CURBASE write only.
9729 */
9730 if (plane->cursor.base != base ||
9731 plane->cursor.size != fbc_ctl ||
9732 plane->cursor.cntl != cntl) {
9733 I915_WRITE_FW(CURCNTR(pipe), cntl);
9734 if (HAS_CUR_FBC(dev_priv))
9735 I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
9736 I915_WRITE_FW(CURPOS(pipe), pos);
9737 I915_WRITE_FW(CURBASE(pipe), base);
9738
9739 plane->cursor.base = base;
9740 plane->cursor.size = fbc_ctl;
9741 plane->cursor.cntl = cntl;
9742 } else {
9743 I915_WRITE_FW(CURPOS(pipe), pos);
9744 I915_WRITE_FW(CURBASE(pipe), base);
9745 }
9746
9747 POSTING_READ_FW(CURBASE(pipe));
9748
9749 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
9750 }
9751
9752 static void i9xx_disable_cursor(struct intel_plane *plane,
9753 struct intel_crtc *crtc)
9754 {
9755 i9xx_update_cursor(plane, NULL, NULL);
9756 }
9757
9758 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane)
9759 {
9760 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
9761 enum intel_display_power_domain power_domain;
9762 enum pipe pipe = plane->pipe;
9763 bool ret;
9764
9765 /*
9766 * Not 100% correct for planes that can move between pipes,
9767 * but that's only the case for gen2-3 which don't have any
9768 * display power wells.
9769 */
9770 power_domain = POWER_DOMAIN_PIPE(pipe);
9771 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9772 return false;
9773
9774 ret = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
9775
9776 intel_display_power_put(dev_priv, power_domain);
9777
9778 return ret;
9779 }
9780
9781 /* VESA 640x480x72Hz mode to set on the pipe */
9782 static struct drm_display_mode load_detect_mode = {
9783 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9784 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9785 };
9786
9787 struct drm_framebuffer *
9788 intel_framebuffer_create(struct drm_i915_gem_object *obj,
9789 struct drm_mode_fb_cmd2 *mode_cmd)
9790 {
9791 struct intel_framebuffer *intel_fb;
9792 int ret;
9793
9794 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9795 if (!intel_fb)
9796 return ERR_PTR(-ENOMEM);
9797
9798 ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
9799 if (ret)
9800 goto err;
9801
9802 return &intel_fb->base;
9803
9804 err:
9805 kfree(intel_fb);
9806 return ERR_PTR(ret);
9807 }
9808
9809 static u32
9810 intel_framebuffer_pitch_for_width(int width, int bpp)
9811 {
9812 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9813 return ALIGN(pitch, 64);
9814 }
9815
9816 static u32
9817 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9818 {
9819 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9820 return PAGE_ALIGN(pitch * mode->vdisplay);
9821 }
9822
9823 static struct drm_framebuffer *
9824 intel_framebuffer_create_for_mode(struct drm_device *dev,
9825 struct drm_display_mode *mode,
9826 int depth, int bpp)
9827 {
9828 struct drm_framebuffer *fb;
9829 struct drm_i915_gem_object *obj;
9830 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9831
9832 obj = i915_gem_object_create(to_i915(dev),
9833 intel_framebuffer_size_for_mode(mode, bpp));
9834 if (IS_ERR(obj))
9835 return ERR_CAST(obj);
9836
9837 mode_cmd.width = mode->hdisplay;
9838 mode_cmd.height = mode->vdisplay;
9839 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9840 bpp);
9841 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9842
9843 fb = intel_framebuffer_create(obj, &mode_cmd);
9844 if (IS_ERR(fb))
9845 i915_gem_object_put(obj);
9846
9847 return fb;
9848 }
9849
9850 static struct drm_framebuffer *
9851 mode_fits_in_fbdev(struct drm_device *dev,
9852 struct drm_display_mode *mode)
9853 {
9854 #ifdef CONFIG_DRM_FBDEV_EMULATION
9855 struct drm_i915_private *dev_priv = to_i915(dev);
9856 struct drm_i915_gem_object *obj;
9857 struct drm_framebuffer *fb;
9858
9859 if (!dev_priv->fbdev)
9860 return NULL;
9861
9862 if (!dev_priv->fbdev->fb)
9863 return NULL;
9864
9865 obj = dev_priv->fbdev->fb->obj;
9866 BUG_ON(!obj);
9867
9868 fb = &dev_priv->fbdev->fb->base;
9869 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9870 fb->format->cpp[0] * 8))
9871 return NULL;
9872
9873 if (obj->base.size < mode->vdisplay * fb->pitches[0])
9874 return NULL;
9875
9876 drm_framebuffer_reference(fb);
9877 return fb;
9878 #else
9879 return NULL;
9880 #endif
9881 }
9882
9883 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9884 struct drm_crtc *crtc,
9885 struct drm_display_mode *mode,
9886 struct drm_framebuffer *fb,
9887 int x, int y)
9888 {
9889 struct drm_plane_state *plane_state;
9890 int hdisplay, vdisplay;
9891 int ret;
9892
9893 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9894 if (IS_ERR(plane_state))
9895 return PTR_ERR(plane_state);
9896
9897 if (mode)
9898 drm_mode_get_hv_timing(mode, &hdisplay, &vdisplay);
9899 else
9900 hdisplay = vdisplay = 0;
9901
9902 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9903 if (ret)
9904 return ret;
9905 drm_atomic_set_fb_for_plane(plane_state, fb);
9906 plane_state->crtc_x = 0;
9907 plane_state->crtc_y = 0;
9908 plane_state->crtc_w = hdisplay;
9909 plane_state->crtc_h = vdisplay;
9910 plane_state->src_x = x << 16;
9911 plane_state->src_y = y << 16;
9912 plane_state->src_w = hdisplay << 16;
9913 plane_state->src_h = vdisplay << 16;
9914
9915 return 0;
9916 }
9917
9918 int intel_get_load_detect_pipe(struct drm_connector *connector,
9919 struct drm_display_mode *mode,
9920 struct intel_load_detect_pipe *old,
9921 struct drm_modeset_acquire_ctx *ctx)
9922 {
9923 struct intel_crtc *intel_crtc;
9924 struct intel_encoder *intel_encoder =
9925 intel_attached_encoder(connector);
9926 struct drm_crtc *possible_crtc;
9927 struct drm_encoder *encoder = &intel_encoder->base;
9928 struct drm_crtc *crtc = NULL;
9929 struct drm_device *dev = encoder->dev;
9930 struct drm_i915_private *dev_priv = to_i915(dev);
9931 struct drm_framebuffer *fb;
9932 struct drm_mode_config *config = &dev->mode_config;
9933 struct drm_atomic_state *state = NULL, *restore_state = NULL;
9934 struct drm_connector_state *connector_state;
9935 struct intel_crtc_state *crtc_state;
9936 int ret, i = -1;
9937
9938 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9939 connector->base.id, connector->name,
9940 encoder->base.id, encoder->name);
9941
9942 old->restore_state = NULL;
9943
9944 WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
9945
9946 /*
9947 * Algorithm gets a little messy:
9948 *
9949 * - if the connector already has an assigned crtc, use it (but make
9950 * sure it's on first)
9951 *
9952 * - try to find the first unused crtc that can drive this connector,
9953 * and use that if we find one
9954 */
9955
9956 /* See if we already have a CRTC for this connector */
9957 if (connector->state->crtc) {
9958 crtc = connector->state->crtc;
9959
9960 ret = drm_modeset_lock(&crtc->mutex, ctx);
9961 if (ret)
9962 goto fail;
9963
9964 /* Make sure the crtc and connector are running */
9965 goto found;
9966 }
9967
9968 /* Find an unused one (if possible) */
9969 for_each_crtc(dev, possible_crtc) {
9970 i++;
9971 if (!(encoder->possible_crtcs & (1 << i)))
9972 continue;
9973
9974 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
9975 if (ret)
9976 goto fail;
9977
9978 if (possible_crtc->state->enable) {
9979 drm_modeset_unlock(&possible_crtc->mutex);
9980 continue;
9981 }
9982
9983 crtc = possible_crtc;
9984 break;
9985 }
9986
9987 /*
9988 * If we didn't find an unused CRTC, don't use any.
9989 */
9990 if (!crtc) {
9991 DRM_DEBUG_KMS("no pipe available for load-detect\n");
9992 ret = -ENODEV;
9993 goto fail;
9994 }
9995
9996 found:
9997 intel_crtc = to_intel_crtc(crtc);
9998
9999 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10000 if (ret)
10001 goto fail;
10002
10003 state = drm_atomic_state_alloc(dev);
10004 restore_state = drm_atomic_state_alloc(dev);
10005 if (!state || !restore_state) {
10006 ret = -ENOMEM;
10007 goto fail;
10008 }
10009
10010 state->acquire_ctx = ctx;
10011 restore_state->acquire_ctx = ctx;
10012
10013 connector_state = drm_atomic_get_connector_state(state, connector);
10014 if (IS_ERR(connector_state)) {
10015 ret = PTR_ERR(connector_state);
10016 goto fail;
10017 }
10018
10019 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10020 if (ret)
10021 goto fail;
10022
10023 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10024 if (IS_ERR(crtc_state)) {
10025 ret = PTR_ERR(crtc_state);
10026 goto fail;
10027 }
10028
10029 crtc_state->base.active = crtc_state->base.enable = true;
10030
10031 if (!mode)
10032 mode = &load_detect_mode;
10033
10034 /* We need a framebuffer large enough to accommodate all accesses
10035 * that the plane may generate whilst we perform load detection.
10036 * We can not rely on the fbcon either being present (we get called
10037 * during its initialisation to detect all boot displays, or it may
10038 * not even exist) or that it is large enough to satisfy the
10039 * requested mode.
10040 */
10041 fb = mode_fits_in_fbdev(dev, mode);
10042 if (fb == NULL) {
10043 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10044 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10045 } else
10046 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10047 if (IS_ERR(fb)) {
10048 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10049 ret = PTR_ERR(fb);
10050 goto fail;
10051 }
10052
10053 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10054 if (ret)
10055 goto fail;
10056
10057 drm_framebuffer_unreference(fb);
10058
10059 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10060 if (ret)
10061 goto fail;
10062
10063 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10064 if (!ret)
10065 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10066 if (!ret)
10067 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10068 if (ret) {
10069 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10070 goto fail;
10071 }
10072
10073 ret = drm_atomic_commit(state);
10074 if (ret) {
10075 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10076 goto fail;
10077 }
10078
10079 old->restore_state = restore_state;
10080 drm_atomic_state_put(state);
10081
10082 /* let the connector get through one full cycle before testing */
10083 intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
10084 return true;
10085
10086 fail:
10087 if (state) {
10088 drm_atomic_state_put(state);
10089 state = NULL;
10090 }
10091 if (restore_state) {
10092 drm_atomic_state_put(restore_state);
10093 restore_state = NULL;
10094 }
10095
10096 if (ret == -EDEADLK)
10097 return ret;
10098
10099 return false;
10100 }
10101
10102 void intel_release_load_detect_pipe(struct drm_connector *connector,
10103 struct intel_load_detect_pipe *old,
10104 struct drm_modeset_acquire_ctx *ctx)
10105 {
10106 struct intel_encoder *intel_encoder =
10107 intel_attached_encoder(connector);
10108 struct drm_encoder *encoder = &intel_encoder->base;
10109 struct drm_atomic_state *state = old->restore_state;
10110 int ret;
10111
10112 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10113 connector->base.id, connector->name,
10114 encoder->base.id, encoder->name);
10115
10116 if (!state)
10117 return;
10118
10119 ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
10120 if (ret)
10121 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10122 drm_atomic_state_put(state);
10123 }
10124
10125 static int i9xx_pll_refclk(struct drm_device *dev,
10126 const struct intel_crtc_state *pipe_config)
10127 {
10128 struct drm_i915_private *dev_priv = to_i915(dev);
10129 u32 dpll = pipe_config->dpll_hw_state.dpll;
10130
10131 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10132 return dev_priv->vbt.lvds_ssc_freq;
10133 else if (HAS_PCH_SPLIT(dev_priv))
10134 return 120000;
10135 else if (!IS_GEN2(dev_priv))
10136 return 96000;
10137 else
10138 return 48000;
10139 }
10140
10141 /* Returns the clock of the currently programmed mode of the given pipe. */
10142 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10143 struct intel_crtc_state *pipe_config)
10144 {
10145 struct drm_device *dev = crtc->base.dev;
10146 struct drm_i915_private *dev_priv = to_i915(dev);
10147 int pipe = pipe_config->cpu_transcoder;
10148 u32 dpll = pipe_config->dpll_hw_state.dpll;
10149 u32 fp;
10150 struct dpll clock;
10151 int port_clock;
10152 int refclk = i9xx_pll_refclk(dev, pipe_config);
10153
10154 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10155 fp = pipe_config->dpll_hw_state.fp0;
10156 else
10157 fp = pipe_config->dpll_hw_state.fp1;
10158
10159 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10160 if (IS_PINEVIEW(dev_priv)) {
10161 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10162 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10163 } else {
10164 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10165 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10166 }
10167
10168 if (!IS_GEN2(dev_priv)) {
10169 if (IS_PINEVIEW(dev_priv))
10170 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10171 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10172 else
10173 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10174 DPLL_FPA01_P1_POST_DIV_SHIFT);
10175
10176 switch (dpll & DPLL_MODE_MASK) {
10177 case DPLLB_MODE_DAC_SERIAL:
10178 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10179 5 : 10;
10180 break;
10181 case DPLLB_MODE_LVDS:
10182 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10183 7 : 14;
10184 break;
10185 default:
10186 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10187 "mode\n", (int)(dpll & DPLL_MODE_MASK));
10188 return;
10189 }
10190
10191 if (IS_PINEVIEW(dev_priv))
10192 port_clock = pnv_calc_dpll_params(refclk, &clock);
10193 else
10194 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10195 } else {
10196 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
10197 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10198
10199 if (is_lvds) {
10200 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10201 DPLL_FPA01_P1_POST_DIV_SHIFT);
10202
10203 if (lvds & LVDS_CLKB_POWER_UP)
10204 clock.p2 = 7;
10205 else
10206 clock.p2 = 14;
10207 } else {
10208 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10209 clock.p1 = 2;
10210 else {
10211 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10212 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10213 }
10214 if (dpll & PLL_P2_DIVIDE_BY_4)
10215 clock.p2 = 4;
10216 else
10217 clock.p2 = 2;
10218 }
10219
10220 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10221 }
10222
10223 /*
10224 * This value includes pixel_multiplier. We will use
10225 * port_clock to compute adjusted_mode.crtc_clock in the
10226 * encoder's get_config() function.
10227 */
10228 pipe_config->port_clock = port_clock;
10229 }
10230
10231 int intel_dotclock_calculate(int link_freq,
10232 const struct intel_link_m_n *m_n)
10233 {
10234 /*
10235 * The calculation for the data clock is:
10236 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10237 * But we want to avoid losing precison if possible, so:
10238 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10239 *
10240 * and the link clock is simpler:
10241 * link_clock = (m * link_clock) / n
10242 */
10243
10244 if (!m_n->link_n)
10245 return 0;
10246
10247 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10248 }
10249
10250 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10251 struct intel_crtc_state *pipe_config)
10252 {
10253 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10254
10255 /* read out port_clock from the DPLL */
10256 i9xx_crtc_clock_get(crtc, pipe_config);
10257
10258 /*
10259 * In case there is an active pipe without active ports,
10260 * we may need some idea for the dotclock anyway.
10261 * Calculate one based on the FDI configuration.
10262 */
10263 pipe_config->base.adjusted_mode.crtc_clock =
10264 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
10265 &pipe_config->fdi_m_n);
10266 }
10267
10268 /** Returns the currently programmed mode of the given pipe. */
10269 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10270 struct drm_crtc *crtc)
10271 {
10272 struct drm_i915_private *dev_priv = to_i915(dev);
10273 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10274 enum transcoder cpu_transcoder;
10275 struct drm_display_mode *mode;
10276 struct intel_crtc_state *pipe_config;
10277 u32 htot, hsync, vtot, vsync;
10278 enum pipe pipe = intel_crtc->pipe;
10279
10280 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10281 if (!mode)
10282 return NULL;
10283
10284 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10285 if (!pipe_config) {
10286 kfree(mode);
10287 return NULL;
10288 }
10289
10290 /*
10291 * Construct a pipe_config sufficient for getting the clock info
10292 * back out of crtc_clock_get.
10293 *
10294 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10295 * to use a real value here instead.
10296 */
10297 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10298 pipe_config->pixel_multiplier = 1;
10299 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10300 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10301 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10302 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10303
10304 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
10305
10306 cpu_transcoder = pipe_config->cpu_transcoder;
10307 htot = I915_READ(HTOTAL(cpu_transcoder));
10308 hsync = I915_READ(HSYNC(cpu_transcoder));
10309 vtot = I915_READ(VTOTAL(cpu_transcoder));
10310 vsync = I915_READ(VSYNC(cpu_transcoder));
10311
10312 mode->hdisplay = (htot & 0xffff) + 1;
10313 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10314 mode->hsync_start = (hsync & 0xffff) + 1;
10315 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10316 mode->vdisplay = (vtot & 0xffff) + 1;
10317 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10318 mode->vsync_start = (vsync & 0xffff) + 1;
10319 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10320
10321 drm_mode_set_name(mode);
10322
10323 kfree(pipe_config);
10324
10325 return mode;
10326 }
10327
10328 static void intel_crtc_destroy(struct drm_crtc *crtc)
10329 {
10330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10331
10332 drm_crtc_cleanup(crtc);
10333 kfree(intel_crtc);
10334 }
10335
10336 /**
10337 * intel_wm_need_update - Check whether watermarks need updating
10338 * @plane: drm plane
10339 * @state: new plane state
10340 *
10341 * Check current plane state versus the new one to determine whether
10342 * watermarks need to be recalculated.
10343 *
10344 * Returns true or false.
10345 */
10346 static bool intel_wm_need_update(struct drm_plane *plane,
10347 struct drm_plane_state *state)
10348 {
10349 struct intel_plane_state *new = to_intel_plane_state(state);
10350 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
10351
10352 /* Update watermarks on tiling or size changes. */
10353 if (new->base.visible != cur->base.visible)
10354 return true;
10355
10356 if (!cur->base.fb || !new->base.fb)
10357 return false;
10358
10359 if (cur->base.fb->modifier != new->base.fb->modifier ||
10360 cur->base.rotation != new->base.rotation ||
10361 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
10362 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
10363 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
10364 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
10365 return true;
10366
10367 return false;
10368 }
10369
10370 static bool needs_scaling(struct intel_plane_state *state)
10371 {
10372 int src_w = drm_rect_width(&state->base.src) >> 16;
10373 int src_h = drm_rect_height(&state->base.src) >> 16;
10374 int dst_w = drm_rect_width(&state->base.dst);
10375 int dst_h = drm_rect_height(&state->base.dst);
10376
10377 return (src_w != dst_w || src_h != dst_h);
10378 }
10379
10380 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
10381 struct drm_plane_state *plane_state)
10382 {
10383 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
10384 struct drm_crtc *crtc = crtc_state->crtc;
10385 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10386 struct intel_plane *plane = to_intel_plane(plane_state->plane);
10387 struct drm_device *dev = crtc->dev;
10388 struct drm_i915_private *dev_priv = to_i915(dev);
10389 struct intel_plane_state *old_plane_state =
10390 to_intel_plane_state(plane->base.state);
10391 bool mode_changed = needs_modeset(crtc_state);
10392 bool was_crtc_enabled = crtc->state->active;
10393 bool is_crtc_enabled = crtc_state->active;
10394 bool turn_off, turn_on, visible, was_visible;
10395 struct drm_framebuffer *fb = plane_state->fb;
10396 int ret;
10397
10398 if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
10399 ret = skl_update_scaler_plane(
10400 to_intel_crtc_state(crtc_state),
10401 to_intel_plane_state(plane_state));
10402 if (ret)
10403 return ret;
10404 }
10405
10406 was_visible = old_plane_state->base.visible;
10407 visible = plane_state->visible;
10408
10409 if (!was_crtc_enabled && WARN_ON(was_visible))
10410 was_visible = false;
10411
10412 /*
10413 * Visibility is calculated as if the crtc was on, but
10414 * after scaler setup everything depends on it being off
10415 * when the crtc isn't active.
10416 *
10417 * FIXME this is wrong for watermarks. Watermarks should also
10418 * be computed as if the pipe would be active. Perhaps move
10419 * per-plane wm computation to the .check_plane() hook, and
10420 * only combine the results from all planes in the current place?
10421 */
10422 if (!is_crtc_enabled) {
10423 plane_state->visible = visible = false;
10424 to_intel_crtc_state(crtc_state)->active_planes &= ~BIT(plane->id);
10425 }
10426
10427 if (!was_visible && !visible)
10428 return 0;
10429
10430 if (fb != old_plane_state->base.fb)
10431 pipe_config->fb_changed = true;
10432
10433 turn_off = was_visible && (!visible || mode_changed);
10434 turn_on = visible && (!was_visible || mode_changed);
10435
10436 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
10437 intel_crtc->base.base.id, intel_crtc->base.name,
10438 plane->base.base.id, plane->base.name,
10439 fb ? fb->base.id : -1);
10440
10441 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
10442 plane->base.base.id, plane->base.name,
10443 was_visible, visible,
10444 turn_off, turn_on, mode_changed);
10445
10446 if (turn_on) {
10447 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10448 pipe_config->update_wm_pre = true;
10449
10450 /* must disable cxsr around plane enable/disable */
10451 if (plane->id != PLANE_CURSOR)
10452 pipe_config->disable_cxsr = true;
10453 } else if (turn_off) {
10454 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
10455 pipe_config->update_wm_post = true;
10456
10457 /* must disable cxsr around plane enable/disable */
10458 if (plane->id != PLANE_CURSOR)
10459 pipe_config->disable_cxsr = true;
10460 } else if (intel_wm_need_update(&plane->base, plane_state)) {
10461 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
10462 /* FIXME bollocks */
10463 pipe_config->update_wm_pre = true;
10464 pipe_config->update_wm_post = true;
10465 }
10466 }
10467
10468 if (visible || was_visible)
10469 pipe_config->fb_bits |= plane->frontbuffer_bit;
10470
10471 /*
10472 * WaCxSRDisabledForSpriteScaling:ivb
10473 *
10474 * cstate->update_wm was already set above, so this flag will
10475 * take effect when we commit and program watermarks.
10476 */
10477 if (plane->id == PLANE_SPRITE0 && IS_IVYBRIDGE(dev_priv) &&
10478 needs_scaling(to_intel_plane_state(plane_state)) &&
10479 !needs_scaling(old_plane_state))
10480 pipe_config->disable_lp_wm = true;
10481
10482 return 0;
10483 }
10484
10485 static bool encoders_cloneable(const struct intel_encoder *a,
10486 const struct intel_encoder *b)
10487 {
10488 /* masks could be asymmetric, so check both ways */
10489 return a == b || (a->cloneable & (1 << b->type) &&
10490 b->cloneable & (1 << a->type));
10491 }
10492
10493 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
10494 struct intel_crtc *crtc,
10495 struct intel_encoder *encoder)
10496 {
10497 struct intel_encoder *source_encoder;
10498 struct drm_connector *connector;
10499 struct drm_connector_state *connector_state;
10500 int i;
10501
10502 for_each_new_connector_in_state(state, connector, connector_state, i) {
10503 if (connector_state->crtc != &crtc->base)
10504 continue;
10505
10506 source_encoder =
10507 to_intel_encoder(connector_state->best_encoder);
10508 if (!encoders_cloneable(encoder, source_encoder))
10509 return false;
10510 }
10511
10512 return true;
10513 }
10514
10515 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
10516 struct drm_crtc_state *crtc_state)
10517 {
10518 struct drm_device *dev = crtc->dev;
10519 struct drm_i915_private *dev_priv = to_i915(dev);
10520 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10521 struct intel_crtc_state *pipe_config =
10522 to_intel_crtc_state(crtc_state);
10523 struct drm_atomic_state *state = crtc_state->state;
10524 int ret;
10525 bool mode_changed = needs_modeset(crtc_state);
10526
10527 if (mode_changed && !crtc_state->active)
10528 pipe_config->update_wm_post = true;
10529
10530 if (mode_changed && crtc_state->enable &&
10531 dev_priv->display.crtc_compute_clock &&
10532 !WARN_ON(pipe_config->shared_dpll)) {
10533 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
10534 pipe_config);
10535 if (ret)
10536 return ret;
10537 }
10538
10539 if (crtc_state->color_mgmt_changed) {
10540 ret = intel_color_check(crtc, crtc_state);
10541 if (ret)
10542 return ret;
10543
10544 /*
10545 * Changing color management on Intel hardware is
10546 * handled as part of planes update.
10547 */
10548 crtc_state->planes_changed = true;
10549 }
10550
10551 ret = 0;
10552 if (dev_priv->display.compute_pipe_wm) {
10553 ret = dev_priv->display.compute_pipe_wm(pipe_config);
10554 if (ret) {
10555 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
10556 return ret;
10557 }
10558 }
10559
10560 if (dev_priv->display.compute_intermediate_wm &&
10561 !to_intel_atomic_state(state)->skip_intermediate_wm) {
10562 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
10563 return 0;
10564
10565 /*
10566 * Calculate 'intermediate' watermarks that satisfy both the
10567 * old state and the new state. We can program these
10568 * immediately.
10569 */
10570 ret = dev_priv->display.compute_intermediate_wm(dev,
10571 intel_crtc,
10572 pipe_config);
10573 if (ret) {
10574 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
10575 return ret;
10576 }
10577 } else if (dev_priv->display.compute_intermediate_wm) {
10578 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
10579 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
10580 }
10581
10582 if (INTEL_GEN(dev_priv) >= 9) {
10583 if (mode_changed)
10584 ret = skl_update_scaler_crtc(pipe_config);
10585
10586 if (!ret)
10587 ret = skl_check_pipe_max_pixel_rate(intel_crtc,
10588 pipe_config);
10589 if (!ret)
10590 ret = intel_atomic_setup_scalers(dev_priv, intel_crtc,
10591 pipe_config);
10592 }
10593
10594 return ret;
10595 }
10596
10597 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
10598 .atomic_begin = intel_begin_crtc_commit,
10599 .atomic_flush = intel_finish_crtc_commit,
10600 .atomic_check = intel_crtc_atomic_check,
10601 };
10602
10603 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
10604 {
10605 struct intel_connector *connector;
10606 struct drm_connector_list_iter conn_iter;
10607
10608 drm_connector_list_iter_begin(dev, &conn_iter);
10609 for_each_intel_connector_iter(connector, &conn_iter) {
10610 if (connector->base.state->crtc)
10611 drm_connector_unreference(&connector->base);
10612
10613 if (connector->base.encoder) {
10614 connector->base.state->best_encoder =
10615 connector->base.encoder;
10616 connector->base.state->crtc =
10617 connector->base.encoder->crtc;
10618
10619 drm_connector_reference(&connector->base);
10620 } else {
10621 connector->base.state->best_encoder = NULL;
10622 connector->base.state->crtc = NULL;
10623 }
10624 }
10625 drm_connector_list_iter_end(&conn_iter);
10626 }
10627
10628 static void
10629 connected_sink_compute_bpp(struct intel_connector *connector,
10630 struct intel_crtc_state *pipe_config)
10631 {
10632 const struct drm_display_info *info = &connector->base.display_info;
10633 int bpp = pipe_config->pipe_bpp;
10634
10635 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
10636 connector->base.base.id,
10637 connector->base.name);
10638
10639 /* Don't use an invalid EDID bpc value */
10640 if (info->bpc != 0 && info->bpc * 3 < bpp) {
10641 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
10642 bpp, info->bpc * 3);
10643 pipe_config->pipe_bpp = info->bpc * 3;
10644 }
10645
10646 /* Clamp bpp to 8 on screens without EDID 1.4 */
10647 if (info->bpc == 0 && bpp > 24) {
10648 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
10649 bpp);
10650 pipe_config->pipe_bpp = 24;
10651 }
10652 }
10653
10654 static int
10655 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
10656 struct intel_crtc_state *pipe_config)
10657 {
10658 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10659 struct drm_atomic_state *state;
10660 struct drm_connector *connector;
10661 struct drm_connector_state *connector_state;
10662 int bpp, i;
10663
10664 if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
10665 IS_CHERRYVIEW(dev_priv)))
10666 bpp = 10*3;
10667 else if (INTEL_GEN(dev_priv) >= 5)
10668 bpp = 12*3;
10669 else
10670 bpp = 8*3;
10671
10672
10673 pipe_config->pipe_bpp = bpp;
10674
10675 state = pipe_config->base.state;
10676
10677 /* Clamp display bpp to EDID value */
10678 for_each_new_connector_in_state(state, connector, connector_state, i) {
10679 if (connector_state->crtc != &crtc->base)
10680 continue;
10681
10682 connected_sink_compute_bpp(to_intel_connector(connector),
10683 pipe_config);
10684 }
10685
10686 return bpp;
10687 }
10688
10689 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10690 {
10691 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10692 "type: 0x%x flags: 0x%x\n",
10693 mode->crtc_clock,
10694 mode->crtc_hdisplay, mode->crtc_hsync_start,
10695 mode->crtc_hsync_end, mode->crtc_htotal,
10696 mode->crtc_vdisplay, mode->crtc_vsync_start,
10697 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10698 }
10699
10700 static inline void
10701 intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
10702 unsigned int lane_count, struct intel_link_m_n *m_n)
10703 {
10704 DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10705 id, lane_count,
10706 m_n->gmch_m, m_n->gmch_n,
10707 m_n->link_m, m_n->link_n, m_n->tu);
10708 }
10709
10710 static void intel_dump_pipe_config(struct intel_crtc *crtc,
10711 struct intel_crtc_state *pipe_config,
10712 const char *context)
10713 {
10714 struct drm_device *dev = crtc->base.dev;
10715 struct drm_i915_private *dev_priv = to_i915(dev);
10716 struct drm_plane *plane;
10717 struct intel_plane *intel_plane;
10718 struct intel_plane_state *state;
10719 struct drm_framebuffer *fb;
10720
10721 DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
10722 crtc->base.base.id, crtc->base.name, context);
10723
10724 DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
10725 transcoder_name(pipe_config->cpu_transcoder),
10726 pipe_config->pipe_bpp, pipe_config->dither);
10727
10728 if (pipe_config->has_pch_encoder)
10729 intel_dump_m_n_config(pipe_config, "fdi",
10730 pipe_config->fdi_lanes,
10731 &pipe_config->fdi_m_n);
10732
10733 if (pipe_config->ycbcr420)
10734 DRM_DEBUG_KMS("YCbCr 4:2:0 output enabled\n");
10735
10736 if (intel_crtc_has_dp_encoder(pipe_config)) {
10737 intel_dump_m_n_config(pipe_config, "dp m_n",
10738 pipe_config->lane_count, &pipe_config->dp_m_n);
10739 if (pipe_config->has_drrs)
10740 intel_dump_m_n_config(pipe_config, "dp m2_n2",
10741 pipe_config->lane_count,
10742 &pipe_config->dp_m2_n2);
10743 }
10744
10745 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10746 pipe_config->has_audio, pipe_config->has_infoframe);
10747
10748 DRM_DEBUG_KMS("requested mode:\n");
10749 drm_mode_debug_printmodeline(&pipe_config->base.mode);
10750 DRM_DEBUG_KMS("adjusted mode:\n");
10751 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10752 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10753 DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
10754 pipe_config->port_clock,
10755 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
10756 pipe_config->pixel_rate);
10757
10758 if (INTEL_GEN(dev_priv) >= 9)
10759 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
10760 crtc->num_scalers,
10761 pipe_config->scaler_state.scaler_users,
10762 pipe_config->scaler_state.scaler_id);
10763
10764 if (HAS_GMCH_DISPLAY(dev_priv))
10765 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10766 pipe_config->gmch_pfit.control,
10767 pipe_config->gmch_pfit.pgm_ratios,
10768 pipe_config->gmch_pfit.lvds_border_bits);
10769 else
10770 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10771 pipe_config->pch_pfit.pos,
10772 pipe_config->pch_pfit.size,
10773 enableddisabled(pipe_config->pch_pfit.enabled));
10774
10775 DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
10776 pipe_config->ips_enabled, pipe_config->double_wide);
10777
10778 intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
10779
10780 DRM_DEBUG_KMS("planes on this crtc\n");
10781 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
10782 struct drm_format_name_buf format_name;
10783 intel_plane = to_intel_plane(plane);
10784 if (intel_plane->pipe != crtc->pipe)
10785 continue;
10786
10787 state = to_intel_plane_state(plane->state);
10788 fb = state->base.fb;
10789 if (!fb) {
10790 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
10791 plane->base.id, plane->name, state->scaler_id);
10792 continue;
10793 }
10794
10795 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
10796 plane->base.id, plane->name,
10797 fb->base.id, fb->width, fb->height,
10798 drm_get_format_name(fb->format->format, &format_name));
10799 if (INTEL_GEN(dev_priv) >= 9)
10800 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
10801 state->scaler_id,
10802 state->base.src.x1 >> 16,
10803 state->base.src.y1 >> 16,
10804 drm_rect_width(&state->base.src) >> 16,
10805 drm_rect_height(&state->base.src) >> 16,
10806 state->base.dst.x1, state->base.dst.y1,
10807 drm_rect_width(&state->base.dst),
10808 drm_rect_height(&state->base.dst));
10809 }
10810 }
10811
10812 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
10813 {
10814 struct drm_device *dev = state->dev;
10815 struct drm_connector *connector;
10816 struct drm_connector_list_iter conn_iter;
10817 unsigned int used_ports = 0;
10818 unsigned int used_mst_ports = 0;
10819
10820 /*
10821 * Walk the connector list instead of the encoder
10822 * list to detect the problem on ddi platforms
10823 * where there's just one encoder per digital port.
10824 */
10825 drm_connector_list_iter_begin(dev, &conn_iter);
10826 drm_for_each_connector_iter(connector, &conn_iter) {
10827 struct drm_connector_state *connector_state;
10828 struct intel_encoder *encoder;
10829
10830 connector_state = drm_atomic_get_existing_connector_state(state, connector);
10831 if (!connector_state)
10832 connector_state = connector->state;
10833
10834 if (!connector_state->best_encoder)
10835 continue;
10836
10837 encoder = to_intel_encoder(connector_state->best_encoder);
10838
10839 WARN_ON(!connector_state->crtc);
10840
10841 switch (encoder->type) {
10842 unsigned int port_mask;
10843 case INTEL_OUTPUT_UNKNOWN:
10844 if (WARN_ON(!HAS_DDI(to_i915(dev))))
10845 break;
10846 case INTEL_OUTPUT_DP:
10847 case INTEL_OUTPUT_HDMI:
10848 case INTEL_OUTPUT_EDP:
10849 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10850
10851 /* the same port mustn't appear more than once */
10852 if (used_ports & port_mask)
10853 return false;
10854
10855 used_ports |= port_mask;
10856 break;
10857 case INTEL_OUTPUT_DP_MST:
10858 used_mst_ports |=
10859 1 << enc_to_mst(&encoder->base)->primary->port;
10860 break;
10861 default:
10862 break;
10863 }
10864 }
10865 drm_connector_list_iter_end(&conn_iter);
10866
10867 /* can't mix MST and SST/HDMI on the same port */
10868 if (used_ports & used_mst_ports)
10869 return false;
10870
10871 return true;
10872 }
10873
10874 static void
10875 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
10876 {
10877 struct drm_i915_private *dev_priv =
10878 to_i915(crtc_state->base.crtc->dev);
10879 struct intel_crtc_scaler_state scaler_state;
10880 struct intel_dpll_hw_state dpll_hw_state;
10881 struct intel_shared_dpll *shared_dpll;
10882 struct intel_crtc_wm_state wm_state;
10883 bool force_thru;
10884
10885 /* FIXME: before the switch to atomic started, a new pipe_config was
10886 * kzalloc'd. Code that depends on any field being zero should be
10887 * fixed, so that the crtc_state can be safely duplicated. For now,
10888 * only fields that are know to not cause problems are preserved. */
10889
10890 scaler_state = crtc_state->scaler_state;
10891 shared_dpll = crtc_state->shared_dpll;
10892 dpll_hw_state = crtc_state->dpll_hw_state;
10893 force_thru = crtc_state->pch_pfit.force_thru;
10894 if (IS_G4X(dev_priv) ||
10895 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
10896 wm_state = crtc_state->wm;
10897
10898 /* Keep base drm_crtc_state intact, only clear our extended struct */
10899 BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
10900 memset(&crtc_state->base + 1, 0,
10901 sizeof(*crtc_state) - sizeof(crtc_state->base));
10902
10903 crtc_state->scaler_state = scaler_state;
10904 crtc_state->shared_dpll = shared_dpll;
10905 crtc_state->dpll_hw_state = dpll_hw_state;
10906 crtc_state->pch_pfit.force_thru = force_thru;
10907 if (IS_G4X(dev_priv) ||
10908 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
10909 crtc_state->wm = wm_state;
10910 }
10911
10912 static int
10913 intel_modeset_pipe_config(struct drm_crtc *crtc,
10914 struct intel_crtc_state *pipe_config)
10915 {
10916 struct drm_atomic_state *state = pipe_config->base.state;
10917 struct intel_encoder *encoder;
10918 struct drm_connector *connector;
10919 struct drm_connector_state *connector_state;
10920 int base_bpp, ret = -EINVAL;
10921 int i;
10922 bool retry = true;
10923
10924 clear_intel_crtc_state(pipe_config);
10925
10926 pipe_config->cpu_transcoder =
10927 (enum transcoder) to_intel_crtc(crtc)->pipe;
10928
10929 /*
10930 * Sanitize sync polarity flags based on requested ones. If neither
10931 * positive or negative polarity is requested, treat this as meaning
10932 * negative polarity.
10933 */
10934 if (!(pipe_config->base.adjusted_mode.flags &
10935 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10936 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10937
10938 if (!(pipe_config->base.adjusted_mode.flags &
10939 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10940 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10941
10942 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10943 pipe_config);
10944 if (base_bpp < 0)
10945 goto fail;
10946
10947 /*
10948 * Determine the real pipe dimensions. Note that stereo modes can
10949 * increase the actual pipe size due to the frame doubling and
10950 * insertion of additional space for blanks between the frame. This
10951 * is stored in the crtc timings. We use the requested mode to do this
10952 * computation to clearly distinguish it from the adjusted mode, which
10953 * can be changed by the connectors in the below retry loop.
10954 */
10955 drm_mode_get_hv_timing(&pipe_config->base.mode,
10956 &pipe_config->pipe_src_w,
10957 &pipe_config->pipe_src_h);
10958
10959 for_each_new_connector_in_state(state, connector, connector_state, i) {
10960 if (connector_state->crtc != crtc)
10961 continue;
10962
10963 encoder = to_intel_encoder(connector_state->best_encoder);
10964
10965 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
10966 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10967 goto fail;
10968 }
10969
10970 /*
10971 * Determine output_types before calling the .compute_config()
10972 * hooks so that the hooks can use this information safely.
10973 */
10974 pipe_config->output_types |= 1 << encoder->type;
10975 }
10976
10977 encoder_retry:
10978 /* Ensure the port clock defaults are reset when retrying. */
10979 pipe_config->port_clock = 0;
10980 pipe_config->pixel_multiplier = 1;
10981
10982 /* Fill in default crtc timings, allow encoders to overwrite them. */
10983 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10984 CRTC_STEREO_DOUBLE);
10985
10986 /* Pass our mode to the connectors and the CRTC to give them a chance to
10987 * adjust it according to limitations or connector properties, and also
10988 * a chance to reject the mode entirely.
10989 */
10990 for_each_new_connector_in_state(state, connector, connector_state, i) {
10991 if (connector_state->crtc != crtc)
10992 continue;
10993
10994 encoder = to_intel_encoder(connector_state->best_encoder);
10995
10996 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
10997 DRM_DEBUG_KMS("Encoder config failure\n");
10998 goto fail;
10999 }
11000 }
11001
11002 /* Set default port clock if not overwritten by the encoder. Needs to be
11003 * done afterwards in case the encoder adjusts the mode. */
11004 if (!pipe_config->port_clock)
11005 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11006 * pipe_config->pixel_multiplier;
11007
11008 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11009 if (ret < 0) {
11010 DRM_DEBUG_KMS("CRTC fixup failed\n");
11011 goto fail;
11012 }
11013
11014 if (ret == RETRY) {
11015 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11016 ret = -EINVAL;
11017 goto fail;
11018 }
11019
11020 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11021 retry = false;
11022 goto encoder_retry;
11023 }
11024
11025 /* Dithering seems to not pass-through bits correctly when it should, so
11026 * only enable it on 6bpc panels and when its not a compliance
11027 * test requesting 6bpc video pattern.
11028 */
11029 pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
11030 !pipe_config->dither_force_disable;
11031 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
11032 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11033
11034 fail:
11035 return ret;
11036 }
11037
11038 static void
11039 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
11040 {
11041 struct drm_crtc *crtc;
11042 struct drm_crtc_state *new_crtc_state;
11043 int i;
11044
11045 /* Double check state. */
11046 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
11047 to_intel_crtc(crtc)->config = to_intel_crtc_state(new_crtc_state);
11048
11049 /*
11050 * Update legacy state to satisfy fbc code. This can
11051 * be removed when fbc uses the atomic state.
11052 */
11053 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
11054 struct drm_plane_state *plane_state = crtc->primary->state;
11055
11056 crtc->primary->fb = plane_state->fb;
11057 crtc->x = plane_state->src_x >> 16;
11058 crtc->y = plane_state->src_y >> 16;
11059 }
11060 }
11061 }
11062
11063 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11064 {
11065 int diff;
11066
11067 if (clock1 == clock2)
11068 return true;
11069
11070 if (!clock1 || !clock2)
11071 return false;
11072
11073 diff = abs(clock1 - clock2);
11074
11075 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11076 return true;
11077
11078 return false;
11079 }
11080
11081 static bool
11082 intel_compare_m_n(unsigned int m, unsigned int n,
11083 unsigned int m2, unsigned int n2,
11084 bool exact)
11085 {
11086 if (m == m2 && n == n2)
11087 return true;
11088
11089 if (exact || !m || !n || !m2 || !n2)
11090 return false;
11091
11092 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
11093
11094 if (n > n2) {
11095 while (n > n2) {
11096 m2 <<= 1;
11097 n2 <<= 1;
11098 }
11099 } else if (n < n2) {
11100 while (n < n2) {
11101 m <<= 1;
11102 n <<= 1;
11103 }
11104 }
11105
11106 if (n != n2)
11107 return false;
11108
11109 return intel_fuzzy_clock_check(m, m2);
11110 }
11111
11112 static bool
11113 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
11114 struct intel_link_m_n *m2_n2,
11115 bool adjust)
11116 {
11117 if (m_n->tu == m2_n2->tu &&
11118 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
11119 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
11120 intel_compare_m_n(m_n->link_m, m_n->link_n,
11121 m2_n2->link_m, m2_n2->link_n, !adjust)) {
11122 if (adjust)
11123 *m2_n2 = *m_n;
11124
11125 return true;
11126 }
11127
11128 return false;
11129 }
11130
11131 static void __printf(3, 4)
11132 pipe_config_err(bool adjust, const char *name, const char *format, ...)
11133 {
11134 char *level;
11135 unsigned int category;
11136 struct va_format vaf;
11137 va_list args;
11138
11139 if (adjust) {
11140 level = KERN_DEBUG;
11141 category = DRM_UT_KMS;
11142 } else {
11143 level = KERN_ERR;
11144 category = DRM_UT_NONE;
11145 }
11146
11147 va_start(args, format);
11148 vaf.fmt = format;
11149 vaf.va = &args;
11150
11151 drm_printk(level, category, "mismatch in %s %pV", name, &vaf);
11152
11153 va_end(args);
11154 }
11155
11156 static bool
11157 intel_pipe_config_compare(struct drm_i915_private *dev_priv,
11158 struct intel_crtc_state *current_config,
11159 struct intel_crtc_state *pipe_config,
11160 bool adjust)
11161 {
11162 bool ret = true;
11163
11164 #define PIPE_CONF_CHECK_X(name) \
11165 if (current_config->name != pipe_config->name) { \
11166 pipe_config_err(adjust, __stringify(name), \
11167 "(expected 0x%08x, found 0x%08x)\n", \
11168 current_config->name, \
11169 pipe_config->name); \
11170 ret = false; \
11171 }
11172
11173 #define PIPE_CONF_CHECK_I(name) \
11174 if (current_config->name != pipe_config->name) { \
11175 pipe_config_err(adjust, __stringify(name), \
11176 "(expected %i, found %i)\n", \
11177 current_config->name, \
11178 pipe_config->name); \
11179 ret = false; \
11180 }
11181
11182 #define PIPE_CONF_CHECK_P(name) \
11183 if (current_config->name != pipe_config->name) { \
11184 pipe_config_err(adjust, __stringify(name), \
11185 "(expected %p, found %p)\n", \
11186 current_config->name, \
11187 pipe_config->name); \
11188 ret = false; \
11189 }
11190
11191 #define PIPE_CONF_CHECK_M_N(name) \
11192 if (!intel_compare_link_m_n(&current_config->name, \
11193 &pipe_config->name,\
11194 adjust)) { \
11195 pipe_config_err(adjust, __stringify(name), \
11196 "(expected tu %i gmch %i/%i link %i/%i, " \
11197 "found tu %i, gmch %i/%i link %i/%i)\n", \
11198 current_config->name.tu, \
11199 current_config->name.gmch_m, \
11200 current_config->name.gmch_n, \
11201 current_config->name.link_m, \
11202 current_config->name.link_n, \
11203 pipe_config->name.tu, \
11204 pipe_config->name.gmch_m, \
11205 pipe_config->name.gmch_n, \
11206 pipe_config->name.link_m, \
11207 pipe_config->name.link_n); \
11208 ret = false; \
11209 }
11210
11211 /* This is required for BDW+ where there is only one set of registers for
11212 * switching between high and low RR.
11213 * This macro can be used whenever a comparison has to be made between one
11214 * hw state and multiple sw state variables.
11215 */
11216 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
11217 if (!intel_compare_link_m_n(&current_config->name, \
11218 &pipe_config->name, adjust) && \
11219 !intel_compare_link_m_n(&current_config->alt_name, \
11220 &pipe_config->name, adjust)) { \
11221 pipe_config_err(adjust, __stringify(name), \
11222 "(expected tu %i gmch %i/%i link %i/%i, " \
11223 "or tu %i gmch %i/%i link %i/%i, " \
11224 "found tu %i, gmch %i/%i link %i/%i)\n", \
11225 current_config->name.tu, \
11226 current_config->name.gmch_m, \
11227 current_config->name.gmch_n, \
11228 current_config->name.link_m, \
11229 current_config->name.link_n, \
11230 current_config->alt_name.tu, \
11231 current_config->alt_name.gmch_m, \
11232 current_config->alt_name.gmch_n, \
11233 current_config->alt_name.link_m, \
11234 current_config->alt_name.link_n, \
11235 pipe_config->name.tu, \
11236 pipe_config->name.gmch_m, \
11237 pipe_config->name.gmch_n, \
11238 pipe_config->name.link_m, \
11239 pipe_config->name.link_n); \
11240 ret = false; \
11241 }
11242
11243 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
11244 if ((current_config->name ^ pipe_config->name) & (mask)) { \
11245 pipe_config_err(adjust, __stringify(name), \
11246 "(%x) (expected %i, found %i)\n", \
11247 (mask), \
11248 current_config->name & (mask), \
11249 pipe_config->name & (mask)); \
11250 ret = false; \
11251 }
11252
11253 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11254 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11255 pipe_config_err(adjust, __stringify(name), \
11256 "(expected %i, found %i)\n", \
11257 current_config->name, \
11258 pipe_config->name); \
11259 ret = false; \
11260 }
11261
11262 #define PIPE_CONF_QUIRK(quirk) \
11263 ((current_config->quirks | pipe_config->quirks) & (quirk))
11264
11265 PIPE_CONF_CHECK_I(cpu_transcoder);
11266
11267 PIPE_CONF_CHECK_I(has_pch_encoder);
11268 PIPE_CONF_CHECK_I(fdi_lanes);
11269 PIPE_CONF_CHECK_M_N(fdi_m_n);
11270
11271 PIPE_CONF_CHECK_I(lane_count);
11272 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
11273
11274 if (INTEL_GEN(dev_priv) < 8) {
11275 PIPE_CONF_CHECK_M_N(dp_m_n);
11276
11277 if (current_config->has_drrs)
11278 PIPE_CONF_CHECK_M_N(dp_m2_n2);
11279 } else
11280 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
11281
11282 PIPE_CONF_CHECK_X(output_types);
11283
11284 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
11285 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
11286 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
11287 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
11288 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
11289 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
11290
11291 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
11292 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
11293 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
11294 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
11295 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
11296 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
11297
11298 PIPE_CONF_CHECK_I(pixel_multiplier);
11299 PIPE_CONF_CHECK_I(has_hdmi_sink);
11300 if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
11301 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
11302 PIPE_CONF_CHECK_I(limited_color_range);
11303
11304 PIPE_CONF_CHECK_I(hdmi_scrambling);
11305 PIPE_CONF_CHECK_I(hdmi_high_tmds_clock_ratio);
11306 PIPE_CONF_CHECK_I(has_infoframe);
11307 PIPE_CONF_CHECK_I(ycbcr420);
11308
11309 PIPE_CONF_CHECK_I(has_audio);
11310
11311 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11312 DRM_MODE_FLAG_INTERLACE);
11313
11314 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
11315 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11316 DRM_MODE_FLAG_PHSYNC);
11317 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11318 DRM_MODE_FLAG_NHSYNC);
11319 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11320 DRM_MODE_FLAG_PVSYNC);
11321 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
11322 DRM_MODE_FLAG_NVSYNC);
11323 }
11324
11325 PIPE_CONF_CHECK_X(gmch_pfit.control);
11326 /* pfit ratios are autocomputed by the hw on gen4+ */
11327 if (INTEL_GEN(dev_priv) < 4)
11328 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
11329 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
11330
11331 if (!adjust) {
11332 PIPE_CONF_CHECK_I(pipe_src_w);
11333 PIPE_CONF_CHECK_I(pipe_src_h);
11334
11335 PIPE_CONF_CHECK_I(pch_pfit.enabled);
11336 if (current_config->pch_pfit.enabled) {
11337 PIPE_CONF_CHECK_X(pch_pfit.pos);
11338 PIPE_CONF_CHECK_X(pch_pfit.size);
11339 }
11340
11341 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
11342 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
11343 }
11344
11345 /* BDW+ don't expose a synchronous way to read the state */
11346 if (IS_HASWELL(dev_priv))
11347 PIPE_CONF_CHECK_I(ips_enabled);
11348
11349 PIPE_CONF_CHECK_I(double_wide);
11350
11351 PIPE_CONF_CHECK_P(shared_dpll);
11352 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
11353 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
11354 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
11355 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
11356 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
11357 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
11358 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
11359 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
11360 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
11361
11362 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
11363 PIPE_CONF_CHECK_X(dsi_pll.div);
11364
11365 if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
11366 PIPE_CONF_CHECK_I(pipe_bpp);
11367
11368 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
11369 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
11370
11371 #undef PIPE_CONF_CHECK_X
11372 #undef PIPE_CONF_CHECK_I
11373 #undef PIPE_CONF_CHECK_P
11374 #undef PIPE_CONF_CHECK_FLAGS
11375 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
11376 #undef PIPE_CONF_QUIRK
11377
11378 return ret;
11379 }
11380
11381 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
11382 const struct intel_crtc_state *pipe_config)
11383 {
11384 if (pipe_config->has_pch_encoder) {
11385 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11386 &pipe_config->fdi_m_n);
11387 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
11388
11389 /*
11390 * FDI already provided one idea for the dotclock.
11391 * Yell if the encoder disagrees.
11392 */
11393 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
11394 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
11395 fdi_dotclock, dotclock);
11396 }
11397 }
11398
11399 static void verify_wm_state(struct drm_crtc *crtc,
11400 struct drm_crtc_state *new_state)
11401 {
11402 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
11403 struct skl_ddb_allocation hw_ddb, *sw_ddb;
11404 struct skl_pipe_wm hw_wm, *sw_wm;
11405 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
11406 struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
11407 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11408 const enum pipe pipe = intel_crtc->pipe;
11409 int plane, level, max_level = ilk_wm_max_level(dev_priv);
11410
11411 if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
11412 return;
11413
11414 skl_pipe_wm_get_hw_state(crtc, &hw_wm);
11415 sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
11416
11417 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
11418 sw_ddb = &dev_priv->wm.skl_hw.ddb;
11419
11420 /* planes */
11421 for_each_universal_plane(dev_priv, pipe, plane) {
11422 hw_plane_wm = &hw_wm.planes[plane];
11423 sw_plane_wm = &sw_wm->planes[plane];
11424
11425 /* Watermarks */
11426 for (level = 0; level <= max_level; level++) {
11427 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11428 &sw_plane_wm->wm[level]))
11429 continue;
11430
11431 DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11432 pipe_name(pipe), plane + 1, level,
11433 sw_plane_wm->wm[level].plane_en,
11434 sw_plane_wm->wm[level].plane_res_b,
11435 sw_plane_wm->wm[level].plane_res_l,
11436 hw_plane_wm->wm[level].plane_en,
11437 hw_plane_wm->wm[level].plane_res_b,
11438 hw_plane_wm->wm[level].plane_res_l);
11439 }
11440
11441 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11442 &sw_plane_wm->trans_wm)) {
11443 DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11444 pipe_name(pipe), plane + 1,
11445 sw_plane_wm->trans_wm.plane_en,
11446 sw_plane_wm->trans_wm.plane_res_b,
11447 sw_plane_wm->trans_wm.plane_res_l,
11448 hw_plane_wm->trans_wm.plane_en,
11449 hw_plane_wm->trans_wm.plane_res_b,
11450 hw_plane_wm->trans_wm.plane_res_l);
11451 }
11452
11453 /* DDB */
11454 hw_ddb_entry = &hw_ddb.plane[pipe][plane];
11455 sw_ddb_entry = &sw_ddb->plane[pipe][plane];
11456
11457 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11458 DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
11459 pipe_name(pipe), plane + 1,
11460 sw_ddb_entry->start, sw_ddb_entry->end,
11461 hw_ddb_entry->start, hw_ddb_entry->end);
11462 }
11463 }
11464
11465 /*
11466 * cursor
11467 * If the cursor plane isn't active, we may not have updated it's ddb
11468 * allocation. In that case since the ddb allocation will be updated
11469 * once the plane becomes visible, we can skip this check
11470 */
11471 if (1) {
11472 hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
11473 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
11474
11475 /* Watermarks */
11476 for (level = 0; level <= max_level; level++) {
11477 if (skl_wm_level_equals(&hw_plane_wm->wm[level],
11478 &sw_plane_wm->wm[level]))
11479 continue;
11480
11481 DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11482 pipe_name(pipe), level,
11483 sw_plane_wm->wm[level].plane_en,
11484 sw_plane_wm->wm[level].plane_res_b,
11485 sw_plane_wm->wm[level].plane_res_l,
11486 hw_plane_wm->wm[level].plane_en,
11487 hw_plane_wm->wm[level].plane_res_b,
11488 hw_plane_wm->wm[level].plane_res_l);
11489 }
11490
11491 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
11492 &sw_plane_wm->trans_wm)) {
11493 DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
11494 pipe_name(pipe),
11495 sw_plane_wm->trans_wm.plane_en,
11496 sw_plane_wm->trans_wm.plane_res_b,
11497 sw_plane_wm->trans_wm.plane_res_l,
11498 hw_plane_wm->trans_wm.plane_en,
11499 hw_plane_wm->trans_wm.plane_res_b,
11500 hw_plane_wm->trans_wm.plane_res_l);
11501 }
11502
11503 /* DDB */
11504 hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
11505 sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
11506
11507 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
11508 DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
11509 pipe_name(pipe),
11510 sw_ddb_entry->start, sw_ddb_entry->end,
11511 hw_ddb_entry->start, hw_ddb_entry->end);
11512 }
11513 }
11514 }
11515
11516 static void
11517 verify_connector_state(struct drm_device *dev,
11518 struct drm_atomic_state *state,
11519 struct drm_crtc *crtc)
11520 {
11521 struct drm_connector *connector;
11522 struct drm_connector_state *new_conn_state;
11523 int i;
11524
11525 for_each_new_connector_in_state(state, connector, new_conn_state, i) {
11526 struct drm_encoder *encoder = connector->encoder;
11527 struct drm_crtc_state *crtc_state = NULL;
11528
11529 if (new_conn_state->crtc != crtc)
11530 continue;
11531
11532 if (crtc)
11533 crtc_state = drm_atomic_get_new_crtc_state(state, new_conn_state->crtc);
11534
11535 intel_connector_verify_state(crtc_state, new_conn_state);
11536
11537 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
11538 "connector's atomic encoder doesn't match legacy encoder\n");
11539 }
11540 }
11541
11542 static void
11543 verify_encoder_state(struct drm_device *dev, struct drm_atomic_state *state)
11544 {
11545 struct intel_encoder *encoder;
11546 struct drm_connector *connector;
11547 struct drm_connector_state *old_conn_state, *new_conn_state;
11548 int i;
11549
11550 for_each_intel_encoder(dev, encoder) {
11551 bool enabled = false, found = false;
11552 enum pipe pipe;
11553
11554 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
11555 encoder->base.base.id,
11556 encoder->base.name);
11557
11558 for_each_oldnew_connector_in_state(state, connector, old_conn_state,
11559 new_conn_state, i) {
11560 if (old_conn_state->best_encoder == &encoder->base)
11561 found = true;
11562
11563 if (new_conn_state->best_encoder != &encoder->base)
11564 continue;
11565 found = enabled = true;
11566
11567 I915_STATE_WARN(new_conn_state->crtc !=
11568 encoder->base.crtc,
11569 "connector's crtc doesn't match encoder crtc\n");
11570 }
11571
11572 if (!found)
11573 continue;
11574
11575 I915_STATE_WARN(!!encoder->base.crtc != enabled,
11576 "encoder's enabled state mismatch "
11577 "(expected %i, found %i)\n",
11578 !!encoder->base.crtc, enabled);
11579
11580 if (!encoder->base.crtc) {
11581 bool active;
11582
11583 active = encoder->get_hw_state(encoder, &pipe);
11584 I915_STATE_WARN(active,
11585 "encoder detached but still enabled on pipe %c.\n",
11586 pipe_name(pipe));
11587 }
11588 }
11589 }
11590
11591 static void
11592 verify_crtc_state(struct drm_crtc *crtc,
11593 struct drm_crtc_state *old_crtc_state,
11594 struct drm_crtc_state *new_crtc_state)
11595 {
11596 struct drm_device *dev = crtc->dev;
11597 struct drm_i915_private *dev_priv = to_i915(dev);
11598 struct intel_encoder *encoder;
11599 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11600 struct intel_crtc_state *pipe_config, *sw_config;
11601 struct drm_atomic_state *old_state;
11602 bool active;
11603
11604 old_state = old_crtc_state->state;
11605 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
11606 pipe_config = to_intel_crtc_state(old_crtc_state);
11607 memset(pipe_config, 0, sizeof(*pipe_config));
11608 pipe_config->base.crtc = crtc;
11609 pipe_config->base.state = old_state;
11610
11611 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
11612
11613 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
11614
11615 /* we keep both pipes enabled on 830 */
11616 if (IS_I830(dev_priv))
11617 active = new_crtc_state->active;
11618
11619 I915_STATE_WARN(new_crtc_state->active != active,
11620 "crtc active state doesn't match with hw state "
11621 "(expected %i, found %i)\n", new_crtc_state->active, active);
11622
11623 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
11624 "transitional active state does not match atomic hw state "
11625 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
11626
11627 for_each_encoder_on_crtc(dev, crtc, encoder) {
11628 enum pipe pipe;
11629
11630 active = encoder->get_hw_state(encoder, &pipe);
11631 I915_STATE_WARN(active != new_crtc_state->active,
11632 "[ENCODER:%i] active %i with crtc active %i\n",
11633 encoder->base.base.id, active, new_crtc_state->active);
11634
11635 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
11636 "Encoder connected to wrong pipe %c\n",
11637 pipe_name(pipe));
11638
11639 if (active) {
11640 pipe_config->output_types |= 1 << encoder->type;
11641 encoder->get_config(encoder, pipe_config);
11642 }
11643 }
11644
11645 intel_crtc_compute_pixel_rate(pipe_config);
11646
11647 if (!new_crtc_state->active)
11648 return;
11649
11650 intel_pipe_config_sanity_check(dev_priv, pipe_config);
11651
11652 sw_config = to_intel_crtc_state(new_crtc_state);
11653 if (!intel_pipe_config_compare(dev_priv, sw_config,
11654 pipe_config, false)) {
11655 I915_STATE_WARN(1, "pipe state doesn't match!\n");
11656 intel_dump_pipe_config(intel_crtc, pipe_config,
11657 "[hw state]");
11658 intel_dump_pipe_config(intel_crtc, sw_config,
11659 "[sw state]");
11660 }
11661 }
11662
11663 static void
11664 verify_single_dpll_state(struct drm_i915_private *dev_priv,
11665 struct intel_shared_dpll *pll,
11666 struct drm_crtc *crtc,
11667 struct drm_crtc_state *new_state)
11668 {
11669 struct intel_dpll_hw_state dpll_hw_state;
11670 unsigned crtc_mask;
11671 bool active;
11672
11673 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
11674
11675 DRM_DEBUG_KMS("%s\n", pll->name);
11676
11677 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
11678
11679 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
11680 I915_STATE_WARN(!pll->on && pll->active_mask,
11681 "pll in active use but not on in sw tracking\n");
11682 I915_STATE_WARN(pll->on && !pll->active_mask,
11683 "pll is on but not used by any active crtc\n");
11684 I915_STATE_WARN(pll->on != active,
11685 "pll on state mismatch (expected %i, found %i)\n",
11686 pll->on, active);
11687 }
11688
11689 if (!crtc) {
11690 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
11691 "more active pll users than references: %x vs %x\n",
11692 pll->active_mask, pll->state.crtc_mask);
11693
11694 return;
11695 }
11696
11697 crtc_mask = 1 << drm_crtc_index(crtc);
11698
11699 if (new_state->active)
11700 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
11701 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
11702 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
11703 else
11704 I915_STATE_WARN(pll->active_mask & crtc_mask,
11705 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
11706 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
11707
11708 I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
11709 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
11710 crtc_mask, pll->state.crtc_mask);
11711
11712 I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
11713 &dpll_hw_state,
11714 sizeof(dpll_hw_state)),
11715 "pll hw state mismatch\n");
11716 }
11717
11718 static void
11719 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
11720 struct drm_crtc_state *old_crtc_state,
11721 struct drm_crtc_state *new_crtc_state)
11722 {
11723 struct drm_i915_private *dev_priv = to_i915(dev);
11724 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
11725 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
11726
11727 if (new_state->shared_dpll)
11728 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
11729
11730 if (old_state->shared_dpll &&
11731 old_state->shared_dpll != new_state->shared_dpll) {
11732 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
11733 struct intel_shared_dpll *pll = old_state->shared_dpll;
11734
11735 I915_STATE_WARN(pll->active_mask & crtc_mask,
11736 "pll active mismatch (didn't expect pipe %c in active mask)\n",
11737 pipe_name(drm_crtc_index(crtc)));
11738 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
11739 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
11740 pipe_name(drm_crtc_index(crtc)));
11741 }
11742 }
11743
11744 static void
11745 intel_modeset_verify_crtc(struct drm_crtc *crtc,
11746 struct drm_atomic_state *state,
11747 struct drm_crtc_state *old_state,
11748 struct drm_crtc_state *new_state)
11749 {
11750 if (!needs_modeset(new_state) &&
11751 !to_intel_crtc_state(new_state)->update_pipe)
11752 return;
11753
11754 verify_wm_state(crtc, new_state);
11755 verify_connector_state(crtc->dev, state, crtc);
11756 verify_crtc_state(crtc, old_state, new_state);
11757 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
11758 }
11759
11760 static void
11761 verify_disabled_dpll_state(struct drm_device *dev)
11762 {
11763 struct drm_i915_private *dev_priv = to_i915(dev);
11764 int i;
11765
11766 for (i = 0; i < dev_priv->num_shared_dpll; i++)
11767 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
11768 }
11769
11770 static void
11771 intel_modeset_verify_disabled(struct drm_device *dev,
11772 struct drm_atomic_state *state)
11773 {
11774 verify_encoder_state(dev, state);
11775 verify_connector_state(dev, state, NULL);
11776 verify_disabled_dpll_state(dev);
11777 }
11778
11779 static void update_scanline_offset(struct intel_crtc *crtc)
11780 {
11781 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11782
11783 /*
11784 * The scanline counter increments at the leading edge of hsync.
11785 *
11786 * On most platforms it starts counting from vtotal-1 on the
11787 * first active line. That means the scanline counter value is
11788 * always one less than what we would expect. Ie. just after
11789 * start of vblank, which also occurs at start of hsync (on the
11790 * last active line), the scanline counter will read vblank_start-1.
11791 *
11792 * On gen2 the scanline counter starts counting from 1 instead
11793 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
11794 * to keep the value positive), instead of adding one.
11795 *
11796 * On HSW+ the behaviour of the scanline counter depends on the output
11797 * type. For DP ports it behaves like most other platforms, but on HDMI
11798 * there's an extra 1 line difference. So we need to add two instead of
11799 * one to the value.
11800 *
11801 * On VLV/CHV DSI the scanline counter would appear to increment
11802 * approx. 1/3 of a scanline before start of vblank. Unfortunately
11803 * that means we can't tell whether we're in vblank or not while
11804 * we're on that particular line. We must still set scanline_offset
11805 * to 1 so that the vblank timestamps come out correct when we query
11806 * the scanline counter from within the vblank interrupt handler.
11807 * However if queried just before the start of vblank we'll get an
11808 * answer that's slightly in the future.
11809 */
11810 if (IS_GEN2(dev_priv)) {
11811 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
11812 int vtotal;
11813
11814 vtotal = adjusted_mode->crtc_vtotal;
11815 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
11816 vtotal /= 2;
11817
11818 crtc->scanline_offset = vtotal - 1;
11819 } else if (HAS_DDI(dev_priv) &&
11820 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
11821 crtc->scanline_offset = 2;
11822 } else
11823 crtc->scanline_offset = 1;
11824 }
11825
11826 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
11827 {
11828 struct drm_device *dev = state->dev;
11829 struct drm_i915_private *dev_priv = to_i915(dev);
11830 struct drm_crtc *crtc;
11831 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
11832 int i;
11833
11834 if (!dev_priv->display.crtc_compute_clock)
11835 return;
11836
11837 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
11838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11839 struct intel_shared_dpll *old_dpll =
11840 to_intel_crtc_state(old_crtc_state)->shared_dpll;
11841
11842 if (!needs_modeset(new_crtc_state))
11843 continue;
11844
11845 to_intel_crtc_state(new_crtc_state)->shared_dpll = NULL;
11846
11847 if (!old_dpll)
11848 continue;
11849
11850 intel_release_shared_dpll(old_dpll, intel_crtc, state);
11851 }
11852 }
11853
11854 /*
11855 * This implements the workaround described in the "notes" section of the mode
11856 * set sequence documentation. When going from no pipes or single pipe to
11857 * multiple pipes, and planes are enabled after the pipe, we need to wait at
11858 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
11859 */
11860 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
11861 {
11862 struct drm_crtc_state *crtc_state;
11863 struct intel_crtc *intel_crtc;
11864 struct drm_crtc *crtc;
11865 struct intel_crtc_state *first_crtc_state = NULL;
11866 struct intel_crtc_state *other_crtc_state = NULL;
11867 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
11868 int i;
11869
11870 /* look at all crtc's that are going to be enabled in during modeset */
11871 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
11872 intel_crtc = to_intel_crtc(crtc);
11873
11874 if (!crtc_state->active || !needs_modeset(crtc_state))
11875 continue;
11876
11877 if (first_crtc_state) {
11878 other_crtc_state = to_intel_crtc_state(crtc_state);
11879 break;
11880 } else {
11881 first_crtc_state = to_intel_crtc_state(crtc_state);
11882 first_pipe = intel_crtc->pipe;
11883 }
11884 }
11885
11886 /* No workaround needed? */
11887 if (!first_crtc_state)
11888 return 0;
11889
11890 /* w/a possibly needed, check how many crtc's are already enabled. */
11891 for_each_intel_crtc(state->dev, intel_crtc) {
11892 struct intel_crtc_state *pipe_config;
11893
11894 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
11895 if (IS_ERR(pipe_config))
11896 return PTR_ERR(pipe_config);
11897
11898 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
11899
11900 if (!pipe_config->base.active ||
11901 needs_modeset(&pipe_config->base))
11902 continue;
11903
11904 /* 2 or more enabled crtcs means no need for w/a */
11905 if (enabled_pipe != INVALID_PIPE)
11906 return 0;
11907
11908 enabled_pipe = intel_crtc->pipe;
11909 }
11910
11911 if (enabled_pipe != INVALID_PIPE)
11912 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
11913 else if (other_crtc_state)
11914 other_crtc_state->hsw_workaround_pipe = first_pipe;
11915
11916 return 0;
11917 }
11918
11919 static int intel_lock_all_pipes(struct drm_atomic_state *state)
11920 {
11921 struct drm_crtc *crtc;
11922
11923 /* Add all pipes to the state */
11924 for_each_crtc(state->dev, crtc) {
11925 struct drm_crtc_state *crtc_state;
11926
11927 crtc_state = drm_atomic_get_crtc_state(state, crtc);
11928 if (IS_ERR(crtc_state))
11929 return PTR_ERR(crtc_state);
11930 }
11931
11932 return 0;
11933 }
11934
11935 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
11936 {
11937 struct drm_crtc *crtc;
11938
11939 /*
11940 * Add all pipes to the state, and force
11941 * a modeset on all the active ones.
11942 */
11943 for_each_crtc(state->dev, crtc) {
11944 struct drm_crtc_state *crtc_state;
11945 int ret;
11946
11947 crtc_state = drm_atomic_get_crtc_state(state, crtc);
11948 if (IS_ERR(crtc_state))
11949 return PTR_ERR(crtc_state);
11950
11951 if (!crtc_state->active || needs_modeset(crtc_state))
11952 continue;
11953
11954 crtc_state->mode_changed = true;
11955
11956 ret = drm_atomic_add_affected_connectors(state, crtc);
11957 if (ret)
11958 return ret;
11959
11960 ret = drm_atomic_add_affected_planes(state, crtc);
11961 if (ret)
11962 return ret;
11963 }
11964
11965 return 0;
11966 }
11967
11968 static int intel_modeset_checks(struct drm_atomic_state *state)
11969 {
11970 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
11971 struct drm_i915_private *dev_priv = to_i915(state->dev);
11972 struct drm_crtc *crtc;
11973 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
11974 int ret = 0, i;
11975
11976 if (!check_digital_port_conflicts(state)) {
11977 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11978 return -EINVAL;
11979 }
11980
11981 intel_state->modeset = true;
11982 intel_state->active_crtcs = dev_priv->active_crtcs;
11983 intel_state->cdclk.logical = dev_priv->cdclk.logical;
11984 intel_state->cdclk.actual = dev_priv->cdclk.actual;
11985
11986 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
11987 if (new_crtc_state->active)
11988 intel_state->active_crtcs |= 1 << i;
11989 else
11990 intel_state->active_crtcs &= ~(1 << i);
11991
11992 if (old_crtc_state->active != new_crtc_state->active)
11993 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
11994 }
11995
11996 /*
11997 * See if the config requires any additional preparation, e.g.
11998 * to adjust global state with pipes off. We need to do this
11999 * here so we can get the modeset_pipe updated config for the new
12000 * mode set on this crtc. For other crtcs we need to use the
12001 * adjusted_mode bits in the crtc directly.
12002 */
12003 if (dev_priv->display.modeset_calc_cdclk) {
12004 ret = dev_priv->display.modeset_calc_cdclk(state);
12005 if (ret < 0)
12006 return ret;
12007
12008 /*
12009 * Writes to dev_priv->cdclk.logical must protected by
12010 * holding all the crtc locks, even if we don't end up
12011 * touching the hardware
12012 */
12013 if (!intel_cdclk_state_compare(&dev_priv->cdclk.logical,
12014 &intel_state->cdclk.logical)) {
12015 ret = intel_lock_all_pipes(state);
12016 if (ret < 0)
12017 return ret;
12018 }
12019
12020 /* All pipes must be switched off while we change the cdclk. */
12021 if (!intel_cdclk_state_compare(&dev_priv->cdclk.actual,
12022 &intel_state->cdclk.actual)) {
12023 ret = intel_modeset_all_pipes(state);
12024 if (ret < 0)
12025 return ret;
12026 }
12027
12028 DRM_DEBUG_KMS("New cdclk calculated to be logical %u kHz, actual %u kHz\n",
12029 intel_state->cdclk.logical.cdclk,
12030 intel_state->cdclk.actual.cdclk);
12031 } else {
12032 to_intel_atomic_state(state)->cdclk.logical = dev_priv->cdclk.logical;
12033 }
12034
12035 intel_modeset_clear_plls(state);
12036
12037 if (IS_HASWELL(dev_priv))
12038 return haswell_mode_set_planes_workaround(state);
12039
12040 return 0;
12041 }
12042
12043 /*
12044 * Handle calculation of various watermark data at the end of the atomic check
12045 * phase. The code here should be run after the per-crtc and per-plane 'check'
12046 * handlers to ensure that all derived state has been updated.
12047 */
12048 static int calc_watermark_data(struct drm_atomic_state *state)
12049 {
12050 struct drm_device *dev = state->dev;
12051 struct drm_i915_private *dev_priv = to_i915(dev);
12052
12053 /* Is there platform-specific watermark information to calculate? */
12054 if (dev_priv->display.compute_global_watermarks)
12055 return dev_priv->display.compute_global_watermarks(state);
12056
12057 return 0;
12058 }
12059
12060 /**
12061 * intel_atomic_check - validate state object
12062 * @dev: drm device
12063 * @state: state to validate
12064 */
12065 static int intel_atomic_check(struct drm_device *dev,
12066 struct drm_atomic_state *state)
12067 {
12068 struct drm_i915_private *dev_priv = to_i915(dev);
12069 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12070 struct drm_crtc *crtc;
12071 struct drm_crtc_state *old_crtc_state, *crtc_state;
12072 int ret, i;
12073 bool any_ms = false;
12074
12075 ret = drm_atomic_helper_check_modeset(dev, state);
12076 if (ret)
12077 return ret;
12078
12079 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, crtc_state, i) {
12080 struct intel_crtc_state *pipe_config =
12081 to_intel_crtc_state(crtc_state);
12082
12083 /* Catch I915_MODE_FLAG_INHERITED */
12084 if (crtc_state->mode.private_flags != old_crtc_state->mode.private_flags)
12085 crtc_state->mode_changed = true;
12086
12087 if (!needs_modeset(crtc_state))
12088 continue;
12089
12090 if (!crtc_state->enable) {
12091 any_ms = true;
12092 continue;
12093 }
12094
12095 /* FIXME: For only active_changed we shouldn't need to do any
12096 * state recomputation at all. */
12097
12098 ret = drm_atomic_add_affected_connectors(state, crtc);
12099 if (ret)
12100 return ret;
12101
12102 ret = intel_modeset_pipe_config(crtc, pipe_config);
12103 if (ret) {
12104 intel_dump_pipe_config(to_intel_crtc(crtc),
12105 pipe_config, "[failed]");
12106 return ret;
12107 }
12108
12109 if (i915.fastboot &&
12110 intel_pipe_config_compare(dev_priv,
12111 to_intel_crtc_state(old_crtc_state),
12112 pipe_config, true)) {
12113 crtc_state->mode_changed = false;
12114 pipe_config->update_pipe = true;
12115 }
12116
12117 if (needs_modeset(crtc_state))
12118 any_ms = true;
12119
12120 ret = drm_atomic_add_affected_planes(state, crtc);
12121 if (ret)
12122 return ret;
12123
12124 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
12125 needs_modeset(crtc_state) ?
12126 "[modeset]" : "[fastset]");
12127 }
12128
12129 if (any_ms) {
12130 ret = intel_modeset_checks(state);
12131
12132 if (ret)
12133 return ret;
12134 } else {
12135 intel_state->cdclk.logical = dev_priv->cdclk.logical;
12136 }
12137
12138 ret = drm_atomic_helper_check_planes(dev, state);
12139 if (ret)
12140 return ret;
12141
12142 intel_fbc_choose_crtc(dev_priv, state);
12143 return calc_watermark_data(state);
12144 }
12145
12146 static int intel_atomic_prepare_commit(struct drm_device *dev,
12147 struct drm_atomic_state *state)
12148 {
12149 return drm_atomic_helper_prepare_planes(dev, state);
12150 }
12151
12152 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
12153 {
12154 struct drm_device *dev = crtc->base.dev;
12155
12156 if (!dev->max_vblank_count)
12157 return drm_crtc_accurate_vblank_count(&crtc->base);
12158
12159 return dev->driver->get_vblank_counter(dev, crtc->pipe);
12160 }
12161
12162 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
12163 struct drm_i915_private *dev_priv,
12164 unsigned crtc_mask)
12165 {
12166 unsigned last_vblank_count[I915_MAX_PIPES];
12167 enum pipe pipe;
12168 int ret;
12169
12170 if (!crtc_mask)
12171 return;
12172
12173 for_each_pipe(dev_priv, pipe) {
12174 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12175 pipe);
12176
12177 if (!((1 << pipe) & crtc_mask))
12178 continue;
12179
12180 ret = drm_crtc_vblank_get(&crtc->base);
12181 if (WARN_ON(ret != 0)) {
12182 crtc_mask &= ~(1 << pipe);
12183 continue;
12184 }
12185
12186 last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
12187 }
12188
12189 for_each_pipe(dev_priv, pipe) {
12190 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
12191 pipe);
12192 long lret;
12193
12194 if (!((1 << pipe) & crtc_mask))
12195 continue;
12196
12197 lret = wait_event_timeout(dev->vblank[pipe].queue,
12198 last_vblank_count[pipe] !=
12199 drm_crtc_vblank_count(&crtc->base),
12200 msecs_to_jiffies(50));
12201
12202 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
12203
12204 drm_crtc_vblank_put(&crtc->base);
12205 }
12206 }
12207
12208 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
12209 {
12210 /* fb updated, need to unpin old fb */
12211 if (crtc_state->fb_changed)
12212 return true;
12213
12214 /* wm changes, need vblank before final wm's */
12215 if (crtc_state->update_wm_post)
12216 return true;
12217
12218 if (crtc_state->wm.need_postvbl_update)
12219 return true;
12220
12221 return false;
12222 }
12223
12224 static void intel_update_crtc(struct drm_crtc *crtc,
12225 struct drm_atomic_state *state,
12226 struct drm_crtc_state *old_crtc_state,
12227 struct drm_crtc_state *new_crtc_state,
12228 unsigned int *crtc_vblank_mask)
12229 {
12230 struct drm_device *dev = crtc->dev;
12231 struct drm_i915_private *dev_priv = to_i915(dev);
12232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12233 struct intel_crtc_state *pipe_config = to_intel_crtc_state(new_crtc_state);
12234 bool modeset = needs_modeset(new_crtc_state);
12235
12236 if (modeset) {
12237 update_scanline_offset(intel_crtc);
12238 dev_priv->display.crtc_enable(pipe_config, state);
12239 } else {
12240 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12241 pipe_config);
12242 }
12243
12244 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12245 intel_fbc_enable(
12246 intel_crtc, pipe_config,
12247 to_intel_plane_state(crtc->primary->state));
12248 }
12249
12250 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
12251
12252 if (needs_vblank_wait(pipe_config))
12253 *crtc_vblank_mask |= drm_crtc_mask(crtc);
12254 }
12255
12256 static void intel_update_crtcs(struct drm_atomic_state *state,
12257 unsigned int *crtc_vblank_mask)
12258 {
12259 struct drm_crtc *crtc;
12260 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12261 int i;
12262
12263 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12264 if (!new_crtc_state->active)
12265 continue;
12266
12267 intel_update_crtc(crtc, state, old_crtc_state,
12268 new_crtc_state, crtc_vblank_mask);
12269 }
12270 }
12271
12272 static void skl_update_crtcs(struct drm_atomic_state *state,
12273 unsigned int *crtc_vblank_mask)
12274 {
12275 struct drm_i915_private *dev_priv = to_i915(state->dev);
12276 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12277 struct drm_crtc *crtc;
12278 struct intel_crtc *intel_crtc;
12279 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12280 struct intel_crtc_state *cstate;
12281 unsigned int updated = 0;
12282 bool progress;
12283 enum pipe pipe;
12284 int i;
12285
12286 const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
12287
12288 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
12289 /* ignore allocations for crtc's that have been turned off. */
12290 if (new_crtc_state->active)
12291 entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
12292
12293 /*
12294 * Whenever the number of active pipes changes, we need to make sure we
12295 * update the pipes in the right order so that their ddb allocations
12296 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
12297 * cause pipe underruns and other bad stuff.
12298 */
12299 do {
12300 progress = false;
12301
12302 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12303 bool vbl_wait = false;
12304 unsigned int cmask = drm_crtc_mask(crtc);
12305
12306 intel_crtc = to_intel_crtc(crtc);
12307 cstate = to_intel_crtc_state(crtc->state);
12308 pipe = intel_crtc->pipe;
12309
12310 if (updated & cmask || !cstate->base.active)
12311 continue;
12312
12313 if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
12314 continue;
12315
12316 updated |= cmask;
12317 entries[i] = &cstate->wm.skl.ddb;
12318
12319 /*
12320 * If this is an already active pipe, it's DDB changed,
12321 * and this isn't the last pipe that needs updating
12322 * then we need to wait for a vblank to pass for the
12323 * new ddb allocation to take effect.
12324 */
12325 if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
12326 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
12327 !new_crtc_state->active_changed &&
12328 intel_state->wm_results.dirty_pipes != updated)
12329 vbl_wait = true;
12330
12331 intel_update_crtc(crtc, state, old_crtc_state,
12332 new_crtc_state, crtc_vblank_mask);
12333
12334 if (vbl_wait)
12335 intel_wait_for_vblank(dev_priv, pipe);
12336
12337 progress = true;
12338 }
12339 } while (progress);
12340 }
12341
12342 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
12343 {
12344 struct intel_atomic_state *state, *next;
12345 struct llist_node *freed;
12346
12347 freed = llist_del_all(&dev_priv->atomic_helper.free_list);
12348 llist_for_each_entry_safe(state, next, freed, freed)
12349 drm_atomic_state_put(&state->base);
12350 }
12351
12352 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
12353 {
12354 struct drm_i915_private *dev_priv =
12355 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
12356
12357 intel_atomic_helper_free_state(dev_priv);
12358 }
12359
12360 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
12361 {
12362 struct wait_queue_entry wait_fence, wait_reset;
12363 struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
12364
12365 init_wait_entry(&wait_fence, 0);
12366 init_wait_entry(&wait_reset, 0);
12367 for (;;) {
12368 prepare_to_wait(&intel_state->commit_ready.wait,
12369 &wait_fence, TASK_UNINTERRUPTIBLE);
12370 prepare_to_wait(&dev_priv->gpu_error.wait_queue,
12371 &wait_reset, TASK_UNINTERRUPTIBLE);
12372
12373
12374 if (i915_sw_fence_done(&intel_state->commit_ready)
12375 || test_bit(I915_RESET_MODESET, &dev_priv->gpu_error.flags))
12376 break;
12377
12378 schedule();
12379 }
12380 finish_wait(&intel_state->commit_ready.wait, &wait_fence);
12381 finish_wait(&dev_priv->gpu_error.wait_queue, &wait_reset);
12382 }
12383
12384 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
12385 {
12386 struct drm_device *dev = state->dev;
12387 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12388 struct drm_i915_private *dev_priv = to_i915(dev);
12389 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
12390 struct drm_crtc *crtc;
12391 struct intel_crtc_state *intel_cstate;
12392 u64 put_domains[I915_MAX_PIPES] = {};
12393 unsigned crtc_vblank_mask = 0;
12394 int i;
12395
12396 intel_atomic_commit_fence_wait(intel_state);
12397
12398 drm_atomic_helper_wait_for_dependencies(state);
12399
12400 if (intel_state->modeset)
12401 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
12402
12403 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12404 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12405
12406 if (needs_modeset(new_crtc_state) ||
12407 to_intel_crtc_state(new_crtc_state)->update_pipe) {
12408
12409 put_domains[to_intel_crtc(crtc)->pipe] =
12410 modeset_get_crtc_power_domains(crtc,
12411 to_intel_crtc_state(new_crtc_state));
12412 }
12413
12414 if (!needs_modeset(new_crtc_state))
12415 continue;
12416
12417 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state),
12418 to_intel_crtc_state(new_crtc_state));
12419
12420 if (old_crtc_state->active) {
12421 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
12422 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
12423 intel_crtc->active = false;
12424 intel_fbc_disable(intel_crtc);
12425 intel_disable_shared_dpll(intel_crtc);
12426
12427 /*
12428 * Underruns don't always raise
12429 * interrupts, so check manually.
12430 */
12431 intel_check_cpu_fifo_underruns(dev_priv);
12432 intel_check_pch_fifo_underruns(dev_priv);
12433
12434 if (!crtc->state->active) {
12435 /*
12436 * Make sure we don't call initial_watermarks
12437 * for ILK-style watermark updates.
12438 *
12439 * No clue what this is supposed to achieve.
12440 */
12441 if (INTEL_GEN(dev_priv) >= 9)
12442 dev_priv->display.initial_watermarks(intel_state,
12443 to_intel_crtc_state(crtc->state));
12444 }
12445 }
12446 }
12447
12448 /* Only after disabling all output pipelines that will be changed can we
12449 * update the the output configuration. */
12450 intel_modeset_update_crtc_state(state);
12451
12452 if (intel_state->modeset) {
12453 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12454
12455 intel_set_cdclk(dev_priv, &dev_priv->cdclk.actual);
12456
12457 /*
12458 * SKL workaround: bspec recommends we disable the SAGV when we
12459 * have more then one pipe enabled
12460 */
12461 if (!intel_can_enable_sagv(state))
12462 intel_disable_sagv(dev_priv);
12463
12464 intel_modeset_verify_disabled(dev, state);
12465 }
12466
12467 /* Complete the events for pipes that have now been disabled */
12468 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12469 bool modeset = needs_modeset(new_crtc_state);
12470
12471 /* Complete events for now disable pipes here. */
12472 if (modeset && !new_crtc_state->active && new_crtc_state->event) {
12473 spin_lock_irq(&dev->event_lock);
12474 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
12475 spin_unlock_irq(&dev->event_lock);
12476
12477 new_crtc_state->event = NULL;
12478 }
12479 }
12480
12481 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12482 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
12483
12484 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
12485 * already, but still need the state for the delayed optimization. To
12486 * fix this:
12487 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
12488 * - schedule that vblank worker _before_ calling hw_done
12489 * - at the start of commit_tail, cancel it _synchrously
12490 * - switch over to the vblank wait helper in the core after that since
12491 * we don't need out special handling any more.
12492 */
12493 if (!state->legacy_cursor_update)
12494 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
12495
12496 /*
12497 * Now that the vblank has passed, we can go ahead and program the
12498 * optimal watermarks on platforms that need two-step watermark
12499 * programming.
12500 *
12501 * TODO: Move this (and other cleanup) to an async worker eventually.
12502 */
12503 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
12504 intel_cstate = to_intel_crtc_state(new_crtc_state);
12505
12506 if (dev_priv->display.optimize_watermarks)
12507 dev_priv->display.optimize_watermarks(intel_state,
12508 intel_cstate);
12509 }
12510
12511 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
12512 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
12513
12514 if (put_domains[i])
12515 modeset_put_power_domains(dev_priv, put_domains[i]);
12516
12517 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
12518 }
12519
12520 if (intel_state->modeset && intel_can_enable_sagv(state))
12521 intel_enable_sagv(dev_priv);
12522
12523 drm_atomic_helper_commit_hw_done(state);
12524
12525 if (intel_state->modeset) {
12526 /* As one of the primary mmio accessors, KMS has a high
12527 * likelihood of triggering bugs in unclaimed access. After we
12528 * finish modesetting, see if an error has been flagged, and if
12529 * so enable debugging for the next modeset - and hope we catch
12530 * the culprit.
12531 */
12532 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
12533 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
12534 }
12535
12536 drm_atomic_helper_cleanup_planes(dev, state);
12537
12538 drm_atomic_helper_commit_cleanup_done(state);
12539
12540 drm_atomic_state_put(state);
12541
12542 intel_atomic_helper_free_state(dev_priv);
12543 }
12544
12545 static void intel_atomic_commit_work(struct work_struct *work)
12546 {
12547 struct drm_atomic_state *state =
12548 container_of(work, struct drm_atomic_state, commit_work);
12549
12550 intel_atomic_commit_tail(state);
12551 }
12552
12553 static int __i915_sw_fence_call
12554 intel_atomic_commit_ready(struct i915_sw_fence *fence,
12555 enum i915_sw_fence_notify notify)
12556 {
12557 struct intel_atomic_state *state =
12558 container_of(fence, struct intel_atomic_state, commit_ready);
12559
12560 switch (notify) {
12561 case FENCE_COMPLETE:
12562 /* we do blocking waits in the worker, nothing to do here */
12563 break;
12564 case FENCE_FREE:
12565 {
12566 struct intel_atomic_helper *helper =
12567 &to_i915(state->base.dev)->atomic_helper;
12568
12569 if (llist_add(&state->freed, &helper->free_list))
12570 schedule_work(&helper->free_work);
12571 break;
12572 }
12573 }
12574
12575 return NOTIFY_DONE;
12576 }
12577
12578 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
12579 {
12580 struct drm_plane_state *old_plane_state, *new_plane_state;
12581 struct drm_plane *plane;
12582 int i;
12583
12584 for_each_oldnew_plane_in_state(state, plane, old_plane_state, new_plane_state, i)
12585 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
12586 intel_fb_obj(new_plane_state->fb),
12587 to_intel_plane(plane)->frontbuffer_bit);
12588 }
12589
12590 /**
12591 * intel_atomic_commit - commit validated state object
12592 * @dev: DRM device
12593 * @state: the top-level driver state object
12594 * @nonblock: nonblocking commit
12595 *
12596 * This function commits a top-level state object that has been validated
12597 * with drm_atomic_helper_check().
12598 *
12599 * RETURNS
12600 * Zero for success or -errno.
12601 */
12602 static int intel_atomic_commit(struct drm_device *dev,
12603 struct drm_atomic_state *state,
12604 bool nonblock)
12605 {
12606 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
12607 struct drm_i915_private *dev_priv = to_i915(dev);
12608 int ret = 0;
12609
12610 ret = drm_atomic_helper_setup_commit(state, nonblock);
12611 if (ret)
12612 return ret;
12613
12614 drm_atomic_state_get(state);
12615 i915_sw_fence_init(&intel_state->commit_ready,
12616 intel_atomic_commit_ready);
12617
12618 ret = intel_atomic_prepare_commit(dev, state);
12619 if (ret) {
12620 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
12621 i915_sw_fence_commit(&intel_state->commit_ready);
12622 return ret;
12623 }
12624
12625 /*
12626 * The intel_legacy_cursor_update() fast path takes care
12627 * of avoiding the vblank waits for simple cursor
12628 * movement and flips. For cursor on/off and size changes,
12629 * we want to perform the vblank waits so that watermark
12630 * updates happen during the correct frames. Gen9+ have
12631 * double buffered watermarks and so shouldn't need this.
12632 *
12633 * Do this after drm_atomic_helper_setup_commit() and
12634 * intel_atomic_prepare_commit() because we still want
12635 * to skip the flip and fb cleanup waits. Although that
12636 * does risk yanking the mapping from under the display
12637 * engine.
12638 *
12639 * FIXME doing watermarks and fb cleanup from a vblank worker
12640 * (assuming we had any) would solve these problems.
12641 */
12642 if (INTEL_GEN(dev_priv) < 9)
12643 state->legacy_cursor_update = false;
12644
12645 ret = drm_atomic_helper_swap_state(state, true);
12646 if (ret) {
12647 i915_sw_fence_commit(&intel_state->commit_ready);
12648
12649 drm_atomic_helper_cleanup_planes(dev, state);
12650 return ret;
12651 }
12652 dev_priv->wm.distrust_bios_wm = false;
12653 intel_shared_dpll_swap_state(state);
12654 intel_atomic_track_fbs(state);
12655
12656 if (intel_state->modeset) {
12657 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
12658 sizeof(intel_state->min_pixclk));
12659 dev_priv->active_crtcs = intel_state->active_crtcs;
12660 dev_priv->cdclk.logical = intel_state->cdclk.logical;
12661 dev_priv->cdclk.actual = intel_state->cdclk.actual;
12662 }
12663
12664 drm_atomic_state_get(state);
12665 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
12666
12667 i915_sw_fence_commit(&intel_state->commit_ready);
12668 if (nonblock)
12669 queue_work(system_unbound_wq, &state->commit_work);
12670 else
12671 intel_atomic_commit_tail(state);
12672
12673
12674 return 0;
12675 }
12676
12677 static const struct drm_crtc_funcs intel_crtc_funcs = {
12678 .gamma_set = drm_atomic_helper_legacy_gamma_set,
12679 .set_config = drm_atomic_helper_set_config,
12680 .destroy = intel_crtc_destroy,
12681 .page_flip = drm_atomic_helper_page_flip,
12682 .atomic_duplicate_state = intel_crtc_duplicate_state,
12683 .atomic_destroy_state = intel_crtc_destroy_state,
12684 .set_crc_source = intel_crtc_set_crc_source,
12685 };
12686
12687 /**
12688 * intel_prepare_plane_fb - Prepare fb for usage on plane
12689 * @plane: drm plane to prepare for
12690 * @fb: framebuffer to prepare for presentation
12691 *
12692 * Prepares a framebuffer for usage on a display plane. Generally this
12693 * involves pinning the underlying object and updating the frontbuffer tracking
12694 * bits. Some older platforms need special physical address handling for
12695 * cursor planes.
12696 *
12697 * Must be called with struct_mutex held.
12698 *
12699 * Returns 0 on success, negative error code on failure.
12700 */
12701 int
12702 intel_prepare_plane_fb(struct drm_plane *plane,
12703 struct drm_plane_state *new_state)
12704 {
12705 struct intel_atomic_state *intel_state =
12706 to_intel_atomic_state(new_state->state);
12707 struct drm_i915_private *dev_priv = to_i915(plane->dev);
12708 struct drm_framebuffer *fb = new_state->fb;
12709 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12710 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
12711 int ret;
12712
12713 if (old_obj) {
12714 struct drm_crtc_state *crtc_state =
12715 drm_atomic_get_existing_crtc_state(new_state->state,
12716 plane->state->crtc);
12717
12718 /* Big Hammer, we also need to ensure that any pending
12719 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
12720 * current scanout is retired before unpinning the old
12721 * framebuffer. Note that we rely on userspace rendering
12722 * into the buffer attached to the pipe they are waiting
12723 * on. If not, userspace generates a GPU hang with IPEHR
12724 * point to the MI_WAIT_FOR_EVENT.
12725 *
12726 * This should only fail upon a hung GPU, in which case we
12727 * can safely continue.
12728 */
12729 if (needs_modeset(crtc_state)) {
12730 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
12731 old_obj->resv, NULL,
12732 false, 0,
12733 GFP_KERNEL);
12734 if (ret < 0)
12735 return ret;
12736 }
12737 }
12738
12739 if (new_state->fence) { /* explicit fencing */
12740 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
12741 new_state->fence,
12742 I915_FENCE_TIMEOUT,
12743 GFP_KERNEL);
12744 if (ret < 0)
12745 return ret;
12746 }
12747
12748 if (!obj)
12749 return 0;
12750
12751 ret = i915_gem_object_pin_pages(obj);
12752 if (ret)
12753 return ret;
12754
12755 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
12756 if (ret) {
12757 i915_gem_object_unpin_pages(obj);
12758 return ret;
12759 }
12760
12761 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
12762 INTEL_INFO(dev_priv)->cursor_needs_physical) {
12763 const int align = intel_cursor_alignment(dev_priv);
12764
12765 ret = i915_gem_object_attach_phys(obj, align);
12766 } else {
12767 struct i915_vma *vma;
12768
12769 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
12770 if (!IS_ERR(vma))
12771 to_intel_plane_state(new_state)->vma = vma;
12772 else
12773 ret = PTR_ERR(vma);
12774 }
12775
12776 i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12777
12778 mutex_unlock(&dev_priv->drm.struct_mutex);
12779 i915_gem_object_unpin_pages(obj);
12780 if (ret)
12781 return ret;
12782
12783 if (!new_state->fence) { /* implicit fencing */
12784 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
12785 obj->resv, NULL,
12786 false, I915_FENCE_TIMEOUT,
12787 GFP_KERNEL);
12788 if (ret < 0)
12789 return ret;
12790 }
12791
12792 return 0;
12793 }
12794
12795 /**
12796 * intel_cleanup_plane_fb - Cleans up an fb after plane use
12797 * @plane: drm plane to clean up for
12798 * @fb: old framebuffer that was on plane
12799 *
12800 * Cleans up a framebuffer that has just been removed from a plane.
12801 *
12802 * Must be called with struct_mutex held.
12803 */
12804 void
12805 intel_cleanup_plane_fb(struct drm_plane *plane,
12806 struct drm_plane_state *old_state)
12807 {
12808 struct i915_vma *vma;
12809
12810 /* Should only be called after a successful intel_prepare_plane_fb()! */
12811 vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
12812 if (vma) {
12813 mutex_lock(&plane->dev->struct_mutex);
12814 intel_unpin_fb_vma(vma);
12815 mutex_unlock(&plane->dev->struct_mutex);
12816 }
12817 }
12818
12819 int
12820 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
12821 {
12822 struct drm_i915_private *dev_priv;
12823 int max_scale;
12824 int crtc_clock, max_dotclk;
12825
12826 if (!intel_crtc || !crtc_state->base.enable)
12827 return DRM_PLANE_HELPER_NO_SCALING;
12828
12829 dev_priv = to_i915(intel_crtc->base.dev);
12830
12831 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
12832 max_dotclk = to_intel_atomic_state(crtc_state->base.state)->cdclk.logical.cdclk;
12833
12834 if (IS_GEMINILAKE(dev_priv))
12835 max_dotclk *= 2;
12836
12837 if (WARN_ON_ONCE(!crtc_clock || max_dotclk < crtc_clock))
12838 return DRM_PLANE_HELPER_NO_SCALING;
12839
12840 /*
12841 * skl max scale is lower of:
12842 * close to 3 but not 3, -1 is for that purpose
12843 * or
12844 * cdclk/crtc_clock
12845 */
12846 max_scale = min((1 << 16) * 3 - 1,
12847 (1 << 8) * ((max_dotclk << 8) / crtc_clock));
12848
12849 return max_scale;
12850 }
12851
12852 static int
12853 intel_check_primary_plane(struct intel_plane *plane,
12854 struct intel_crtc_state *crtc_state,
12855 struct intel_plane_state *state)
12856 {
12857 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
12858 struct drm_crtc *crtc = state->base.crtc;
12859 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
12860 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
12861 bool can_position = false;
12862 int ret;
12863
12864 if (INTEL_GEN(dev_priv) >= 9) {
12865 /* use scaler when colorkey is not required */
12866 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
12867 min_scale = 1;
12868 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
12869 }
12870 can_position = true;
12871 }
12872
12873 ret = drm_plane_helper_check_state(&state->base,
12874 &state->clip,
12875 min_scale, max_scale,
12876 can_position, true);
12877 if (ret)
12878 return ret;
12879
12880 if (!state->base.fb)
12881 return 0;
12882
12883 if (INTEL_GEN(dev_priv) >= 9) {
12884 ret = skl_check_plane_surface(state);
12885 if (ret)
12886 return ret;
12887
12888 state->ctl = skl_plane_ctl(crtc_state, state);
12889 } else {
12890 ret = i9xx_check_plane_surface(state);
12891 if (ret)
12892 return ret;
12893
12894 state->ctl = i9xx_plane_ctl(crtc_state, state);
12895 }
12896
12897 return 0;
12898 }
12899
12900 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
12901 struct drm_crtc_state *old_crtc_state)
12902 {
12903 struct drm_device *dev = crtc->dev;
12904 struct drm_i915_private *dev_priv = to_i915(dev);
12905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12906 struct intel_crtc_state *intel_cstate =
12907 to_intel_crtc_state(crtc->state);
12908 struct intel_crtc_state *old_intel_cstate =
12909 to_intel_crtc_state(old_crtc_state);
12910 struct intel_atomic_state *old_intel_state =
12911 to_intel_atomic_state(old_crtc_state->state);
12912 bool modeset = needs_modeset(crtc->state);
12913
12914 if (!modeset &&
12915 (intel_cstate->base.color_mgmt_changed ||
12916 intel_cstate->update_pipe)) {
12917 intel_color_set_csc(crtc->state);
12918 intel_color_load_luts(crtc->state);
12919 }
12920
12921 /* Perform vblank evasion around commit operation */
12922 intel_pipe_update_start(intel_crtc);
12923
12924 if (modeset)
12925 goto out;
12926
12927 if (intel_cstate->update_pipe)
12928 intel_update_pipe_config(intel_crtc, old_intel_cstate);
12929 else if (INTEL_GEN(dev_priv) >= 9)
12930 skl_detach_scalers(intel_crtc);
12931
12932 out:
12933 if (dev_priv->display.atomic_update_watermarks)
12934 dev_priv->display.atomic_update_watermarks(old_intel_state,
12935 intel_cstate);
12936 }
12937
12938 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
12939 struct drm_crtc_state *old_crtc_state)
12940 {
12941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12942
12943 intel_pipe_update_end(intel_crtc);
12944 }
12945
12946 /**
12947 * intel_plane_destroy - destroy a plane
12948 * @plane: plane to destroy
12949 *
12950 * Common destruction function for all types of planes (primary, cursor,
12951 * sprite).
12952 */
12953 void intel_plane_destroy(struct drm_plane *plane)
12954 {
12955 drm_plane_cleanup(plane);
12956 kfree(to_intel_plane(plane));
12957 }
12958
12959 static bool i8xx_mod_supported(uint32_t format, uint64_t modifier)
12960 {
12961 switch (format) {
12962 case DRM_FORMAT_C8:
12963 case DRM_FORMAT_RGB565:
12964 case DRM_FORMAT_XRGB1555:
12965 case DRM_FORMAT_XRGB8888:
12966 return modifier == DRM_FORMAT_MOD_LINEAR ||
12967 modifier == I915_FORMAT_MOD_X_TILED;
12968 default:
12969 return false;
12970 }
12971 }
12972
12973 static bool i965_mod_supported(uint32_t format, uint64_t modifier)
12974 {
12975 switch (format) {
12976 case DRM_FORMAT_C8:
12977 case DRM_FORMAT_RGB565:
12978 case DRM_FORMAT_XRGB8888:
12979 case DRM_FORMAT_XBGR8888:
12980 case DRM_FORMAT_XRGB2101010:
12981 case DRM_FORMAT_XBGR2101010:
12982 return modifier == DRM_FORMAT_MOD_LINEAR ||
12983 modifier == I915_FORMAT_MOD_X_TILED;
12984 default:
12985 return false;
12986 }
12987 }
12988
12989 static bool skl_mod_supported(uint32_t format, uint64_t modifier)
12990 {
12991 switch (format) {
12992 case DRM_FORMAT_XRGB8888:
12993 case DRM_FORMAT_XBGR8888:
12994 case DRM_FORMAT_ARGB8888:
12995 case DRM_FORMAT_ABGR8888:
12996 if (modifier == I915_FORMAT_MOD_Yf_TILED_CCS ||
12997 modifier == I915_FORMAT_MOD_Y_TILED_CCS)
12998 return true;
12999 /* fall through */
13000 case DRM_FORMAT_RGB565:
13001 case DRM_FORMAT_XRGB2101010:
13002 case DRM_FORMAT_XBGR2101010:
13003 case DRM_FORMAT_YUYV:
13004 case DRM_FORMAT_YVYU:
13005 case DRM_FORMAT_UYVY:
13006 case DRM_FORMAT_VYUY:
13007 if (modifier == I915_FORMAT_MOD_Yf_TILED)
13008 return true;
13009 /* fall through */
13010 case DRM_FORMAT_C8:
13011 if (modifier == DRM_FORMAT_MOD_LINEAR ||
13012 modifier == I915_FORMAT_MOD_X_TILED ||
13013 modifier == I915_FORMAT_MOD_Y_TILED)
13014 return true;
13015 /* fall through */
13016 default:
13017 return false;
13018 }
13019 }
13020
13021 static bool intel_primary_plane_format_mod_supported(struct drm_plane *plane,
13022 uint32_t format,
13023 uint64_t modifier)
13024 {
13025 struct drm_i915_private *dev_priv = to_i915(plane->dev);
13026
13027 if (WARN_ON(modifier == DRM_FORMAT_MOD_INVALID))
13028 return false;
13029
13030 if ((modifier >> 56) != DRM_FORMAT_MOD_VENDOR_INTEL &&
13031 modifier != DRM_FORMAT_MOD_LINEAR)
13032 return false;
13033
13034 if (INTEL_GEN(dev_priv) >= 9)
13035 return skl_mod_supported(format, modifier);
13036 else if (INTEL_GEN(dev_priv) >= 4)
13037 return i965_mod_supported(format, modifier);
13038 else
13039 return i8xx_mod_supported(format, modifier);
13040
13041 unreachable();
13042 }
13043
13044 static bool intel_cursor_plane_format_mod_supported(struct drm_plane *plane,
13045 uint32_t format,
13046 uint64_t modifier)
13047 {
13048 if (WARN_ON(modifier == DRM_FORMAT_MOD_INVALID))
13049 return false;
13050
13051 return modifier == DRM_FORMAT_MOD_LINEAR && format == DRM_FORMAT_ARGB8888;
13052 }
13053
13054 static struct drm_plane_funcs intel_plane_funcs = {
13055 .update_plane = drm_atomic_helper_update_plane,
13056 .disable_plane = drm_atomic_helper_disable_plane,
13057 .destroy = intel_plane_destroy,
13058 .atomic_get_property = intel_plane_atomic_get_property,
13059 .atomic_set_property = intel_plane_atomic_set_property,
13060 .atomic_duplicate_state = intel_plane_duplicate_state,
13061 .atomic_destroy_state = intel_plane_destroy_state,
13062 .format_mod_supported = intel_primary_plane_format_mod_supported,
13063 };
13064
13065 static int
13066 intel_legacy_cursor_update(struct drm_plane *plane,
13067 struct drm_crtc *crtc,
13068 struct drm_framebuffer *fb,
13069 int crtc_x, int crtc_y,
13070 unsigned int crtc_w, unsigned int crtc_h,
13071 uint32_t src_x, uint32_t src_y,
13072 uint32_t src_w, uint32_t src_h,
13073 struct drm_modeset_acquire_ctx *ctx)
13074 {
13075 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13076 int ret;
13077 struct drm_plane_state *old_plane_state, *new_plane_state;
13078 struct intel_plane *intel_plane = to_intel_plane(plane);
13079 struct drm_framebuffer *old_fb;
13080 struct drm_crtc_state *crtc_state = crtc->state;
13081 struct i915_vma *old_vma, *vma;
13082
13083 /*
13084 * When crtc is inactive or there is a modeset pending,
13085 * wait for it to complete in the slowpath
13086 */
13087 if (!crtc_state->active || needs_modeset(crtc_state) ||
13088 to_intel_crtc_state(crtc_state)->update_pipe)
13089 goto slow;
13090
13091 old_plane_state = plane->state;
13092
13093 /*
13094 * If any parameters change that may affect watermarks,
13095 * take the slowpath. Only changing fb or position should be
13096 * in the fastpath.
13097 */
13098 if (old_plane_state->crtc != crtc ||
13099 old_plane_state->src_w != src_w ||
13100 old_plane_state->src_h != src_h ||
13101 old_plane_state->crtc_w != crtc_w ||
13102 old_plane_state->crtc_h != crtc_h ||
13103 !old_plane_state->fb != !fb)
13104 goto slow;
13105
13106 new_plane_state = intel_plane_duplicate_state(plane);
13107 if (!new_plane_state)
13108 return -ENOMEM;
13109
13110 drm_atomic_set_fb_for_plane(new_plane_state, fb);
13111
13112 new_plane_state->src_x = src_x;
13113 new_plane_state->src_y = src_y;
13114 new_plane_state->src_w = src_w;
13115 new_plane_state->src_h = src_h;
13116 new_plane_state->crtc_x = crtc_x;
13117 new_plane_state->crtc_y = crtc_y;
13118 new_plane_state->crtc_w = crtc_w;
13119 new_plane_state->crtc_h = crtc_h;
13120
13121 ret = intel_plane_atomic_check_with_state(to_intel_crtc_state(crtc->state),
13122 to_intel_plane_state(new_plane_state));
13123 if (ret)
13124 goto out_free;
13125
13126 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
13127 if (ret)
13128 goto out_free;
13129
13130 if (INTEL_INFO(dev_priv)->cursor_needs_physical) {
13131 int align = intel_cursor_alignment(dev_priv);
13132
13133 ret = i915_gem_object_attach_phys(intel_fb_obj(fb), align);
13134 if (ret) {
13135 DRM_DEBUG_KMS("failed to attach phys object\n");
13136 goto out_unlock;
13137 }
13138 } else {
13139 vma = intel_pin_and_fence_fb_obj(fb, new_plane_state->rotation);
13140 if (IS_ERR(vma)) {
13141 DRM_DEBUG_KMS("failed to pin object\n");
13142
13143 ret = PTR_ERR(vma);
13144 goto out_unlock;
13145 }
13146
13147 to_intel_plane_state(new_plane_state)->vma = vma;
13148 }
13149
13150 old_fb = old_plane_state->fb;
13151 old_vma = to_intel_plane_state(old_plane_state)->vma;
13152
13153 i915_gem_track_fb(intel_fb_obj(old_fb), intel_fb_obj(fb),
13154 intel_plane->frontbuffer_bit);
13155
13156 /* Swap plane state */
13157 new_plane_state->fence = old_plane_state->fence;
13158 *to_intel_plane_state(old_plane_state) = *to_intel_plane_state(new_plane_state);
13159 new_plane_state->fence = NULL;
13160 new_plane_state->fb = old_fb;
13161 to_intel_plane_state(new_plane_state)->vma = NULL;
13162
13163 if (plane->state->visible) {
13164 trace_intel_update_plane(plane, to_intel_crtc(crtc));
13165 intel_plane->update_plane(intel_plane,
13166 to_intel_crtc_state(crtc->state),
13167 to_intel_plane_state(plane->state));
13168 } else {
13169 trace_intel_disable_plane(plane, to_intel_crtc(crtc));
13170 intel_plane->disable_plane(intel_plane, to_intel_crtc(crtc));
13171 }
13172
13173 if (old_vma)
13174 intel_unpin_fb_vma(old_vma);
13175
13176 out_unlock:
13177 mutex_unlock(&dev_priv->drm.struct_mutex);
13178 out_free:
13179 intel_plane_destroy_state(plane, new_plane_state);
13180 return ret;
13181
13182 slow:
13183 return drm_atomic_helper_update_plane(plane, crtc, fb,
13184 crtc_x, crtc_y, crtc_w, crtc_h,
13185 src_x, src_y, src_w, src_h, ctx);
13186 }
13187
13188 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
13189 .update_plane = intel_legacy_cursor_update,
13190 .disable_plane = drm_atomic_helper_disable_plane,
13191 .destroy = intel_plane_destroy,
13192 .atomic_get_property = intel_plane_atomic_get_property,
13193 .atomic_set_property = intel_plane_atomic_set_property,
13194 .atomic_duplicate_state = intel_plane_duplicate_state,
13195 .atomic_destroy_state = intel_plane_destroy_state,
13196 .format_mod_supported = intel_cursor_plane_format_mod_supported,
13197 };
13198
13199 static struct intel_plane *
13200 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
13201 {
13202 struct intel_plane *primary = NULL;
13203 struct intel_plane_state *state = NULL;
13204 const uint32_t *intel_primary_formats;
13205 unsigned int supported_rotations;
13206 unsigned int num_formats;
13207 const uint64_t *modifiers;
13208 int ret;
13209
13210 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13211 if (!primary) {
13212 ret = -ENOMEM;
13213 goto fail;
13214 }
13215
13216 state = intel_create_plane_state(&primary->base);
13217 if (!state) {
13218 ret = -ENOMEM;
13219 goto fail;
13220 }
13221
13222 primary->base.state = &state->base;
13223
13224 primary->can_scale = false;
13225 primary->max_downscale = 1;
13226 if (INTEL_GEN(dev_priv) >= 9) {
13227 primary->can_scale = true;
13228 state->scaler_id = -1;
13229 }
13230 primary->pipe = pipe;
13231 /*
13232 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
13233 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
13234 */
13235 if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
13236 primary->plane = (enum plane) !pipe;
13237 else
13238 primary->plane = (enum plane) pipe;
13239 primary->id = PLANE_PRIMARY;
13240 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13241 primary->check_plane = intel_check_primary_plane;
13242
13243 if (INTEL_GEN(dev_priv) >= 10) {
13244 intel_primary_formats = skl_primary_formats;
13245 num_formats = ARRAY_SIZE(skl_primary_formats);
13246 modifiers = skl_format_modifiers_ccs;
13247
13248 primary->update_plane = skylake_update_primary_plane;
13249 primary->disable_plane = skylake_disable_primary_plane;
13250 primary->get_hw_state = skl_plane_get_hw_state;
13251 } else if (INTEL_GEN(dev_priv) >= 9) {
13252 intel_primary_formats = skl_primary_formats;
13253 num_formats = ARRAY_SIZE(skl_primary_formats);
13254 if (pipe < PIPE_C)
13255 modifiers = skl_format_modifiers_ccs;
13256 else
13257 modifiers = skl_format_modifiers_noccs;
13258
13259 primary->update_plane = skylake_update_primary_plane;
13260 primary->disable_plane = skylake_disable_primary_plane;
13261 primary->get_hw_state = skl_plane_get_hw_state;
13262 } else if (INTEL_GEN(dev_priv) >= 4) {
13263 intel_primary_formats = i965_primary_formats;
13264 num_formats = ARRAY_SIZE(i965_primary_formats);
13265 modifiers = i9xx_format_modifiers;
13266
13267 primary->update_plane = i9xx_update_primary_plane;
13268 primary->disable_plane = i9xx_disable_primary_plane;
13269 primary->get_hw_state = i9xx_plane_get_hw_state;
13270 } else {
13271 intel_primary_formats = i8xx_primary_formats;
13272 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13273 modifiers = i9xx_format_modifiers;
13274
13275 primary->update_plane = i9xx_update_primary_plane;
13276 primary->disable_plane = i9xx_disable_primary_plane;
13277 primary->get_hw_state = i9xx_plane_get_hw_state;
13278 }
13279
13280 if (INTEL_GEN(dev_priv) >= 9)
13281 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13282 0, &intel_plane_funcs,
13283 intel_primary_formats, num_formats,
13284 modifiers,
13285 DRM_PLANE_TYPE_PRIMARY,
13286 "plane 1%c", pipe_name(pipe));
13287 else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
13288 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13289 0, &intel_plane_funcs,
13290 intel_primary_formats, num_formats,
13291 modifiers,
13292 DRM_PLANE_TYPE_PRIMARY,
13293 "primary %c", pipe_name(pipe));
13294 else
13295 ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
13296 0, &intel_plane_funcs,
13297 intel_primary_formats, num_formats,
13298 modifiers,
13299 DRM_PLANE_TYPE_PRIMARY,
13300 "plane %c", plane_name(primary->plane));
13301 if (ret)
13302 goto fail;
13303
13304 if (INTEL_GEN(dev_priv) >= 9) {
13305 supported_rotations =
13306 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_90 |
13307 DRM_MODE_ROTATE_180 | DRM_MODE_ROTATE_270;
13308 } else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
13309 supported_rotations =
13310 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
13311 DRM_MODE_REFLECT_X;
13312 } else if (INTEL_GEN(dev_priv) >= 4) {
13313 supported_rotations =
13314 DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
13315 } else {
13316 supported_rotations = DRM_MODE_ROTATE_0;
13317 }
13318
13319 if (INTEL_GEN(dev_priv) >= 4)
13320 drm_plane_create_rotation_property(&primary->base,
13321 DRM_MODE_ROTATE_0,
13322 supported_rotations);
13323
13324 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13325
13326 return primary;
13327
13328 fail:
13329 kfree(state);
13330 kfree(primary);
13331
13332 return ERR_PTR(ret);
13333 }
13334
13335 static struct intel_plane *
13336 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
13337 enum pipe pipe)
13338 {
13339 struct intel_plane *cursor = NULL;
13340 struct intel_plane_state *state = NULL;
13341 int ret;
13342
13343 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13344 if (!cursor) {
13345 ret = -ENOMEM;
13346 goto fail;
13347 }
13348
13349 state = intel_create_plane_state(&cursor->base);
13350 if (!state) {
13351 ret = -ENOMEM;
13352 goto fail;
13353 }
13354
13355 cursor->base.state = &state->base;
13356
13357 cursor->can_scale = false;
13358 cursor->max_downscale = 1;
13359 cursor->pipe = pipe;
13360 cursor->plane = pipe;
13361 cursor->id = PLANE_CURSOR;
13362 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13363
13364 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
13365 cursor->update_plane = i845_update_cursor;
13366 cursor->disable_plane = i845_disable_cursor;
13367 cursor->get_hw_state = i845_cursor_get_hw_state;
13368 cursor->check_plane = i845_check_cursor;
13369 } else {
13370 cursor->update_plane = i9xx_update_cursor;
13371 cursor->disable_plane = i9xx_disable_cursor;
13372 cursor->get_hw_state = i9xx_cursor_get_hw_state;
13373 cursor->check_plane = i9xx_check_cursor;
13374 }
13375
13376 cursor->cursor.base = ~0;
13377 cursor->cursor.cntl = ~0;
13378
13379 if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
13380 cursor->cursor.size = ~0;
13381
13382 ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
13383 0, &intel_cursor_plane_funcs,
13384 intel_cursor_formats,
13385 ARRAY_SIZE(intel_cursor_formats),
13386 cursor_format_modifiers,
13387 DRM_PLANE_TYPE_CURSOR,
13388 "cursor %c", pipe_name(pipe));
13389 if (ret)
13390 goto fail;
13391
13392 if (INTEL_GEN(dev_priv) >= 4)
13393 drm_plane_create_rotation_property(&cursor->base,
13394 DRM_MODE_ROTATE_0,
13395 DRM_MODE_ROTATE_0 |
13396 DRM_MODE_ROTATE_180);
13397
13398 if (INTEL_GEN(dev_priv) >= 9)
13399 state->scaler_id = -1;
13400
13401 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13402
13403 return cursor;
13404
13405 fail:
13406 kfree(state);
13407 kfree(cursor);
13408
13409 return ERR_PTR(ret);
13410 }
13411
13412 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
13413 struct intel_crtc_state *crtc_state)
13414 {
13415 struct intel_crtc_scaler_state *scaler_state =
13416 &crtc_state->scaler_state;
13417 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13418 int i;
13419
13420 crtc->num_scalers = dev_priv->info.num_scalers[crtc->pipe];
13421 if (!crtc->num_scalers)
13422 return;
13423
13424 for (i = 0; i < crtc->num_scalers; i++) {
13425 struct intel_scaler *scaler = &scaler_state->scalers[i];
13426
13427 scaler->in_use = 0;
13428 scaler->mode = PS_SCALER_MODE_DYN;
13429 }
13430
13431 scaler_state->scaler_id = -1;
13432 }
13433
13434 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
13435 {
13436 struct intel_crtc *intel_crtc;
13437 struct intel_crtc_state *crtc_state = NULL;
13438 struct intel_plane *primary = NULL;
13439 struct intel_plane *cursor = NULL;
13440 int sprite, ret;
13441
13442 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13443 if (!intel_crtc)
13444 return -ENOMEM;
13445
13446 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13447 if (!crtc_state) {
13448 ret = -ENOMEM;
13449 goto fail;
13450 }
13451 intel_crtc->config = crtc_state;
13452 intel_crtc->base.state = &crtc_state->base;
13453 crtc_state->base.crtc = &intel_crtc->base;
13454
13455 primary = intel_primary_plane_create(dev_priv, pipe);
13456 if (IS_ERR(primary)) {
13457 ret = PTR_ERR(primary);
13458 goto fail;
13459 }
13460 intel_crtc->plane_ids_mask |= BIT(primary->id);
13461
13462 for_each_sprite(dev_priv, pipe, sprite) {
13463 struct intel_plane *plane;
13464
13465 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
13466 if (IS_ERR(plane)) {
13467 ret = PTR_ERR(plane);
13468 goto fail;
13469 }
13470 intel_crtc->plane_ids_mask |= BIT(plane->id);
13471 }
13472
13473 cursor = intel_cursor_plane_create(dev_priv, pipe);
13474 if (IS_ERR(cursor)) {
13475 ret = PTR_ERR(cursor);
13476 goto fail;
13477 }
13478 intel_crtc->plane_ids_mask |= BIT(cursor->id);
13479
13480 ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
13481 &primary->base, &cursor->base,
13482 &intel_crtc_funcs,
13483 "pipe %c", pipe_name(pipe));
13484 if (ret)
13485 goto fail;
13486
13487 intel_crtc->pipe = pipe;
13488 intel_crtc->plane = primary->plane;
13489
13490 /* initialize shared scalers */
13491 intel_crtc_init_scalers(intel_crtc, crtc_state);
13492
13493 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13494 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13495 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
13496 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
13497
13498 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13499
13500 intel_color_init(&intel_crtc->base);
13501
13502 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13503
13504 return 0;
13505
13506 fail:
13507 /*
13508 * drm_mode_config_cleanup() will free up any
13509 * crtcs/planes already initialized.
13510 */
13511 kfree(crtc_state);
13512 kfree(intel_crtc);
13513
13514 return ret;
13515 }
13516
13517 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13518 {
13519 struct drm_device *dev = connector->base.dev;
13520
13521 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13522
13523 if (!connector->base.state->crtc)
13524 return INVALID_PIPE;
13525
13526 return to_intel_crtc(connector->base.state->crtc)->pipe;
13527 }
13528
13529 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13530 struct drm_file *file)
13531 {
13532 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13533 struct drm_crtc *drmmode_crtc;
13534 struct intel_crtc *crtc;
13535
13536 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13537 if (!drmmode_crtc)
13538 return -ENOENT;
13539
13540 crtc = to_intel_crtc(drmmode_crtc);
13541 pipe_from_crtc_id->pipe = crtc->pipe;
13542
13543 return 0;
13544 }
13545
13546 static int intel_encoder_clones(struct intel_encoder *encoder)
13547 {
13548 struct drm_device *dev = encoder->base.dev;
13549 struct intel_encoder *source_encoder;
13550 int index_mask = 0;
13551 int entry = 0;
13552
13553 for_each_intel_encoder(dev, source_encoder) {
13554 if (encoders_cloneable(encoder, source_encoder))
13555 index_mask |= (1 << entry);
13556
13557 entry++;
13558 }
13559
13560 return index_mask;
13561 }
13562
13563 static bool has_edp_a(struct drm_i915_private *dev_priv)
13564 {
13565 if (!IS_MOBILE(dev_priv))
13566 return false;
13567
13568 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13569 return false;
13570
13571 if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13572 return false;
13573
13574 return true;
13575 }
13576
13577 static bool intel_crt_present(struct drm_i915_private *dev_priv)
13578 {
13579 if (INTEL_GEN(dev_priv) >= 9)
13580 return false;
13581
13582 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
13583 return false;
13584
13585 if (IS_CHERRYVIEW(dev_priv))
13586 return false;
13587
13588 if (HAS_PCH_LPT_H(dev_priv) &&
13589 I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
13590 return false;
13591
13592 /* DDI E can't be used if DDI A requires 4 lanes */
13593 if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
13594 return false;
13595
13596 if (!dev_priv->vbt.int_crt_support)
13597 return false;
13598
13599 return true;
13600 }
13601
13602 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
13603 {
13604 int pps_num;
13605 int pps_idx;
13606
13607 if (HAS_DDI(dev_priv))
13608 return;
13609 /*
13610 * This w/a is needed at least on CPT/PPT, but to be sure apply it
13611 * everywhere where registers can be write protected.
13612 */
13613 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13614 pps_num = 2;
13615 else
13616 pps_num = 1;
13617
13618 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
13619 u32 val = I915_READ(PP_CONTROL(pps_idx));
13620
13621 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
13622 I915_WRITE(PP_CONTROL(pps_idx), val);
13623 }
13624 }
13625
13626 static void intel_pps_init(struct drm_i915_private *dev_priv)
13627 {
13628 if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
13629 dev_priv->pps_mmio_base = PCH_PPS_BASE;
13630 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13631 dev_priv->pps_mmio_base = VLV_PPS_BASE;
13632 else
13633 dev_priv->pps_mmio_base = PPS_BASE;
13634
13635 intel_pps_unlock_regs_wa(dev_priv);
13636 }
13637
13638 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
13639 {
13640 struct intel_encoder *encoder;
13641 bool dpd_is_edp = false;
13642
13643 intel_pps_init(dev_priv);
13644
13645 /*
13646 * intel_edp_init_connector() depends on this completing first, to
13647 * prevent the registeration of both eDP and LVDS and the incorrect
13648 * sharing of the PPS.
13649 */
13650 intel_lvds_init(dev_priv);
13651
13652 if (intel_crt_present(dev_priv))
13653 intel_crt_init(dev_priv);
13654
13655 if (IS_GEN9_LP(dev_priv)) {
13656 /*
13657 * FIXME: Broxton doesn't support port detection via the
13658 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13659 * detect the ports.
13660 */
13661 intel_ddi_init(dev_priv, PORT_A);
13662 intel_ddi_init(dev_priv, PORT_B);
13663 intel_ddi_init(dev_priv, PORT_C);
13664
13665 intel_dsi_init(dev_priv);
13666 } else if (HAS_DDI(dev_priv)) {
13667 int found;
13668
13669 /*
13670 * Haswell uses DDI functions to detect digital outputs.
13671 * On SKL pre-D0 the strap isn't connected, so we assume
13672 * it's there.
13673 */
13674 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
13675 /* WaIgnoreDDIAStrap: skl */
13676 if (found || IS_GEN9_BC(dev_priv))
13677 intel_ddi_init(dev_priv, PORT_A);
13678
13679 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13680 * register */
13681 found = I915_READ(SFUSE_STRAP);
13682
13683 if (found & SFUSE_STRAP_DDIB_DETECTED)
13684 intel_ddi_init(dev_priv, PORT_B);
13685 if (found & SFUSE_STRAP_DDIC_DETECTED)
13686 intel_ddi_init(dev_priv, PORT_C);
13687 if (found & SFUSE_STRAP_DDID_DETECTED)
13688 intel_ddi_init(dev_priv, PORT_D);
13689 /*
13690 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
13691 */
13692 if (IS_GEN9_BC(dev_priv) &&
13693 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
13694 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
13695 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
13696 intel_ddi_init(dev_priv, PORT_E);
13697
13698 } else if (HAS_PCH_SPLIT(dev_priv)) {
13699 int found;
13700 dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
13701
13702 if (has_edp_a(dev_priv))
13703 intel_dp_init(dev_priv, DP_A, PORT_A);
13704
13705 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13706 /* PCH SDVOB multiplex with HDMIB */
13707 found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
13708 if (!found)
13709 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
13710 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13711 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
13712 }
13713
13714 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13715 intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
13716
13717 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13718 intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
13719
13720 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13721 intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
13722
13723 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13724 intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
13725 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
13726 bool has_edp, has_port;
13727
13728 /*
13729 * The DP_DETECTED bit is the latched state of the DDC
13730 * SDA pin at boot. However since eDP doesn't require DDC
13731 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13732 * eDP ports may have been muxed to an alternate function.
13733 * Thus we can't rely on the DP_DETECTED bit alone to detect
13734 * eDP ports. Consult the VBT as well as DP_DETECTED to
13735 * detect eDP ports.
13736 *
13737 * Sadly the straps seem to be missing sometimes even for HDMI
13738 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
13739 * and VBT for the presence of the port. Additionally we can't
13740 * trust the port type the VBT declares as we've seen at least
13741 * HDMI ports that the VBT claim are DP or eDP.
13742 */
13743 has_edp = intel_dp_is_edp(dev_priv, PORT_B);
13744 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
13745 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
13746 has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
13747 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
13748 intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
13749
13750 has_edp = intel_dp_is_edp(dev_priv, PORT_C);
13751 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
13752 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
13753 has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
13754 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
13755 intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
13756
13757 if (IS_CHERRYVIEW(dev_priv)) {
13758 /*
13759 * eDP not supported on port D,
13760 * so no need to worry about it
13761 */
13762 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
13763 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
13764 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
13765 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
13766 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
13767 }
13768
13769 intel_dsi_init(dev_priv);
13770 } else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
13771 bool found = false;
13772
13773 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13774 DRM_DEBUG_KMS("probing SDVOB\n");
13775 found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
13776 if (!found && IS_G4X(dev_priv)) {
13777 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
13778 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
13779 }
13780
13781 if (!found && IS_G4X(dev_priv))
13782 intel_dp_init(dev_priv, DP_B, PORT_B);
13783 }
13784
13785 /* Before G4X SDVOC doesn't have its own detect register */
13786
13787 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
13788 DRM_DEBUG_KMS("probing SDVOC\n");
13789 found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
13790 }
13791
13792 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
13793
13794 if (IS_G4X(dev_priv)) {
13795 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
13796 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
13797 }
13798 if (IS_G4X(dev_priv))
13799 intel_dp_init(dev_priv, DP_C, PORT_C);
13800 }
13801
13802 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
13803 intel_dp_init(dev_priv, DP_D, PORT_D);
13804 } else if (IS_GEN2(dev_priv))
13805 intel_dvo_init(dev_priv);
13806
13807 if (SUPPORTS_TV(dev_priv))
13808 intel_tv_init(dev_priv);
13809
13810 intel_psr_init(dev_priv);
13811
13812 for_each_intel_encoder(&dev_priv->drm, encoder) {
13813 encoder->base.possible_crtcs = encoder->crtc_mask;
13814 encoder->base.possible_clones =
13815 intel_encoder_clones(encoder);
13816 }
13817
13818 intel_init_pch_refclk(dev_priv);
13819
13820 drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
13821 }
13822
13823 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
13824 {
13825 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13826
13827 drm_framebuffer_cleanup(fb);
13828
13829 i915_gem_object_lock(intel_fb->obj);
13830 WARN_ON(!intel_fb->obj->framebuffer_references--);
13831 i915_gem_object_unlock(intel_fb->obj);
13832
13833 i915_gem_object_put(intel_fb->obj);
13834
13835 kfree(intel_fb);
13836 }
13837
13838 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
13839 struct drm_file *file,
13840 unsigned int *handle)
13841 {
13842 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
13843 struct drm_i915_gem_object *obj = intel_fb->obj;
13844
13845 if (obj->userptr.mm) {
13846 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
13847 return -EINVAL;
13848 }
13849
13850 return drm_gem_handle_create(file, &obj->base, handle);
13851 }
13852
13853 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
13854 struct drm_file *file,
13855 unsigned flags, unsigned color,
13856 struct drm_clip_rect *clips,
13857 unsigned num_clips)
13858 {
13859 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13860
13861 i915_gem_object_flush_if_display(obj);
13862 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
13863
13864 return 0;
13865 }
13866
13867 static const struct drm_framebuffer_funcs intel_fb_funcs = {
13868 .destroy = intel_user_framebuffer_destroy,
13869 .create_handle = intel_user_framebuffer_create_handle,
13870 .dirty = intel_user_framebuffer_dirty,
13871 };
13872
13873 static
13874 u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
13875 uint64_t fb_modifier, uint32_t pixel_format)
13876 {
13877 u32 gen = INTEL_GEN(dev_priv);
13878
13879 if (gen >= 9) {
13880 int cpp = drm_format_plane_cpp(pixel_format, 0);
13881
13882 /* "The stride in bytes must not exceed the of the size of 8K
13883 * pixels and 32K bytes."
13884 */
13885 return min(8192 * cpp, 32768);
13886 } else if (gen >= 5 && !HAS_GMCH_DISPLAY(dev_priv)) {
13887 return 32*1024;
13888 } else if (gen >= 4) {
13889 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13890 return 16*1024;
13891 else
13892 return 32*1024;
13893 } else if (gen >= 3) {
13894 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
13895 return 8*1024;
13896 else
13897 return 16*1024;
13898 } else {
13899 /* XXX DSPC is limited to 4k tiled */
13900 return 8*1024;
13901 }
13902 }
13903
13904 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
13905 struct drm_i915_gem_object *obj,
13906 struct drm_mode_fb_cmd2 *mode_cmd)
13907 {
13908 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
13909 struct drm_framebuffer *fb = &intel_fb->base;
13910 struct drm_format_name_buf format_name;
13911 u32 pitch_limit;
13912 unsigned int tiling, stride;
13913 int ret = -EINVAL;
13914 int i;
13915
13916 i915_gem_object_lock(obj);
13917 obj->framebuffer_references++;
13918 tiling = i915_gem_object_get_tiling(obj);
13919 stride = i915_gem_object_get_stride(obj);
13920 i915_gem_object_unlock(obj);
13921
13922 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
13923 /*
13924 * If there's a fence, enforce that
13925 * the fb modifier and tiling mode match.
13926 */
13927 if (tiling != I915_TILING_NONE &&
13928 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
13929 DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
13930 goto err;
13931 }
13932 } else {
13933 if (tiling == I915_TILING_X) {
13934 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
13935 } else if (tiling == I915_TILING_Y) {
13936 DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
13937 goto err;
13938 }
13939 }
13940
13941 /* Passed in modifier sanity checking. */
13942 switch (mode_cmd->modifier[0]) {
13943 case I915_FORMAT_MOD_Y_TILED_CCS:
13944 case I915_FORMAT_MOD_Yf_TILED_CCS:
13945 switch (mode_cmd->pixel_format) {
13946 case DRM_FORMAT_XBGR8888:
13947 case DRM_FORMAT_ABGR8888:
13948 case DRM_FORMAT_XRGB8888:
13949 case DRM_FORMAT_ARGB8888:
13950 break;
13951 default:
13952 DRM_DEBUG_KMS("RC supported only with RGB8888 formats\n");
13953 goto err;
13954 }
13955 /* fall through */
13956 case I915_FORMAT_MOD_Y_TILED:
13957 case I915_FORMAT_MOD_Yf_TILED:
13958 if (INTEL_GEN(dev_priv) < 9) {
13959 DRM_DEBUG_KMS("Unsupported tiling 0x%llx!\n",
13960 mode_cmd->modifier[0]);
13961 goto err;
13962 }
13963 case DRM_FORMAT_MOD_LINEAR:
13964 case I915_FORMAT_MOD_X_TILED:
13965 break;
13966 default:
13967 DRM_DEBUG_KMS("Unsupported fb modifier 0x%llx!\n",
13968 mode_cmd->modifier[0]);
13969 goto err;
13970 }
13971
13972 /*
13973 * gen2/3 display engine uses the fence if present,
13974 * so the tiling mode must match the fb modifier exactly.
13975 */
13976 if (INTEL_INFO(dev_priv)->gen < 4 &&
13977 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
13978 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
13979 goto err;
13980 }
13981
13982 pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
13983 mode_cmd->pixel_format);
13984 if (mode_cmd->pitches[0] > pitch_limit) {
13985 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
13986 mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
13987 "tiled" : "linear",
13988 mode_cmd->pitches[0], pitch_limit);
13989 goto err;
13990 }
13991
13992 /*
13993 * If there's a fence, enforce that
13994 * the fb pitch and fence stride match.
13995 */
13996 if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
13997 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
13998 mode_cmd->pitches[0], stride);
13999 goto err;
14000 }
14001
14002 /* Reject formats not supported by any plane early. */
14003 switch (mode_cmd->pixel_format) {
14004 case DRM_FORMAT_C8:
14005 case DRM_FORMAT_RGB565:
14006 case DRM_FORMAT_XRGB8888:
14007 case DRM_FORMAT_ARGB8888:
14008 break;
14009 case DRM_FORMAT_XRGB1555:
14010 if (INTEL_GEN(dev_priv) > 3) {
14011 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14012 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14013 goto err;
14014 }
14015 break;
14016 case DRM_FORMAT_ABGR8888:
14017 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
14018 INTEL_GEN(dev_priv) < 9) {
14019 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14020 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14021 goto err;
14022 }
14023 break;
14024 case DRM_FORMAT_XBGR8888:
14025 case DRM_FORMAT_XRGB2101010:
14026 case DRM_FORMAT_XBGR2101010:
14027 if (INTEL_GEN(dev_priv) < 4) {
14028 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14029 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14030 goto err;
14031 }
14032 break;
14033 case DRM_FORMAT_ABGR2101010:
14034 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
14035 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14036 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14037 goto err;
14038 }
14039 break;
14040 case DRM_FORMAT_YUYV:
14041 case DRM_FORMAT_UYVY:
14042 case DRM_FORMAT_YVYU:
14043 case DRM_FORMAT_VYUY:
14044 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
14045 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14046 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14047 goto err;
14048 }
14049 break;
14050 default:
14051 DRM_DEBUG_KMS("unsupported pixel format: %s\n",
14052 drm_get_format_name(mode_cmd->pixel_format, &format_name));
14053 goto err;
14054 }
14055
14056 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14057 if (mode_cmd->offsets[0] != 0)
14058 goto err;
14059
14060 drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
14061
14062 for (i = 0; i < fb->format->num_planes; i++) {
14063 u32 stride_alignment;
14064
14065 if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
14066 DRM_DEBUG_KMS("bad plane %d handle\n", i);
14067 goto err;
14068 }
14069
14070 stride_alignment = intel_fb_stride_alignment(fb, i);
14071
14072 /*
14073 * Display WA #0531: skl,bxt,kbl,glk
14074 *
14075 * Render decompression and plane width > 3840
14076 * combined with horizontal panning requires the
14077 * plane stride to be a multiple of 4. We'll just
14078 * require the entire fb to accommodate that to avoid
14079 * potential runtime errors at plane configuration time.
14080 */
14081 if (IS_GEN9(dev_priv) && i == 0 && fb->width > 3840 &&
14082 (fb->modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
14083 fb->modifier == I915_FORMAT_MOD_Yf_TILED_CCS))
14084 stride_alignment *= 4;
14085
14086 if (fb->pitches[i] & (stride_alignment - 1)) {
14087 DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
14088 i, fb->pitches[i], stride_alignment);
14089 goto err;
14090 }
14091 }
14092
14093 intel_fb->obj = obj;
14094
14095 ret = intel_fill_fb_info(dev_priv, fb);
14096 if (ret)
14097 goto err;
14098
14099 ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
14100 if (ret) {
14101 DRM_ERROR("framebuffer init failed %d\n", ret);
14102 goto err;
14103 }
14104
14105 return 0;
14106
14107 err:
14108 i915_gem_object_lock(obj);
14109 obj->framebuffer_references--;
14110 i915_gem_object_unlock(obj);
14111 return ret;
14112 }
14113
14114 static struct drm_framebuffer *
14115 intel_user_framebuffer_create(struct drm_device *dev,
14116 struct drm_file *filp,
14117 const struct drm_mode_fb_cmd2 *user_mode_cmd)
14118 {
14119 struct drm_framebuffer *fb;
14120 struct drm_i915_gem_object *obj;
14121 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14122
14123 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
14124 if (!obj)
14125 return ERR_PTR(-ENOENT);
14126
14127 fb = intel_framebuffer_create(obj, &mode_cmd);
14128 if (IS_ERR(fb))
14129 i915_gem_object_put(obj);
14130
14131 return fb;
14132 }
14133
14134 static void intel_atomic_state_free(struct drm_atomic_state *state)
14135 {
14136 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14137
14138 drm_atomic_state_default_release(state);
14139
14140 i915_sw_fence_fini(&intel_state->commit_ready);
14141
14142 kfree(state);
14143 }
14144
14145 static const struct drm_mode_config_funcs intel_mode_funcs = {
14146 .fb_create = intel_user_framebuffer_create,
14147 .get_format_info = intel_get_format_info,
14148 .output_poll_changed = intel_fbdev_output_poll_changed,
14149 .atomic_check = intel_atomic_check,
14150 .atomic_commit = intel_atomic_commit,
14151 .atomic_state_alloc = intel_atomic_state_alloc,
14152 .atomic_state_clear = intel_atomic_state_clear,
14153 .atomic_state_free = intel_atomic_state_free,
14154 };
14155
14156 /**
14157 * intel_init_display_hooks - initialize the display modesetting hooks
14158 * @dev_priv: device private
14159 */
14160 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
14161 {
14162 intel_init_cdclk_hooks(dev_priv);
14163
14164 if (INTEL_INFO(dev_priv)->gen >= 9) {
14165 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14166 dev_priv->display.get_initial_plane_config =
14167 skylake_get_initial_plane_config;
14168 dev_priv->display.crtc_compute_clock =
14169 haswell_crtc_compute_clock;
14170 dev_priv->display.crtc_enable = haswell_crtc_enable;
14171 dev_priv->display.crtc_disable = haswell_crtc_disable;
14172 } else if (HAS_DDI(dev_priv)) {
14173 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14174 dev_priv->display.get_initial_plane_config =
14175 ironlake_get_initial_plane_config;
14176 dev_priv->display.crtc_compute_clock =
14177 haswell_crtc_compute_clock;
14178 dev_priv->display.crtc_enable = haswell_crtc_enable;
14179 dev_priv->display.crtc_disable = haswell_crtc_disable;
14180 } else if (HAS_PCH_SPLIT(dev_priv)) {
14181 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14182 dev_priv->display.get_initial_plane_config =
14183 ironlake_get_initial_plane_config;
14184 dev_priv->display.crtc_compute_clock =
14185 ironlake_crtc_compute_clock;
14186 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14187 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14188 } else if (IS_CHERRYVIEW(dev_priv)) {
14189 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14190 dev_priv->display.get_initial_plane_config =
14191 i9xx_get_initial_plane_config;
14192 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14193 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14194 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14195 } else if (IS_VALLEYVIEW(dev_priv)) {
14196 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14197 dev_priv->display.get_initial_plane_config =
14198 i9xx_get_initial_plane_config;
14199 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
14200 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14201 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14202 } else if (IS_G4X(dev_priv)) {
14203 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14204 dev_priv->display.get_initial_plane_config =
14205 i9xx_get_initial_plane_config;
14206 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14207 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14208 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14209 } else if (IS_PINEVIEW(dev_priv)) {
14210 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14211 dev_priv->display.get_initial_plane_config =
14212 i9xx_get_initial_plane_config;
14213 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14214 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14215 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14216 } else if (!IS_GEN2(dev_priv)) {
14217 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14218 dev_priv->display.get_initial_plane_config =
14219 i9xx_get_initial_plane_config;
14220 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14221 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14222 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14223 } else {
14224 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14225 dev_priv->display.get_initial_plane_config =
14226 i9xx_get_initial_plane_config;
14227 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14228 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14229 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14230 }
14231
14232 if (IS_GEN5(dev_priv)) {
14233 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14234 } else if (IS_GEN6(dev_priv)) {
14235 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14236 } else if (IS_IVYBRIDGE(dev_priv)) {
14237 /* FIXME: detect B0+ stepping and use auto training */
14238 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14239 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
14240 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14241 }
14242
14243 if (dev_priv->info.gen >= 9)
14244 dev_priv->display.update_crtcs = skl_update_crtcs;
14245 else
14246 dev_priv->display.update_crtcs = intel_update_crtcs;
14247 }
14248
14249 /*
14250 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14251 */
14252 static void quirk_ssc_force_disable(struct drm_device *dev)
14253 {
14254 struct drm_i915_private *dev_priv = to_i915(dev);
14255 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14256 DRM_INFO("applying lvds SSC disable quirk\n");
14257 }
14258
14259 /*
14260 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14261 * brightness value
14262 */
14263 static void quirk_invert_brightness(struct drm_device *dev)
14264 {
14265 struct drm_i915_private *dev_priv = to_i915(dev);
14266 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14267 DRM_INFO("applying inverted panel brightness quirk\n");
14268 }
14269
14270 /* Some VBT's incorrectly indicate no backlight is present */
14271 static void quirk_backlight_present(struct drm_device *dev)
14272 {
14273 struct drm_i915_private *dev_priv = to_i915(dev);
14274 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14275 DRM_INFO("applying backlight present quirk\n");
14276 }
14277
14278 /* Toshiba Satellite P50-C-18C requires T12 delay to be min 800ms
14279 * which is 300 ms greater than eDP spec T12 min.
14280 */
14281 static void quirk_increase_t12_delay(struct drm_device *dev)
14282 {
14283 struct drm_i915_private *dev_priv = to_i915(dev);
14284
14285 dev_priv->quirks |= QUIRK_INCREASE_T12_DELAY;
14286 DRM_INFO("Applying T12 delay quirk\n");
14287 }
14288
14289 struct intel_quirk {
14290 int device;
14291 int subsystem_vendor;
14292 int subsystem_device;
14293 void (*hook)(struct drm_device *dev);
14294 };
14295
14296 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14297 struct intel_dmi_quirk {
14298 void (*hook)(struct drm_device *dev);
14299 const struct dmi_system_id (*dmi_id_list)[];
14300 };
14301
14302 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14303 {
14304 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14305 return 1;
14306 }
14307
14308 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14309 {
14310 .dmi_id_list = &(const struct dmi_system_id[]) {
14311 {
14312 .callback = intel_dmi_reverse_brightness,
14313 .ident = "NCR Corporation",
14314 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14315 DMI_MATCH(DMI_PRODUCT_NAME, ""),
14316 },
14317 },
14318 { } /* terminating entry */
14319 },
14320 .hook = quirk_invert_brightness,
14321 },
14322 };
14323
14324 static struct intel_quirk intel_quirks[] = {
14325 /* Lenovo U160 cannot use SSC on LVDS */
14326 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14327
14328 /* Sony Vaio Y cannot use SSC on LVDS */
14329 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14330
14331 /* Acer Aspire 5734Z must invert backlight brightness */
14332 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14333
14334 /* Acer/eMachines G725 */
14335 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14336
14337 /* Acer/eMachines e725 */
14338 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14339
14340 /* Acer/Packard Bell NCL20 */
14341 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14342
14343 /* Acer Aspire 4736Z */
14344 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14345
14346 /* Acer Aspire 5336 */
14347 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14348
14349 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14350 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14351
14352 /* Acer C720 Chromebook (Core i3 4005U) */
14353 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14354
14355 /* Apple Macbook 2,1 (Core 2 T7400) */
14356 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14357
14358 /* Apple Macbook 4,1 */
14359 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
14360
14361 /* Toshiba CB35 Chromebook (Celeron 2955U) */
14362 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14363
14364 /* HP Chromebook 14 (Celeron 2955U) */
14365 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14366
14367 /* Dell Chromebook 11 */
14368 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14369
14370 /* Dell Chromebook 11 (2015 version) */
14371 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
14372
14373 /* Toshiba Satellite P50-C-18C */
14374 { 0x191B, 0x1179, 0xF840, quirk_increase_t12_delay },
14375 };
14376
14377 static void intel_init_quirks(struct drm_device *dev)
14378 {
14379 struct pci_dev *d = dev->pdev;
14380 int i;
14381
14382 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14383 struct intel_quirk *q = &intel_quirks[i];
14384
14385 if (d->device == q->device &&
14386 (d->subsystem_vendor == q->subsystem_vendor ||
14387 q->subsystem_vendor == PCI_ANY_ID) &&
14388 (d->subsystem_device == q->subsystem_device ||
14389 q->subsystem_device == PCI_ANY_ID))
14390 q->hook(dev);
14391 }
14392 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14393 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14394 intel_dmi_quirks[i].hook(dev);
14395 }
14396 }
14397
14398 /* Disable the VGA plane that we never use */
14399 static void i915_disable_vga(struct drm_i915_private *dev_priv)
14400 {
14401 struct pci_dev *pdev = dev_priv->drm.pdev;
14402 u8 sr1;
14403 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14404
14405 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14406 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
14407 outb(SR01, VGA_SR_INDEX);
14408 sr1 = inb(VGA_SR_DATA);
14409 outb(sr1 | 1<<5, VGA_SR_DATA);
14410 vga_put(pdev, VGA_RSRC_LEGACY_IO);
14411 udelay(300);
14412
14413 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14414 POSTING_READ(vga_reg);
14415 }
14416
14417 void intel_modeset_init_hw(struct drm_device *dev)
14418 {
14419 struct drm_i915_private *dev_priv = to_i915(dev);
14420
14421 intel_update_cdclk(dev_priv);
14422 dev_priv->cdclk.logical = dev_priv->cdclk.actual = dev_priv->cdclk.hw;
14423 }
14424
14425 /*
14426 * Calculate what we think the watermarks should be for the state we've read
14427 * out of the hardware and then immediately program those watermarks so that
14428 * we ensure the hardware settings match our internal state.
14429 *
14430 * We can calculate what we think WM's should be by creating a duplicate of the
14431 * current state (which was constructed during hardware readout) and running it
14432 * through the atomic check code to calculate new watermark values in the
14433 * state object.
14434 */
14435 static void sanitize_watermarks(struct drm_device *dev)
14436 {
14437 struct drm_i915_private *dev_priv = to_i915(dev);
14438 struct drm_atomic_state *state;
14439 struct intel_atomic_state *intel_state;
14440 struct drm_crtc *crtc;
14441 struct drm_crtc_state *cstate;
14442 struct drm_modeset_acquire_ctx ctx;
14443 int ret;
14444 int i;
14445
14446 /* Only supported on platforms that use atomic watermark design */
14447 if (!dev_priv->display.optimize_watermarks)
14448 return;
14449
14450 /*
14451 * We need to hold connection_mutex before calling duplicate_state so
14452 * that the connector loop is protected.
14453 */
14454 drm_modeset_acquire_init(&ctx, 0);
14455 retry:
14456 ret = drm_modeset_lock_all_ctx(dev, &ctx);
14457 if (ret == -EDEADLK) {
14458 drm_modeset_backoff(&ctx);
14459 goto retry;
14460 } else if (WARN_ON(ret)) {
14461 goto fail;
14462 }
14463
14464 state = drm_atomic_helper_duplicate_state(dev, &ctx);
14465 if (WARN_ON(IS_ERR(state)))
14466 goto fail;
14467
14468 intel_state = to_intel_atomic_state(state);
14469
14470 /*
14471 * Hardware readout is the only time we don't want to calculate
14472 * intermediate watermarks (since we don't trust the current
14473 * watermarks).
14474 */
14475 if (!HAS_GMCH_DISPLAY(dev_priv))
14476 intel_state->skip_intermediate_wm = true;
14477
14478 ret = intel_atomic_check(dev, state);
14479 if (ret) {
14480 /*
14481 * If we fail here, it means that the hardware appears to be
14482 * programmed in a way that shouldn't be possible, given our
14483 * understanding of watermark requirements. This might mean a
14484 * mistake in the hardware readout code or a mistake in the
14485 * watermark calculations for a given platform. Raise a WARN
14486 * so that this is noticeable.
14487 *
14488 * If this actually happens, we'll have to just leave the
14489 * BIOS-programmed watermarks untouched and hope for the best.
14490 */
14491 WARN(true, "Could not determine valid watermarks for inherited state\n");
14492 goto put_state;
14493 }
14494
14495 /* Write calculated watermark values back */
14496 for_each_new_crtc_in_state(state, crtc, cstate, i) {
14497 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
14498
14499 cs->wm.need_postvbl_update = true;
14500 dev_priv->display.optimize_watermarks(intel_state, cs);
14501 }
14502
14503 put_state:
14504 drm_atomic_state_put(state);
14505 fail:
14506 drm_modeset_drop_locks(&ctx);
14507 drm_modeset_acquire_fini(&ctx);
14508 }
14509
14510 int intel_modeset_init(struct drm_device *dev)
14511 {
14512 struct drm_i915_private *dev_priv = to_i915(dev);
14513 struct i915_ggtt *ggtt = &dev_priv->ggtt;
14514 enum pipe pipe;
14515 struct intel_crtc *crtc;
14516
14517 drm_mode_config_init(dev);
14518
14519 dev->mode_config.min_width = 0;
14520 dev->mode_config.min_height = 0;
14521
14522 dev->mode_config.preferred_depth = 24;
14523 dev->mode_config.prefer_shadow = 1;
14524
14525 dev->mode_config.allow_fb_modifiers = true;
14526
14527 dev->mode_config.funcs = &intel_mode_funcs;
14528
14529 init_llist_head(&dev_priv->atomic_helper.free_list);
14530 INIT_WORK(&dev_priv->atomic_helper.free_work,
14531 intel_atomic_helper_free_state_worker);
14532
14533 intel_init_quirks(dev);
14534
14535 intel_init_pm(dev_priv);
14536
14537 if (INTEL_INFO(dev_priv)->num_pipes == 0)
14538 return 0;
14539
14540 /*
14541 * There may be no VBT; and if the BIOS enabled SSC we can
14542 * just keep using it to avoid unnecessary flicker. Whereas if the
14543 * BIOS isn't using it, don't assume it will work even if the VBT
14544 * indicates as much.
14545 */
14546 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
14547 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
14548 DREF_SSC1_ENABLE);
14549
14550 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
14551 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
14552 bios_lvds_use_ssc ? "en" : "dis",
14553 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
14554 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
14555 }
14556 }
14557
14558 if (IS_GEN2(dev_priv)) {
14559 dev->mode_config.max_width = 2048;
14560 dev->mode_config.max_height = 2048;
14561 } else if (IS_GEN3(dev_priv)) {
14562 dev->mode_config.max_width = 4096;
14563 dev->mode_config.max_height = 4096;
14564 } else {
14565 dev->mode_config.max_width = 8192;
14566 dev->mode_config.max_height = 8192;
14567 }
14568
14569 if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
14570 dev->mode_config.cursor_width = IS_I845G(dev_priv) ? 64 : 512;
14571 dev->mode_config.cursor_height = 1023;
14572 } else if (IS_GEN2(dev_priv)) {
14573 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14574 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14575 } else {
14576 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14577 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14578 }
14579
14580 dev->mode_config.fb_base = ggtt->mappable_base;
14581
14582 DRM_DEBUG_KMS("%d display pipe%s available.\n",
14583 INTEL_INFO(dev_priv)->num_pipes,
14584 INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
14585
14586 for_each_pipe(dev_priv, pipe) {
14587 int ret;
14588
14589 ret = intel_crtc_init(dev_priv, pipe);
14590 if (ret) {
14591 drm_mode_config_cleanup(dev);
14592 return ret;
14593 }
14594 }
14595
14596 intel_shared_dpll_init(dev);
14597
14598 intel_update_czclk(dev_priv);
14599 intel_modeset_init_hw(dev);
14600
14601 if (dev_priv->max_cdclk_freq == 0)
14602 intel_update_max_cdclk(dev_priv);
14603
14604 /* Just disable it once at startup */
14605 i915_disable_vga(dev_priv);
14606 intel_setup_outputs(dev_priv);
14607
14608 drm_modeset_lock_all(dev);
14609 intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
14610 drm_modeset_unlock_all(dev);
14611
14612 for_each_intel_crtc(dev, crtc) {
14613 struct intel_initial_plane_config plane_config = {};
14614
14615 if (!crtc->active)
14616 continue;
14617
14618 /*
14619 * Note that reserving the BIOS fb up front prevents us
14620 * from stuffing other stolen allocations like the ring
14621 * on top. This prevents some ugliness at boot time, and
14622 * can even allow for smooth boot transitions if the BIOS
14623 * fb is large enough for the active pipe configuration.
14624 */
14625 dev_priv->display.get_initial_plane_config(crtc,
14626 &plane_config);
14627
14628 /*
14629 * If the fb is shared between multiple heads, we'll
14630 * just get the first one.
14631 */
14632 intel_find_initial_plane_obj(crtc, &plane_config);
14633 }
14634
14635 /*
14636 * Make sure hardware watermarks really match the state we read out.
14637 * Note that we need to do this after reconstructing the BIOS fb's
14638 * since the watermark calculation done here will use pstate->fb.
14639 */
14640 if (!HAS_GMCH_DISPLAY(dev_priv))
14641 sanitize_watermarks(dev);
14642
14643 return 0;
14644 }
14645
14646 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
14647 {
14648 /* 640x480@60Hz, ~25175 kHz */
14649 struct dpll clock = {
14650 .m1 = 18,
14651 .m2 = 7,
14652 .p1 = 13,
14653 .p2 = 4,
14654 .n = 2,
14655 };
14656 u32 dpll, fp;
14657 int i;
14658
14659 WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
14660
14661 DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
14662 pipe_name(pipe), clock.vco, clock.dot);
14663
14664 fp = i9xx_dpll_compute_fp(&clock);
14665 dpll = (I915_READ(DPLL(pipe)) & DPLL_DVO_2X_MODE) |
14666 DPLL_VGA_MODE_DIS |
14667 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
14668 PLL_P2_DIVIDE_BY_4 |
14669 PLL_REF_INPUT_DREFCLK |
14670 DPLL_VCO_ENABLE;
14671
14672 I915_WRITE(FP0(pipe), fp);
14673 I915_WRITE(FP1(pipe), fp);
14674
14675 I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
14676 I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
14677 I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
14678 I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
14679 I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
14680 I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
14681 I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
14682
14683 /*
14684 * Apparently we need to have VGA mode enabled prior to changing
14685 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
14686 * dividers, even though the register value does change.
14687 */
14688 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
14689 I915_WRITE(DPLL(pipe), dpll);
14690
14691 /* Wait for the clocks to stabilize. */
14692 POSTING_READ(DPLL(pipe));
14693 udelay(150);
14694
14695 /* The pixel multiplier can only be updated once the
14696 * DPLL is enabled and the clocks are stable.
14697 *
14698 * So write it again.
14699 */
14700 I915_WRITE(DPLL(pipe), dpll);
14701
14702 /* We do this three times for luck */
14703 for (i = 0; i < 3 ; i++) {
14704 I915_WRITE(DPLL(pipe), dpll);
14705 POSTING_READ(DPLL(pipe));
14706 udelay(150); /* wait for warmup */
14707 }
14708
14709 I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
14710 POSTING_READ(PIPECONF(pipe));
14711 }
14712
14713 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
14714 {
14715 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
14716
14717 DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
14718 pipe_name(pipe));
14719
14720 WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
14721 WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
14722 WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
14723 WARN_ON(I915_READ(CURCNTR(PIPE_A)) & CURSOR_MODE);
14724 WARN_ON(I915_READ(CURCNTR(PIPE_B)) & CURSOR_MODE);
14725
14726 I915_WRITE(PIPECONF(pipe), 0);
14727 POSTING_READ(PIPECONF(pipe));
14728
14729 intel_wait_for_pipe_scanline_stopped(crtc);
14730
14731 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
14732 POSTING_READ(DPLL(pipe));
14733 }
14734
14735 static bool intel_plane_mapping_ok(struct intel_crtc *crtc,
14736 struct intel_plane *primary)
14737 {
14738 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14739 enum plane plane = primary->plane;
14740 u32 val = I915_READ(DSPCNTR(plane));
14741
14742 return (val & DISPLAY_PLANE_ENABLE) == 0 ||
14743 (val & DISPPLANE_SEL_PIPE_MASK) == DISPPLANE_SEL_PIPE(crtc->pipe);
14744 }
14745
14746 static void
14747 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
14748 {
14749 struct intel_crtc *crtc;
14750
14751 if (INTEL_GEN(dev_priv) >= 4)
14752 return;
14753
14754 for_each_intel_crtc(&dev_priv->drm, crtc) {
14755 struct intel_plane *plane =
14756 to_intel_plane(crtc->base.primary);
14757
14758 if (intel_plane_mapping_ok(crtc, plane))
14759 continue;
14760
14761 DRM_DEBUG_KMS("%s attached to the wrong pipe, disabling plane\n",
14762 plane->base.name);
14763 intel_plane_disable_noatomic(crtc, plane);
14764 }
14765 }
14766
14767 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
14768 {
14769 struct drm_device *dev = crtc->base.dev;
14770 struct intel_encoder *encoder;
14771
14772 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14773 return true;
14774
14775 return false;
14776 }
14777
14778 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
14779 {
14780 struct drm_device *dev = encoder->base.dev;
14781 struct intel_connector *connector;
14782
14783 for_each_connector_on_encoder(dev, &encoder->base, connector)
14784 return connector;
14785
14786 return NULL;
14787 }
14788
14789 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
14790 enum transcoder pch_transcoder)
14791 {
14792 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
14793 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
14794 }
14795
14796 static void intel_sanitize_crtc(struct intel_crtc *crtc,
14797 struct drm_modeset_acquire_ctx *ctx)
14798 {
14799 struct drm_device *dev = crtc->base.dev;
14800 struct drm_i915_private *dev_priv = to_i915(dev);
14801 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
14802
14803 /* Clear any frame start delays used for debugging left by the BIOS */
14804 if (!transcoder_is_dsi(cpu_transcoder)) {
14805 i915_reg_t reg = PIPECONF(cpu_transcoder);
14806
14807 I915_WRITE(reg,
14808 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14809 }
14810
14811 /* restore vblank interrupts to correct state */
14812 drm_crtc_vblank_reset(&crtc->base);
14813 if (crtc->active) {
14814 struct intel_plane *plane;
14815
14816 drm_crtc_vblank_on(&crtc->base);
14817
14818 /* Disable everything but the primary plane */
14819 for_each_intel_plane_on_crtc(dev, crtc, plane) {
14820 const struct intel_plane_state *plane_state =
14821 to_intel_plane_state(plane->base.state);
14822
14823 if (plane_state->base.visible &&
14824 plane->base.type != DRM_PLANE_TYPE_PRIMARY)
14825 intel_plane_disable_noatomic(crtc, plane);
14826 }
14827 }
14828
14829 /* Adjust the state of the output pipe according to whether we
14830 * have active connectors/encoders. */
14831 if (crtc->active && !intel_crtc_has_encoders(crtc))
14832 intel_crtc_disable_noatomic(&crtc->base, ctx);
14833
14834 if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
14835 /*
14836 * We start out with underrun reporting disabled to avoid races.
14837 * For correct bookkeeping mark this on active crtcs.
14838 *
14839 * Also on gmch platforms we dont have any hardware bits to
14840 * disable the underrun reporting. Which means we need to start
14841 * out with underrun reporting disabled also on inactive pipes,
14842 * since otherwise we'll complain about the garbage we read when
14843 * e.g. coming up after runtime pm.
14844 *
14845 * No protection against concurrent access is required - at
14846 * worst a fifo underrun happens which also sets this to false.
14847 */
14848 crtc->cpu_fifo_underrun_disabled = true;
14849 /*
14850 * We track the PCH trancoder underrun reporting state
14851 * within the crtc. With crtc for pipe A housing the underrun
14852 * reporting state for PCH transcoder A, crtc for pipe B housing
14853 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
14854 * and marking underrun reporting as disabled for the non-existing
14855 * PCH transcoders B and C would prevent enabling the south
14856 * error interrupt (see cpt_can_enable_serr_int()).
14857 */
14858 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
14859 crtc->pch_fifo_underrun_disabled = true;
14860 }
14861 }
14862
14863 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14864 {
14865 struct intel_connector *connector;
14866
14867 /* We need to check both for a crtc link (meaning that the
14868 * encoder is active and trying to read from a pipe) and the
14869 * pipe itself being active. */
14870 bool has_active_crtc = encoder->base.crtc &&
14871 to_intel_crtc(encoder->base.crtc)->active;
14872
14873 connector = intel_encoder_find_connector(encoder);
14874 if (connector && !has_active_crtc) {
14875 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14876 encoder->base.base.id,
14877 encoder->base.name);
14878
14879 /* Connector is active, but has no active pipe. This is
14880 * fallout from our resume register restoring. Disable
14881 * the encoder manually again. */
14882 if (encoder->base.crtc) {
14883 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
14884
14885 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14886 encoder->base.base.id,
14887 encoder->base.name);
14888 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
14889 if (encoder->post_disable)
14890 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
14891 }
14892 encoder->base.crtc = NULL;
14893
14894 /* Inconsistent output/port/pipe state happens presumably due to
14895 * a bug in one of the get_hw_state functions. Or someplace else
14896 * in our code, like the register restore mess on resume. Clamp
14897 * things to off as a safer default. */
14898
14899 connector->base.dpms = DRM_MODE_DPMS_OFF;
14900 connector->base.encoder = NULL;
14901 }
14902 /* Enabled encoders without active connectors will be fixed in
14903 * the crtc fixup. */
14904 }
14905
14906 void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
14907 {
14908 i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
14909
14910 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14911 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14912 i915_disable_vga(dev_priv);
14913 }
14914 }
14915
14916 void i915_redisable_vga(struct drm_i915_private *dev_priv)
14917 {
14918 /* This function can be called both from intel_modeset_setup_hw_state or
14919 * at a very early point in our resume sequence, where the power well
14920 * structures are not yet restored. Since this function is at a very
14921 * paranoid "someone might have enabled VGA while we were not looking"
14922 * level, just check if the power well is enabled instead of trying to
14923 * follow the "don't touch the power well if we don't need it" policy
14924 * the rest of the driver uses. */
14925 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
14926 return;
14927
14928 i915_redisable_vga_power_on(dev_priv);
14929
14930 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
14931 }
14932
14933 /* FIXME read out full plane state for all planes */
14934 static void readout_plane_state(struct intel_crtc *crtc)
14935 {
14936 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14937 struct intel_crtc_state *crtc_state =
14938 to_intel_crtc_state(crtc->base.state);
14939 struct intel_plane *plane;
14940
14941 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
14942 struct intel_plane_state *plane_state =
14943 to_intel_plane_state(plane->base.state);
14944 bool visible = plane->get_hw_state(plane);
14945
14946 intel_set_plane_visible(crtc_state, plane_state, visible);
14947 }
14948 }
14949
14950 static void intel_modeset_readout_hw_state(struct drm_device *dev)
14951 {
14952 struct drm_i915_private *dev_priv = to_i915(dev);
14953 enum pipe pipe;
14954 struct intel_crtc *crtc;
14955 struct intel_encoder *encoder;
14956 struct intel_connector *connector;
14957 struct drm_connector_list_iter conn_iter;
14958 int i;
14959
14960 dev_priv->active_crtcs = 0;
14961
14962 for_each_intel_crtc(dev, crtc) {
14963 struct intel_crtc_state *crtc_state =
14964 to_intel_crtc_state(crtc->base.state);
14965
14966 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
14967 memset(crtc_state, 0, sizeof(*crtc_state));
14968 crtc_state->base.crtc = &crtc->base;
14969
14970 crtc_state->base.active = crtc_state->base.enable =
14971 dev_priv->display.get_pipe_config(crtc, crtc_state);
14972
14973 crtc->base.enabled = crtc_state->base.enable;
14974 crtc->active = crtc_state->base.active;
14975
14976 if (crtc_state->base.active)
14977 dev_priv->active_crtcs |= 1 << crtc->pipe;
14978
14979 readout_plane_state(crtc);
14980
14981 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
14982 crtc->base.base.id, crtc->base.name,
14983 enableddisabled(crtc_state->base.active));
14984 }
14985
14986 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
14987 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
14988
14989 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
14990 &pll->state.hw_state);
14991 pll->state.crtc_mask = 0;
14992 for_each_intel_crtc(dev, crtc) {
14993 struct intel_crtc_state *crtc_state =
14994 to_intel_crtc_state(crtc->base.state);
14995
14996 if (crtc_state->base.active &&
14997 crtc_state->shared_dpll == pll)
14998 pll->state.crtc_mask |= 1 << crtc->pipe;
14999 }
15000 pll->active_mask = pll->state.crtc_mask;
15001
15002 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15003 pll->name, pll->state.crtc_mask, pll->on);
15004 }
15005
15006 for_each_intel_encoder(dev, encoder) {
15007 pipe = 0;
15008
15009 if (encoder->get_hw_state(encoder, &pipe)) {
15010 struct intel_crtc_state *crtc_state;
15011
15012 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15013 crtc_state = to_intel_crtc_state(crtc->base.state);
15014
15015 encoder->base.crtc = &crtc->base;
15016 crtc_state->output_types |= 1 << encoder->type;
15017 encoder->get_config(encoder, crtc_state);
15018 } else {
15019 encoder->base.crtc = NULL;
15020 }
15021
15022 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15023 encoder->base.base.id, encoder->base.name,
15024 enableddisabled(encoder->base.crtc),
15025 pipe_name(pipe));
15026 }
15027
15028 drm_connector_list_iter_begin(dev, &conn_iter);
15029 for_each_intel_connector_iter(connector, &conn_iter) {
15030 if (connector->get_hw_state(connector)) {
15031 connector->base.dpms = DRM_MODE_DPMS_ON;
15032
15033 encoder = connector->encoder;
15034 connector->base.encoder = &encoder->base;
15035
15036 if (encoder->base.crtc &&
15037 encoder->base.crtc->state->active) {
15038 /*
15039 * This has to be done during hardware readout
15040 * because anything calling .crtc_disable may
15041 * rely on the connector_mask being accurate.
15042 */
15043 encoder->base.crtc->state->connector_mask |=
15044 1 << drm_connector_index(&connector->base);
15045 encoder->base.crtc->state->encoder_mask |=
15046 1 << drm_encoder_index(&encoder->base);
15047 }
15048
15049 } else {
15050 connector->base.dpms = DRM_MODE_DPMS_OFF;
15051 connector->base.encoder = NULL;
15052 }
15053 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15054 connector->base.base.id, connector->base.name,
15055 enableddisabled(connector->base.encoder));
15056 }
15057 drm_connector_list_iter_end(&conn_iter);
15058
15059 for_each_intel_crtc(dev, crtc) {
15060 struct intel_crtc_state *crtc_state =
15061 to_intel_crtc_state(crtc->base.state);
15062 int pixclk = 0;
15063
15064 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15065 if (crtc_state->base.active) {
15066 intel_mode_from_pipe_config(&crtc->base.mode, crtc_state);
15067 intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode, crtc_state);
15068 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15069
15070 /*
15071 * The initial mode needs to be set in order to keep
15072 * the atomic core happy. It wants a valid mode if the
15073 * crtc's enabled, so we do the above call.
15074 *
15075 * But we don't set all the derived state fully, hence
15076 * set a flag to indicate that a full recalculation is
15077 * needed on the next commit.
15078 */
15079 crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
15080
15081 intel_crtc_compute_pixel_rate(crtc_state);
15082
15083 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv) ||
15084 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15085 pixclk = crtc_state->pixel_rate;
15086 else
15087 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15088
15089 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15090 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
15091 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15092
15093 drm_calc_timestamping_constants(&crtc->base,
15094 &crtc_state->base.adjusted_mode);
15095 update_scanline_offset(crtc);
15096 }
15097
15098 dev_priv->min_pixclk[crtc->pipe] = pixclk;
15099
15100 intel_pipe_config_sanity_check(dev_priv, crtc_state);
15101 }
15102 }
15103
15104 static void
15105 get_encoder_power_domains(struct drm_i915_private *dev_priv)
15106 {
15107 struct intel_encoder *encoder;
15108
15109 for_each_intel_encoder(&dev_priv->drm, encoder) {
15110 u64 get_domains;
15111 enum intel_display_power_domain domain;
15112
15113 if (!encoder->get_power_domains)
15114 continue;
15115
15116 get_domains = encoder->get_power_domains(encoder);
15117 for_each_power_domain(domain, get_domains)
15118 intel_display_power_get(dev_priv, domain);
15119 }
15120 }
15121
15122 /* Scan out the current hw modeset state,
15123 * and sanitizes it to the current state
15124 */
15125 static void
15126 intel_modeset_setup_hw_state(struct drm_device *dev,
15127 struct drm_modeset_acquire_ctx *ctx)
15128 {
15129 struct drm_i915_private *dev_priv = to_i915(dev);
15130 enum pipe pipe;
15131 struct intel_crtc *crtc;
15132 struct intel_encoder *encoder;
15133 int i;
15134
15135 if (IS_HASWELL(dev_priv)) {
15136 /*
15137 * WaRsPkgCStateDisplayPMReq:hsw
15138 * System hang if this isn't done before disabling all planes!
15139 */
15140 I915_WRITE(CHICKEN_PAR1_1,
15141 I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
15142 }
15143
15144 intel_modeset_readout_hw_state(dev);
15145
15146 /* HW state is read out, now we need to sanitize this mess. */
15147 get_encoder_power_domains(dev_priv);
15148
15149 intel_sanitize_plane_mapping(dev_priv);
15150
15151 for_each_intel_encoder(dev, encoder) {
15152 intel_sanitize_encoder(encoder);
15153 }
15154
15155 for_each_pipe(dev_priv, pipe) {
15156 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
15157
15158 intel_sanitize_crtc(crtc, ctx);
15159 intel_dump_pipe_config(crtc, crtc->config,
15160 "[setup_hw_state]");
15161 }
15162
15163 intel_modeset_update_connector_atomic_state(dev);
15164
15165 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15166 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15167
15168 if (!pll->on || pll->active_mask)
15169 continue;
15170
15171 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15172
15173 pll->funcs.disable(dev_priv, pll);
15174 pll->on = false;
15175 }
15176
15177 if (IS_G4X(dev_priv)) {
15178 g4x_wm_get_hw_state(dev);
15179 g4x_wm_sanitize(dev_priv);
15180 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15181 vlv_wm_get_hw_state(dev);
15182 vlv_wm_sanitize(dev_priv);
15183 } else if (INTEL_GEN(dev_priv) >= 9) {
15184 skl_wm_get_hw_state(dev);
15185 } else if (HAS_PCH_SPLIT(dev_priv)) {
15186 ilk_wm_get_hw_state(dev);
15187 }
15188
15189 for_each_intel_crtc(dev, crtc) {
15190 u64 put_domains;
15191
15192 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
15193 if (WARN_ON(put_domains))
15194 modeset_put_power_domains(dev_priv, put_domains);
15195 }
15196 intel_display_set_init_power(dev_priv, false);
15197
15198 intel_power_domains_verify_state(dev_priv);
15199
15200 intel_fbc_init_pipe_state(dev_priv);
15201 }
15202
15203 void intel_display_resume(struct drm_device *dev)
15204 {
15205 struct drm_i915_private *dev_priv = to_i915(dev);
15206 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15207 struct drm_modeset_acquire_ctx ctx;
15208 int ret;
15209
15210 dev_priv->modeset_restore_state = NULL;
15211 if (state)
15212 state->acquire_ctx = &ctx;
15213
15214 drm_modeset_acquire_init(&ctx, 0);
15215
15216 while (1) {
15217 ret = drm_modeset_lock_all_ctx(dev, &ctx);
15218 if (ret != -EDEADLK)
15219 break;
15220
15221 drm_modeset_backoff(&ctx);
15222 }
15223
15224 if (!ret)
15225 ret = __intel_display_resume(dev, state, &ctx);
15226
15227 drm_modeset_drop_locks(&ctx);
15228 drm_modeset_acquire_fini(&ctx);
15229
15230 if (ret)
15231 DRM_ERROR("Restoring old state failed with %i\n", ret);
15232 if (state)
15233 drm_atomic_state_put(state);
15234 }
15235
15236 void intel_modeset_gem_init(struct drm_device *dev)
15237 {
15238 struct drm_i915_private *dev_priv = to_i915(dev);
15239
15240 intel_init_gt_powersave(dev_priv);
15241
15242 intel_init_clock_gating(dev_priv);
15243
15244 intel_setup_overlay(dev_priv);
15245 }
15246
15247 int intel_connector_register(struct drm_connector *connector)
15248 {
15249 struct intel_connector *intel_connector = to_intel_connector(connector);
15250 int ret;
15251
15252 ret = intel_backlight_device_register(intel_connector);
15253 if (ret)
15254 goto err;
15255
15256 return 0;
15257
15258 err:
15259 return ret;
15260 }
15261
15262 void intel_connector_unregister(struct drm_connector *connector)
15263 {
15264 struct intel_connector *intel_connector = to_intel_connector(connector);
15265
15266 intel_backlight_device_unregister(intel_connector);
15267 intel_panel_destroy_backlight(connector);
15268 }
15269
15270 static void intel_hpd_poll_fini(struct drm_device *dev)
15271 {
15272 struct intel_connector *connector;
15273 struct drm_connector_list_iter conn_iter;
15274
15275 /* First disable polling... */
15276 drm_kms_helper_poll_fini(dev);
15277
15278 /* Then kill the work that may have been queued by hpd. */
15279 drm_connector_list_iter_begin(dev, &conn_iter);
15280 for_each_intel_connector_iter(connector, &conn_iter) {
15281 if (connector->modeset_retry_work.func)
15282 cancel_work_sync(&connector->modeset_retry_work);
15283 }
15284 drm_connector_list_iter_end(&conn_iter);
15285 }
15286
15287 void intel_modeset_cleanup(struct drm_device *dev)
15288 {
15289 struct drm_i915_private *dev_priv = to_i915(dev);
15290
15291 flush_work(&dev_priv->atomic_helper.free_work);
15292 WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
15293
15294 intel_disable_gt_powersave(dev_priv);
15295
15296 /*
15297 * Interrupts and polling as the first thing to avoid creating havoc.
15298 * Too much stuff here (turning of connectors, ...) would
15299 * experience fancy races otherwise.
15300 */
15301 intel_irq_uninstall(dev_priv);
15302
15303 /*
15304 * Due to the hpd irq storm handling the hotplug work can re-arm the
15305 * poll handlers. Hence disable polling after hpd handling is shut down.
15306 */
15307 intel_hpd_poll_fini(dev);
15308
15309 /* poll work can call into fbdev, hence clean that up afterwards */
15310 intel_fbdev_fini(dev_priv);
15311
15312 intel_unregister_dsm_handler();
15313
15314 intel_fbc_global_disable(dev_priv);
15315
15316 /* flush any delayed tasks or pending work */
15317 flush_scheduled_work();
15318
15319 drm_mode_config_cleanup(dev);
15320
15321 intel_cleanup_overlay(dev_priv);
15322
15323 intel_cleanup_gt_powersave(dev_priv);
15324
15325 intel_teardown_gmbus(dev_priv);
15326 }
15327
15328 void intel_connector_attach_encoder(struct intel_connector *connector,
15329 struct intel_encoder *encoder)
15330 {
15331 connector->encoder = encoder;
15332 drm_mode_connector_attach_encoder(&connector->base,
15333 &encoder->base);
15334 }
15335
15336 /*
15337 * set vga decode state - true == enable VGA decode
15338 */
15339 int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
15340 {
15341 unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15342 u16 gmch_ctrl;
15343
15344 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15345 DRM_ERROR("failed to read control word\n");
15346 return -EIO;
15347 }
15348
15349 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15350 return 0;
15351
15352 if (state)
15353 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15354 else
15355 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15356
15357 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15358 DRM_ERROR("failed to write control word\n");
15359 return -EIO;
15360 }
15361
15362 return 0;
15363 }
15364
15365 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
15366
15367 struct intel_display_error_state {
15368
15369 u32 power_well_driver;
15370
15371 int num_transcoders;
15372
15373 struct intel_cursor_error_state {
15374 u32 control;
15375 u32 position;
15376 u32 base;
15377 u32 size;
15378 } cursor[I915_MAX_PIPES];
15379
15380 struct intel_pipe_error_state {
15381 bool power_domain_on;
15382 u32 source;
15383 u32 stat;
15384 } pipe[I915_MAX_PIPES];
15385
15386 struct intel_plane_error_state {
15387 u32 control;
15388 u32 stride;
15389 u32 size;
15390 u32 pos;
15391 u32 addr;
15392 u32 surface;
15393 u32 tile_offset;
15394 } plane[I915_MAX_PIPES];
15395
15396 struct intel_transcoder_error_state {
15397 bool power_domain_on;
15398 enum transcoder cpu_transcoder;
15399
15400 u32 conf;
15401
15402 u32 htotal;
15403 u32 hblank;
15404 u32 hsync;
15405 u32 vtotal;
15406 u32 vblank;
15407 u32 vsync;
15408 } transcoder[4];
15409 };
15410
15411 struct intel_display_error_state *
15412 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
15413 {
15414 struct intel_display_error_state *error;
15415 int transcoders[] = {
15416 TRANSCODER_A,
15417 TRANSCODER_B,
15418 TRANSCODER_C,
15419 TRANSCODER_EDP,
15420 };
15421 int i;
15422
15423 if (INTEL_INFO(dev_priv)->num_pipes == 0)
15424 return NULL;
15425
15426 error = kzalloc(sizeof(*error), GFP_ATOMIC);
15427 if (error == NULL)
15428 return NULL;
15429
15430 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15431 error->power_well_driver =
15432 I915_READ(HSW_PWR_WELL_CTL_DRIVER(HSW_DISP_PW_GLOBAL));
15433
15434 for_each_pipe(dev_priv, i) {
15435 error->pipe[i].power_domain_on =
15436 __intel_display_power_is_enabled(dev_priv,
15437 POWER_DOMAIN_PIPE(i));
15438 if (!error->pipe[i].power_domain_on)
15439 continue;
15440
15441 error->cursor[i].control = I915_READ(CURCNTR(i));
15442 error->cursor[i].position = I915_READ(CURPOS(i));
15443 error->cursor[i].base = I915_READ(CURBASE(i));
15444
15445 error->plane[i].control = I915_READ(DSPCNTR(i));
15446 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15447 if (INTEL_GEN(dev_priv) <= 3) {
15448 error->plane[i].size = I915_READ(DSPSIZE(i));
15449 error->plane[i].pos = I915_READ(DSPPOS(i));
15450 }
15451 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15452 error->plane[i].addr = I915_READ(DSPADDR(i));
15453 if (INTEL_GEN(dev_priv) >= 4) {
15454 error->plane[i].surface = I915_READ(DSPSURF(i));
15455 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15456 }
15457
15458 error->pipe[i].source = I915_READ(PIPESRC(i));
15459
15460 if (HAS_GMCH_DISPLAY(dev_priv))
15461 error->pipe[i].stat = I915_READ(PIPESTAT(i));
15462 }
15463
15464 /* Note: this does not include DSI transcoders. */
15465 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
15466 if (HAS_DDI(dev_priv))
15467 error->num_transcoders++; /* Account for eDP. */
15468
15469 for (i = 0; i < error->num_transcoders; i++) {
15470 enum transcoder cpu_transcoder = transcoders[i];
15471
15472 error->transcoder[i].power_domain_on =
15473 __intel_display_power_is_enabled(dev_priv,
15474 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15475 if (!error->transcoder[i].power_domain_on)
15476 continue;
15477
15478 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15479
15480 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15481 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15482 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15483 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15484 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15485 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15486 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15487 }
15488
15489 return error;
15490 }
15491
15492 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15493
15494 void
15495 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15496 struct intel_display_error_state *error)
15497 {
15498 struct drm_i915_private *dev_priv = m->i915;
15499 int i;
15500
15501 if (!error)
15502 return;
15503
15504 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
15505 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
15506 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15507 error->power_well_driver);
15508 for_each_pipe(dev_priv, i) {
15509 err_printf(m, "Pipe [%d]:\n", i);
15510 err_printf(m, " Power: %s\n",
15511 onoff(error->pipe[i].power_domain_on));
15512 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
15513 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
15514
15515 err_printf(m, "Plane [%d]:\n", i);
15516 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
15517 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
15518 if (INTEL_GEN(dev_priv) <= 3) {
15519 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
15520 err_printf(m, " POS: %08x\n", error->plane[i].pos);
15521 }
15522 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
15523 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
15524 if (INTEL_GEN(dev_priv) >= 4) {
15525 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
15526 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
15527 }
15528
15529 err_printf(m, "Cursor [%d]:\n", i);
15530 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
15531 err_printf(m, " POS: %08x\n", error->cursor[i].position);
15532 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
15533 }
15534
15535 for (i = 0; i < error->num_transcoders; i++) {
15536 err_printf(m, "CPU transcoder: %s\n",
15537 transcoder_name(error->transcoder[i].cpu_transcoder));
15538 err_printf(m, " Power: %s\n",
15539 onoff(error->transcoder[i].power_domain_on));
15540 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
15541 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
15542 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
15543 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
15544 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
15545 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
15546 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
15547 }
15548 }
15549
15550 #endif