Merge tag 'drm-intel-next-2015-04-23-fixed' of git://anongit.freedesktop.org/drm...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ibx[HPD_NUM_PINS] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[HPD_NUM_PINS] = {
57 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[HPD_NUM_PINS] = { /* i915 and valleyview are the same */
83 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* BXT hpd list */
92 static const u32 hpd_bxt[HPD_NUM_PINS] = {
93 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
94 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
95 };
96
97 /* IIR can theoretically queue up two events. Be paranoid. */
98 #define GEN8_IRQ_RESET_NDX(type, which) do { \
99 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
100 POSTING_READ(GEN8_##type##_IMR(which)); \
101 I915_WRITE(GEN8_##type##_IER(which), 0); \
102 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
103 POSTING_READ(GEN8_##type##_IIR(which)); \
104 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
105 POSTING_READ(GEN8_##type##_IIR(which)); \
106 } while (0)
107
108 #define GEN5_IRQ_RESET(type) do { \
109 I915_WRITE(type##IMR, 0xffffffff); \
110 POSTING_READ(type##IMR); \
111 I915_WRITE(type##IER, 0); \
112 I915_WRITE(type##IIR, 0xffffffff); \
113 POSTING_READ(type##IIR); \
114 I915_WRITE(type##IIR, 0xffffffff); \
115 POSTING_READ(type##IIR); \
116 } while (0)
117
118 /*
119 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
120 */
121 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
122 u32 val = I915_READ(reg); \
123 if (val) { \
124 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
125 (reg), val); \
126 I915_WRITE((reg), 0xffffffff); \
127 POSTING_READ(reg); \
128 I915_WRITE((reg), 0xffffffff); \
129 POSTING_READ(reg); \
130 } \
131 } while (0)
132
133 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
134 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
135 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
136 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
137 POSTING_READ(GEN8_##type##_IMR(which)); \
138 } while (0)
139
140 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
141 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
142 I915_WRITE(type##IER, (ier_val)); \
143 I915_WRITE(type##IMR, (imr_val)); \
144 POSTING_READ(type##IMR); \
145 } while (0)
146
147 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
148
149 /* For display hotplug interrupt */
150 void
151 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
152 {
153 assert_spin_locked(&dev_priv->irq_lock);
154
155 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
156 return;
157
158 if ((dev_priv->irq_mask & mask) != 0) {
159 dev_priv->irq_mask &= ~mask;
160 I915_WRITE(DEIMR, dev_priv->irq_mask);
161 POSTING_READ(DEIMR);
162 }
163 }
164
165 void
166 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
167 {
168 assert_spin_locked(&dev_priv->irq_lock);
169
170 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
171 return;
172
173 if ((dev_priv->irq_mask & mask) != mask) {
174 dev_priv->irq_mask |= mask;
175 I915_WRITE(DEIMR, dev_priv->irq_mask);
176 POSTING_READ(DEIMR);
177 }
178 }
179
180 /**
181 * ilk_update_gt_irq - update GTIMR
182 * @dev_priv: driver private
183 * @interrupt_mask: mask of interrupt bits to update
184 * @enabled_irq_mask: mask of interrupt bits to enable
185 */
186 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
187 uint32_t interrupt_mask,
188 uint32_t enabled_irq_mask)
189 {
190 assert_spin_locked(&dev_priv->irq_lock);
191
192 WARN_ON(enabled_irq_mask & ~interrupt_mask);
193
194 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
195 return;
196
197 dev_priv->gt_irq_mask &= ~interrupt_mask;
198 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
199 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
200 POSTING_READ(GTIMR);
201 }
202
203 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
204 {
205 ilk_update_gt_irq(dev_priv, mask, mask);
206 }
207
208 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
209 {
210 ilk_update_gt_irq(dev_priv, mask, 0);
211 }
212
213 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
214 {
215 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
216 }
217
218 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
219 {
220 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
221 }
222
223 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
224 {
225 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
226 }
227
228 /**
229 * snb_update_pm_irq - update GEN6_PMIMR
230 * @dev_priv: driver private
231 * @interrupt_mask: mask of interrupt bits to update
232 * @enabled_irq_mask: mask of interrupt bits to enable
233 */
234 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
235 uint32_t interrupt_mask,
236 uint32_t enabled_irq_mask)
237 {
238 uint32_t new_val;
239
240 WARN_ON(enabled_irq_mask & ~interrupt_mask);
241
242 assert_spin_locked(&dev_priv->irq_lock);
243
244 new_val = dev_priv->pm_irq_mask;
245 new_val &= ~interrupt_mask;
246 new_val |= (~enabled_irq_mask & interrupt_mask);
247
248 if (new_val != dev_priv->pm_irq_mask) {
249 dev_priv->pm_irq_mask = new_val;
250 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
251 POSTING_READ(gen6_pm_imr(dev_priv));
252 }
253 }
254
255 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
256 {
257 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258 return;
259
260 snb_update_pm_irq(dev_priv, mask, mask);
261 }
262
263 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
264 uint32_t mask)
265 {
266 snb_update_pm_irq(dev_priv, mask, 0);
267 }
268
269 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
270 {
271 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
272 return;
273
274 __gen6_disable_pm_irq(dev_priv, mask);
275 }
276
277 void gen6_reset_rps_interrupts(struct drm_device *dev)
278 {
279 struct drm_i915_private *dev_priv = dev->dev_private;
280 uint32_t reg = gen6_pm_iir(dev_priv);
281
282 spin_lock_irq(&dev_priv->irq_lock);
283 I915_WRITE(reg, dev_priv->pm_rps_events);
284 I915_WRITE(reg, dev_priv->pm_rps_events);
285 POSTING_READ(reg);
286 dev_priv->rps.pm_iir = 0;
287 spin_unlock_irq(&dev_priv->irq_lock);
288 }
289
290 void gen6_enable_rps_interrupts(struct drm_device *dev)
291 {
292 struct drm_i915_private *dev_priv = dev->dev_private;
293
294 spin_lock_irq(&dev_priv->irq_lock);
295
296 WARN_ON(dev_priv->rps.pm_iir);
297 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
298 dev_priv->rps.interrupts_enabled = true;
299 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
300 dev_priv->pm_rps_events);
301 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
302
303 spin_unlock_irq(&dev_priv->irq_lock);
304 }
305
306 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
307 {
308 /*
309 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
310 * if GEN6_PM_UP_EI_EXPIRED is masked.
311 *
312 * TODO: verify if this can be reproduced on VLV,CHV.
313 */
314 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
315 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
316
317 if (INTEL_INFO(dev_priv)->gen >= 8)
318 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
319
320 return mask;
321 }
322
323 void gen6_disable_rps_interrupts(struct drm_device *dev)
324 {
325 struct drm_i915_private *dev_priv = dev->dev_private;
326
327 spin_lock_irq(&dev_priv->irq_lock);
328 dev_priv->rps.interrupts_enabled = false;
329 spin_unlock_irq(&dev_priv->irq_lock);
330
331 cancel_work_sync(&dev_priv->rps.work);
332
333 spin_lock_irq(&dev_priv->irq_lock);
334
335 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
336
337 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
338 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
339 ~dev_priv->pm_rps_events);
340
341 spin_unlock_irq(&dev_priv->irq_lock);
342
343 synchronize_irq(dev->irq);
344 }
345
346 /**
347 * ibx_display_interrupt_update - update SDEIMR
348 * @dev_priv: driver private
349 * @interrupt_mask: mask of interrupt bits to update
350 * @enabled_irq_mask: mask of interrupt bits to enable
351 */
352 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
353 uint32_t interrupt_mask,
354 uint32_t enabled_irq_mask)
355 {
356 uint32_t sdeimr = I915_READ(SDEIMR);
357 sdeimr &= ~interrupt_mask;
358 sdeimr |= (~enabled_irq_mask & interrupt_mask);
359
360 WARN_ON(enabled_irq_mask & ~interrupt_mask);
361
362 assert_spin_locked(&dev_priv->irq_lock);
363
364 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
365 return;
366
367 I915_WRITE(SDEIMR, sdeimr);
368 POSTING_READ(SDEIMR);
369 }
370
371 static void
372 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
373 u32 enable_mask, u32 status_mask)
374 {
375 u32 reg = PIPESTAT(pipe);
376 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
377
378 assert_spin_locked(&dev_priv->irq_lock);
379 WARN_ON(!intel_irqs_enabled(dev_priv));
380
381 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
382 status_mask & ~PIPESTAT_INT_STATUS_MASK,
383 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
384 pipe_name(pipe), enable_mask, status_mask))
385 return;
386
387 if ((pipestat & enable_mask) == enable_mask)
388 return;
389
390 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
391
392 /* Enable the interrupt, clear any pending status */
393 pipestat |= enable_mask | status_mask;
394 I915_WRITE(reg, pipestat);
395 POSTING_READ(reg);
396 }
397
398 static void
399 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
400 u32 enable_mask, u32 status_mask)
401 {
402 u32 reg = PIPESTAT(pipe);
403 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
404
405 assert_spin_locked(&dev_priv->irq_lock);
406 WARN_ON(!intel_irqs_enabled(dev_priv));
407
408 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
409 status_mask & ~PIPESTAT_INT_STATUS_MASK,
410 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
411 pipe_name(pipe), enable_mask, status_mask))
412 return;
413
414 if ((pipestat & enable_mask) == 0)
415 return;
416
417 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
418
419 pipestat &= ~enable_mask;
420 I915_WRITE(reg, pipestat);
421 POSTING_READ(reg);
422 }
423
424 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
425 {
426 u32 enable_mask = status_mask << 16;
427
428 /*
429 * On pipe A we don't support the PSR interrupt yet,
430 * on pipe B and C the same bit MBZ.
431 */
432 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
433 return 0;
434 /*
435 * On pipe B and C we don't support the PSR interrupt yet, on pipe
436 * A the same bit is for perf counters which we don't use either.
437 */
438 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
439 return 0;
440
441 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
442 SPRITE0_FLIP_DONE_INT_EN_VLV |
443 SPRITE1_FLIP_DONE_INT_EN_VLV);
444 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
445 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
446 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
447 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
448
449 return enable_mask;
450 }
451
452 void
453 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
454 u32 status_mask)
455 {
456 u32 enable_mask;
457
458 if (IS_VALLEYVIEW(dev_priv->dev))
459 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
460 status_mask);
461 else
462 enable_mask = status_mask << 16;
463 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
464 }
465
466 void
467 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
468 u32 status_mask)
469 {
470 u32 enable_mask;
471
472 if (IS_VALLEYVIEW(dev_priv->dev))
473 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
474 status_mask);
475 else
476 enable_mask = status_mask << 16;
477 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
478 }
479
480 /**
481 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
482 */
483 static void i915_enable_asle_pipestat(struct drm_device *dev)
484 {
485 struct drm_i915_private *dev_priv = dev->dev_private;
486
487 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
488 return;
489
490 spin_lock_irq(&dev_priv->irq_lock);
491
492 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
493 if (INTEL_INFO(dev)->gen >= 4)
494 i915_enable_pipestat(dev_priv, PIPE_A,
495 PIPE_LEGACY_BLC_EVENT_STATUS);
496
497 spin_unlock_irq(&dev_priv->irq_lock);
498 }
499
500 /*
501 * This timing diagram depicts the video signal in and
502 * around the vertical blanking period.
503 *
504 * Assumptions about the fictitious mode used in this example:
505 * vblank_start >= 3
506 * vsync_start = vblank_start + 1
507 * vsync_end = vblank_start + 2
508 * vtotal = vblank_start + 3
509 *
510 * start of vblank:
511 * latch double buffered registers
512 * increment frame counter (ctg+)
513 * generate start of vblank interrupt (gen4+)
514 * |
515 * | frame start:
516 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
517 * | may be shifted forward 1-3 extra lines via PIPECONF
518 * | |
519 * | | start of vsync:
520 * | | generate vsync interrupt
521 * | | |
522 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
523 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
524 * ----va---> <-----------------vb--------------------> <--------va-------------
525 * | | <----vs-----> |
526 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
527 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
528 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
529 * | | |
530 * last visible pixel first visible pixel
531 * | increment frame counter (gen3/4)
532 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
533 *
534 * x = horizontal active
535 * _ = horizontal blanking
536 * hs = horizontal sync
537 * va = vertical active
538 * vb = vertical blanking
539 * vs = vertical sync
540 * vbs = vblank_start (number)
541 *
542 * Summary:
543 * - most events happen at the start of horizontal sync
544 * - frame start happens at the start of horizontal blank, 1-4 lines
545 * (depending on PIPECONF settings) after the start of vblank
546 * - gen3/4 pixel and frame counter are synchronized with the start
547 * of horizontal active on the first line of vertical active
548 */
549
550 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
551 {
552 /* Gen2 doesn't have a hardware frame counter */
553 return 0;
554 }
555
556 /* Called from drm generic code, passed a 'crtc', which
557 * we use as a pipe index
558 */
559 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
560 {
561 struct drm_i915_private *dev_priv = dev->dev_private;
562 unsigned long high_frame;
563 unsigned long low_frame;
564 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
565 struct intel_crtc *intel_crtc =
566 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
567 const struct drm_display_mode *mode =
568 &intel_crtc->config->base.adjusted_mode;
569
570 htotal = mode->crtc_htotal;
571 hsync_start = mode->crtc_hsync_start;
572 vbl_start = mode->crtc_vblank_start;
573 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
574 vbl_start = DIV_ROUND_UP(vbl_start, 2);
575
576 /* Convert to pixel count */
577 vbl_start *= htotal;
578
579 /* Start of vblank event occurs at start of hsync */
580 vbl_start -= htotal - hsync_start;
581
582 high_frame = PIPEFRAME(pipe);
583 low_frame = PIPEFRAMEPIXEL(pipe);
584
585 /*
586 * High & low register fields aren't synchronized, so make sure
587 * we get a low value that's stable across two reads of the high
588 * register.
589 */
590 do {
591 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
592 low = I915_READ(low_frame);
593 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
594 } while (high1 != high2);
595
596 high1 >>= PIPE_FRAME_HIGH_SHIFT;
597 pixel = low & PIPE_PIXEL_MASK;
598 low >>= PIPE_FRAME_LOW_SHIFT;
599
600 /*
601 * The frame counter increments at beginning of active.
602 * Cook up a vblank counter by also checking the pixel
603 * counter against vblank start.
604 */
605 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
606 }
607
608 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
609 {
610 struct drm_i915_private *dev_priv = dev->dev_private;
611 int reg = PIPE_FRMCOUNT_GM45(pipe);
612
613 return I915_READ(reg);
614 }
615
616 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
617 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
618
619 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
620 {
621 struct drm_device *dev = crtc->base.dev;
622 struct drm_i915_private *dev_priv = dev->dev_private;
623 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
624 enum pipe pipe = crtc->pipe;
625 int position, vtotal;
626
627 vtotal = mode->crtc_vtotal;
628 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
629 vtotal /= 2;
630
631 if (IS_GEN2(dev))
632 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
633 else
634 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
635
636 /*
637 * See update_scanline_offset() for the details on the
638 * scanline_offset adjustment.
639 */
640 return (position + crtc->scanline_offset) % vtotal;
641 }
642
643 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
644 unsigned int flags, int *vpos, int *hpos,
645 ktime_t *stime, ktime_t *etime)
646 {
647 struct drm_i915_private *dev_priv = dev->dev_private;
648 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
649 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
650 const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
651 int position;
652 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
653 bool in_vbl = true;
654 int ret = 0;
655 unsigned long irqflags;
656
657 if (!intel_crtc->active) {
658 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
659 "pipe %c\n", pipe_name(pipe));
660 return 0;
661 }
662
663 htotal = mode->crtc_htotal;
664 hsync_start = mode->crtc_hsync_start;
665 vtotal = mode->crtc_vtotal;
666 vbl_start = mode->crtc_vblank_start;
667 vbl_end = mode->crtc_vblank_end;
668
669 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
670 vbl_start = DIV_ROUND_UP(vbl_start, 2);
671 vbl_end /= 2;
672 vtotal /= 2;
673 }
674
675 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
676
677 /*
678 * Lock uncore.lock, as we will do multiple timing critical raw
679 * register reads, potentially with preemption disabled, so the
680 * following code must not block on uncore.lock.
681 */
682 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
683
684 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
685
686 /* Get optional system timestamp before query. */
687 if (stime)
688 *stime = ktime_get();
689
690 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
691 /* No obvious pixelcount register. Only query vertical
692 * scanout position from Display scan line register.
693 */
694 position = __intel_get_crtc_scanline(intel_crtc);
695 } else {
696 /* Have access to pixelcount since start of frame.
697 * We can split this into vertical and horizontal
698 * scanout position.
699 */
700 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
701
702 /* convert to pixel counts */
703 vbl_start *= htotal;
704 vbl_end *= htotal;
705 vtotal *= htotal;
706
707 /*
708 * In interlaced modes, the pixel counter counts all pixels,
709 * so one field will have htotal more pixels. In order to avoid
710 * the reported position from jumping backwards when the pixel
711 * counter is beyond the length of the shorter field, just
712 * clamp the position the length of the shorter field. This
713 * matches how the scanline counter based position works since
714 * the scanline counter doesn't count the two half lines.
715 */
716 if (position >= vtotal)
717 position = vtotal - 1;
718
719 /*
720 * Start of vblank interrupt is triggered at start of hsync,
721 * just prior to the first active line of vblank. However we
722 * consider lines to start at the leading edge of horizontal
723 * active. So, should we get here before we've crossed into
724 * the horizontal active of the first line in vblank, we would
725 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
726 * always add htotal-hsync_start to the current pixel position.
727 */
728 position = (position + htotal - hsync_start) % vtotal;
729 }
730
731 /* Get optional system timestamp after query. */
732 if (etime)
733 *etime = ktime_get();
734
735 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
736
737 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
738
739 in_vbl = position >= vbl_start && position < vbl_end;
740
741 /*
742 * While in vblank, position will be negative
743 * counting up towards 0 at vbl_end. And outside
744 * vblank, position will be positive counting
745 * up since vbl_end.
746 */
747 if (position >= vbl_start)
748 position -= vbl_end;
749 else
750 position += vtotal - vbl_end;
751
752 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
753 *vpos = position;
754 *hpos = 0;
755 } else {
756 *vpos = position / htotal;
757 *hpos = position - (*vpos * htotal);
758 }
759
760 /* In vblank? */
761 if (in_vbl)
762 ret |= DRM_SCANOUTPOS_IN_VBLANK;
763
764 return ret;
765 }
766
767 int intel_get_crtc_scanline(struct intel_crtc *crtc)
768 {
769 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
770 unsigned long irqflags;
771 int position;
772
773 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
774 position = __intel_get_crtc_scanline(crtc);
775 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
776
777 return position;
778 }
779
780 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
781 int *max_error,
782 struct timeval *vblank_time,
783 unsigned flags)
784 {
785 struct drm_crtc *crtc;
786
787 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
788 DRM_ERROR("Invalid crtc %d\n", pipe);
789 return -EINVAL;
790 }
791
792 /* Get drm_crtc to timestamp: */
793 crtc = intel_get_crtc_for_pipe(dev, pipe);
794 if (crtc == NULL) {
795 DRM_ERROR("Invalid crtc %d\n", pipe);
796 return -EINVAL;
797 }
798
799 if (!crtc->state->enable) {
800 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
801 return -EBUSY;
802 }
803
804 /* Helper routine in DRM core does all the work: */
805 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
806 vblank_time, flags,
807 crtc,
808 &to_intel_crtc(crtc)->config->base.adjusted_mode);
809 }
810
811 static bool intel_hpd_irq_event(struct drm_device *dev,
812 struct drm_connector *connector)
813 {
814 enum drm_connector_status old_status;
815
816 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
817 old_status = connector->status;
818
819 connector->status = connector->funcs->detect(connector, false);
820 if (old_status == connector->status)
821 return false;
822
823 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
824 connector->base.id,
825 connector->name,
826 drm_get_connector_status_name(old_status),
827 drm_get_connector_status_name(connector->status));
828
829 return true;
830 }
831
832 static void i915_digport_work_func(struct work_struct *work)
833 {
834 struct drm_i915_private *dev_priv =
835 container_of(work, struct drm_i915_private, dig_port_work);
836 u32 long_port_mask, short_port_mask;
837 struct intel_digital_port *intel_dig_port;
838 int i;
839 u32 old_bits = 0;
840
841 spin_lock_irq(&dev_priv->irq_lock);
842 long_port_mask = dev_priv->long_hpd_port_mask;
843 dev_priv->long_hpd_port_mask = 0;
844 short_port_mask = dev_priv->short_hpd_port_mask;
845 dev_priv->short_hpd_port_mask = 0;
846 spin_unlock_irq(&dev_priv->irq_lock);
847
848 for (i = 0; i < I915_MAX_PORTS; i++) {
849 bool valid = false;
850 bool long_hpd = false;
851 intel_dig_port = dev_priv->hpd_irq_port[i];
852 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
853 continue;
854
855 if (long_port_mask & (1 << i)) {
856 valid = true;
857 long_hpd = true;
858 } else if (short_port_mask & (1 << i))
859 valid = true;
860
861 if (valid) {
862 enum irqreturn ret;
863
864 ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
865 if (ret == IRQ_NONE) {
866 /* fall back to old school hpd */
867 old_bits |= (1 << intel_dig_port->base.hpd_pin);
868 }
869 }
870 }
871
872 if (old_bits) {
873 spin_lock_irq(&dev_priv->irq_lock);
874 dev_priv->hpd_event_bits |= old_bits;
875 spin_unlock_irq(&dev_priv->irq_lock);
876 schedule_work(&dev_priv->hotplug_work);
877 }
878 }
879
880 /*
881 * Handle hotplug events outside the interrupt handler proper.
882 */
883 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
884
885 static void i915_hotplug_work_func(struct work_struct *work)
886 {
887 struct drm_i915_private *dev_priv =
888 container_of(work, struct drm_i915_private, hotplug_work);
889 struct drm_device *dev = dev_priv->dev;
890 struct drm_mode_config *mode_config = &dev->mode_config;
891 struct intel_connector *intel_connector;
892 struct intel_encoder *intel_encoder;
893 struct drm_connector *connector;
894 bool hpd_disabled = false;
895 bool changed = false;
896 u32 hpd_event_bits;
897
898 mutex_lock(&mode_config->mutex);
899 DRM_DEBUG_KMS("running encoder hotplug functions\n");
900
901 spin_lock_irq(&dev_priv->irq_lock);
902
903 hpd_event_bits = dev_priv->hpd_event_bits;
904 dev_priv->hpd_event_bits = 0;
905 list_for_each_entry(connector, &mode_config->connector_list, head) {
906 intel_connector = to_intel_connector(connector);
907 if (!intel_connector->encoder)
908 continue;
909 intel_encoder = intel_connector->encoder;
910 if (intel_encoder->hpd_pin > HPD_NONE &&
911 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
912 connector->polled == DRM_CONNECTOR_POLL_HPD) {
913 DRM_INFO("HPD interrupt storm detected on connector %s: "
914 "switching from hotplug detection to polling\n",
915 connector->name);
916 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
917 connector->polled = DRM_CONNECTOR_POLL_CONNECT
918 | DRM_CONNECTOR_POLL_DISCONNECT;
919 hpd_disabled = true;
920 }
921 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
922 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
923 connector->name, intel_encoder->hpd_pin);
924 }
925 }
926 /* if there were no outputs to poll, poll was disabled,
927 * therefore make sure it's enabled when disabling HPD on
928 * some connectors */
929 if (hpd_disabled) {
930 drm_kms_helper_poll_enable(dev);
931 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
932 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
933 }
934
935 spin_unlock_irq(&dev_priv->irq_lock);
936
937 list_for_each_entry(connector, &mode_config->connector_list, head) {
938 intel_connector = to_intel_connector(connector);
939 if (!intel_connector->encoder)
940 continue;
941 intel_encoder = intel_connector->encoder;
942 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
943 if (intel_encoder->hot_plug)
944 intel_encoder->hot_plug(intel_encoder);
945 if (intel_hpd_irq_event(dev, connector))
946 changed = true;
947 }
948 }
949 mutex_unlock(&mode_config->mutex);
950
951 if (changed)
952 drm_kms_helper_hotplug_event(dev);
953 }
954
955 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
956 {
957 struct drm_i915_private *dev_priv = dev->dev_private;
958 u32 busy_up, busy_down, max_avg, min_avg;
959 u8 new_delay;
960
961 spin_lock(&mchdev_lock);
962
963 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
964
965 new_delay = dev_priv->ips.cur_delay;
966
967 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
968 busy_up = I915_READ(RCPREVBSYTUPAVG);
969 busy_down = I915_READ(RCPREVBSYTDNAVG);
970 max_avg = I915_READ(RCBMAXAVG);
971 min_avg = I915_READ(RCBMINAVG);
972
973 /* Handle RCS change request from hw */
974 if (busy_up > max_avg) {
975 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
976 new_delay = dev_priv->ips.cur_delay - 1;
977 if (new_delay < dev_priv->ips.max_delay)
978 new_delay = dev_priv->ips.max_delay;
979 } else if (busy_down < min_avg) {
980 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
981 new_delay = dev_priv->ips.cur_delay + 1;
982 if (new_delay > dev_priv->ips.min_delay)
983 new_delay = dev_priv->ips.min_delay;
984 }
985
986 if (ironlake_set_drps(dev, new_delay))
987 dev_priv->ips.cur_delay = new_delay;
988
989 spin_unlock(&mchdev_lock);
990
991 return;
992 }
993
994 static void notify_ring(struct intel_engine_cs *ring)
995 {
996 if (!intel_ring_initialized(ring))
997 return;
998
999 trace_i915_gem_request_notify(ring);
1000
1001 wake_up_all(&ring->irq_queue);
1002 }
1003
1004 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1005 struct intel_rps_ei *ei)
1006 {
1007 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1008 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1009 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1010 }
1011
1012 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1013 const struct intel_rps_ei *old,
1014 const struct intel_rps_ei *now,
1015 int threshold)
1016 {
1017 u64 time, c0;
1018
1019 if (old->cz_clock == 0)
1020 return false;
1021
1022 time = now->cz_clock - old->cz_clock;
1023 time *= threshold * dev_priv->mem_freq;
1024
1025 /* Workload can be split between render + media, e.g. SwapBuffers
1026 * being blitted in X after being rendered in mesa. To account for
1027 * this we need to combine both engines into our activity counter.
1028 */
1029 c0 = now->render_c0 - old->render_c0;
1030 c0 += now->media_c0 - old->media_c0;
1031 c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
1032
1033 return c0 >= time;
1034 }
1035
1036 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1037 {
1038 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1039 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1040 }
1041
1042 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1043 {
1044 struct intel_rps_ei now;
1045 u32 events = 0;
1046
1047 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1048 return 0;
1049
1050 vlv_c0_read(dev_priv, &now);
1051 if (now.cz_clock == 0)
1052 return 0;
1053
1054 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1055 if (!vlv_c0_above(dev_priv,
1056 &dev_priv->rps.down_ei, &now,
1057 dev_priv->rps.down_threshold))
1058 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1059 dev_priv->rps.down_ei = now;
1060 }
1061
1062 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1063 if (vlv_c0_above(dev_priv,
1064 &dev_priv->rps.up_ei, &now,
1065 dev_priv->rps.up_threshold))
1066 events |= GEN6_PM_RP_UP_THRESHOLD;
1067 dev_priv->rps.up_ei = now;
1068 }
1069
1070 return events;
1071 }
1072
1073 static void gen6_pm_rps_work(struct work_struct *work)
1074 {
1075 struct drm_i915_private *dev_priv =
1076 container_of(work, struct drm_i915_private, rps.work);
1077 u32 pm_iir;
1078 int new_delay, adj;
1079
1080 spin_lock_irq(&dev_priv->irq_lock);
1081 /* Speed up work cancelation during disabling rps interrupts. */
1082 if (!dev_priv->rps.interrupts_enabled) {
1083 spin_unlock_irq(&dev_priv->irq_lock);
1084 return;
1085 }
1086 pm_iir = dev_priv->rps.pm_iir;
1087 dev_priv->rps.pm_iir = 0;
1088 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1089 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1090 spin_unlock_irq(&dev_priv->irq_lock);
1091
1092 /* Make sure we didn't queue anything we're not going to process. */
1093 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1094
1095 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1096 return;
1097
1098 mutex_lock(&dev_priv->rps.hw_lock);
1099
1100 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1101
1102 adj = dev_priv->rps.last_adj;
1103 new_delay = dev_priv->rps.cur_freq;
1104 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1105 if (adj > 0)
1106 adj *= 2;
1107 else /* CHV needs even encode values */
1108 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1109 /*
1110 * For better performance, jump directly
1111 * to RPe if we're below it.
1112 */
1113 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1114 new_delay = dev_priv->rps.efficient_freq;
1115 adj = 0;
1116 }
1117 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1118 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1119 new_delay = dev_priv->rps.efficient_freq;
1120 else
1121 new_delay = dev_priv->rps.min_freq_softlimit;
1122 adj = 0;
1123 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1124 if (adj < 0)
1125 adj *= 2;
1126 else /* CHV needs even encode values */
1127 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1128 } else { /* unknown event */
1129 adj = 0;
1130 }
1131
1132 dev_priv->rps.last_adj = adj;
1133
1134 /* sysfs frequency interfaces may have snuck in while servicing the
1135 * interrupt
1136 */
1137 new_delay += adj;
1138 new_delay = clamp_t(int, new_delay,
1139 dev_priv->rps.min_freq_softlimit,
1140 dev_priv->rps.max_freq_softlimit);
1141
1142 intel_set_rps(dev_priv->dev, new_delay);
1143
1144 mutex_unlock(&dev_priv->rps.hw_lock);
1145 }
1146
1147
1148 /**
1149 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1150 * occurred.
1151 * @work: workqueue struct
1152 *
1153 * Doesn't actually do anything except notify userspace. As a consequence of
1154 * this event, userspace should try to remap the bad rows since statistically
1155 * it is likely the same row is more likely to go bad again.
1156 */
1157 static void ivybridge_parity_work(struct work_struct *work)
1158 {
1159 struct drm_i915_private *dev_priv =
1160 container_of(work, struct drm_i915_private, l3_parity.error_work);
1161 u32 error_status, row, bank, subbank;
1162 char *parity_event[6];
1163 uint32_t misccpctl;
1164 uint8_t slice = 0;
1165
1166 /* We must turn off DOP level clock gating to access the L3 registers.
1167 * In order to prevent a get/put style interface, acquire struct mutex
1168 * any time we access those registers.
1169 */
1170 mutex_lock(&dev_priv->dev->struct_mutex);
1171
1172 /* If we've screwed up tracking, just let the interrupt fire again */
1173 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1174 goto out;
1175
1176 misccpctl = I915_READ(GEN7_MISCCPCTL);
1177 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1178 POSTING_READ(GEN7_MISCCPCTL);
1179
1180 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1181 u32 reg;
1182
1183 slice--;
1184 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1185 break;
1186
1187 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1188
1189 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1190
1191 error_status = I915_READ(reg);
1192 row = GEN7_PARITY_ERROR_ROW(error_status);
1193 bank = GEN7_PARITY_ERROR_BANK(error_status);
1194 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1195
1196 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1197 POSTING_READ(reg);
1198
1199 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1200 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1201 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1202 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1203 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1204 parity_event[5] = NULL;
1205
1206 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1207 KOBJ_CHANGE, parity_event);
1208
1209 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1210 slice, row, bank, subbank);
1211
1212 kfree(parity_event[4]);
1213 kfree(parity_event[3]);
1214 kfree(parity_event[2]);
1215 kfree(parity_event[1]);
1216 }
1217
1218 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1219
1220 out:
1221 WARN_ON(dev_priv->l3_parity.which_slice);
1222 spin_lock_irq(&dev_priv->irq_lock);
1223 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1224 spin_unlock_irq(&dev_priv->irq_lock);
1225
1226 mutex_unlock(&dev_priv->dev->struct_mutex);
1227 }
1228
1229 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1230 {
1231 struct drm_i915_private *dev_priv = dev->dev_private;
1232
1233 if (!HAS_L3_DPF(dev))
1234 return;
1235
1236 spin_lock(&dev_priv->irq_lock);
1237 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1238 spin_unlock(&dev_priv->irq_lock);
1239
1240 iir &= GT_PARITY_ERROR(dev);
1241 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1242 dev_priv->l3_parity.which_slice |= 1 << 1;
1243
1244 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1245 dev_priv->l3_parity.which_slice |= 1 << 0;
1246
1247 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1248 }
1249
1250 static void ilk_gt_irq_handler(struct drm_device *dev,
1251 struct drm_i915_private *dev_priv,
1252 u32 gt_iir)
1253 {
1254 if (gt_iir &
1255 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1256 notify_ring(&dev_priv->ring[RCS]);
1257 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1258 notify_ring(&dev_priv->ring[VCS]);
1259 }
1260
1261 static void snb_gt_irq_handler(struct drm_device *dev,
1262 struct drm_i915_private *dev_priv,
1263 u32 gt_iir)
1264 {
1265
1266 if (gt_iir &
1267 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1268 notify_ring(&dev_priv->ring[RCS]);
1269 if (gt_iir & GT_BSD_USER_INTERRUPT)
1270 notify_ring(&dev_priv->ring[VCS]);
1271 if (gt_iir & GT_BLT_USER_INTERRUPT)
1272 notify_ring(&dev_priv->ring[BCS]);
1273
1274 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1275 GT_BSD_CS_ERROR_INTERRUPT |
1276 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1277 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1278
1279 if (gt_iir & GT_PARITY_ERROR(dev))
1280 ivybridge_parity_error_irq_handler(dev, gt_iir);
1281 }
1282
1283 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1284 u32 master_ctl)
1285 {
1286 irqreturn_t ret = IRQ_NONE;
1287
1288 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1289 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1290 if (tmp) {
1291 I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1292 ret = IRQ_HANDLED;
1293
1294 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1295 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1296 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1297 notify_ring(&dev_priv->ring[RCS]);
1298
1299 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1300 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1301 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1302 notify_ring(&dev_priv->ring[BCS]);
1303 } else
1304 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1305 }
1306
1307 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1308 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1309 if (tmp) {
1310 I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1311 ret = IRQ_HANDLED;
1312
1313 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1314 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1315 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1316 notify_ring(&dev_priv->ring[VCS]);
1317
1318 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1319 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1320 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1321 notify_ring(&dev_priv->ring[VCS2]);
1322 } else
1323 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1324 }
1325
1326 if (master_ctl & GEN8_GT_VECS_IRQ) {
1327 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1328 if (tmp) {
1329 I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1330 ret = IRQ_HANDLED;
1331
1332 if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1333 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1334 if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1335 notify_ring(&dev_priv->ring[VECS]);
1336 } else
1337 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1338 }
1339
1340 if (master_ctl & GEN8_GT_PM_IRQ) {
1341 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1342 if (tmp & dev_priv->pm_rps_events) {
1343 I915_WRITE_FW(GEN8_GT_IIR(2),
1344 tmp & dev_priv->pm_rps_events);
1345 ret = IRQ_HANDLED;
1346 gen6_rps_irq_handler(dev_priv, tmp);
1347 } else
1348 DRM_ERROR("The master control interrupt lied (PM)!\n");
1349 }
1350
1351 return ret;
1352 }
1353
1354 #define HPD_STORM_DETECT_PERIOD 1000
1355 #define HPD_STORM_THRESHOLD 5
1356
1357 static int pch_port_to_hotplug_shift(enum port port)
1358 {
1359 switch (port) {
1360 case PORT_A:
1361 case PORT_E:
1362 default:
1363 return -1;
1364 case PORT_B:
1365 return 0;
1366 case PORT_C:
1367 return 8;
1368 case PORT_D:
1369 return 16;
1370 }
1371 }
1372
1373 static int i915_port_to_hotplug_shift(enum port port)
1374 {
1375 switch (port) {
1376 case PORT_A:
1377 case PORT_E:
1378 default:
1379 return -1;
1380 case PORT_B:
1381 return 17;
1382 case PORT_C:
1383 return 19;
1384 case PORT_D:
1385 return 21;
1386 }
1387 }
1388
1389 static inline enum port get_port_from_pin(enum hpd_pin pin)
1390 {
1391 switch (pin) {
1392 case HPD_PORT_B:
1393 return PORT_B;
1394 case HPD_PORT_C:
1395 return PORT_C;
1396 case HPD_PORT_D:
1397 return PORT_D;
1398 default:
1399 return PORT_A; /* no hpd */
1400 }
1401 }
1402
1403 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1404 u32 hotplug_trigger,
1405 u32 dig_hotplug_reg,
1406 const u32 hpd[HPD_NUM_PINS])
1407 {
1408 struct drm_i915_private *dev_priv = dev->dev_private;
1409 int i;
1410 enum port port;
1411 bool storm_detected = false;
1412 bool queue_dig = false, queue_hp = false;
1413 u32 dig_shift;
1414 u32 dig_port_mask = 0;
1415
1416 if (!hotplug_trigger)
1417 return;
1418
1419 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1420 hotplug_trigger, dig_hotplug_reg);
1421
1422 spin_lock(&dev_priv->irq_lock);
1423 for (i = 1; i < HPD_NUM_PINS; i++) {
1424 if (!(hpd[i] & hotplug_trigger))
1425 continue;
1426
1427 port = get_port_from_pin(i);
1428 if (port && dev_priv->hpd_irq_port[port]) {
1429 bool long_hpd;
1430
1431 if (!HAS_GMCH_DISPLAY(dev_priv)) {
1432 dig_shift = pch_port_to_hotplug_shift(port);
1433 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1434 } else {
1435 dig_shift = i915_port_to_hotplug_shift(port);
1436 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1437 }
1438
1439 DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1440 port_name(port),
1441 long_hpd ? "long" : "short");
1442 /* for long HPD pulses we want to have the digital queue happen,
1443 but we still want HPD storm detection to function. */
1444 if (long_hpd) {
1445 dev_priv->long_hpd_port_mask |= (1 << port);
1446 dig_port_mask |= hpd[i];
1447 } else {
1448 /* for short HPD just trigger the digital queue */
1449 dev_priv->short_hpd_port_mask |= (1 << port);
1450 hotplug_trigger &= ~hpd[i];
1451 }
1452 queue_dig = true;
1453 }
1454 }
1455
1456 for (i = 1; i < HPD_NUM_PINS; i++) {
1457 if (hpd[i] & hotplug_trigger &&
1458 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1459 /*
1460 * On GMCH platforms the interrupt mask bits only
1461 * prevent irq generation, not the setting of the
1462 * hotplug bits itself. So only WARN about unexpected
1463 * interrupts on saner platforms.
1464 */
1465 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1466 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1467 hotplug_trigger, i, hpd[i]);
1468
1469 continue;
1470 }
1471
1472 if (!(hpd[i] & hotplug_trigger) ||
1473 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1474 continue;
1475
1476 if (!(dig_port_mask & hpd[i])) {
1477 dev_priv->hpd_event_bits |= (1 << i);
1478 queue_hp = true;
1479 }
1480
1481 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1482 dev_priv->hpd_stats[i].hpd_last_jiffies
1483 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1484 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1485 dev_priv->hpd_stats[i].hpd_cnt = 0;
1486 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1487 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1488 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1489 dev_priv->hpd_event_bits &= ~(1 << i);
1490 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1491 storm_detected = true;
1492 } else {
1493 dev_priv->hpd_stats[i].hpd_cnt++;
1494 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1495 dev_priv->hpd_stats[i].hpd_cnt);
1496 }
1497 }
1498
1499 if (storm_detected)
1500 dev_priv->display.hpd_irq_setup(dev);
1501 spin_unlock(&dev_priv->irq_lock);
1502
1503 /*
1504 * Our hotplug handler can grab modeset locks (by calling down into the
1505 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1506 * queue for otherwise the flush_work in the pageflip code will
1507 * deadlock.
1508 */
1509 if (queue_dig)
1510 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1511 if (queue_hp)
1512 schedule_work(&dev_priv->hotplug_work);
1513 }
1514
1515 static void gmbus_irq_handler(struct drm_device *dev)
1516 {
1517 struct drm_i915_private *dev_priv = dev->dev_private;
1518
1519 wake_up_all(&dev_priv->gmbus_wait_queue);
1520 }
1521
1522 static void dp_aux_irq_handler(struct drm_device *dev)
1523 {
1524 struct drm_i915_private *dev_priv = dev->dev_private;
1525
1526 wake_up_all(&dev_priv->gmbus_wait_queue);
1527 }
1528
1529 #if defined(CONFIG_DEBUG_FS)
1530 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1531 uint32_t crc0, uint32_t crc1,
1532 uint32_t crc2, uint32_t crc3,
1533 uint32_t crc4)
1534 {
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1537 struct intel_pipe_crc_entry *entry;
1538 int head, tail;
1539
1540 spin_lock(&pipe_crc->lock);
1541
1542 if (!pipe_crc->entries) {
1543 spin_unlock(&pipe_crc->lock);
1544 DRM_DEBUG_KMS("spurious interrupt\n");
1545 return;
1546 }
1547
1548 head = pipe_crc->head;
1549 tail = pipe_crc->tail;
1550
1551 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1552 spin_unlock(&pipe_crc->lock);
1553 DRM_ERROR("CRC buffer overflowing\n");
1554 return;
1555 }
1556
1557 entry = &pipe_crc->entries[head];
1558
1559 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1560 entry->crc[0] = crc0;
1561 entry->crc[1] = crc1;
1562 entry->crc[2] = crc2;
1563 entry->crc[3] = crc3;
1564 entry->crc[4] = crc4;
1565
1566 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1567 pipe_crc->head = head;
1568
1569 spin_unlock(&pipe_crc->lock);
1570
1571 wake_up_interruptible(&pipe_crc->wq);
1572 }
1573 #else
1574 static inline void
1575 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1576 uint32_t crc0, uint32_t crc1,
1577 uint32_t crc2, uint32_t crc3,
1578 uint32_t crc4) {}
1579 #endif
1580
1581
1582 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1583 {
1584 struct drm_i915_private *dev_priv = dev->dev_private;
1585
1586 display_pipe_crc_irq_handler(dev, pipe,
1587 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1588 0, 0, 0, 0);
1589 }
1590
1591 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1592 {
1593 struct drm_i915_private *dev_priv = dev->dev_private;
1594
1595 display_pipe_crc_irq_handler(dev, pipe,
1596 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1597 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1598 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1599 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1600 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1601 }
1602
1603 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1604 {
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606 uint32_t res1, res2;
1607
1608 if (INTEL_INFO(dev)->gen >= 3)
1609 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1610 else
1611 res1 = 0;
1612
1613 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1614 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1615 else
1616 res2 = 0;
1617
1618 display_pipe_crc_irq_handler(dev, pipe,
1619 I915_READ(PIPE_CRC_RES_RED(pipe)),
1620 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1621 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1622 res1, res2);
1623 }
1624
1625 /* The RPS events need forcewake, so we add them to a work queue and mask their
1626 * IMR bits until the work is done. Other interrupts can be processed without
1627 * the work queue. */
1628 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1629 {
1630 if (pm_iir & dev_priv->pm_rps_events) {
1631 spin_lock(&dev_priv->irq_lock);
1632 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1633 if (dev_priv->rps.interrupts_enabled) {
1634 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1635 queue_work(dev_priv->wq, &dev_priv->rps.work);
1636 }
1637 spin_unlock(&dev_priv->irq_lock);
1638 }
1639
1640 if (INTEL_INFO(dev_priv)->gen >= 8)
1641 return;
1642
1643 if (HAS_VEBOX(dev_priv->dev)) {
1644 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1645 notify_ring(&dev_priv->ring[VECS]);
1646
1647 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1648 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1649 }
1650 }
1651
1652 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1653 {
1654 if (!drm_handle_vblank(dev, pipe))
1655 return false;
1656
1657 return true;
1658 }
1659
1660 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1661 {
1662 struct drm_i915_private *dev_priv = dev->dev_private;
1663 u32 pipe_stats[I915_MAX_PIPES] = { };
1664 int pipe;
1665
1666 spin_lock(&dev_priv->irq_lock);
1667 for_each_pipe(dev_priv, pipe) {
1668 int reg;
1669 u32 mask, iir_bit = 0;
1670
1671 /*
1672 * PIPESTAT bits get signalled even when the interrupt is
1673 * disabled with the mask bits, and some of the status bits do
1674 * not generate interrupts at all (like the underrun bit). Hence
1675 * we need to be careful that we only handle what we want to
1676 * handle.
1677 */
1678
1679 /* fifo underruns are filterered in the underrun handler. */
1680 mask = PIPE_FIFO_UNDERRUN_STATUS;
1681
1682 switch (pipe) {
1683 case PIPE_A:
1684 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1685 break;
1686 case PIPE_B:
1687 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1688 break;
1689 case PIPE_C:
1690 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1691 break;
1692 }
1693 if (iir & iir_bit)
1694 mask |= dev_priv->pipestat_irq_mask[pipe];
1695
1696 if (!mask)
1697 continue;
1698
1699 reg = PIPESTAT(pipe);
1700 mask |= PIPESTAT_INT_ENABLE_MASK;
1701 pipe_stats[pipe] = I915_READ(reg) & mask;
1702
1703 /*
1704 * Clear the PIPE*STAT regs before the IIR
1705 */
1706 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1707 PIPESTAT_INT_STATUS_MASK))
1708 I915_WRITE(reg, pipe_stats[pipe]);
1709 }
1710 spin_unlock(&dev_priv->irq_lock);
1711
1712 for_each_pipe(dev_priv, pipe) {
1713 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1714 intel_pipe_handle_vblank(dev, pipe))
1715 intel_check_page_flip(dev, pipe);
1716
1717 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1718 intel_prepare_page_flip(dev, pipe);
1719 intel_finish_page_flip(dev, pipe);
1720 }
1721
1722 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1723 i9xx_pipe_crc_irq_handler(dev, pipe);
1724
1725 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1726 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1727 }
1728
1729 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1730 gmbus_irq_handler(dev);
1731 }
1732
1733 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1734 {
1735 struct drm_i915_private *dev_priv = dev->dev_private;
1736 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1737
1738 if (hotplug_status) {
1739 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1740 /*
1741 * Make sure hotplug status is cleared before we clear IIR, or else we
1742 * may miss hotplug events.
1743 */
1744 POSTING_READ(PORT_HOTPLUG_STAT);
1745
1746 if (IS_G4X(dev)) {
1747 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1748
1749 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1750 } else {
1751 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1752
1753 intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1754 }
1755
1756 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1757 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1758 dp_aux_irq_handler(dev);
1759 }
1760 }
1761
1762 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1763 {
1764 struct drm_device *dev = arg;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 u32 iir, gt_iir, pm_iir;
1767 irqreturn_t ret = IRQ_NONE;
1768
1769 if (!intel_irqs_enabled(dev_priv))
1770 return IRQ_NONE;
1771
1772 while (true) {
1773 /* Find, clear, then process each source of interrupt */
1774
1775 gt_iir = I915_READ(GTIIR);
1776 if (gt_iir)
1777 I915_WRITE(GTIIR, gt_iir);
1778
1779 pm_iir = I915_READ(GEN6_PMIIR);
1780 if (pm_iir)
1781 I915_WRITE(GEN6_PMIIR, pm_iir);
1782
1783 iir = I915_READ(VLV_IIR);
1784 if (iir) {
1785 /* Consume port before clearing IIR or we'll miss events */
1786 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1787 i9xx_hpd_irq_handler(dev);
1788 I915_WRITE(VLV_IIR, iir);
1789 }
1790
1791 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1792 goto out;
1793
1794 ret = IRQ_HANDLED;
1795
1796 if (gt_iir)
1797 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1798 if (pm_iir)
1799 gen6_rps_irq_handler(dev_priv, pm_iir);
1800 /* Call regardless, as some status bits might not be
1801 * signalled in iir */
1802 valleyview_pipestat_irq_handler(dev, iir);
1803 }
1804
1805 out:
1806 return ret;
1807 }
1808
1809 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1810 {
1811 struct drm_device *dev = arg;
1812 struct drm_i915_private *dev_priv = dev->dev_private;
1813 u32 master_ctl, iir;
1814 irqreturn_t ret = IRQ_NONE;
1815
1816 if (!intel_irqs_enabled(dev_priv))
1817 return IRQ_NONE;
1818
1819 for (;;) {
1820 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1821 iir = I915_READ(VLV_IIR);
1822
1823 if (master_ctl == 0 && iir == 0)
1824 break;
1825
1826 ret = IRQ_HANDLED;
1827
1828 I915_WRITE(GEN8_MASTER_IRQ, 0);
1829
1830 /* Find, clear, then process each source of interrupt */
1831
1832 if (iir) {
1833 /* Consume port before clearing IIR or we'll miss events */
1834 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1835 i9xx_hpd_irq_handler(dev);
1836 I915_WRITE(VLV_IIR, iir);
1837 }
1838
1839 gen8_gt_irq_handler(dev_priv, master_ctl);
1840
1841 /* Call regardless, as some status bits might not be
1842 * signalled in iir */
1843 valleyview_pipestat_irq_handler(dev, iir);
1844
1845 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1846 POSTING_READ(GEN8_MASTER_IRQ);
1847 }
1848
1849 return ret;
1850 }
1851
1852 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1853 {
1854 struct drm_i915_private *dev_priv = dev->dev_private;
1855 int pipe;
1856 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1857 u32 dig_hotplug_reg;
1858
1859 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1860 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1861
1862 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1863
1864 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1865 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1866 SDE_AUDIO_POWER_SHIFT);
1867 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1868 port_name(port));
1869 }
1870
1871 if (pch_iir & SDE_AUX_MASK)
1872 dp_aux_irq_handler(dev);
1873
1874 if (pch_iir & SDE_GMBUS)
1875 gmbus_irq_handler(dev);
1876
1877 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1878 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1879
1880 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1881 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1882
1883 if (pch_iir & SDE_POISON)
1884 DRM_ERROR("PCH poison interrupt\n");
1885
1886 if (pch_iir & SDE_FDI_MASK)
1887 for_each_pipe(dev_priv, pipe)
1888 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1889 pipe_name(pipe),
1890 I915_READ(FDI_RX_IIR(pipe)));
1891
1892 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1893 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1894
1895 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1896 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1897
1898 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1899 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1900
1901 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1902 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1903 }
1904
1905 static void ivb_err_int_handler(struct drm_device *dev)
1906 {
1907 struct drm_i915_private *dev_priv = dev->dev_private;
1908 u32 err_int = I915_READ(GEN7_ERR_INT);
1909 enum pipe pipe;
1910
1911 if (err_int & ERR_INT_POISON)
1912 DRM_ERROR("Poison interrupt\n");
1913
1914 for_each_pipe(dev_priv, pipe) {
1915 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1916 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1917
1918 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1919 if (IS_IVYBRIDGE(dev))
1920 ivb_pipe_crc_irq_handler(dev, pipe);
1921 else
1922 hsw_pipe_crc_irq_handler(dev, pipe);
1923 }
1924 }
1925
1926 I915_WRITE(GEN7_ERR_INT, err_int);
1927 }
1928
1929 static void cpt_serr_int_handler(struct drm_device *dev)
1930 {
1931 struct drm_i915_private *dev_priv = dev->dev_private;
1932 u32 serr_int = I915_READ(SERR_INT);
1933
1934 if (serr_int & SERR_INT_POISON)
1935 DRM_ERROR("PCH poison interrupt\n");
1936
1937 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1938 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1939
1940 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1941 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1942
1943 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1944 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1945
1946 I915_WRITE(SERR_INT, serr_int);
1947 }
1948
1949 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1950 {
1951 struct drm_i915_private *dev_priv = dev->dev_private;
1952 int pipe;
1953 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1954 u32 dig_hotplug_reg;
1955
1956 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1957 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1958
1959 intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
1960
1961 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1962 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1963 SDE_AUDIO_POWER_SHIFT_CPT);
1964 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1965 port_name(port));
1966 }
1967
1968 if (pch_iir & SDE_AUX_MASK_CPT)
1969 dp_aux_irq_handler(dev);
1970
1971 if (pch_iir & SDE_GMBUS_CPT)
1972 gmbus_irq_handler(dev);
1973
1974 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1975 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1976
1977 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1978 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1979
1980 if (pch_iir & SDE_FDI_MASK_CPT)
1981 for_each_pipe(dev_priv, pipe)
1982 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1983 pipe_name(pipe),
1984 I915_READ(FDI_RX_IIR(pipe)));
1985
1986 if (pch_iir & SDE_ERROR_CPT)
1987 cpt_serr_int_handler(dev);
1988 }
1989
1990 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1991 {
1992 struct drm_i915_private *dev_priv = dev->dev_private;
1993 enum pipe pipe;
1994
1995 if (de_iir & DE_AUX_CHANNEL_A)
1996 dp_aux_irq_handler(dev);
1997
1998 if (de_iir & DE_GSE)
1999 intel_opregion_asle_intr(dev);
2000
2001 if (de_iir & DE_POISON)
2002 DRM_ERROR("Poison interrupt\n");
2003
2004 for_each_pipe(dev_priv, pipe) {
2005 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2006 intel_pipe_handle_vblank(dev, pipe))
2007 intel_check_page_flip(dev, pipe);
2008
2009 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2010 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2011
2012 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2013 i9xx_pipe_crc_irq_handler(dev, pipe);
2014
2015 /* plane/pipes map 1:1 on ilk+ */
2016 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2017 intel_prepare_page_flip(dev, pipe);
2018 intel_finish_page_flip_plane(dev, pipe);
2019 }
2020 }
2021
2022 /* check event from PCH */
2023 if (de_iir & DE_PCH_EVENT) {
2024 u32 pch_iir = I915_READ(SDEIIR);
2025
2026 if (HAS_PCH_CPT(dev))
2027 cpt_irq_handler(dev, pch_iir);
2028 else
2029 ibx_irq_handler(dev, pch_iir);
2030
2031 /* should clear PCH hotplug event before clear CPU irq */
2032 I915_WRITE(SDEIIR, pch_iir);
2033 }
2034
2035 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2036 ironlake_rps_change_irq_handler(dev);
2037 }
2038
2039 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2040 {
2041 struct drm_i915_private *dev_priv = dev->dev_private;
2042 enum pipe pipe;
2043
2044 if (de_iir & DE_ERR_INT_IVB)
2045 ivb_err_int_handler(dev);
2046
2047 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2048 dp_aux_irq_handler(dev);
2049
2050 if (de_iir & DE_GSE_IVB)
2051 intel_opregion_asle_intr(dev);
2052
2053 for_each_pipe(dev_priv, pipe) {
2054 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2055 intel_pipe_handle_vblank(dev, pipe))
2056 intel_check_page_flip(dev, pipe);
2057
2058 /* plane/pipes map 1:1 on ilk+ */
2059 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2060 intel_prepare_page_flip(dev, pipe);
2061 intel_finish_page_flip_plane(dev, pipe);
2062 }
2063 }
2064
2065 /* check event from PCH */
2066 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2067 u32 pch_iir = I915_READ(SDEIIR);
2068
2069 cpt_irq_handler(dev, pch_iir);
2070
2071 /* clear PCH hotplug event before clear CPU irq */
2072 I915_WRITE(SDEIIR, pch_iir);
2073 }
2074 }
2075
2076 /*
2077 * To handle irqs with the minimum potential races with fresh interrupts, we:
2078 * 1 - Disable Master Interrupt Control.
2079 * 2 - Find the source(s) of the interrupt.
2080 * 3 - Clear the Interrupt Identity bits (IIR).
2081 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2082 * 5 - Re-enable Master Interrupt Control.
2083 */
2084 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2085 {
2086 struct drm_device *dev = arg;
2087 struct drm_i915_private *dev_priv = dev->dev_private;
2088 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2089 irqreturn_t ret = IRQ_NONE;
2090
2091 if (!intel_irqs_enabled(dev_priv))
2092 return IRQ_NONE;
2093
2094 /* We get interrupts on unclaimed registers, so check for this before we
2095 * do any I915_{READ,WRITE}. */
2096 intel_uncore_check_errors(dev);
2097
2098 /* disable master interrupt before clearing iir */
2099 de_ier = I915_READ(DEIER);
2100 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2101 POSTING_READ(DEIER);
2102
2103 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2104 * interrupts will will be stored on its back queue, and then we'll be
2105 * able to process them after we restore SDEIER (as soon as we restore
2106 * it, we'll get an interrupt if SDEIIR still has something to process
2107 * due to its back queue). */
2108 if (!HAS_PCH_NOP(dev)) {
2109 sde_ier = I915_READ(SDEIER);
2110 I915_WRITE(SDEIER, 0);
2111 POSTING_READ(SDEIER);
2112 }
2113
2114 /* Find, clear, then process each source of interrupt */
2115
2116 gt_iir = I915_READ(GTIIR);
2117 if (gt_iir) {
2118 I915_WRITE(GTIIR, gt_iir);
2119 ret = IRQ_HANDLED;
2120 if (INTEL_INFO(dev)->gen >= 6)
2121 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2122 else
2123 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2124 }
2125
2126 de_iir = I915_READ(DEIIR);
2127 if (de_iir) {
2128 I915_WRITE(DEIIR, de_iir);
2129 ret = IRQ_HANDLED;
2130 if (INTEL_INFO(dev)->gen >= 7)
2131 ivb_display_irq_handler(dev, de_iir);
2132 else
2133 ilk_display_irq_handler(dev, de_iir);
2134 }
2135
2136 if (INTEL_INFO(dev)->gen >= 6) {
2137 u32 pm_iir = I915_READ(GEN6_PMIIR);
2138 if (pm_iir) {
2139 I915_WRITE(GEN6_PMIIR, pm_iir);
2140 ret = IRQ_HANDLED;
2141 gen6_rps_irq_handler(dev_priv, pm_iir);
2142 }
2143 }
2144
2145 I915_WRITE(DEIER, de_ier);
2146 POSTING_READ(DEIER);
2147 if (!HAS_PCH_NOP(dev)) {
2148 I915_WRITE(SDEIER, sde_ier);
2149 POSTING_READ(SDEIER);
2150 }
2151
2152 return ret;
2153 }
2154
2155 static void bxt_hpd_handler(struct drm_device *dev, uint32_t iir_status)
2156 {
2157 struct drm_i915_private *dev_priv = dev->dev_private;
2158 uint32_t hp_control;
2159 uint32_t hp_trigger;
2160
2161 /* Get the status */
2162 hp_trigger = iir_status & BXT_DE_PORT_HOTPLUG_MASK;
2163 hp_control = I915_READ(BXT_HOTPLUG_CTL);
2164
2165 /* Hotplug not enabled ? */
2166 if (!(hp_control & BXT_HOTPLUG_CTL_MASK)) {
2167 DRM_ERROR("Interrupt when HPD disabled\n");
2168 return;
2169 }
2170
2171 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
2172 hp_control & BXT_HOTPLUG_CTL_MASK);
2173
2174 /* Check for HPD storm and schedule bottom half */
2175 intel_hpd_irq_handler(dev, hp_trigger, hp_control, hpd_bxt);
2176
2177 /*
2178 * FIXME: Save the hot plug status for bottom half before
2179 * clearing the sticky status bits, else the status will be
2180 * lost.
2181 */
2182
2183 /* Clear sticky bits in hpd status */
2184 I915_WRITE(BXT_HOTPLUG_CTL, hp_control);
2185 }
2186
2187 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2188 {
2189 struct drm_device *dev = arg;
2190 struct drm_i915_private *dev_priv = dev->dev_private;
2191 u32 master_ctl;
2192 irqreturn_t ret = IRQ_NONE;
2193 uint32_t tmp = 0;
2194 enum pipe pipe;
2195 u32 aux_mask = GEN8_AUX_CHANNEL_A;
2196
2197 if (!intel_irqs_enabled(dev_priv))
2198 return IRQ_NONE;
2199
2200 if (IS_GEN9(dev))
2201 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2202 GEN9_AUX_CHANNEL_D;
2203
2204 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2205 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2206 if (!master_ctl)
2207 return IRQ_NONE;
2208
2209 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2210
2211 /* Find, clear, then process each source of interrupt */
2212
2213 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2214
2215 if (master_ctl & GEN8_DE_MISC_IRQ) {
2216 tmp = I915_READ(GEN8_DE_MISC_IIR);
2217 if (tmp) {
2218 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2219 ret = IRQ_HANDLED;
2220 if (tmp & GEN8_DE_MISC_GSE)
2221 intel_opregion_asle_intr(dev);
2222 else
2223 DRM_ERROR("Unexpected DE Misc interrupt\n");
2224 }
2225 else
2226 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2227 }
2228
2229 if (master_ctl & GEN8_DE_PORT_IRQ) {
2230 tmp = I915_READ(GEN8_DE_PORT_IIR);
2231 if (tmp) {
2232 bool found = false;
2233
2234 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2235 ret = IRQ_HANDLED;
2236
2237 if (tmp & aux_mask) {
2238 dp_aux_irq_handler(dev);
2239 found = true;
2240 }
2241
2242 if (IS_BROXTON(dev) && tmp & BXT_DE_PORT_HOTPLUG_MASK) {
2243 bxt_hpd_handler(dev, tmp);
2244 found = true;
2245 }
2246
2247 if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2248 gmbus_irq_handler(dev);
2249 found = true;
2250 }
2251
2252 if (!found)
2253 DRM_ERROR("Unexpected DE Port interrupt\n");
2254 }
2255 else
2256 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2257 }
2258
2259 for_each_pipe(dev_priv, pipe) {
2260 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2261
2262 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2263 continue;
2264
2265 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2266 if (pipe_iir) {
2267 ret = IRQ_HANDLED;
2268 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2269
2270 if (pipe_iir & GEN8_PIPE_VBLANK &&
2271 intel_pipe_handle_vblank(dev, pipe))
2272 intel_check_page_flip(dev, pipe);
2273
2274 if (IS_GEN9(dev))
2275 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2276 else
2277 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2278
2279 if (flip_done) {
2280 intel_prepare_page_flip(dev, pipe);
2281 intel_finish_page_flip_plane(dev, pipe);
2282 }
2283
2284 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2285 hsw_pipe_crc_irq_handler(dev, pipe);
2286
2287 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2288 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2289 pipe);
2290
2291
2292 if (IS_GEN9(dev))
2293 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2294 else
2295 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2296
2297 if (fault_errors)
2298 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2299 pipe_name(pipe),
2300 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2301 } else
2302 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2303 }
2304
2305 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2306 master_ctl & GEN8_DE_PCH_IRQ) {
2307 /*
2308 * FIXME(BDW): Assume for now that the new interrupt handling
2309 * scheme also closed the SDE interrupt handling race we've seen
2310 * on older pch-split platforms. But this needs testing.
2311 */
2312 u32 pch_iir = I915_READ(SDEIIR);
2313 if (pch_iir) {
2314 I915_WRITE(SDEIIR, pch_iir);
2315 ret = IRQ_HANDLED;
2316 cpt_irq_handler(dev, pch_iir);
2317 } else
2318 DRM_ERROR("The master control interrupt lied (SDE)!\n");
2319
2320 }
2321
2322 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2323 POSTING_READ_FW(GEN8_MASTER_IRQ);
2324
2325 return ret;
2326 }
2327
2328 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2329 bool reset_completed)
2330 {
2331 struct intel_engine_cs *ring;
2332 int i;
2333
2334 /*
2335 * Notify all waiters for GPU completion events that reset state has
2336 * been changed, and that they need to restart their wait after
2337 * checking for potential errors (and bail out to drop locks if there is
2338 * a gpu reset pending so that i915_error_work_func can acquire them).
2339 */
2340
2341 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2342 for_each_ring(ring, dev_priv, i)
2343 wake_up_all(&ring->irq_queue);
2344
2345 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2346 wake_up_all(&dev_priv->pending_flip_queue);
2347
2348 /*
2349 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2350 * reset state is cleared.
2351 */
2352 if (reset_completed)
2353 wake_up_all(&dev_priv->gpu_error.reset_queue);
2354 }
2355
2356 /**
2357 * i915_reset_and_wakeup - do process context error handling work
2358 *
2359 * Fire an error uevent so userspace can see that a hang or error
2360 * was detected.
2361 */
2362 static void i915_reset_and_wakeup(struct drm_device *dev)
2363 {
2364 struct drm_i915_private *dev_priv = to_i915(dev);
2365 struct i915_gpu_error *error = &dev_priv->gpu_error;
2366 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2367 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2368 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2369 int ret;
2370
2371 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2372
2373 /*
2374 * Note that there's only one work item which does gpu resets, so we
2375 * need not worry about concurrent gpu resets potentially incrementing
2376 * error->reset_counter twice. We only need to take care of another
2377 * racing irq/hangcheck declaring the gpu dead for a second time. A
2378 * quick check for that is good enough: schedule_work ensures the
2379 * correct ordering between hang detection and this work item, and since
2380 * the reset in-progress bit is only ever set by code outside of this
2381 * work we don't need to worry about any other races.
2382 */
2383 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2384 DRM_DEBUG_DRIVER("resetting chip\n");
2385 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2386 reset_event);
2387
2388 /*
2389 * In most cases it's guaranteed that we get here with an RPM
2390 * reference held, for example because there is a pending GPU
2391 * request that won't finish until the reset is done. This
2392 * isn't the case at least when we get here by doing a
2393 * simulated reset via debugs, so get an RPM reference.
2394 */
2395 intel_runtime_pm_get(dev_priv);
2396
2397 intel_prepare_reset(dev);
2398
2399 /*
2400 * All state reset _must_ be completed before we update the
2401 * reset counter, for otherwise waiters might miss the reset
2402 * pending state and not properly drop locks, resulting in
2403 * deadlocks with the reset work.
2404 */
2405 ret = i915_reset(dev);
2406
2407 intel_finish_reset(dev);
2408
2409 intel_runtime_pm_put(dev_priv);
2410
2411 if (ret == 0) {
2412 /*
2413 * After all the gem state is reset, increment the reset
2414 * counter and wake up everyone waiting for the reset to
2415 * complete.
2416 *
2417 * Since unlock operations are a one-sided barrier only,
2418 * we need to insert a barrier here to order any seqno
2419 * updates before
2420 * the counter increment.
2421 */
2422 smp_mb__before_atomic();
2423 atomic_inc(&dev_priv->gpu_error.reset_counter);
2424
2425 kobject_uevent_env(&dev->primary->kdev->kobj,
2426 KOBJ_CHANGE, reset_done_event);
2427 } else {
2428 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2429 }
2430
2431 /*
2432 * Note: The wake_up also serves as a memory barrier so that
2433 * waiters see the update value of the reset counter atomic_t.
2434 */
2435 i915_error_wake_up(dev_priv, true);
2436 }
2437 }
2438
2439 static void i915_report_and_clear_eir(struct drm_device *dev)
2440 {
2441 struct drm_i915_private *dev_priv = dev->dev_private;
2442 uint32_t instdone[I915_NUM_INSTDONE_REG];
2443 u32 eir = I915_READ(EIR);
2444 int pipe, i;
2445
2446 if (!eir)
2447 return;
2448
2449 pr_err("render error detected, EIR: 0x%08x\n", eir);
2450
2451 i915_get_extra_instdone(dev, instdone);
2452
2453 if (IS_G4X(dev)) {
2454 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2455 u32 ipeir = I915_READ(IPEIR_I965);
2456
2457 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2458 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2459 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2460 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2461 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2462 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2463 I915_WRITE(IPEIR_I965, ipeir);
2464 POSTING_READ(IPEIR_I965);
2465 }
2466 if (eir & GM45_ERROR_PAGE_TABLE) {
2467 u32 pgtbl_err = I915_READ(PGTBL_ER);
2468 pr_err("page table error\n");
2469 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2470 I915_WRITE(PGTBL_ER, pgtbl_err);
2471 POSTING_READ(PGTBL_ER);
2472 }
2473 }
2474
2475 if (!IS_GEN2(dev)) {
2476 if (eir & I915_ERROR_PAGE_TABLE) {
2477 u32 pgtbl_err = I915_READ(PGTBL_ER);
2478 pr_err("page table error\n");
2479 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2480 I915_WRITE(PGTBL_ER, pgtbl_err);
2481 POSTING_READ(PGTBL_ER);
2482 }
2483 }
2484
2485 if (eir & I915_ERROR_MEMORY_REFRESH) {
2486 pr_err("memory refresh error:\n");
2487 for_each_pipe(dev_priv, pipe)
2488 pr_err("pipe %c stat: 0x%08x\n",
2489 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2490 /* pipestat has already been acked */
2491 }
2492 if (eir & I915_ERROR_INSTRUCTION) {
2493 pr_err("instruction error\n");
2494 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2495 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2496 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2497 if (INTEL_INFO(dev)->gen < 4) {
2498 u32 ipeir = I915_READ(IPEIR);
2499
2500 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2501 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2502 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2503 I915_WRITE(IPEIR, ipeir);
2504 POSTING_READ(IPEIR);
2505 } else {
2506 u32 ipeir = I915_READ(IPEIR_I965);
2507
2508 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2509 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2510 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2511 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2512 I915_WRITE(IPEIR_I965, ipeir);
2513 POSTING_READ(IPEIR_I965);
2514 }
2515 }
2516
2517 I915_WRITE(EIR, eir);
2518 POSTING_READ(EIR);
2519 eir = I915_READ(EIR);
2520 if (eir) {
2521 /*
2522 * some errors might have become stuck,
2523 * mask them.
2524 */
2525 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2526 I915_WRITE(EMR, I915_READ(EMR) | eir);
2527 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2528 }
2529 }
2530
2531 /**
2532 * i915_handle_error - handle a gpu error
2533 * @dev: drm device
2534 *
2535 * Do some basic checking of regsiter state at error time and
2536 * dump it to the syslog. Also call i915_capture_error_state() to make
2537 * sure we get a record and make it available in debugfs. Fire a uevent
2538 * so userspace knows something bad happened (should trigger collection
2539 * of a ring dump etc.).
2540 */
2541 void i915_handle_error(struct drm_device *dev, bool wedged,
2542 const char *fmt, ...)
2543 {
2544 struct drm_i915_private *dev_priv = dev->dev_private;
2545 va_list args;
2546 char error_msg[80];
2547
2548 va_start(args, fmt);
2549 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2550 va_end(args);
2551
2552 i915_capture_error_state(dev, wedged, error_msg);
2553 i915_report_and_clear_eir(dev);
2554
2555 if (wedged) {
2556 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2557 &dev_priv->gpu_error.reset_counter);
2558
2559 /*
2560 * Wakeup waiting processes so that the reset function
2561 * i915_reset_and_wakeup doesn't deadlock trying to grab
2562 * various locks. By bumping the reset counter first, the woken
2563 * processes will see a reset in progress and back off,
2564 * releasing their locks and then wait for the reset completion.
2565 * We must do this for _all_ gpu waiters that might hold locks
2566 * that the reset work needs to acquire.
2567 *
2568 * Note: The wake_up serves as the required memory barrier to
2569 * ensure that the waiters see the updated value of the reset
2570 * counter atomic_t.
2571 */
2572 i915_error_wake_up(dev_priv, false);
2573 }
2574
2575 i915_reset_and_wakeup(dev);
2576 }
2577
2578 /* Called from drm generic code, passed 'crtc' which
2579 * we use as a pipe index
2580 */
2581 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2582 {
2583 struct drm_i915_private *dev_priv = dev->dev_private;
2584 unsigned long irqflags;
2585
2586 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2587 if (INTEL_INFO(dev)->gen >= 4)
2588 i915_enable_pipestat(dev_priv, pipe,
2589 PIPE_START_VBLANK_INTERRUPT_STATUS);
2590 else
2591 i915_enable_pipestat(dev_priv, pipe,
2592 PIPE_VBLANK_INTERRUPT_STATUS);
2593 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2594
2595 return 0;
2596 }
2597
2598 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2599 {
2600 struct drm_i915_private *dev_priv = dev->dev_private;
2601 unsigned long irqflags;
2602 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2603 DE_PIPE_VBLANK(pipe);
2604
2605 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2606 ironlake_enable_display_irq(dev_priv, bit);
2607 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2608
2609 return 0;
2610 }
2611
2612 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2613 {
2614 struct drm_i915_private *dev_priv = dev->dev_private;
2615 unsigned long irqflags;
2616
2617 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2618 i915_enable_pipestat(dev_priv, pipe,
2619 PIPE_START_VBLANK_INTERRUPT_STATUS);
2620 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2621
2622 return 0;
2623 }
2624
2625 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2626 {
2627 struct drm_i915_private *dev_priv = dev->dev_private;
2628 unsigned long irqflags;
2629
2630 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2631 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2632 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2633 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2634 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2635 return 0;
2636 }
2637
2638 /* Called from drm generic code, passed 'crtc' which
2639 * we use as a pipe index
2640 */
2641 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2642 {
2643 struct drm_i915_private *dev_priv = dev->dev_private;
2644 unsigned long irqflags;
2645
2646 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2647 i915_disable_pipestat(dev_priv, pipe,
2648 PIPE_VBLANK_INTERRUPT_STATUS |
2649 PIPE_START_VBLANK_INTERRUPT_STATUS);
2650 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2651 }
2652
2653 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2654 {
2655 struct drm_i915_private *dev_priv = dev->dev_private;
2656 unsigned long irqflags;
2657 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2658 DE_PIPE_VBLANK(pipe);
2659
2660 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2661 ironlake_disable_display_irq(dev_priv, bit);
2662 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2663 }
2664
2665 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2666 {
2667 struct drm_i915_private *dev_priv = dev->dev_private;
2668 unsigned long irqflags;
2669
2670 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2671 i915_disable_pipestat(dev_priv, pipe,
2672 PIPE_START_VBLANK_INTERRUPT_STATUS);
2673 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2674 }
2675
2676 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2677 {
2678 struct drm_i915_private *dev_priv = dev->dev_private;
2679 unsigned long irqflags;
2680
2681 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2682 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2683 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2684 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2685 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2686 }
2687
2688 static struct drm_i915_gem_request *
2689 ring_last_request(struct intel_engine_cs *ring)
2690 {
2691 return list_entry(ring->request_list.prev,
2692 struct drm_i915_gem_request, list);
2693 }
2694
2695 static bool
2696 ring_idle(struct intel_engine_cs *ring)
2697 {
2698 return (list_empty(&ring->request_list) ||
2699 i915_gem_request_completed(ring_last_request(ring), false));
2700 }
2701
2702 static bool
2703 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2704 {
2705 if (INTEL_INFO(dev)->gen >= 8) {
2706 return (ipehr >> 23) == 0x1c;
2707 } else {
2708 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2709 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2710 MI_SEMAPHORE_REGISTER);
2711 }
2712 }
2713
2714 static struct intel_engine_cs *
2715 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2716 {
2717 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2718 struct intel_engine_cs *signaller;
2719 int i;
2720
2721 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2722 for_each_ring(signaller, dev_priv, i) {
2723 if (ring == signaller)
2724 continue;
2725
2726 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2727 return signaller;
2728 }
2729 } else {
2730 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2731
2732 for_each_ring(signaller, dev_priv, i) {
2733 if(ring == signaller)
2734 continue;
2735
2736 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2737 return signaller;
2738 }
2739 }
2740
2741 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2742 ring->id, ipehr, offset);
2743
2744 return NULL;
2745 }
2746
2747 static struct intel_engine_cs *
2748 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2749 {
2750 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2751 u32 cmd, ipehr, head;
2752 u64 offset = 0;
2753 int i, backwards;
2754
2755 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2756 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2757 return NULL;
2758
2759 /*
2760 * HEAD is likely pointing to the dword after the actual command,
2761 * so scan backwards until we find the MBOX. But limit it to just 3
2762 * or 4 dwords depending on the semaphore wait command size.
2763 * Note that we don't care about ACTHD here since that might
2764 * point at at batch, and semaphores are always emitted into the
2765 * ringbuffer itself.
2766 */
2767 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2768 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2769
2770 for (i = backwards; i; --i) {
2771 /*
2772 * Be paranoid and presume the hw has gone off into the wild -
2773 * our ring is smaller than what the hardware (and hence
2774 * HEAD_ADDR) allows. Also handles wrap-around.
2775 */
2776 head &= ring->buffer->size - 1;
2777
2778 /* This here seems to blow up */
2779 cmd = ioread32(ring->buffer->virtual_start + head);
2780 if (cmd == ipehr)
2781 break;
2782
2783 head -= 4;
2784 }
2785
2786 if (!i)
2787 return NULL;
2788
2789 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2790 if (INTEL_INFO(ring->dev)->gen >= 8) {
2791 offset = ioread32(ring->buffer->virtual_start + head + 12);
2792 offset <<= 32;
2793 offset = ioread32(ring->buffer->virtual_start + head + 8);
2794 }
2795 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2796 }
2797
2798 static int semaphore_passed(struct intel_engine_cs *ring)
2799 {
2800 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2801 struct intel_engine_cs *signaller;
2802 u32 seqno;
2803
2804 ring->hangcheck.deadlock++;
2805
2806 signaller = semaphore_waits_for(ring, &seqno);
2807 if (signaller == NULL)
2808 return -1;
2809
2810 /* Prevent pathological recursion due to driver bugs */
2811 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2812 return -1;
2813
2814 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2815 return 1;
2816
2817 /* cursory check for an unkickable deadlock */
2818 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2819 semaphore_passed(signaller) < 0)
2820 return -1;
2821
2822 return 0;
2823 }
2824
2825 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2826 {
2827 struct intel_engine_cs *ring;
2828 int i;
2829
2830 for_each_ring(ring, dev_priv, i)
2831 ring->hangcheck.deadlock = 0;
2832 }
2833
2834 static enum intel_ring_hangcheck_action
2835 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2836 {
2837 struct drm_device *dev = ring->dev;
2838 struct drm_i915_private *dev_priv = dev->dev_private;
2839 u32 tmp;
2840
2841 if (acthd != ring->hangcheck.acthd) {
2842 if (acthd > ring->hangcheck.max_acthd) {
2843 ring->hangcheck.max_acthd = acthd;
2844 return HANGCHECK_ACTIVE;
2845 }
2846
2847 return HANGCHECK_ACTIVE_LOOP;
2848 }
2849
2850 if (IS_GEN2(dev))
2851 return HANGCHECK_HUNG;
2852
2853 /* Is the chip hanging on a WAIT_FOR_EVENT?
2854 * If so we can simply poke the RB_WAIT bit
2855 * and break the hang. This should work on
2856 * all but the second generation chipsets.
2857 */
2858 tmp = I915_READ_CTL(ring);
2859 if (tmp & RING_WAIT) {
2860 i915_handle_error(dev, false,
2861 "Kicking stuck wait on %s",
2862 ring->name);
2863 I915_WRITE_CTL(ring, tmp);
2864 return HANGCHECK_KICK;
2865 }
2866
2867 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2868 switch (semaphore_passed(ring)) {
2869 default:
2870 return HANGCHECK_HUNG;
2871 case 1:
2872 i915_handle_error(dev, false,
2873 "Kicking stuck semaphore on %s",
2874 ring->name);
2875 I915_WRITE_CTL(ring, tmp);
2876 return HANGCHECK_KICK;
2877 case 0:
2878 return HANGCHECK_WAIT;
2879 }
2880 }
2881
2882 return HANGCHECK_HUNG;
2883 }
2884
2885 /*
2886 * This is called when the chip hasn't reported back with completed
2887 * batchbuffers in a long time. We keep track per ring seqno progress and
2888 * if there are no progress, hangcheck score for that ring is increased.
2889 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2890 * we kick the ring. If we see no progress on three subsequent calls
2891 * we assume chip is wedged and try to fix it by resetting the chip.
2892 */
2893 static void i915_hangcheck_elapsed(struct work_struct *work)
2894 {
2895 struct drm_i915_private *dev_priv =
2896 container_of(work, typeof(*dev_priv),
2897 gpu_error.hangcheck_work.work);
2898 struct drm_device *dev = dev_priv->dev;
2899 struct intel_engine_cs *ring;
2900 int i;
2901 int busy_count = 0, rings_hung = 0;
2902 bool stuck[I915_NUM_RINGS] = { 0 };
2903 #define BUSY 1
2904 #define KICK 5
2905 #define HUNG 20
2906
2907 if (!i915.enable_hangcheck)
2908 return;
2909
2910 for_each_ring(ring, dev_priv, i) {
2911 u64 acthd;
2912 u32 seqno;
2913 bool busy = true;
2914
2915 semaphore_clear_deadlocks(dev_priv);
2916
2917 seqno = ring->get_seqno(ring, false);
2918 acthd = intel_ring_get_active_head(ring);
2919
2920 if (ring->hangcheck.seqno == seqno) {
2921 if (ring_idle(ring)) {
2922 ring->hangcheck.action = HANGCHECK_IDLE;
2923
2924 if (waitqueue_active(&ring->irq_queue)) {
2925 /* Issue a wake-up to catch stuck h/w. */
2926 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2927 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2928 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2929 ring->name);
2930 else
2931 DRM_INFO("Fake missed irq on %s\n",
2932 ring->name);
2933 wake_up_all(&ring->irq_queue);
2934 }
2935 /* Safeguard against driver failure */
2936 ring->hangcheck.score += BUSY;
2937 } else
2938 busy = false;
2939 } else {
2940 /* We always increment the hangcheck score
2941 * if the ring is busy and still processing
2942 * the same request, so that no single request
2943 * can run indefinitely (such as a chain of
2944 * batches). The only time we do not increment
2945 * the hangcheck score on this ring, if this
2946 * ring is in a legitimate wait for another
2947 * ring. In that case the waiting ring is a
2948 * victim and we want to be sure we catch the
2949 * right culprit. Then every time we do kick
2950 * the ring, add a small increment to the
2951 * score so that we can catch a batch that is
2952 * being repeatedly kicked and so responsible
2953 * for stalling the machine.
2954 */
2955 ring->hangcheck.action = ring_stuck(ring,
2956 acthd);
2957
2958 switch (ring->hangcheck.action) {
2959 case HANGCHECK_IDLE:
2960 case HANGCHECK_WAIT:
2961 case HANGCHECK_ACTIVE:
2962 break;
2963 case HANGCHECK_ACTIVE_LOOP:
2964 ring->hangcheck.score += BUSY;
2965 break;
2966 case HANGCHECK_KICK:
2967 ring->hangcheck.score += KICK;
2968 break;
2969 case HANGCHECK_HUNG:
2970 ring->hangcheck.score += HUNG;
2971 stuck[i] = true;
2972 break;
2973 }
2974 }
2975 } else {
2976 ring->hangcheck.action = HANGCHECK_ACTIVE;
2977
2978 /* Gradually reduce the count so that we catch DoS
2979 * attempts across multiple batches.
2980 */
2981 if (ring->hangcheck.score > 0)
2982 ring->hangcheck.score--;
2983
2984 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2985 }
2986
2987 ring->hangcheck.seqno = seqno;
2988 ring->hangcheck.acthd = acthd;
2989 busy_count += busy;
2990 }
2991
2992 for_each_ring(ring, dev_priv, i) {
2993 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2994 DRM_INFO("%s on %s\n",
2995 stuck[i] ? "stuck" : "no progress",
2996 ring->name);
2997 rings_hung++;
2998 }
2999 }
3000
3001 if (rings_hung)
3002 return i915_handle_error(dev, true, "Ring hung");
3003
3004 if (busy_count)
3005 /* Reset timer case chip hangs without another request
3006 * being added */
3007 i915_queue_hangcheck(dev);
3008 }
3009
3010 void i915_queue_hangcheck(struct drm_device *dev)
3011 {
3012 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3013
3014 if (!i915.enable_hangcheck)
3015 return;
3016
3017 /* Don't continually defer the hangcheck so that it is always run at
3018 * least once after work has been scheduled on any ring. Otherwise,
3019 * we will ignore a hung ring if a second ring is kept busy.
3020 */
3021
3022 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3023 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3024 }
3025
3026 static void ibx_irq_reset(struct drm_device *dev)
3027 {
3028 struct drm_i915_private *dev_priv = dev->dev_private;
3029
3030 if (HAS_PCH_NOP(dev))
3031 return;
3032
3033 GEN5_IRQ_RESET(SDE);
3034
3035 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3036 I915_WRITE(SERR_INT, 0xffffffff);
3037 }
3038
3039 /*
3040 * SDEIER is also touched by the interrupt handler to work around missed PCH
3041 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3042 * instead we unconditionally enable all PCH interrupt sources here, but then
3043 * only unmask them as needed with SDEIMR.
3044 *
3045 * This function needs to be called before interrupts are enabled.
3046 */
3047 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3048 {
3049 struct drm_i915_private *dev_priv = dev->dev_private;
3050
3051 if (HAS_PCH_NOP(dev))
3052 return;
3053
3054 WARN_ON(I915_READ(SDEIER) != 0);
3055 I915_WRITE(SDEIER, 0xffffffff);
3056 POSTING_READ(SDEIER);
3057 }
3058
3059 static void gen5_gt_irq_reset(struct drm_device *dev)
3060 {
3061 struct drm_i915_private *dev_priv = dev->dev_private;
3062
3063 GEN5_IRQ_RESET(GT);
3064 if (INTEL_INFO(dev)->gen >= 6)
3065 GEN5_IRQ_RESET(GEN6_PM);
3066 }
3067
3068 /* drm_dma.h hooks
3069 */
3070 static void ironlake_irq_reset(struct drm_device *dev)
3071 {
3072 struct drm_i915_private *dev_priv = dev->dev_private;
3073
3074 I915_WRITE(HWSTAM, 0xffffffff);
3075
3076 GEN5_IRQ_RESET(DE);
3077 if (IS_GEN7(dev))
3078 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3079
3080 gen5_gt_irq_reset(dev);
3081
3082 ibx_irq_reset(dev);
3083 }
3084
3085 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3086 {
3087 enum pipe pipe;
3088
3089 I915_WRITE(PORT_HOTPLUG_EN, 0);
3090 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3091
3092 for_each_pipe(dev_priv, pipe)
3093 I915_WRITE(PIPESTAT(pipe), 0xffff);
3094
3095 GEN5_IRQ_RESET(VLV_);
3096 }
3097
3098 static void valleyview_irq_preinstall(struct drm_device *dev)
3099 {
3100 struct drm_i915_private *dev_priv = dev->dev_private;
3101
3102 /* VLV magic */
3103 I915_WRITE(VLV_IMR, 0);
3104 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3105 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3106 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3107
3108 gen5_gt_irq_reset(dev);
3109
3110 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3111
3112 vlv_display_irq_reset(dev_priv);
3113 }
3114
3115 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3116 {
3117 GEN8_IRQ_RESET_NDX(GT, 0);
3118 GEN8_IRQ_RESET_NDX(GT, 1);
3119 GEN8_IRQ_RESET_NDX(GT, 2);
3120 GEN8_IRQ_RESET_NDX(GT, 3);
3121 }
3122
3123 static void gen8_irq_reset(struct drm_device *dev)
3124 {
3125 struct drm_i915_private *dev_priv = dev->dev_private;
3126 int pipe;
3127
3128 I915_WRITE(GEN8_MASTER_IRQ, 0);
3129 POSTING_READ(GEN8_MASTER_IRQ);
3130
3131 gen8_gt_irq_reset(dev_priv);
3132
3133 for_each_pipe(dev_priv, pipe)
3134 if (intel_display_power_is_enabled(dev_priv,
3135 POWER_DOMAIN_PIPE(pipe)))
3136 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3137
3138 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3139 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3140 GEN5_IRQ_RESET(GEN8_PCU_);
3141
3142 if (HAS_PCH_SPLIT(dev))
3143 ibx_irq_reset(dev);
3144 }
3145
3146 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3147 unsigned int pipe_mask)
3148 {
3149 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3150
3151 spin_lock_irq(&dev_priv->irq_lock);
3152 if (pipe_mask & 1 << PIPE_A)
3153 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3154 dev_priv->de_irq_mask[PIPE_A],
3155 ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3156 if (pipe_mask & 1 << PIPE_B)
3157 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3158 dev_priv->de_irq_mask[PIPE_B],
3159 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3160 if (pipe_mask & 1 << PIPE_C)
3161 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3162 dev_priv->de_irq_mask[PIPE_C],
3163 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3164 spin_unlock_irq(&dev_priv->irq_lock);
3165 }
3166
3167 static void cherryview_irq_preinstall(struct drm_device *dev)
3168 {
3169 struct drm_i915_private *dev_priv = dev->dev_private;
3170
3171 I915_WRITE(GEN8_MASTER_IRQ, 0);
3172 POSTING_READ(GEN8_MASTER_IRQ);
3173
3174 gen8_gt_irq_reset(dev_priv);
3175
3176 GEN5_IRQ_RESET(GEN8_PCU_);
3177
3178 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3179
3180 vlv_display_irq_reset(dev_priv);
3181 }
3182
3183 static void ibx_hpd_irq_setup(struct drm_device *dev)
3184 {
3185 struct drm_i915_private *dev_priv = dev->dev_private;
3186 struct intel_encoder *intel_encoder;
3187 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3188
3189 if (HAS_PCH_IBX(dev)) {
3190 hotplug_irqs = SDE_HOTPLUG_MASK;
3191 for_each_intel_encoder(dev, intel_encoder)
3192 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3193 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3194 } else {
3195 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3196 for_each_intel_encoder(dev, intel_encoder)
3197 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3198 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3199 }
3200
3201 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3202
3203 /*
3204 * Enable digital hotplug on the PCH, and configure the DP short pulse
3205 * duration to 2ms (which is the minimum in the Display Port spec)
3206 *
3207 * This register is the same on all known PCH chips.
3208 */
3209 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3210 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3211 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3212 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3213 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3214 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3215 }
3216
3217 static void bxt_hpd_irq_setup(struct drm_device *dev)
3218 {
3219 struct drm_i915_private *dev_priv = dev->dev_private;
3220 struct intel_encoder *intel_encoder;
3221 u32 hotplug_port = 0;
3222 u32 hotplug_ctrl;
3223
3224 /* Now, enable HPD */
3225 for_each_intel_encoder(dev, intel_encoder) {
3226 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark
3227 == HPD_ENABLED)
3228 hotplug_port |= hpd_bxt[intel_encoder->hpd_pin];
3229 }
3230
3231 /* Mask all HPD control bits */
3232 hotplug_ctrl = I915_READ(BXT_HOTPLUG_CTL) & ~BXT_HOTPLUG_CTL_MASK;
3233
3234 /* Enable requested port in hotplug control */
3235 /* TODO: implement (short) HPD support on port A */
3236 WARN_ON_ONCE(hotplug_port & BXT_DE_PORT_HP_DDIA);
3237 if (hotplug_port & BXT_DE_PORT_HP_DDIB)
3238 hotplug_ctrl |= BXT_DDIB_HPD_ENABLE;
3239 if (hotplug_port & BXT_DE_PORT_HP_DDIC)
3240 hotplug_ctrl |= BXT_DDIC_HPD_ENABLE;
3241 I915_WRITE(BXT_HOTPLUG_CTL, hotplug_ctrl);
3242
3243 /* Unmask DDI hotplug in IMR */
3244 hotplug_ctrl = I915_READ(GEN8_DE_PORT_IMR) & ~hotplug_port;
3245 I915_WRITE(GEN8_DE_PORT_IMR, hotplug_ctrl);
3246
3247 /* Enable DDI hotplug in IER */
3248 hotplug_ctrl = I915_READ(GEN8_DE_PORT_IER) | hotplug_port;
3249 I915_WRITE(GEN8_DE_PORT_IER, hotplug_ctrl);
3250 POSTING_READ(GEN8_DE_PORT_IER);
3251 }
3252
3253 static void ibx_irq_postinstall(struct drm_device *dev)
3254 {
3255 struct drm_i915_private *dev_priv = dev->dev_private;
3256 u32 mask;
3257
3258 if (HAS_PCH_NOP(dev))
3259 return;
3260
3261 if (HAS_PCH_IBX(dev))
3262 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3263 else
3264 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3265
3266 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3267 I915_WRITE(SDEIMR, ~mask);
3268 }
3269
3270 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3271 {
3272 struct drm_i915_private *dev_priv = dev->dev_private;
3273 u32 pm_irqs, gt_irqs;
3274
3275 pm_irqs = gt_irqs = 0;
3276
3277 dev_priv->gt_irq_mask = ~0;
3278 if (HAS_L3_DPF(dev)) {
3279 /* L3 parity interrupt is always unmasked. */
3280 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3281 gt_irqs |= GT_PARITY_ERROR(dev);
3282 }
3283
3284 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3285 if (IS_GEN5(dev)) {
3286 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3287 ILK_BSD_USER_INTERRUPT;
3288 } else {
3289 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3290 }
3291
3292 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3293
3294 if (INTEL_INFO(dev)->gen >= 6) {
3295 /*
3296 * RPS interrupts will get enabled/disabled on demand when RPS
3297 * itself is enabled/disabled.
3298 */
3299 if (HAS_VEBOX(dev))
3300 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3301
3302 dev_priv->pm_irq_mask = 0xffffffff;
3303 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3304 }
3305 }
3306
3307 static int ironlake_irq_postinstall(struct drm_device *dev)
3308 {
3309 struct drm_i915_private *dev_priv = dev->dev_private;
3310 u32 display_mask, extra_mask;
3311
3312 if (INTEL_INFO(dev)->gen >= 7) {
3313 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3314 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3315 DE_PLANEB_FLIP_DONE_IVB |
3316 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3317 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3318 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3319 } else {
3320 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3321 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3322 DE_AUX_CHANNEL_A |
3323 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3324 DE_POISON);
3325 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3326 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3327 }
3328
3329 dev_priv->irq_mask = ~display_mask;
3330
3331 I915_WRITE(HWSTAM, 0xeffe);
3332
3333 ibx_irq_pre_postinstall(dev);
3334
3335 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3336
3337 gen5_gt_irq_postinstall(dev);
3338
3339 ibx_irq_postinstall(dev);
3340
3341 if (IS_IRONLAKE_M(dev)) {
3342 /* Enable PCU event interrupts
3343 *
3344 * spinlocking not required here for correctness since interrupt
3345 * setup is guaranteed to run in single-threaded context. But we
3346 * need it to make the assert_spin_locked happy. */
3347 spin_lock_irq(&dev_priv->irq_lock);
3348 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3349 spin_unlock_irq(&dev_priv->irq_lock);
3350 }
3351
3352 return 0;
3353 }
3354
3355 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3356 {
3357 u32 pipestat_mask;
3358 u32 iir_mask;
3359 enum pipe pipe;
3360
3361 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3362 PIPE_FIFO_UNDERRUN_STATUS;
3363
3364 for_each_pipe(dev_priv, pipe)
3365 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3366 POSTING_READ(PIPESTAT(PIPE_A));
3367
3368 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3369 PIPE_CRC_DONE_INTERRUPT_STATUS;
3370
3371 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3372 for_each_pipe(dev_priv, pipe)
3373 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3374
3375 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3376 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3377 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3378 if (IS_CHERRYVIEW(dev_priv))
3379 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3380 dev_priv->irq_mask &= ~iir_mask;
3381
3382 I915_WRITE(VLV_IIR, iir_mask);
3383 I915_WRITE(VLV_IIR, iir_mask);
3384 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3385 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3386 POSTING_READ(VLV_IMR);
3387 }
3388
3389 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3390 {
3391 u32 pipestat_mask;
3392 u32 iir_mask;
3393 enum pipe pipe;
3394
3395 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3396 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3397 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3398 if (IS_CHERRYVIEW(dev_priv))
3399 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3400
3401 dev_priv->irq_mask |= iir_mask;
3402 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3403 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3404 I915_WRITE(VLV_IIR, iir_mask);
3405 I915_WRITE(VLV_IIR, iir_mask);
3406 POSTING_READ(VLV_IIR);
3407
3408 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3409 PIPE_CRC_DONE_INTERRUPT_STATUS;
3410
3411 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3412 for_each_pipe(dev_priv, pipe)
3413 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3414
3415 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3416 PIPE_FIFO_UNDERRUN_STATUS;
3417
3418 for_each_pipe(dev_priv, pipe)
3419 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3420 POSTING_READ(PIPESTAT(PIPE_A));
3421 }
3422
3423 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3424 {
3425 assert_spin_locked(&dev_priv->irq_lock);
3426
3427 if (dev_priv->display_irqs_enabled)
3428 return;
3429
3430 dev_priv->display_irqs_enabled = true;
3431
3432 if (intel_irqs_enabled(dev_priv))
3433 valleyview_display_irqs_install(dev_priv);
3434 }
3435
3436 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3437 {
3438 assert_spin_locked(&dev_priv->irq_lock);
3439
3440 if (!dev_priv->display_irqs_enabled)
3441 return;
3442
3443 dev_priv->display_irqs_enabled = false;
3444
3445 if (intel_irqs_enabled(dev_priv))
3446 valleyview_display_irqs_uninstall(dev_priv);
3447 }
3448
3449 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3450 {
3451 dev_priv->irq_mask = ~0;
3452
3453 I915_WRITE(PORT_HOTPLUG_EN, 0);
3454 POSTING_READ(PORT_HOTPLUG_EN);
3455
3456 I915_WRITE(VLV_IIR, 0xffffffff);
3457 I915_WRITE(VLV_IIR, 0xffffffff);
3458 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3459 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3460 POSTING_READ(VLV_IMR);
3461
3462 /* Interrupt setup is already guaranteed to be single-threaded, this is
3463 * just to make the assert_spin_locked check happy. */
3464 spin_lock_irq(&dev_priv->irq_lock);
3465 if (dev_priv->display_irqs_enabled)
3466 valleyview_display_irqs_install(dev_priv);
3467 spin_unlock_irq(&dev_priv->irq_lock);
3468 }
3469
3470 static int valleyview_irq_postinstall(struct drm_device *dev)
3471 {
3472 struct drm_i915_private *dev_priv = dev->dev_private;
3473
3474 vlv_display_irq_postinstall(dev_priv);
3475
3476 gen5_gt_irq_postinstall(dev);
3477
3478 /* ack & enable invalid PTE error interrupts */
3479 #if 0 /* FIXME: add support to irq handler for checking these bits */
3480 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3481 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3482 #endif
3483
3484 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3485
3486 return 0;
3487 }
3488
3489 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3490 {
3491 /* These are interrupts we'll toggle with the ring mask register */
3492 uint32_t gt_interrupts[] = {
3493 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3494 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3495 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3496 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3497 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3498 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3499 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3500 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3501 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3502 0,
3503 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3504 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3505 };
3506
3507 dev_priv->pm_irq_mask = 0xffffffff;
3508 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3509 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3510 /*
3511 * RPS interrupts will get enabled/disabled on demand when RPS itself
3512 * is enabled/disabled.
3513 */
3514 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3515 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3516 }
3517
3518 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3519 {
3520 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3521 uint32_t de_pipe_enables;
3522 int pipe;
3523 u32 de_port_en = GEN8_AUX_CHANNEL_A;
3524
3525 if (IS_GEN9(dev_priv)) {
3526 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3527 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3528 de_port_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3529 GEN9_AUX_CHANNEL_D;
3530
3531 if (IS_BROXTON(dev_priv))
3532 de_port_en |= BXT_DE_PORT_GMBUS;
3533 } else
3534 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3535 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3536
3537 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3538 GEN8_PIPE_FIFO_UNDERRUN;
3539
3540 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3541 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3542 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3543
3544 for_each_pipe(dev_priv, pipe)
3545 if (intel_display_power_is_enabled(dev_priv,
3546 POWER_DOMAIN_PIPE(pipe)))
3547 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3548 dev_priv->de_irq_mask[pipe],
3549 de_pipe_enables);
3550
3551 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_en, de_port_en);
3552 }
3553
3554 static int gen8_irq_postinstall(struct drm_device *dev)
3555 {
3556 struct drm_i915_private *dev_priv = dev->dev_private;
3557
3558 if (HAS_PCH_SPLIT(dev))
3559 ibx_irq_pre_postinstall(dev);
3560
3561 gen8_gt_irq_postinstall(dev_priv);
3562 gen8_de_irq_postinstall(dev_priv);
3563
3564 if (HAS_PCH_SPLIT(dev))
3565 ibx_irq_postinstall(dev);
3566
3567 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3568 POSTING_READ(GEN8_MASTER_IRQ);
3569
3570 return 0;
3571 }
3572
3573 static int cherryview_irq_postinstall(struct drm_device *dev)
3574 {
3575 struct drm_i915_private *dev_priv = dev->dev_private;
3576
3577 vlv_display_irq_postinstall(dev_priv);
3578
3579 gen8_gt_irq_postinstall(dev_priv);
3580
3581 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3582 POSTING_READ(GEN8_MASTER_IRQ);
3583
3584 return 0;
3585 }
3586
3587 static void gen8_irq_uninstall(struct drm_device *dev)
3588 {
3589 struct drm_i915_private *dev_priv = dev->dev_private;
3590
3591 if (!dev_priv)
3592 return;
3593
3594 gen8_irq_reset(dev);
3595 }
3596
3597 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3598 {
3599 /* Interrupt setup is already guaranteed to be single-threaded, this is
3600 * just to make the assert_spin_locked check happy. */
3601 spin_lock_irq(&dev_priv->irq_lock);
3602 if (dev_priv->display_irqs_enabled)
3603 valleyview_display_irqs_uninstall(dev_priv);
3604 spin_unlock_irq(&dev_priv->irq_lock);
3605
3606 vlv_display_irq_reset(dev_priv);
3607
3608 dev_priv->irq_mask = ~0;
3609 }
3610
3611 static void valleyview_irq_uninstall(struct drm_device *dev)
3612 {
3613 struct drm_i915_private *dev_priv = dev->dev_private;
3614
3615 if (!dev_priv)
3616 return;
3617
3618 I915_WRITE(VLV_MASTER_IER, 0);
3619
3620 gen5_gt_irq_reset(dev);
3621
3622 I915_WRITE(HWSTAM, 0xffffffff);
3623
3624 vlv_display_irq_uninstall(dev_priv);
3625 }
3626
3627 static void cherryview_irq_uninstall(struct drm_device *dev)
3628 {
3629 struct drm_i915_private *dev_priv = dev->dev_private;
3630
3631 if (!dev_priv)
3632 return;
3633
3634 I915_WRITE(GEN8_MASTER_IRQ, 0);
3635 POSTING_READ(GEN8_MASTER_IRQ);
3636
3637 gen8_gt_irq_reset(dev_priv);
3638
3639 GEN5_IRQ_RESET(GEN8_PCU_);
3640
3641 vlv_display_irq_uninstall(dev_priv);
3642 }
3643
3644 static void ironlake_irq_uninstall(struct drm_device *dev)
3645 {
3646 struct drm_i915_private *dev_priv = dev->dev_private;
3647
3648 if (!dev_priv)
3649 return;
3650
3651 ironlake_irq_reset(dev);
3652 }
3653
3654 static void i8xx_irq_preinstall(struct drm_device * dev)
3655 {
3656 struct drm_i915_private *dev_priv = dev->dev_private;
3657 int pipe;
3658
3659 for_each_pipe(dev_priv, pipe)
3660 I915_WRITE(PIPESTAT(pipe), 0);
3661 I915_WRITE16(IMR, 0xffff);
3662 I915_WRITE16(IER, 0x0);
3663 POSTING_READ16(IER);
3664 }
3665
3666 static int i8xx_irq_postinstall(struct drm_device *dev)
3667 {
3668 struct drm_i915_private *dev_priv = dev->dev_private;
3669
3670 I915_WRITE16(EMR,
3671 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3672
3673 /* Unmask the interrupts that we always want on. */
3674 dev_priv->irq_mask =
3675 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3676 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3677 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3678 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3679 I915_WRITE16(IMR, dev_priv->irq_mask);
3680
3681 I915_WRITE16(IER,
3682 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3683 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3684 I915_USER_INTERRUPT);
3685 POSTING_READ16(IER);
3686
3687 /* Interrupt setup is already guaranteed to be single-threaded, this is
3688 * just to make the assert_spin_locked check happy. */
3689 spin_lock_irq(&dev_priv->irq_lock);
3690 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3691 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3692 spin_unlock_irq(&dev_priv->irq_lock);
3693
3694 return 0;
3695 }
3696
3697 /*
3698 * Returns true when a page flip has completed.
3699 */
3700 static bool i8xx_handle_vblank(struct drm_device *dev,
3701 int plane, int pipe, u32 iir)
3702 {
3703 struct drm_i915_private *dev_priv = dev->dev_private;
3704 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3705
3706 if (!intel_pipe_handle_vblank(dev, pipe))
3707 return false;
3708
3709 if ((iir & flip_pending) == 0)
3710 goto check_page_flip;
3711
3712 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3713 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3714 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3715 * the flip is completed (no longer pending). Since this doesn't raise
3716 * an interrupt per se, we watch for the change at vblank.
3717 */
3718 if (I915_READ16(ISR) & flip_pending)
3719 goto check_page_flip;
3720
3721 intel_prepare_page_flip(dev, plane);
3722 intel_finish_page_flip(dev, pipe);
3723 return true;
3724
3725 check_page_flip:
3726 intel_check_page_flip(dev, pipe);
3727 return false;
3728 }
3729
3730 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3731 {
3732 struct drm_device *dev = arg;
3733 struct drm_i915_private *dev_priv = dev->dev_private;
3734 u16 iir, new_iir;
3735 u32 pipe_stats[2];
3736 int pipe;
3737 u16 flip_mask =
3738 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3739 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3740
3741 if (!intel_irqs_enabled(dev_priv))
3742 return IRQ_NONE;
3743
3744 iir = I915_READ16(IIR);
3745 if (iir == 0)
3746 return IRQ_NONE;
3747
3748 while (iir & ~flip_mask) {
3749 /* Can't rely on pipestat interrupt bit in iir as it might
3750 * have been cleared after the pipestat interrupt was received.
3751 * It doesn't set the bit in iir again, but it still produces
3752 * interrupts (for non-MSI).
3753 */
3754 spin_lock(&dev_priv->irq_lock);
3755 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3756 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3757
3758 for_each_pipe(dev_priv, pipe) {
3759 int reg = PIPESTAT(pipe);
3760 pipe_stats[pipe] = I915_READ(reg);
3761
3762 /*
3763 * Clear the PIPE*STAT regs before the IIR
3764 */
3765 if (pipe_stats[pipe] & 0x8000ffff)
3766 I915_WRITE(reg, pipe_stats[pipe]);
3767 }
3768 spin_unlock(&dev_priv->irq_lock);
3769
3770 I915_WRITE16(IIR, iir & ~flip_mask);
3771 new_iir = I915_READ16(IIR); /* Flush posted writes */
3772
3773 if (iir & I915_USER_INTERRUPT)
3774 notify_ring(&dev_priv->ring[RCS]);
3775
3776 for_each_pipe(dev_priv, pipe) {
3777 int plane = pipe;
3778 if (HAS_FBC(dev))
3779 plane = !plane;
3780
3781 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3782 i8xx_handle_vblank(dev, plane, pipe, iir))
3783 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3784
3785 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3786 i9xx_pipe_crc_irq_handler(dev, pipe);
3787
3788 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3789 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3790 pipe);
3791 }
3792
3793 iir = new_iir;
3794 }
3795
3796 return IRQ_HANDLED;
3797 }
3798
3799 static void i8xx_irq_uninstall(struct drm_device * dev)
3800 {
3801 struct drm_i915_private *dev_priv = dev->dev_private;
3802 int pipe;
3803
3804 for_each_pipe(dev_priv, pipe) {
3805 /* Clear enable bits; then clear status bits */
3806 I915_WRITE(PIPESTAT(pipe), 0);
3807 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3808 }
3809 I915_WRITE16(IMR, 0xffff);
3810 I915_WRITE16(IER, 0x0);
3811 I915_WRITE16(IIR, I915_READ16(IIR));
3812 }
3813
3814 static void i915_irq_preinstall(struct drm_device * dev)
3815 {
3816 struct drm_i915_private *dev_priv = dev->dev_private;
3817 int pipe;
3818
3819 if (I915_HAS_HOTPLUG(dev)) {
3820 I915_WRITE(PORT_HOTPLUG_EN, 0);
3821 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3822 }
3823
3824 I915_WRITE16(HWSTAM, 0xeffe);
3825 for_each_pipe(dev_priv, pipe)
3826 I915_WRITE(PIPESTAT(pipe), 0);
3827 I915_WRITE(IMR, 0xffffffff);
3828 I915_WRITE(IER, 0x0);
3829 POSTING_READ(IER);
3830 }
3831
3832 static int i915_irq_postinstall(struct drm_device *dev)
3833 {
3834 struct drm_i915_private *dev_priv = dev->dev_private;
3835 u32 enable_mask;
3836
3837 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3838
3839 /* Unmask the interrupts that we always want on. */
3840 dev_priv->irq_mask =
3841 ~(I915_ASLE_INTERRUPT |
3842 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3843 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3844 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3845 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3846
3847 enable_mask =
3848 I915_ASLE_INTERRUPT |
3849 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3850 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3851 I915_USER_INTERRUPT;
3852
3853 if (I915_HAS_HOTPLUG(dev)) {
3854 I915_WRITE(PORT_HOTPLUG_EN, 0);
3855 POSTING_READ(PORT_HOTPLUG_EN);
3856
3857 /* Enable in IER... */
3858 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3859 /* and unmask in IMR */
3860 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3861 }
3862
3863 I915_WRITE(IMR, dev_priv->irq_mask);
3864 I915_WRITE(IER, enable_mask);
3865 POSTING_READ(IER);
3866
3867 i915_enable_asle_pipestat(dev);
3868
3869 /* Interrupt setup is already guaranteed to be single-threaded, this is
3870 * just to make the assert_spin_locked check happy. */
3871 spin_lock_irq(&dev_priv->irq_lock);
3872 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3873 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3874 spin_unlock_irq(&dev_priv->irq_lock);
3875
3876 return 0;
3877 }
3878
3879 /*
3880 * Returns true when a page flip has completed.
3881 */
3882 static bool i915_handle_vblank(struct drm_device *dev,
3883 int plane, int pipe, u32 iir)
3884 {
3885 struct drm_i915_private *dev_priv = dev->dev_private;
3886 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3887
3888 if (!intel_pipe_handle_vblank(dev, pipe))
3889 return false;
3890
3891 if ((iir & flip_pending) == 0)
3892 goto check_page_flip;
3893
3894 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3895 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3896 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3897 * the flip is completed (no longer pending). Since this doesn't raise
3898 * an interrupt per se, we watch for the change at vblank.
3899 */
3900 if (I915_READ(ISR) & flip_pending)
3901 goto check_page_flip;
3902
3903 intel_prepare_page_flip(dev, plane);
3904 intel_finish_page_flip(dev, pipe);
3905 return true;
3906
3907 check_page_flip:
3908 intel_check_page_flip(dev, pipe);
3909 return false;
3910 }
3911
3912 static irqreturn_t i915_irq_handler(int irq, void *arg)
3913 {
3914 struct drm_device *dev = arg;
3915 struct drm_i915_private *dev_priv = dev->dev_private;
3916 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3917 u32 flip_mask =
3918 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3919 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3920 int pipe, ret = IRQ_NONE;
3921
3922 if (!intel_irqs_enabled(dev_priv))
3923 return IRQ_NONE;
3924
3925 iir = I915_READ(IIR);
3926 do {
3927 bool irq_received = (iir & ~flip_mask) != 0;
3928 bool blc_event = false;
3929
3930 /* Can't rely on pipestat interrupt bit in iir as it might
3931 * have been cleared after the pipestat interrupt was received.
3932 * It doesn't set the bit in iir again, but it still produces
3933 * interrupts (for non-MSI).
3934 */
3935 spin_lock(&dev_priv->irq_lock);
3936 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3937 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3938
3939 for_each_pipe(dev_priv, pipe) {
3940 int reg = PIPESTAT(pipe);
3941 pipe_stats[pipe] = I915_READ(reg);
3942
3943 /* Clear the PIPE*STAT regs before the IIR */
3944 if (pipe_stats[pipe] & 0x8000ffff) {
3945 I915_WRITE(reg, pipe_stats[pipe]);
3946 irq_received = true;
3947 }
3948 }
3949 spin_unlock(&dev_priv->irq_lock);
3950
3951 if (!irq_received)
3952 break;
3953
3954 /* Consume port. Then clear IIR or we'll miss events */
3955 if (I915_HAS_HOTPLUG(dev) &&
3956 iir & I915_DISPLAY_PORT_INTERRUPT)
3957 i9xx_hpd_irq_handler(dev);
3958
3959 I915_WRITE(IIR, iir & ~flip_mask);
3960 new_iir = I915_READ(IIR); /* Flush posted writes */
3961
3962 if (iir & I915_USER_INTERRUPT)
3963 notify_ring(&dev_priv->ring[RCS]);
3964
3965 for_each_pipe(dev_priv, pipe) {
3966 int plane = pipe;
3967 if (HAS_FBC(dev))
3968 plane = !plane;
3969
3970 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3971 i915_handle_vblank(dev, plane, pipe, iir))
3972 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3973
3974 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3975 blc_event = true;
3976
3977 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3978 i9xx_pipe_crc_irq_handler(dev, pipe);
3979
3980 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3981 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3982 pipe);
3983 }
3984
3985 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3986 intel_opregion_asle_intr(dev);
3987
3988 /* With MSI, interrupts are only generated when iir
3989 * transitions from zero to nonzero. If another bit got
3990 * set while we were handling the existing iir bits, then
3991 * we would never get another interrupt.
3992 *
3993 * This is fine on non-MSI as well, as if we hit this path
3994 * we avoid exiting the interrupt handler only to generate
3995 * another one.
3996 *
3997 * Note that for MSI this could cause a stray interrupt report
3998 * if an interrupt landed in the time between writing IIR and
3999 * the posting read. This should be rare enough to never
4000 * trigger the 99% of 100,000 interrupts test for disabling
4001 * stray interrupts.
4002 */
4003 ret = IRQ_HANDLED;
4004 iir = new_iir;
4005 } while (iir & ~flip_mask);
4006
4007 return ret;
4008 }
4009
4010 static void i915_irq_uninstall(struct drm_device * dev)
4011 {
4012 struct drm_i915_private *dev_priv = dev->dev_private;
4013 int pipe;
4014
4015 if (I915_HAS_HOTPLUG(dev)) {
4016 I915_WRITE(PORT_HOTPLUG_EN, 0);
4017 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4018 }
4019
4020 I915_WRITE16(HWSTAM, 0xffff);
4021 for_each_pipe(dev_priv, pipe) {
4022 /* Clear enable bits; then clear status bits */
4023 I915_WRITE(PIPESTAT(pipe), 0);
4024 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4025 }
4026 I915_WRITE(IMR, 0xffffffff);
4027 I915_WRITE(IER, 0x0);
4028
4029 I915_WRITE(IIR, I915_READ(IIR));
4030 }
4031
4032 static void i965_irq_preinstall(struct drm_device * dev)
4033 {
4034 struct drm_i915_private *dev_priv = dev->dev_private;
4035 int pipe;
4036
4037 I915_WRITE(PORT_HOTPLUG_EN, 0);
4038 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4039
4040 I915_WRITE(HWSTAM, 0xeffe);
4041 for_each_pipe(dev_priv, pipe)
4042 I915_WRITE(PIPESTAT(pipe), 0);
4043 I915_WRITE(IMR, 0xffffffff);
4044 I915_WRITE(IER, 0x0);
4045 POSTING_READ(IER);
4046 }
4047
4048 static int i965_irq_postinstall(struct drm_device *dev)
4049 {
4050 struct drm_i915_private *dev_priv = dev->dev_private;
4051 u32 enable_mask;
4052 u32 error_mask;
4053
4054 /* Unmask the interrupts that we always want on. */
4055 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4056 I915_DISPLAY_PORT_INTERRUPT |
4057 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4058 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4059 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4060 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4061 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4062
4063 enable_mask = ~dev_priv->irq_mask;
4064 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4065 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4066 enable_mask |= I915_USER_INTERRUPT;
4067
4068 if (IS_G4X(dev))
4069 enable_mask |= I915_BSD_USER_INTERRUPT;
4070
4071 /* Interrupt setup is already guaranteed to be single-threaded, this is
4072 * just to make the assert_spin_locked check happy. */
4073 spin_lock_irq(&dev_priv->irq_lock);
4074 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4075 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4076 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4077 spin_unlock_irq(&dev_priv->irq_lock);
4078
4079 /*
4080 * Enable some error detection, note the instruction error mask
4081 * bit is reserved, so we leave it masked.
4082 */
4083 if (IS_G4X(dev)) {
4084 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4085 GM45_ERROR_MEM_PRIV |
4086 GM45_ERROR_CP_PRIV |
4087 I915_ERROR_MEMORY_REFRESH);
4088 } else {
4089 error_mask = ~(I915_ERROR_PAGE_TABLE |
4090 I915_ERROR_MEMORY_REFRESH);
4091 }
4092 I915_WRITE(EMR, error_mask);
4093
4094 I915_WRITE(IMR, dev_priv->irq_mask);
4095 I915_WRITE(IER, enable_mask);
4096 POSTING_READ(IER);
4097
4098 I915_WRITE(PORT_HOTPLUG_EN, 0);
4099 POSTING_READ(PORT_HOTPLUG_EN);
4100
4101 i915_enable_asle_pipestat(dev);
4102
4103 return 0;
4104 }
4105
4106 static void i915_hpd_irq_setup(struct drm_device *dev)
4107 {
4108 struct drm_i915_private *dev_priv = dev->dev_private;
4109 struct intel_encoder *intel_encoder;
4110 u32 hotplug_en;
4111
4112 assert_spin_locked(&dev_priv->irq_lock);
4113
4114 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4115 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4116 /* Note HDMI and DP share hotplug bits */
4117 /* enable bits are the same for all generations */
4118 for_each_intel_encoder(dev, intel_encoder)
4119 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4120 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4121 /* Programming the CRT detection parameters tends
4122 to generate a spurious hotplug event about three
4123 seconds later. So just do it once.
4124 */
4125 if (IS_G4X(dev))
4126 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4127 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4128 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4129
4130 /* Ignore TV since it's buggy */
4131 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4132 }
4133
4134 static irqreturn_t i965_irq_handler(int irq, void *arg)
4135 {
4136 struct drm_device *dev = arg;
4137 struct drm_i915_private *dev_priv = dev->dev_private;
4138 u32 iir, new_iir;
4139 u32 pipe_stats[I915_MAX_PIPES];
4140 int ret = IRQ_NONE, pipe;
4141 u32 flip_mask =
4142 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4143 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4144
4145 if (!intel_irqs_enabled(dev_priv))
4146 return IRQ_NONE;
4147
4148 iir = I915_READ(IIR);
4149
4150 for (;;) {
4151 bool irq_received = (iir & ~flip_mask) != 0;
4152 bool blc_event = false;
4153
4154 /* Can't rely on pipestat interrupt bit in iir as it might
4155 * have been cleared after the pipestat interrupt was received.
4156 * It doesn't set the bit in iir again, but it still produces
4157 * interrupts (for non-MSI).
4158 */
4159 spin_lock(&dev_priv->irq_lock);
4160 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4161 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4162
4163 for_each_pipe(dev_priv, pipe) {
4164 int reg = PIPESTAT(pipe);
4165 pipe_stats[pipe] = I915_READ(reg);
4166
4167 /*
4168 * Clear the PIPE*STAT regs before the IIR
4169 */
4170 if (pipe_stats[pipe] & 0x8000ffff) {
4171 I915_WRITE(reg, pipe_stats[pipe]);
4172 irq_received = true;
4173 }
4174 }
4175 spin_unlock(&dev_priv->irq_lock);
4176
4177 if (!irq_received)
4178 break;
4179
4180 ret = IRQ_HANDLED;
4181
4182 /* Consume port. Then clear IIR or we'll miss events */
4183 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4184 i9xx_hpd_irq_handler(dev);
4185
4186 I915_WRITE(IIR, iir & ~flip_mask);
4187 new_iir = I915_READ(IIR); /* Flush posted writes */
4188
4189 if (iir & I915_USER_INTERRUPT)
4190 notify_ring(&dev_priv->ring[RCS]);
4191 if (iir & I915_BSD_USER_INTERRUPT)
4192 notify_ring(&dev_priv->ring[VCS]);
4193
4194 for_each_pipe(dev_priv, pipe) {
4195 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4196 i915_handle_vblank(dev, pipe, pipe, iir))
4197 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4198
4199 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4200 blc_event = true;
4201
4202 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4203 i9xx_pipe_crc_irq_handler(dev, pipe);
4204
4205 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4206 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4207 }
4208
4209 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4210 intel_opregion_asle_intr(dev);
4211
4212 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4213 gmbus_irq_handler(dev);
4214
4215 /* With MSI, interrupts are only generated when iir
4216 * transitions from zero to nonzero. If another bit got
4217 * set while we were handling the existing iir bits, then
4218 * we would never get another interrupt.
4219 *
4220 * This is fine on non-MSI as well, as if we hit this path
4221 * we avoid exiting the interrupt handler only to generate
4222 * another one.
4223 *
4224 * Note that for MSI this could cause a stray interrupt report
4225 * if an interrupt landed in the time between writing IIR and
4226 * the posting read. This should be rare enough to never
4227 * trigger the 99% of 100,000 interrupts test for disabling
4228 * stray interrupts.
4229 */
4230 iir = new_iir;
4231 }
4232
4233 return ret;
4234 }
4235
4236 static void i965_irq_uninstall(struct drm_device * dev)
4237 {
4238 struct drm_i915_private *dev_priv = dev->dev_private;
4239 int pipe;
4240
4241 if (!dev_priv)
4242 return;
4243
4244 I915_WRITE(PORT_HOTPLUG_EN, 0);
4245 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4246
4247 I915_WRITE(HWSTAM, 0xffffffff);
4248 for_each_pipe(dev_priv, pipe)
4249 I915_WRITE(PIPESTAT(pipe), 0);
4250 I915_WRITE(IMR, 0xffffffff);
4251 I915_WRITE(IER, 0x0);
4252
4253 for_each_pipe(dev_priv, pipe)
4254 I915_WRITE(PIPESTAT(pipe),
4255 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4256 I915_WRITE(IIR, I915_READ(IIR));
4257 }
4258
4259 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4260 {
4261 struct drm_i915_private *dev_priv =
4262 container_of(work, typeof(*dev_priv),
4263 hotplug_reenable_work.work);
4264 struct drm_device *dev = dev_priv->dev;
4265 struct drm_mode_config *mode_config = &dev->mode_config;
4266 int i;
4267
4268 intel_runtime_pm_get(dev_priv);
4269
4270 spin_lock_irq(&dev_priv->irq_lock);
4271 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4272 struct drm_connector *connector;
4273
4274 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4275 continue;
4276
4277 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4278
4279 list_for_each_entry(connector, &mode_config->connector_list, head) {
4280 struct intel_connector *intel_connector = to_intel_connector(connector);
4281
4282 if (intel_connector->encoder->hpd_pin == i) {
4283 if (connector->polled != intel_connector->polled)
4284 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4285 connector->name);
4286 connector->polled = intel_connector->polled;
4287 if (!connector->polled)
4288 connector->polled = DRM_CONNECTOR_POLL_HPD;
4289 }
4290 }
4291 }
4292 if (dev_priv->display.hpd_irq_setup)
4293 dev_priv->display.hpd_irq_setup(dev);
4294 spin_unlock_irq(&dev_priv->irq_lock);
4295
4296 intel_runtime_pm_put(dev_priv);
4297 }
4298
4299 /**
4300 * intel_irq_init - initializes irq support
4301 * @dev_priv: i915 device instance
4302 *
4303 * This function initializes all the irq support including work items, timers
4304 * and all the vtables. It does not setup the interrupt itself though.
4305 */
4306 void intel_irq_init(struct drm_i915_private *dev_priv)
4307 {
4308 struct drm_device *dev = dev_priv->dev;
4309
4310 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4311 INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4312 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4313 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4314
4315 /* Let's track the enabled rps events */
4316 if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4317 /* WaGsvRC0ResidencyMethod:vlv */
4318 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4319 else
4320 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4321
4322 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4323 i915_hangcheck_elapsed);
4324 INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4325 intel_hpd_irq_reenable_work);
4326
4327 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4328
4329 if (IS_GEN2(dev_priv)) {
4330 dev->max_vblank_count = 0;
4331 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4332 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4333 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4334 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4335 } else {
4336 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4337 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4338 }
4339
4340 /*
4341 * Opt out of the vblank disable timer on everything except gen2.
4342 * Gen2 doesn't have a hardware frame counter and so depends on
4343 * vblank interrupts to produce sane vblank seuquence numbers.
4344 */
4345 if (!IS_GEN2(dev_priv))
4346 dev->vblank_disable_immediate = true;
4347
4348 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4349 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4350
4351 if (IS_CHERRYVIEW(dev_priv)) {
4352 dev->driver->irq_handler = cherryview_irq_handler;
4353 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4354 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4355 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4356 dev->driver->enable_vblank = valleyview_enable_vblank;
4357 dev->driver->disable_vblank = valleyview_disable_vblank;
4358 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4359 } else if (IS_VALLEYVIEW(dev_priv)) {
4360 dev->driver->irq_handler = valleyview_irq_handler;
4361 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4362 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4363 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4364 dev->driver->enable_vblank = valleyview_enable_vblank;
4365 dev->driver->disable_vblank = valleyview_disable_vblank;
4366 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4367 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4368 dev->driver->irq_handler = gen8_irq_handler;
4369 dev->driver->irq_preinstall = gen8_irq_reset;
4370 dev->driver->irq_postinstall = gen8_irq_postinstall;
4371 dev->driver->irq_uninstall = gen8_irq_uninstall;
4372 dev->driver->enable_vblank = gen8_enable_vblank;
4373 dev->driver->disable_vblank = gen8_disable_vblank;
4374 if (HAS_PCH_SPLIT(dev))
4375 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4376 else
4377 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4378 } else if (HAS_PCH_SPLIT(dev)) {
4379 dev->driver->irq_handler = ironlake_irq_handler;
4380 dev->driver->irq_preinstall = ironlake_irq_reset;
4381 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4382 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4383 dev->driver->enable_vblank = ironlake_enable_vblank;
4384 dev->driver->disable_vblank = ironlake_disable_vblank;
4385 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4386 } else {
4387 if (INTEL_INFO(dev_priv)->gen == 2) {
4388 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4389 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4390 dev->driver->irq_handler = i8xx_irq_handler;
4391 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4392 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4393 dev->driver->irq_preinstall = i915_irq_preinstall;
4394 dev->driver->irq_postinstall = i915_irq_postinstall;
4395 dev->driver->irq_uninstall = i915_irq_uninstall;
4396 dev->driver->irq_handler = i915_irq_handler;
4397 } else {
4398 dev->driver->irq_preinstall = i965_irq_preinstall;
4399 dev->driver->irq_postinstall = i965_irq_postinstall;
4400 dev->driver->irq_uninstall = i965_irq_uninstall;
4401 dev->driver->irq_handler = i965_irq_handler;
4402 }
4403 if (I915_HAS_HOTPLUG(dev_priv))
4404 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4405 dev->driver->enable_vblank = i915_enable_vblank;
4406 dev->driver->disable_vblank = i915_disable_vblank;
4407 }
4408 }
4409
4410 /**
4411 * intel_hpd_init - initializes and enables hpd support
4412 * @dev_priv: i915 device instance
4413 *
4414 * This function enables the hotplug support. It requires that interrupts have
4415 * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4416 * poll request can run concurrently to other code, so locking rules must be
4417 * obeyed.
4418 *
4419 * This is a separate step from interrupt enabling to simplify the locking rules
4420 * in the driver load and resume code.
4421 */
4422 void intel_hpd_init(struct drm_i915_private *dev_priv)
4423 {
4424 struct drm_device *dev = dev_priv->dev;
4425 struct drm_mode_config *mode_config = &dev->mode_config;
4426 struct drm_connector *connector;
4427 int i;
4428
4429 for (i = 1; i < HPD_NUM_PINS; i++) {
4430 dev_priv->hpd_stats[i].hpd_cnt = 0;
4431 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4432 }
4433 list_for_each_entry(connector, &mode_config->connector_list, head) {
4434 struct intel_connector *intel_connector = to_intel_connector(connector);
4435 connector->polled = intel_connector->polled;
4436 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4437 connector->polled = DRM_CONNECTOR_POLL_HPD;
4438 if (intel_connector->mst_port)
4439 connector->polled = DRM_CONNECTOR_POLL_HPD;
4440 }
4441
4442 /* Interrupt setup is already guaranteed to be single-threaded, this is
4443 * just to make the assert_spin_locked checks happy. */
4444 spin_lock_irq(&dev_priv->irq_lock);
4445 if (dev_priv->display.hpd_irq_setup)
4446 dev_priv->display.hpd_irq_setup(dev);
4447 spin_unlock_irq(&dev_priv->irq_lock);
4448 }
4449
4450 /**
4451 * intel_irq_install - enables the hardware interrupt
4452 * @dev_priv: i915 device instance
4453 *
4454 * This function enables the hardware interrupt handling, but leaves the hotplug
4455 * handling still disabled. It is called after intel_irq_init().
4456 *
4457 * In the driver load and resume code we need working interrupts in a few places
4458 * but don't want to deal with the hassle of concurrent probe and hotplug
4459 * workers. Hence the split into this two-stage approach.
4460 */
4461 int intel_irq_install(struct drm_i915_private *dev_priv)
4462 {
4463 /*
4464 * We enable some interrupt sources in our postinstall hooks, so mark
4465 * interrupts as enabled _before_ actually enabling them to avoid
4466 * special cases in our ordering checks.
4467 */
4468 dev_priv->pm.irqs_enabled = true;
4469
4470 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4471 }
4472
4473 /**
4474 * intel_irq_uninstall - finilizes all irq handling
4475 * @dev_priv: i915 device instance
4476 *
4477 * This stops interrupt and hotplug handling and unregisters and frees all
4478 * resources acquired in the init functions.
4479 */
4480 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4481 {
4482 drm_irq_uninstall(dev_priv->dev);
4483 intel_hpd_cancel_work(dev_priv);
4484 dev_priv->pm.irqs_enabled = false;
4485 }
4486
4487 /**
4488 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4489 * @dev_priv: i915 device instance
4490 *
4491 * This function is used to disable interrupts at runtime, both in the runtime
4492 * pm and the system suspend/resume code.
4493 */
4494 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4495 {
4496 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4497 dev_priv->pm.irqs_enabled = false;
4498 synchronize_irq(dev_priv->dev->irq);
4499 }
4500
4501 /**
4502 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4503 * @dev_priv: i915 device instance
4504 *
4505 * This function is used to enable interrupts at runtime, both in the runtime
4506 * pm and the system suspend/resume code.
4507 */
4508 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4509 {
4510 dev_priv->pm.irqs_enabled = true;
4511 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4512 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4513 }