Input: sur40 - skip all blobs that are not touches
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_guc_submission.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24 #include <linux/circ_buf.h>
25 #include "i915_drv.h"
26 #include "intel_uc.h"
27
28 #include <trace/events/dma_fence.h>
29
30 /**
31 * DOC: GuC-based command submission
32 *
33 * GuC client:
34 * A i915_guc_client refers to a submission path through GuC. Currently, there
35 * is only one of these (the execbuf_client) and this one is charged with all
36 * submissions to the GuC. This struct is the owner of a doorbell, a process
37 * descriptor and a workqueue (all of them inside a single gem object that
38 * contains all required pages for these elements).
39 *
40 * GuC stage descriptor:
41 * During initialization, the driver allocates a static pool of 1024 such
42 * descriptors, and shares them with the GuC.
43 * Currently, there exists a 1:1 mapping between a i915_guc_client and a
44 * guc_stage_desc (via the client's stage_id), so effectively only one
45 * gets used. This stage descriptor lets the GuC know about the doorbell,
46 * workqueue and process descriptor. Theoretically, it also lets the GuC
47 * know about our HW contexts (context ID, etc...), but we actually
48 * employ a kind of submission where the GuC uses the LRCA sent via the work
49 * item instead (the single guc_stage_desc associated to execbuf client
50 * contains information about the default kernel context only, but this is
51 * essentially unused). This is called a "proxy" submission.
52 *
53 * The Scratch registers:
54 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
55 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
56 * triggers an interrupt on the GuC via another register write (0xC4C8).
57 * Firmware writes a success/fail code back to the action register after
58 * processes the request. The kernel driver polls waiting for this update and
59 * then proceeds.
60 * See intel_guc_send()
61 *
62 * Doorbells:
63 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
64 * mapped into process space.
65 *
66 * Work Items:
67 * There are several types of work items that the host may place into a
68 * workqueue, each with its own requirements and limitations. Currently only
69 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
70 * represents in-order queue. The kernel driver packs ring tail pointer and an
71 * ELSP context descriptor dword into Work Item.
72 * See guc_wq_item_append()
73 *
74 * ADS:
75 * The Additional Data Struct (ADS) has pointers for different buffers used by
76 * the GuC. One single gem object contains the ADS struct itself (guc_ads), the
77 * scheduling policies (guc_policies), a structure describing a collection of
78 * register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
79 * its internal state for sleep.
80 *
81 */
82
83 static inline bool is_high_priority(struct i915_guc_client* client)
84 {
85 return client->priority <= GUC_CLIENT_PRIORITY_HIGH;
86 }
87
88 static int __reserve_doorbell(struct i915_guc_client *client)
89 {
90 unsigned long offset;
91 unsigned long end;
92 u16 id;
93
94 GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
95
96 /*
97 * The bitmap tracks which doorbell registers are currently in use.
98 * It is split into two halves; the first half is used for normal
99 * priority contexts, the second half for high-priority ones.
100 */
101 offset = 0;
102 end = GUC_NUM_DOORBELLS/2;
103 if (is_high_priority(client)) {
104 offset = end;
105 end += offset;
106 }
107
108 id = find_next_zero_bit(client->guc->doorbell_bitmap, offset, end);
109 if (id == end)
110 return -ENOSPC;
111
112 __set_bit(id, client->guc->doorbell_bitmap);
113 client->doorbell_id = id;
114 DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
115 client->stage_id, yesno(is_high_priority(client)),
116 id);
117 return 0;
118 }
119
120 static void __unreserve_doorbell(struct i915_guc_client *client)
121 {
122 GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID);
123
124 __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
125 client->doorbell_id = GUC_DOORBELL_INVALID;
126 }
127
128 /*
129 * Tell the GuC to allocate or deallocate a specific doorbell
130 */
131
132 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
133 {
134 u32 action[] = {
135 INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
136 stage_id
137 };
138
139 return intel_guc_send(guc, action, ARRAY_SIZE(action));
140 }
141
142 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
143 {
144 u32 action[] = {
145 INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
146 stage_id
147 };
148
149 return intel_guc_send(guc, action, ARRAY_SIZE(action));
150 }
151
152 static struct guc_stage_desc *__get_stage_desc(struct i915_guc_client *client)
153 {
154 struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
155
156 return &base[client->stage_id];
157 }
158
159 /*
160 * Initialise, update, or clear doorbell data shared with the GuC
161 *
162 * These functions modify shared data and so need access to the mapped
163 * client object which contains the page being used for the doorbell
164 */
165
166 static void __update_doorbell_desc(struct i915_guc_client *client, u16 new_id)
167 {
168 struct guc_stage_desc *desc;
169
170 /* Update the GuC's idea of the doorbell ID */
171 desc = __get_stage_desc(client);
172 desc->db_id = new_id;
173 }
174
175 static struct guc_doorbell_info *__get_doorbell(struct i915_guc_client *client)
176 {
177 return client->vaddr + client->doorbell_offset;
178 }
179
180 static bool has_doorbell(struct i915_guc_client *client)
181 {
182 if (client->doorbell_id == GUC_DOORBELL_INVALID)
183 return false;
184
185 return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
186 }
187
188 static int __create_doorbell(struct i915_guc_client *client)
189 {
190 struct guc_doorbell_info *doorbell;
191 int err;
192
193 doorbell = __get_doorbell(client);
194 doorbell->db_status = GUC_DOORBELL_ENABLED;
195 doorbell->cookie = client->doorbell_cookie;
196
197 err = __guc_allocate_doorbell(client->guc, client->stage_id);
198 if (err) {
199 doorbell->db_status = GUC_DOORBELL_DISABLED;
200 doorbell->cookie = 0;
201 }
202 return err;
203 }
204
205 static int __destroy_doorbell(struct i915_guc_client *client)
206 {
207 struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
208 struct guc_doorbell_info *doorbell;
209 u16 db_id = client->doorbell_id;
210
211 GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
212
213 doorbell = __get_doorbell(client);
214 doorbell->db_status = GUC_DOORBELL_DISABLED;
215 doorbell->cookie = 0;
216
217 /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
218 * to go to zero after updating db_status before we call the GuC to
219 * release the doorbell */
220 if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
221 WARN_ONCE(true, "Doorbell never became invalid after disable\n");
222
223 return __guc_deallocate_doorbell(client->guc, client->stage_id);
224 }
225
226 static int create_doorbell(struct i915_guc_client *client)
227 {
228 int ret;
229
230 ret = __reserve_doorbell(client);
231 if (ret)
232 return ret;
233
234 __update_doorbell_desc(client, client->doorbell_id);
235
236 ret = __create_doorbell(client);
237 if (ret)
238 goto err;
239
240 return 0;
241
242 err:
243 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
244 __unreserve_doorbell(client);
245 return ret;
246 }
247
248 static int destroy_doorbell(struct i915_guc_client *client)
249 {
250 int err;
251
252 GEM_BUG_ON(!has_doorbell(client));
253
254 /* XXX: wait for any interrupts */
255 /* XXX: wait for workqueue to drain */
256
257 err = __destroy_doorbell(client);
258 if (err)
259 return err;
260
261 __update_doorbell_desc(client, GUC_DOORBELL_INVALID);
262
263 __unreserve_doorbell(client);
264
265 return 0;
266 }
267
268 static unsigned long __select_cacheline(struct intel_guc* guc)
269 {
270 unsigned long offset;
271
272 /* Doorbell uses a single cache line within a page */
273 offset = offset_in_page(guc->db_cacheline);
274
275 /* Moving to next cache line to reduce contention */
276 guc->db_cacheline += cache_line_size();
277
278 DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
279 offset, guc->db_cacheline, cache_line_size());
280 return offset;
281 }
282
283 static inline struct guc_process_desc *
284 __get_process_desc(struct i915_guc_client *client)
285 {
286 return client->vaddr + client->proc_desc_offset;
287 }
288
289 /*
290 * Initialise the process descriptor shared with the GuC firmware.
291 */
292 static void guc_proc_desc_init(struct intel_guc *guc,
293 struct i915_guc_client *client)
294 {
295 struct guc_process_desc *desc;
296
297 desc = memset(__get_process_desc(client), 0, sizeof(*desc));
298
299 /*
300 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
301 * space for ring3 clients (set them as in mmap_ioctl) or kernel
302 * space for kernel clients (map on demand instead? May make debug
303 * easier to have it mapped).
304 */
305 desc->wq_base_addr = 0;
306 desc->db_base_addr = 0;
307
308 desc->stage_id = client->stage_id;
309 desc->wq_size_bytes = client->wq_size;
310 desc->wq_status = WQ_STATUS_ACTIVE;
311 desc->priority = client->priority;
312 }
313
314 /*
315 * Initialise/clear the stage descriptor shared with the GuC firmware.
316 *
317 * This descriptor tells the GuC where (in GGTT space) to find the important
318 * data structures relating to this client (doorbell, process descriptor,
319 * write queue, etc).
320 */
321 static void guc_stage_desc_init(struct intel_guc *guc,
322 struct i915_guc_client *client)
323 {
324 struct drm_i915_private *dev_priv = guc_to_i915(guc);
325 struct intel_engine_cs *engine;
326 struct i915_gem_context *ctx = client->owner;
327 struct guc_stage_desc *desc;
328 unsigned int tmp;
329 u32 gfx_addr;
330
331 desc = __get_stage_desc(client);
332 memset(desc, 0, sizeof(*desc));
333
334 desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | GUC_STAGE_DESC_ATTR_KERNEL;
335 desc->stage_id = client->stage_id;
336 desc->priority = client->priority;
337 desc->db_id = client->doorbell_id;
338
339 for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
340 struct intel_context *ce = &ctx->engine[engine->id];
341 uint32_t guc_engine_id = engine->guc_id;
342 struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
343
344 /* TODO: We have a design issue to be solved here. Only when we
345 * receive the first batch, we know which engine is used by the
346 * user. But here GuC expects the lrc and ring to be pinned. It
347 * is not an issue for default context, which is the only one
348 * for now who owns a GuC client. But for future owner of GuC
349 * client, need to make sure lrc is pinned prior to enter here.
350 */
351 if (!ce->state)
352 break; /* XXX: continue? */
353
354 /*
355 * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
356 * submission or, in other words, not using a direct submission
357 * model) the KMD's LRCA is not used for any work submission.
358 * Instead, the GuC uses the LRCA of the user mode context (see
359 * guc_wq_item_append below).
360 */
361 lrc->context_desc = lower_32_bits(ce->lrc_desc);
362
363 /* The state page is after PPHWSP */
364 lrc->ring_lrca =
365 guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
366
367 /* XXX: In direct submission, the GuC wants the HW context id
368 * here. In proxy submission, it wants the stage id */
369 lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
370 (guc_engine_id << GUC_ELC_ENGINE_OFFSET);
371
372 lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
373 lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
374 lrc->ring_next_free_location = lrc->ring_begin;
375 lrc->ring_current_tail_pointer_value = 0;
376
377 desc->engines_used |= (1 << guc_engine_id);
378 }
379
380 DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
381 client->engines, desc->engines_used);
382 WARN_ON(desc->engines_used == 0);
383
384 /*
385 * The doorbell, process descriptor, and workqueue are all parts
386 * of the client object, which the GuC will reference via the GGTT
387 */
388 gfx_addr = guc_ggtt_offset(client->vma);
389 desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
390 client->doorbell_offset;
391 desc->db_trigger_cpu = (uintptr_t)__get_doorbell(client);
392 desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
393 desc->process_desc = gfx_addr + client->proc_desc_offset;
394 desc->wq_addr = gfx_addr + client->wq_offset;
395 desc->wq_size = client->wq_size;
396
397 desc->desc_private = (uintptr_t)client;
398 }
399
400 static void guc_stage_desc_fini(struct intel_guc *guc,
401 struct i915_guc_client *client)
402 {
403 struct guc_stage_desc *desc;
404
405 desc = __get_stage_desc(client);
406 memset(desc, 0, sizeof(*desc));
407 }
408
409 /**
410 * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
411 * @request: request associated with the commands
412 *
413 * Return: 0 if space is available
414 * -EAGAIN if space is not currently available
415 *
416 * This function must be called (and must return 0) before a request
417 * is submitted to the GuC via i915_guc_submit() below. Once a result
418 * of 0 has been returned, it must be balanced by a corresponding
419 * call to submit().
420 *
421 * Reservation allows the caller to determine in advance that space
422 * will be available for the next submission before committing resources
423 * to it, and helps avoid late failures with complicated recovery paths.
424 */
425 int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
426 {
427 const size_t wqi_size = sizeof(struct guc_wq_item);
428 struct i915_guc_client *client = request->i915->guc.execbuf_client;
429 struct guc_process_desc *desc = __get_process_desc(client);
430 u32 freespace;
431 int ret;
432
433 spin_lock_irq(&client->wq_lock);
434 freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
435 freespace -= client->wq_rsvd;
436 if (likely(freespace >= wqi_size)) {
437 client->wq_rsvd += wqi_size;
438 ret = 0;
439 } else {
440 client->no_wq_space++;
441 ret = -EAGAIN;
442 }
443 spin_unlock_irq(&client->wq_lock);
444
445 return ret;
446 }
447
448 static void guc_client_update_wq_rsvd(struct i915_guc_client *client, int size)
449 {
450 unsigned long flags;
451
452 spin_lock_irqsave(&client->wq_lock, flags);
453 client->wq_rsvd += size;
454 spin_unlock_irqrestore(&client->wq_lock, flags);
455 }
456
457 void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
458 {
459 const int wqi_size = sizeof(struct guc_wq_item);
460 struct i915_guc_client *client = request->i915->guc.execbuf_client;
461
462 GEM_BUG_ON(READ_ONCE(client->wq_rsvd) < wqi_size);
463 guc_client_update_wq_rsvd(client, -wqi_size);
464 }
465
466 /* Construct a Work Item and append it to the GuC's Work Queue */
467 static void guc_wq_item_append(struct i915_guc_client *client,
468 struct drm_i915_gem_request *rq)
469 {
470 /* wqi_len is in DWords, and does not include the one-word header */
471 const size_t wqi_size = sizeof(struct guc_wq_item);
472 const u32 wqi_len = wqi_size/sizeof(u32) - 1;
473 struct intel_engine_cs *engine = rq->engine;
474 struct guc_process_desc *desc = __get_process_desc(client);
475 struct guc_wq_item *wqi;
476 u32 freespace, tail, wq_off;
477
478 /* Free space is guaranteed, see i915_guc_wq_reserve() above */
479 freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
480 GEM_BUG_ON(freespace < wqi_size);
481
482 /* The GuC firmware wants the tail index in QWords, not bytes */
483 tail = rq->tail;
484 assert_ring_tail_valid(rq->ring, rq->tail);
485 tail >>= 3;
486 GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
487
488 /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
489 * should not have the case where structure wqi is across page, neither
490 * wrapped to the beginning. This simplifies the implementation below.
491 *
492 * XXX: if not the case, we need save data to a temp wqi and copy it to
493 * workqueue buffer dw by dw.
494 */
495 BUILD_BUG_ON(wqi_size != 16);
496 GEM_BUG_ON(client->wq_rsvd < wqi_size);
497
498 /* postincrement WQ tail for next time */
499 wq_off = client->wq_tail;
500 GEM_BUG_ON(wq_off & (wqi_size - 1));
501 client->wq_tail += wqi_size;
502 client->wq_tail &= client->wq_size - 1;
503 client->wq_rsvd -= wqi_size;
504
505 /* WQ starts from the page after doorbell / process_desc */
506 wqi = client->vaddr + wq_off + GUC_DB_SIZE;
507
508 /* Now fill in the 4-word work queue item */
509 wqi->header = WQ_TYPE_INORDER |
510 (wqi_len << WQ_LEN_SHIFT) |
511 (engine->guc_id << WQ_TARGET_SHIFT) |
512 WQ_NO_WCFLUSH_WAIT;
513
514 /* The GuC wants only the low-order word of the context descriptor */
515 wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
516
517 wqi->submit_element_info = tail << WQ_RING_TAIL_SHIFT;
518 wqi->fence_id = rq->global_seqno;
519 }
520
521 static void guc_reset_wq(struct i915_guc_client *client)
522 {
523 struct guc_process_desc *desc = __get_process_desc(client);
524
525 desc->head = 0;
526 desc->tail = 0;
527
528 client->wq_tail = 0;
529 }
530
531 static int guc_ring_doorbell(struct i915_guc_client *client)
532 {
533 struct guc_process_desc *desc = __get_process_desc(client);
534 union guc_doorbell_qw db_cmp, db_exc, db_ret;
535 union guc_doorbell_qw *db;
536 int attempt = 2, ret = -EAGAIN;
537
538 /* Update the tail so it is visible to GuC */
539 desc->tail = client->wq_tail;
540
541 /* current cookie */
542 db_cmp.db_status = GUC_DOORBELL_ENABLED;
543 db_cmp.cookie = client->doorbell_cookie;
544
545 /* cookie to be updated */
546 db_exc.db_status = GUC_DOORBELL_ENABLED;
547 db_exc.cookie = client->doorbell_cookie + 1;
548 if (db_exc.cookie == 0)
549 db_exc.cookie = 1;
550
551 /* pointer of current doorbell cacheline */
552 db = (union guc_doorbell_qw *)__get_doorbell(client);
553
554 while (attempt--) {
555 /* lets ring the doorbell */
556 db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
557 db_cmp.value_qw, db_exc.value_qw);
558
559 /* if the exchange was successfully executed */
560 if (db_ret.value_qw == db_cmp.value_qw) {
561 /* db was successfully rung */
562 client->doorbell_cookie = db_exc.cookie;
563 ret = 0;
564 break;
565 }
566
567 /* XXX: doorbell was lost and need to acquire it again */
568 if (db_ret.db_status == GUC_DOORBELL_DISABLED)
569 break;
570
571 DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
572 db_cmp.cookie, db_ret.cookie);
573
574 /* update the cookie to newly read cookie from GuC */
575 db_cmp.cookie = db_ret.cookie;
576 db_exc.cookie = db_ret.cookie + 1;
577 if (db_exc.cookie == 0)
578 db_exc.cookie = 1;
579 }
580
581 return ret;
582 }
583
584 /**
585 * __i915_guc_submit() - Submit commands through GuC
586 * @rq: request associated with the commands
587 *
588 * The caller must have already called i915_guc_wq_reserve() above with
589 * a result of 0 (success), guaranteeing that there is space in the work
590 * queue for the new request, so enqueuing the item cannot fail.
591 *
592 * Bad Things Will Happen if the caller violates this protocol e.g. calls
593 * submit() when _reserve() says there's no space, or calls _submit()
594 * a different number of times from (successful) calls to _reserve().
595 *
596 * The only error here arises if the doorbell hardware isn't functioning
597 * as expected, which really shouln't happen.
598 */
599 static void __i915_guc_submit(struct drm_i915_gem_request *rq)
600 {
601 struct drm_i915_private *dev_priv = rq->i915;
602 struct intel_engine_cs *engine = rq->engine;
603 unsigned int engine_id = engine->id;
604 struct intel_guc *guc = &rq->i915->guc;
605 struct i915_guc_client *client = guc->execbuf_client;
606 unsigned long flags;
607 int b_ret;
608
609 /* WA to flush out the pending GMADR writes to ring buffer. */
610 if (i915_vma_is_map_and_fenceable(rq->ring->vma))
611 POSTING_READ_FW(GUC_STATUS);
612
613 spin_lock_irqsave(&client->wq_lock, flags);
614
615 guc_wq_item_append(client, rq);
616 b_ret = guc_ring_doorbell(client);
617
618 client->submissions[engine_id] += 1;
619 client->retcode = b_ret;
620 if (b_ret)
621 client->b_fail += 1;
622
623 guc->submissions[engine_id] += 1;
624 guc->last_seqno[engine_id] = rq->global_seqno;
625
626 spin_unlock_irqrestore(&client->wq_lock, flags);
627 }
628
629 static void i915_guc_submit(struct drm_i915_gem_request *rq)
630 {
631 __i915_gem_request_submit(rq);
632 __i915_guc_submit(rq);
633 }
634
635 static void nested_enable_signaling(struct drm_i915_gem_request *rq)
636 {
637 /* If we use dma_fence_enable_sw_signaling() directly, lockdep
638 * detects an ordering issue between the fence lockclass and the
639 * global_timeline. This circular dependency can only occur via 2
640 * different fences (but same fence lockclass), so we use the nesting
641 * annotation here to prevent the warn, equivalent to the nesting
642 * inside i915_gem_request_submit() for when we also enable the
643 * signaler.
644 */
645
646 if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
647 &rq->fence.flags))
648 return;
649
650 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
651 trace_dma_fence_enable_signal(&rq->fence);
652
653 spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING);
654 intel_engine_enable_signaling(rq);
655 spin_unlock(&rq->lock);
656 }
657
658 static bool i915_guc_dequeue(struct intel_engine_cs *engine)
659 {
660 struct execlist_port *port = engine->execlist_port;
661 struct drm_i915_gem_request *last = port[0].request;
662 struct rb_node *rb;
663 bool submit = false;
664
665 spin_lock_irq(&engine->timeline->lock);
666 rb = engine->execlist_first;
667 while (rb) {
668 struct drm_i915_gem_request *rq =
669 rb_entry(rb, typeof(*rq), priotree.node);
670
671 if (last && rq->ctx != last->ctx) {
672 if (port != engine->execlist_port)
673 break;
674
675 i915_gem_request_assign(&port->request, last);
676 nested_enable_signaling(last);
677 port++;
678 }
679
680 rb = rb_next(rb);
681 rb_erase(&rq->priotree.node, &engine->execlist_queue);
682 RB_CLEAR_NODE(&rq->priotree.node);
683 rq->priotree.priority = INT_MAX;
684
685 i915_guc_submit(rq);
686 trace_i915_gem_request_in(rq, port - engine->execlist_port);
687 last = rq;
688 submit = true;
689 }
690 if (submit) {
691 i915_gem_request_assign(&port->request, last);
692 nested_enable_signaling(last);
693 engine->execlist_first = rb;
694 }
695 spin_unlock_irq(&engine->timeline->lock);
696
697 return submit;
698 }
699
700 static void i915_guc_irq_handler(unsigned long data)
701 {
702 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
703 struct execlist_port *port = engine->execlist_port;
704 struct drm_i915_gem_request *rq;
705 bool submit;
706
707 do {
708 rq = port[0].request;
709 while (rq && i915_gem_request_completed(rq)) {
710 trace_i915_gem_request_out(rq);
711 i915_gem_request_put(rq);
712 port[0].request = port[1].request;
713 port[1].request = NULL;
714 rq = port[0].request;
715 }
716
717 submit = false;
718 if (!port[1].request)
719 submit = i915_guc_dequeue(engine);
720 } while (submit);
721 }
722
723 /*
724 * Everything below here is concerned with setup & teardown, and is
725 * therefore not part of the somewhat time-critical batch-submission
726 * path of i915_guc_submit() above.
727 */
728
729 /**
730 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
731 * @guc: the guc
732 * @size: size of area to allocate (both virtual space and memory)
733 *
734 * This is a wrapper to create an object for use with the GuC. In order to
735 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
736 * both some backing storage and a range inside the Global GTT. We must pin
737 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
738 * range is reserved inside GuC.
739 *
740 * Return: A i915_vma if successful, otherwise an ERR_PTR.
741 */
742 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
743 {
744 struct drm_i915_private *dev_priv = guc_to_i915(guc);
745 struct drm_i915_gem_object *obj;
746 struct i915_vma *vma;
747 int ret;
748
749 obj = i915_gem_object_create(dev_priv, size);
750 if (IS_ERR(obj))
751 return ERR_CAST(obj);
752
753 vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
754 if (IS_ERR(vma))
755 goto err;
756
757 ret = i915_vma_pin(vma, 0, PAGE_SIZE,
758 PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
759 if (ret) {
760 vma = ERR_PTR(ret);
761 goto err;
762 }
763
764 return vma;
765
766 err:
767 i915_gem_object_put(obj);
768 return vma;
769 }
770
771 /* Check that a doorbell register is in the expected state */
772 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
773 {
774 struct drm_i915_private *dev_priv = guc_to_i915(guc);
775 u32 drbregl;
776 bool valid;
777
778 GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
779
780 drbregl = I915_READ(GEN8_DRBREGL(db_id));
781 valid = drbregl & GEN8_DRB_VALID;
782
783 if (test_bit(db_id, guc->doorbell_bitmap) == valid)
784 return true;
785
786 DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
787 db_id, drbregl, yesno(valid));
788
789 return false;
790 }
791
792 /*
793 * If the GuC thinks that the doorbell is unassigned (e.g. because we reset and
794 * reloaded the GuC FW) we can use this function to tell the GuC to reassign the
795 * doorbell to the rightful owner.
796 */
797 static int __reset_doorbell(struct i915_guc_client* client, u16 db_id)
798 {
799 int err;
800
801 __update_doorbell_desc(client, db_id);
802 err = __create_doorbell(client);
803 if (!err)
804 err = __destroy_doorbell(client);
805
806 return err;
807 }
808
809 /*
810 * Set up & tear down each unused doorbell in turn, to ensure that all doorbell
811 * HW is (re)initialised. For that end, we might have to borrow the first
812 * client. Also, tell GuC about all the doorbells in use by all clients.
813 * We do this because the KMD, the GuC and the doorbell HW can easily go out of
814 * sync (e.g. we can reset the GuC, but not the doorbel HW).
815 */
816 static int guc_init_doorbell_hw(struct intel_guc *guc)
817 {
818 struct i915_guc_client *client = guc->execbuf_client;
819 bool recreate_first_client = false;
820 u16 db_id;
821 int ret;
822
823 /* For unused doorbells, make sure they are disabled */
824 for_each_clear_bit(db_id, guc->doorbell_bitmap, GUC_NUM_DOORBELLS) {
825 if (doorbell_ok(guc, db_id))
826 continue;
827
828 if (has_doorbell(client)) {
829 /* Borrow execbuf_client (we will recreate it later) */
830 destroy_doorbell(client);
831 recreate_first_client = true;
832 }
833
834 ret = __reset_doorbell(client, db_id);
835 WARN(ret, "Doorbell %u reset failed, err %d\n", db_id, ret);
836 }
837
838 if (recreate_first_client) {
839 ret = __reserve_doorbell(client);
840 if (unlikely(ret)) {
841 DRM_ERROR("Couldn't re-reserve first client db: %d\n", ret);
842 return ret;
843 }
844
845 __update_doorbell_desc(client, client->doorbell_id);
846 }
847
848 /* Now for every client (and not only execbuf_client) make sure their
849 * doorbells are known by the GuC */
850 //for (client = client_list; client != NULL; client = client->next)
851 {
852 ret = __create_doorbell(client);
853 if (ret) {
854 DRM_ERROR("Couldn't recreate client %u doorbell: %d\n",
855 client->stage_id, ret);
856 return ret;
857 }
858 }
859
860 /* Read back & verify all (used & unused) doorbell registers */
861 for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
862 WARN_ON(!doorbell_ok(guc, db_id));
863
864 return 0;
865 }
866
867 /**
868 * guc_client_alloc() - Allocate an i915_guc_client
869 * @dev_priv: driver private data structure
870 * @engines: The set of engines to enable for this client
871 * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
872 * The kernel client to replace ExecList submission is created with
873 * NORMAL priority. Priority of a client for scheduler can be HIGH,
874 * while a preemption context can use CRITICAL.
875 * @ctx: the context that owns the client (we use the default render
876 * context)
877 *
878 * Return: An i915_guc_client object if success, else NULL.
879 */
880 static struct i915_guc_client *
881 guc_client_alloc(struct drm_i915_private *dev_priv,
882 uint32_t engines,
883 uint32_t priority,
884 struct i915_gem_context *ctx)
885 {
886 struct i915_guc_client *client;
887 struct intel_guc *guc = &dev_priv->guc;
888 struct i915_vma *vma;
889 void *vaddr;
890 int ret;
891
892 client = kzalloc(sizeof(*client), GFP_KERNEL);
893 if (!client)
894 return ERR_PTR(-ENOMEM);
895
896 client->guc = guc;
897 client->owner = ctx;
898 client->engines = engines;
899 client->priority = priority;
900 client->doorbell_id = GUC_DOORBELL_INVALID;
901 client->wq_offset = GUC_DB_SIZE;
902 client->wq_size = GUC_WQ_SIZE;
903 spin_lock_init(&client->wq_lock);
904
905 ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
906 GFP_KERNEL);
907 if (ret < 0)
908 goto err_client;
909
910 client->stage_id = ret;
911
912 /* The first page is doorbell/proc_desc. Two followed pages are wq. */
913 vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
914 if (IS_ERR(vma)) {
915 ret = PTR_ERR(vma);
916 goto err_id;
917 }
918
919 /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
920 client->vma = vma;
921
922 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
923 if (IS_ERR(vaddr)) {
924 ret = PTR_ERR(vaddr);
925 goto err_vma;
926 }
927 client->vaddr = vaddr;
928
929 client->doorbell_offset = __select_cacheline(guc);
930
931 /*
932 * Since the doorbell only requires a single cacheline, we can save
933 * space by putting the application process descriptor in the same
934 * page. Use the half of the page that doesn't include the doorbell.
935 */
936 if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
937 client->proc_desc_offset = 0;
938 else
939 client->proc_desc_offset = (GUC_DB_SIZE / 2);
940
941 guc_proc_desc_init(guc, client);
942 guc_stage_desc_init(guc, client);
943
944 ret = create_doorbell(client);
945 if (ret)
946 goto err_vaddr;
947
948 DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
949 priority, client, client->engines, client->stage_id);
950 DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
951 client->doorbell_id, client->doorbell_offset);
952
953 return client;
954
955 err_vaddr:
956 i915_gem_object_unpin_map(client->vma->obj);
957 err_vma:
958 i915_vma_unpin_and_release(&client->vma);
959 err_id:
960 ida_simple_remove(&guc->stage_ids, client->stage_id);
961 err_client:
962 kfree(client);
963 return ERR_PTR(ret);
964 }
965
966 static void guc_client_free(struct i915_guc_client *client)
967 {
968 /*
969 * XXX: wait for any outstanding submissions before freeing memory.
970 * Be sure to drop any locks
971 */
972
973 /* FIXME: in many cases, by the time we get here the GuC has been
974 * reset, so we cannot destroy the doorbell properly. Ignore the
975 * error message for now */
976 destroy_doorbell(client);
977 guc_stage_desc_fini(client->guc, client);
978 i915_gem_object_unpin_map(client->vma->obj);
979 i915_vma_unpin_and_release(&client->vma);
980 ida_simple_remove(&client->guc->stage_ids, client->stage_id);
981 kfree(client);
982 }
983
984 static void guc_policies_init(struct guc_policies *policies)
985 {
986 struct guc_policy *policy;
987 u32 p, i;
988
989 policies->dpc_promote_time = 500000;
990 policies->max_num_work_items = POLICY_MAX_NUM_WI;
991
992 for (p = 0; p < GUC_CLIENT_PRIORITY_NUM; p++) {
993 for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
994 policy = &policies->policy[p][i];
995
996 policy->execution_quantum = 1000000;
997 policy->preemption_time = 500000;
998 policy->fault_time = 250000;
999 policy->policy_flags = 0;
1000 }
1001 }
1002
1003 policies->is_valid = 1;
1004 }
1005
1006 static int guc_ads_create(struct intel_guc *guc)
1007 {
1008 struct drm_i915_private *dev_priv = guc_to_i915(guc);
1009 struct i915_vma *vma;
1010 struct page *page;
1011 /* The ads obj includes the struct itself and buffers passed to GuC */
1012 struct {
1013 struct guc_ads ads;
1014 struct guc_policies policies;
1015 struct guc_mmio_reg_state reg_state;
1016 u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
1017 } __packed *blob;
1018 struct intel_engine_cs *engine;
1019 enum intel_engine_id id;
1020 u32 base;
1021
1022 GEM_BUG_ON(guc->ads_vma);
1023
1024 vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob)));
1025 if (IS_ERR(vma))
1026 return PTR_ERR(vma);
1027
1028 guc->ads_vma = vma;
1029
1030 page = i915_vma_first_page(vma);
1031 blob = kmap(page);
1032
1033 /* GuC scheduling policies */
1034 guc_policies_init(&blob->policies);
1035
1036 /* MMIO reg state */
1037 for_each_engine(engine, dev_priv, id) {
1038 blob->reg_state.white_list[engine->guc_id].mmio_start =
1039 engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1040
1041 /* Nothing to be saved or restored for now. */
1042 blob->reg_state.white_list[engine->guc_id].count = 0;
1043 }
1044
1045 /*
1046 * The GuC requires a "Golden Context" when it reinitialises
1047 * engines after a reset. Here we use the Render ring default
1048 * context, which must already exist and be pinned in the GGTT,
1049 * so its address won't change after we've told the GuC where
1050 * to find it.
1051 */
1052 blob->ads.golden_context_lrca =
1053 dev_priv->engine[RCS]->status_page.ggtt_offset;
1054
1055 for_each_engine(engine, dev_priv, id)
1056 blob->ads.eng_state_size[engine->guc_id] =
1057 intel_lr_context_size(engine);
1058
1059 base = guc_ggtt_offset(vma);
1060 blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
1061 blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
1062 blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
1063
1064 kunmap(page);
1065
1066 return 0;
1067 }
1068
1069 static void guc_ads_destroy(struct intel_guc *guc)
1070 {
1071 i915_vma_unpin_and_release(&guc->ads_vma);
1072 }
1073
1074 /*
1075 * Set up the memory resources to be shared with the GuC (via the GGTT)
1076 * at firmware loading time.
1077 */
1078 int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1079 {
1080 struct intel_guc *guc = &dev_priv->guc;
1081 struct i915_vma *vma;
1082 void *vaddr;
1083 int ret;
1084
1085 if (guc->stage_desc_pool)
1086 return 0;
1087
1088 vma = intel_guc_allocate_vma(guc,
1089 PAGE_ALIGN(sizeof(struct guc_stage_desc) *
1090 GUC_MAX_STAGE_DESCRIPTORS));
1091 if (IS_ERR(vma))
1092 return PTR_ERR(vma);
1093
1094 guc->stage_desc_pool = vma;
1095
1096 vaddr = i915_gem_object_pin_map(guc->stage_desc_pool->obj, I915_MAP_WB);
1097 if (IS_ERR(vaddr)) {
1098 ret = PTR_ERR(vaddr);
1099 goto err_vma;
1100 }
1101
1102 guc->stage_desc_pool_vaddr = vaddr;
1103
1104 ret = intel_guc_log_create(guc);
1105 if (ret < 0)
1106 goto err_vaddr;
1107
1108 ret = guc_ads_create(guc);
1109 if (ret < 0)
1110 goto err_log;
1111
1112 ida_init(&guc->stage_ids);
1113
1114 return 0;
1115
1116 err_log:
1117 intel_guc_log_destroy(guc);
1118 err_vaddr:
1119 i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
1120 err_vma:
1121 i915_vma_unpin_and_release(&guc->stage_desc_pool);
1122 return ret;
1123 }
1124
1125 void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
1126 {
1127 struct intel_guc *guc = &dev_priv->guc;
1128
1129 ida_destroy(&guc->stage_ids);
1130 guc_ads_destroy(guc);
1131 intel_guc_log_destroy(guc);
1132 i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
1133 i915_vma_unpin_and_release(&guc->stage_desc_pool);
1134 }
1135
1136 static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
1137 {
1138 struct intel_engine_cs *engine;
1139 enum intel_engine_id id;
1140 int irqs;
1141
1142 /* tell all command streamers to forward interrupts (but not vblank) to GuC */
1143 irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1144 for_each_engine(engine, dev_priv, id)
1145 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1146
1147 /* route USER_INTERRUPT to Host, all others are sent to GuC. */
1148 irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1149 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1150 /* These three registers have the same bit definitions */
1151 I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
1152 I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
1153 I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1154
1155 /*
1156 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1157 * (unmasked) PM interrupts to the GuC. All other bits of this
1158 * register *disable* generation of a specific interrupt.
1159 *
1160 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1161 * writing to the PM interrupt mask register, i.e. interrupts
1162 * that must not be disabled.
1163 *
1164 * If the GuC is handling these interrupts, then we must not let
1165 * the PM code disable ANY interrupt that the GuC is expecting.
1166 * So for each ENABLED (0) bit in this register, we must SET the
1167 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1168 * GuC needs ARAT expired interrupt unmasked hence it is set in
1169 * pm_intrmsk_mbz.
1170 *
1171 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1172 * result in the register bit being left SET!
1173 */
1174 dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1175 dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1176 }
1177
1178 static void guc_interrupts_release(struct drm_i915_private *dev_priv)
1179 {
1180 struct intel_engine_cs *engine;
1181 enum intel_engine_id id;
1182 int irqs;
1183
1184 /*
1185 * tell all command streamers NOT to forward interrupts or vblank
1186 * to GuC.
1187 */
1188 irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1189 irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1190 for_each_engine(engine, dev_priv, id)
1191 I915_WRITE(RING_MODE_GEN7(engine), irqs);
1192
1193 /* route all GT interrupts to the host */
1194 I915_WRITE(GUC_BCS_RCS_IER, 0);
1195 I915_WRITE(GUC_VCS2_VCS1_IER, 0);
1196 I915_WRITE(GUC_WD_VECS_IER, 0);
1197
1198 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1199 dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1200 }
1201
1202 int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1203 {
1204 struct intel_guc *guc = &dev_priv->guc;
1205 struct i915_guc_client *client = guc->execbuf_client;
1206 struct intel_engine_cs *engine;
1207 enum intel_engine_id id;
1208 int err;
1209
1210 if (!client) {
1211 client = guc_client_alloc(dev_priv,
1212 INTEL_INFO(dev_priv)->ring_mask,
1213 GUC_CLIENT_PRIORITY_KMD_NORMAL,
1214 dev_priv->kernel_context);
1215 if (IS_ERR(client)) {
1216 DRM_ERROR("Failed to create GuC client for execbuf!\n");
1217 return PTR_ERR(client);
1218 }
1219
1220 guc->execbuf_client = client;
1221 }
1222
1223 err = intel_guc_sample_forcewake(guc);
1224 if (err)
1225 goto err_execbuf_client;
1226
1227 guc_reset_wq(client);
1228
1229 err = guc_init_doorbell_hw(guc);
1230 if (err)
1231 goto err_execbuf_client;
1232
1233 /* Take over from manual control of ELSP (execlists) */
1234 guc_interrupts_capture(dev_priv);
1235
1236 for_each_engine(engine, dev_priv, id) {
1237 const int wqi_size = sizeof(struct guc_wq_item);
1238 struct drm_i915_gem_request *rq;
1239
1240 /* The tasklet was initialised by execlists, and may be in
1241 * a state of flux (across a reset) and so we just want to
1242 * take over the callback without changing any other state
1243 * in the tasklet.
1244 */
1245 engine->irq_tasklet.func = i915_guc_irq_handler;
1246 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1247
1248 /* Replay the current set of previously submitted requests */
1249 spin_lock_irq(&engine->timeline->lock);
1250 list_for_each_entry(rq, &engine->timeline->requests, link) {
1251 guc_client_update_wq_rsvd(client, wqi_size);
1252 __i915_guc_submit(rq);
1253 }
1254 spin_unlock_irq(&engine->timeline->lock);
1255 }
1256
1257 return 0;
1258
1259 err_execbuf_client:
1260 guc_client_free(guc->execbuf_client);
1261 guc->execbuf_client = NULL;
1262 return err;
1263 }
1264
1265 void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1266 {
1267 struct intel_guc *guc = &dev_priv->guc;
1268
1269 guc_interrupts_release(dev_priv);
1270
1271 /* Revert back to manual ELSP submission */
1272 intel_engines_reset_default_submission(dev_priv);
1273
1274 guc_client_free(guc->execbuf_client);
1275 guc->execbuf_client = NULL;
1276 }
1277
1278 /**
1279 * intel_guc_suspend() - notify GuC entering suspend state
1280 * @dev_priv: i915 device private
1281 */
1282 int intel_guc_suspend(struct drm_i915_private *dev_priv)
1283 {
1284 struct intel_guc *guc = &dev_priv->guc;
1285 struct i915_gem_context *ctx;
1286 u32 data[3];
1287
1288 if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1289 return 0;
1290
1291 gen9_disable_guc_interrupts(dev_priv);
1292
1293 ctx = dev_priv->kernel_context;
1294
1295 data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
1296 /* any value greater than GUC_POWER_D0 */
1297 data[1] = GUC_POWER_D1;
1298 /* first page is shared data with GuC */
1299 data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1300
1301 return intel_guc_send(guc, data, ARRAY_SIZE(data));
1302 }
1303
1304 /**
1305 * intel_guc_resume() - notify GuC resuming from suspend state
1306 * @dev_priv: i915 device private
1307 */
1308 int intel_guc_resume(struct drm_i915_private *dev_priv)
1309 {
1310 struct intel_guc *guc = &dev_priv->guc;
1311 struct i915_gem_context *ctx;
1312 u32 data[3];
1313
1314 if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1315 return 0;
1316
1317 if (i915.guc_log_level >= 0)
1318 gen9_enable_guc_interrupts(dev_priv);
1319
1320 ctx = dev_priv->kernel_context;
1321
1322 data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
1323 data[1] = GUC_POWER_D0;
1324 /* first page is shared data with GuC */
1325 data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1326
1327 return intel_guc_send(guc, data, ARRAY_SIZE(data));
1328 }