Merge branch 'bind_unbind' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/sync_file.h>
32 #include <linux/uaccess.h>
33
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36
37 #include "i915_drv.h"
38 #include "i915_gem_clflush.h"
39 #include "i915_trace.h"
40 #include "intel_drv.h"
41 #include "intel_frontbuffer.h"
42
43 #define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
44
45 #define __EXEC_OBJECT_HAS_PIN (1<<31)
46 #define __EXEC_OBJECT_HAS_FENCE (1<<30)
47 #define __EXEC_OBJECT_NEEDS_MAP (1<<29)
48 #define __EXEC_OBJECT_NEEDS_BIAS (1<<28)
49 #define __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
50
51 #define BATCH_OFFSET_BIAS (256*1024)
52
53 struct i915_execbuffer_params {
54 struct drm_device *dev;
55 struct drm_file *file;
56 struct i915_vma *batch;
57 u32 dispatch_flags;
58 u32 args_batch_start_offset;
59 struct intel_engine_cs *engine;
60 struct i915_gem_context *ctx;
61 struct drm_i915_gem_request *request;
62 };
63
64 struct eb_vmas {
65 struct drm_i915_private *i915;
66 struct list_head vmas;
67 int and;
68 union {
69 struct i915_vma *lut[0];
70 struct hlist_head buckets[0];
71 };
72 };
73
74 static struct eb_vmas *
75 eb_create(struct drm_i915_private *i915,
76 struct drm_i915_gem_execbuffer2 *args)
77 {
78 struct eb_vmas *eb = NULL;
79
80 if (args->flags & I915_EXEC_HANDLE_LUT) {
81 unsigned size = args->buffer_count;
82 size *= sizeof(struct i915_vma *);
83 size += sizeof(struct eb_vmas);
84 eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
85 }
86
87 if (eb == NULL) {
88 unsigned size = args->buffer_count;
89 unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
90 BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
91 while (count > 2*size)
92 count >>= 1;
93 eb = kzalloc(count*sizeof(struct hlist_head) +
94 sizeof(struct eb_vmas),
95 GFP_TEMPORARY);
96 if (eb == NULL)
97 return eb;
98
99 eb->and = count - 1;
100 } else
101 eb->and = -args->buffer_count;
102
103 eb->i915 = i915;
104 INIT_LIST_HEAD(&eb->vmas);
105 return eb;
106 }
107
108 static void
109 eb_reset(struct eb_vmas *eb)
110 {
111 if (eb->and >= 0)
112 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
113 }
114
115 static struct i915_vma *
116 eb_get_batch(struct eb_vmas *eb)
117 {
118 struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
119
120 /*
121 * SNA is doing fancy tricks with compressing batch buffers, which leads
122 * to negative relocation deltas. Usually that works out ok since the
123 * relocate address is still positive, except when the batch is placed
124 * very low in the GTT. Ensure this doesn't happen.
125 *
126 * Note that actual hangs have only been observed on gen7, but for
127 * paranoia do it everywhere.
128 */
129 if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
130 vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
131
132 return vma;
133 }
134
135 static int
136 eb_lookup_vmas(struct eb_vmas *eb,
137 struct drm_i915_gem_exec_object2 *exec,
138 const struct drm_i915_gem_execbuffer2 *args,
139 struct i915_address_space *vm,
140 struct drm_file *file)
141 {
142 struct drm_i915_gem_object *obj;
143 struct list_head objects;
144 int i, ret;
145
146 INIT_LIST_HEAD(&objects);
147 spin_lock(&file->table_lock);
148 /* Grab a reference to the object and release the lock so we can lookup
149 * or create the VMA without using GFP_ATOMIC */
150 for (i = 0; i < args->buffer_count; i++) {
151 obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
152 if (obj == NULL) {
153 spin_unlock(&file->table_lock);
154 DRM_DEBUG("Invalid object handle %d at index %d\n",
155 exec[i].handle, i);
156 ret = -ENOENT;
157 goto err;
158 }
159
160 if (!list_empty(&obj->obj_exec_link)) {
161 spin_unlock(&file->table_lock);
162 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
163 obj, exec[i].handle, i);
164 ret = -EINVAL;
165 goto err;
166 }
167
168 i915_gem_object_get(obj);
169 list_add_tail(&obj->obj_exec_link, &objects);
170 }
171 spin_unlock(&file->table_lock);
172
173 i = 0;
174 while (!list_empty(&objects)) {
175 struct i915_vma *vma;
176
177 obj = list_first_entry(&objects,
178 struct drm_i915_gem_object,
179 obj_exec_link);
180
181 /*
182 * NOTE: We can leak any vmas created here when something fails
183 * later on. But that's no issue since vma_unbind can deal with
184 * vmas which are not actually bound. And since only
185 * lookup_or_create exists as an interface to get at the vma
186 * from the (obj, vm) we don't run the risk of creating
187 * duplicated vmas for the same vm.
188 */
189 vma = i915_vma_instance(obj, vm, NULL);
190 if (unlikely(IS_ERR(vma))) {
191 DRM_DEBUG("Failed to lookup VMA\n");
192 ret = PTR_ERR(vma);
193 goto err;
194 }
195
196 /* Transfer ownership from the objects list to the vmas list. */
197 list_add_tail(&vma->exec_list, &eb->vmas);
198 list_del_init(&obj->obj_exec_link);
199
200 vma->exec_entry = &exec[i];
201 if (eb->and < 0) {
202 eb->lut[i] = vma;
203 } else {
204 uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
205 vma->exec_handle = handle;
206 hlist_add_head(&vma->exec_node,
207 &eb->buckets[handle & eb->and]);
208 }
209 ++i;
210 }
211
212 return 0;
213
214
215 err:
216 while (!list_empty(&objects)) {
217 obj = list_first_entry(&objects,
218 struct drm_i915_gem_object,
219 obj_exec_link);
220 list_del_init(&obj->obj_exec_link);
221 i915_gem_object_put(obj);
222 }
223 /*
224 * Objects already transfered to the vmas list will be unreferenced by
225 * eb_destroy.
226 */
227
228 return ret;
229 }
230
231 static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
232 {
233 if (eb->and < 0) {
234 if (handle >= -eb->and)
235 return NULL;
236 return eb->lut[handle];
237 } else {
238 struct hlist_head *head;
239 struct i915_vma *vma;
240
241 head = &eb->buckets[handle & eb->and];
242 hlist_for_each_entry(vma, head, exec_node) {
243 if (vma->exec_handle == handle)
244 return vma;
245 }
246 return NULL;
247 }
248 }
249
250 static void
251 i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
252 {
253 struct drm_i915_gem_exec_object2 *entry;
254
255 if (!drm_mm_node_allocated(&vma->node))
256 return;
257
258 entry = vma->exec_entry;
259
260 if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
261 i915_vma_unpin_fence(vma);
262
263 if (entry->flags & __EXEC_OBJECT_HAS_PIN)
264 __i915_vma_unpin(vma);
265
266 entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
267 }
268
269 static void eb_destroy(struct eb_vmas *eb)
270 {
271 while (!list_empty(&eb->vmas)) {
272 struct i915_vma *vma;
273
274 vma = list_first_entry(&eb->vmas,
275 struct i915_vma,
276 exec_list);
277 list_del_init(&vma->exec_list);
278 i915_gem_execbuffer_unreserve_vma(vma);
279 vma->exec_entry = NULL;
280 i915_vma_put(vma);
281 }
282 kfree(eb);
283 }
284
285 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
286 {
287 if (!i915_gem_object_has_struct_page(obj))
288 return false;
289
290 if (DBG_USE_CPU_RELOC)
291 return DBG_USE_CPU_RELOC > 0;
292
293 return (HAS_LLC(to_i915(obj->base.dev)) ||
294 obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
295 obj->cache_level != I915_CACHE_NONE);
296 }
297
298 /* Used to convert any address to canonical form.
299 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
300 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
301 * addresses to be in a canonical form:
302 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
303 * canonical form [63:48] == [47]."
304 */
305 #define GEN8_HIGH_ADDRESS_BIT 47
306 static inline uint64_t gen8_canonical_addr(uint64_t address)
307 {
308 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
309 }
310
311 static inline uint64_t gen8_noncanonical_addr(uint64_t address)
312 {
313 return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
314 }
315
316 static inline uint64_t
317 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
318 uint64_t target_offset)
319 {
320 return gen8_canonical_addr((int)reloc->delta + target_offset);
321 }
322
323 struct reloc_cache {
324 struct drm_i915_private *i915;
325 struct drm_mm_node node;
326 unsigned long vaddr;
327 unsigned int page;
328 bool use_64bit_reloc;
329 };
330
331 static void reloc_cache_init(struct reloc_cache *cache,
332 struct drm_i915_private *i915)
333 {
334 cache->page = -1;
335 cache->vaddr = 0;
336 cache->i915 = i915;
337 /* Must be a variable in the struct to allow GCC to unroll. */
338 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
339 cache->node.allocated = false;
340 }
341
342 static inline void *unmask_page(unsigned long p)
343 {
344 return (void *)(uintptr_t)(p & PAGE_MASK);
345 }
346
347 static inline unsigned int unmask_flags(unsigned long p)
348 {
349 return p & ~PAGE_MASK;
350 }
351
352 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
353
354 static void reloc_cache_fini(struct reloc_cache *cache)
355 {
356 void *vaddr;
357
358 if (!cache->vaddr)
359 return;
360
361 vaddr = unmask_page(cache->vaddr);
362 if (cache->vaddr & KMAP) {
363 if (cache->vaddr & CLFLUSH_AFTER)
364 mb();
365
366 kunmap_atomic(vaddr);
367 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
368 } else {
369 wmb();
370 io_mapping_unmap_atomic((void __iomem *)vaddr);
371 if (cache->node.allocated) {
372 struct i915_ggtt *ggtt = &cache->i915->ggtt;
373
374 ggtt->base.clear_range(&ggtt->base,
375 cache->node.start,
376 cache->node.size);
377 drm_mm_remove_node(&cache->node);
378 } else {
379 i915_vma_unpin((struct i915_vma *)cache->node.mm);
380 }
381 }
382 }
383
384 static void *reloc_kmap(struct drm_i915_gem_object *obj,
385 struct reloc_cache *cache,
386 int page)
387 {
388 void *vaddr;
389
390 if (cache->vaddr) {
391 kunmap_atomic(unmask_page(cache->vaddr));
392 } else {
393 unsigned int flushes;
394 int ret;
395
396 ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
397 if (ret)
398 return ERR_PTR(ret);
399
400 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
401 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
402
403 cache->vaddr = flushes | KMAP;
404 cache->node.mm = (void *)obj;
405 if (flushes)
406 mb();
407 }
408
409 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
410 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
411 cache->page = page;
412
413 return vaddr;
414 }
415
416 static void *reloc_iomap(struct drm_i915_gem_object *obj,
417 struct reloc_cache *cache,
418 int page)
419 {
420 struct i915_ggtt *ggtt = &cache->i915->ggtt;
421 unsigned long offset;
422 void *vaddr;
423
424 if (cache->vaddr) {
425 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
426 } else {
427 struct i915_vma *vma;
428 int ret;
429
430 if (use_cpu_reloc(obj))
431 return NULL;
432
433 ret = i915_gem_object_set_to_gtt_domain(obj, true);
434 if (ret)
435 return ERR_PTR(ret);
436
437 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
438 PIN_MAPPABLE | PIN_NONBLOCK);
439 if (IS_ERR(vma)) {
440 memset(&cache->node, 0, sizeof(cache->node));
441 ret = drm_mm_insert_node_in_range
442 (&ggtt->base.mm, &cache->node,
443 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
444 0, ggtt->mappable_end,
445 DRM_MM_INSERT_LOW);
446 if (ret) /* no inactive aperture space, use cpu reloc */
447 return NULL;
448 } else {
449 ret = i915_vma_put_fence(vma);
450 if (ret) {
451 i915_vma_unpin(vma);
452 return ERR_PTR(ret);
453 }
454
455 cache->node.start = vma->node.start;
456 cache->node.mm = (void *)vma;
457 }
458 }
459
460 offset = cache->node.start;
461 if (cache->node.allocated) {
462 wmb();
463 ggtt->base.insert_page(&ggtt->base,
464 i915_gem_object_get_dma_address(obj, page),
465 offset, I915_CACHE_NONE, 0);
466 } else {
467 offset += page << PAGE_SHIFT;
468 }
469
470 vaddr = (void __force *) io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
471 cache->page = page;
472 cache->vaddr = (unsigned long)vaddr;
473
474 return vaddr;
475 }
476
477 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
478 struct reloc_cache *cache,
479 int page)
480 {
481 void *vaddr;
482
483 if (cache->page == page) {
484 vaddr = unmask_page(cache->vaddr);
485 } else {
486 vaddr = NULL;
487 if ((cache->vaddr & KMAP) == 0)
488 vaddr = reloc_iomap(obj, cache, page);
489 if (!vaddr)
490 vaddr = reloc_kmap(obj, cache, page);
491 }
492
493 return vaddr;
494 }
495
496 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
497 {
498 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
499 if (flushes & CLFLUSH_BEFORE) {
500 clflushopt(addr);
501 mb();
502 }
503
504 *addr = value;
505
506 /* Writes to the same cacheline are serialised by the CPU
507 * (including clflush). On the write path, we only require
508 * that it hits memory in an orderly fashion and place
509 * mb barriers at the start and end of the relocation phase
510 * to ensure ordering of clflush wrt to the system.
511 */
512 if (flushes & CLFLUSH_AFTER)
513 clflushopt(addr);
514 } else
515 *addr = value;
516 }
517
518 static int
519 relocate_entry(struct drm_i915_gem_object *obj,
520 const struct drm_i915_gem_relocation_entry *reloc,
521 struct reloc_cache *cache,
522 u64 target_offset)
523 {
524 u64 offset = reloc->offset;
525 bool wide = cache->use_64bit_reloc;
526 void *vaddr;
527
528 target_offset = relocation_target(reloc, target_offset);
529 repeat:
530 vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
531 if (IS_ERR(vaddr))
532 return PTR_ERR(vaddr);
533
534 clflush_write32(vaddr + offset_in_page(offset),
535 lower_32_bits(target_offset),
536 cache->vaddr);
537
538 if (wide) {
539 offset += sizeof(u32);
540 target_offset >>= 32;
541 wide = false;
542 goto repeat;
543 }
544
545 return 0;
546 }
547
548 static int
549 i915_gem_execbuffer_relocate_entry(struct i915_vma *vma,
550 struct eb_vmas *eb,
551 struct drm_i915_gem_relocation_entry *reloc,
552 struct reloc_cache *cache)
553 {
554 struct drm_i915_gem_object *obj = vma->obj;
555 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
556 struct drm_gem_object *target_obj;
557 struct drm_i915_gem_object *target_i915_obj;
558 struct i915_vma *target_vma;
559 uint64_t target_offset;
560 int ret;
561
562 /* we've already hold a reference to all valid objects */
563 target_vma = eb_get_vma(eb, reloc->target_handle);
564 if (unlikely(target_vma == NULL))
565 return -ENOENT;
566 target_i915_obj = target_vma->obj;
567 target_obj = &target_vma->obj->base;
568
569 target_offset = gen8_canonical_addr(target_vma->node.start);
570
571 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
572 * pipe_control writes because the gpu doesn't properly redirect them
573 * through the ppgtt for non_secure batchbuffers. */
574 if (unlikely(IS_GEN6(dev_priv) &&
575 reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
576 ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
577 PIN_GLOBAL);
578 if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
579 return ret;
580 }
581
582 /* Validate that the target is in a valid r/w GPU domain */
583 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
584 DRM_DEBUG("reloc with multiple write domains: "
585 "obj %p target %d offset %d "
586 "read %08x write %08x",
587 obj, reloc->target_handle,
588 (int) reloc->offset,
589 reloc->read_domains,
590 reloc->write_domain);
591 return -EINVAL;
592 }
593 if (unlikely((reloc->write_domain | reloc->read_domains)
594 & ~I915_GEM_GPU_DOMAINS)) {
595 DRM_DEBUG("reloc with read/write non-GPU domains: "
596 "obj %p target %d offset %d "
597 "read %08x write %08x",
598 obj, reloc->target_handle,
599 (int) reloc->offset,
600 reloc->read_domains,
601 reloc->write_domain);
602 return -EINVAL;
603 }
604
605 target_obj->pending_read_domains |= reloc->read_domains;
606 target_obj->pending_write_domain |= reloc->write_domain;
607
608 /* If the relocation already has the right value in it, no
609 * more work needs to be done.
610 */
611 if (target_offset == reloc->presumed_offset)
612 return 0;
613
614 /* Check that the relocation address is valid... */
615 if (unlikely(reloc->offset >
616 obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
617 DRM_DEBUG("Relocation beyond object bounds: "
618 "obj %p target %d offset %d size %d.\n",
619 obj, reloc->target_handle,
620 (int) reloc->offset,
621 (int) obj->base.size);
622 return -EINVAL;
623 }
624 if (unlikely(reloc->offset & 3)) {
625 DRM_DEBUG("Relocation not 4-byte aligned: "
626 "obj %p target %d offset %d.\n",
627 obj, reloc->target_handle,
628 (int) reloc->offset);
629 return -EINVAL;
630 }
631
632 /*
633 * If we write into the object, we need to force the synchronisation
634 * barrier, either with an asynchronous clflush or if we executed the
635 * patching using the GPU (though that should be serialised by the
636 * timeline). To be completely sure, and since we are required to
637 * do relocations we are already stalling, disable the user's opt
638 * of our synchronisation.
639 */
640 vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC;
641
642 ret = relocate_entry(obj, reloc, cache, target_offset);
643 if (ret)
644 return ret;
645
646 /* and update the user's relocation entry */
647 reloc->presumed_offset = target_offset;
648 return 0;
649 }
650
651 static int
652 i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
653 struct eb_vmas *eb)
654 {
655 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
656 struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
657 struct drm_i915_gem_relocation_entry __user *user_relocs;
658 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
659 struct reloc_cache cache;
660 int remain, ret = 0;
661
662 user_relocs = u64_to_user_ptr(entry->relocs_ptr);
663 reloc_cache_init(&cache, eb->i915);
664
665 remain = entry->relocation_count;
666 while (remain) {
667 struct drm_i915_gem_relocation_entry *r = stack_reloc;
668 unsigned long unwritten;
669 unsigned int count;
670
671 count = min_t(unsigned int, remain, ARRAY_SIZE(stack_reloc));
672 remain -= count;
673
674 /* This is the fast path and we cannot handle a pagefault
675 * whilst holding the struct mutex lest the user pass in the
676 * relocations contained within a mmaped bo. For in such a case
677 * we, the page fault handler would call i915_gem_fault() and
678 * we would try to acquire the struct mutex again. Obviously
679 * this is bad and so lockdep complains vehemently.
680 */
681 pagefault_disable();
682 unwritten = __copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]));
683 pagefault_enable();
684 if (unlikely(unwritten)) {
685 ret = -EFAULT;
686 goto out;
687 }
688
689 do {
690 u64 offset = r->presumed_offset;
691
692 ret = i915_gem_execbuffer_relocate_entry(vma, eb, r, &cache);
693 if (ret)
694 goto out;
695
696 if (r->presumed_offset != offset) {
697 pagefault_disable();
698 unwritten = __put_user(r->presumed_offset,
699 &user_relocs->presumed_offset);
700 pagefault_enable();
701 if (unlikely(unwritten)) {
702 /* Note that reporting an error now
703 * leaves everything in an inconsistent
704 * state as we have *already* changed
705 * the relocation value inside the
706 * object. As we have not changed the
707 * reloc.presumed_offset or will not
708 * change the execobject.offset, on the
709 * call we may not rewrite the value
710 * inside the object, leaving it
711 * dangling and causing a GPU hang.
712 */
713 ret = -EFAULT;
714 goto out;
715 }
716 }
717
718 user_relocs++;
719 r++;
720 } while (--count);
721 }
722
723 out:
724 reloc_cache_fini(&cache);
725 return ret;
726 #undef N_RELOC
727 }
728
729 static int
730 i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
731 struct eb_vmas *eb,
732 struct drm_i915_gem_relocation_entry *relocs)
733 {
734 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
735 struct reloc_cache cache;
736 int i, ret = 0;
737
738 reloc_cache_init(&cache, eb->i915);
739 for (i = 0; i < entry->relocation_count; i++) {
740 ret = i915_gem_execbuffer_relocate_entry(vma, eb, &relocs[i], &cache);
741 if (ret)
742 break;
743 }
744 reloc_cache_fini(&cache);
745
746 return ret;
747 }
748
749 static int
750 i915_gem_execbuffer_relocate(struct eb_vmas *eb)
751 {
752 struct i915_vma *vma;
753 int ret = 0;
754
755 list_for_each_entry(vma, &eb->vmas, exec_list) {
756 ret = i915_gem_execbuffer_relocate_vma(vma, eb);
757 if (ret)
758 break;
759 }
760
761 return ret;
762 }
763
764 static bool only_mappable_for_reloc(unsigned int flags)
765 {
766 return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
767 __EXEC_OBJECT_NEEDS_MAP;
768 }
769
770 static int
771 i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
772 struct intel_engine_cs *engine,
773 bool *need_reloc)
774 {
775 struct drm_i915_gem_object *obj = vma->obj;
776 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
777 uint64_t flags;
778 int ret;
779
780 flags = PIN_USER;
781 if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
782 flags |= PIN_GLOBAL;
783
784 if (!drm_mm_node_allocated(&vma->node)) {
785 /* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
786 * limit address to the first 4GBs for unflagged objects.
787 */
788 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
789 flags |= PIN_ZONE_4G;
790 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
791 flags |= PIN_GLOBAL | PIN_MAPPABLE;
792 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
793 flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
794 if (entry->flags & EXEC_OBJECT_PINNED)
795 flags |= entry->offset | PIN_OFFSET_FIXED;
796 if ((flags & PIN_MAPPABLE) == 0)
797 flags |= PIN_HIGH;
798 }
799
800 ret = i915_vma_pin(vma,
801 entry->pad_to_size,
802 entry->alignment,
803 flags);
804 if ((ret == -ENOSPC || ret == -E2BIG) &&
805 only_mappable_for_reloc(entry->flags))
806 ret = i915_vma_pin(vma,
807 entry->pad_to_size,
808 entry->alignment,
809 flags & ~PIN_MAPPABLE);
810 if (ret)
811 return ret;
812
813 entry->flags |= __EXEC_OBJECT_HAS_PIN;
814
815 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
816 ret = i915_vma_get_fence(vma);
817 if (ret)
818 return ret;
819
820 if (i915_vma_pin_fence(vma))
821 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
822 }
823
824 if (entry->offset != vma->node.start) {
825 entry->offset = vma->node.start;
826 *need_reloc = true;
827 }
828
829 if (entry->flags & EXEC_OBJECT_WRITE) {
830 obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
831 obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
832 }
833
834 return 0;
835 }
836
837 static bool
838 need_reloc_mappable(struct i915_vma *vma)
839 {
840 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
841
842 if (entry->relocation_count == 0)
843 return false;
844
845 if (!i915_vma_is_ggtt(vma))
846 return false;
847
848 /* See also use_cpu_reloc() */
849 if (HAS_LLC(to_i915(vma->obj->base.dev)))
850 return false;
851
852 if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
853 return false;
854
855 return true;
856 }
857
858 static bool
859 eb_vma_misplaced(struct i915_vma *vma)
860 {
861 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
862
863 WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
864 !i915_vma_is_ggtt(vma));
865
866 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
867 return true;
868
869 if (vma->node.size < entry->pad_to_size)
870 return true;
871
872 if (entry->flags & EXEC_OBJECT_PINNED &&
873 vma->node.start != entry->offset)
874 return true;
875
876 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
877 vma->node.start < BATCH_OFFSET_BIAS)
878 return true;
879
880 /* avoid costly ping-pong once a batch bo ended up non-mappable */
881 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
882 !i915_vma_is_map_and_fenceable(vma))
883 return !only_mappable_for_reloc(entry->flags);
884
885 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
886 (vma->node.start + vma->node.size - 1) >> 32)
887 return true;
888
889 return false;
890 }
891
892 static int
893 i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
894 struct list_head *vmas,
895 struct i915_gem_context *ctx,
896 bool *need_relocs)
897 {
898 struct drm_i915_gem_object *obj;
899 struct i915_vma *vma;
900 struct i915_address_space *vm;
901 struct list_head ordered_vmas;
902 struct list_head pinned_vmas;
903 bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
904 bool needs_unfenced_map = INTEL_INFO(engine->i915)->unfenced_needs_alignment;
905 int retry;
906
907 vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
908
909 INIT_LIST_HEAD(&ordered_vmas);
910 INIT_LIST_HEAD(&pinned_vmas);
911 while (!list_empty(vmas)) {
912 struct drm_i915_gem_exec_object2 *entry;
913 bool need_fence, need_mappable;
914
915 vma = list_first_entry(vmas, struct i915_vma, exec_list);
916 obj = vma->obj;
917 entry = vma->exec_entry;
918
919 if (ctx->flags & CONTEXT_NO_ZEROMAP)
920 entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
921
922 if (!has_fenced_gpu_access)
923 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
924 need_fence =
925 (entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
926 needs_unfenced_map) &&
927 i915_gem_object_is_tiled(obj);
928 need_mappable = need_fence || need_reloc_mappable(vma);
929
930 if (entry->flags & EXEC_OBJECT_PINNED)
931 list_move_tail(&vma->exec_list, &pinned_vmas);
932 else if (need_mappable) {
933 entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
934 list_move(&vma->exec_list, &ordered_vmas);
935 } else
936 list_move_tail(&vma->exec_list, &ordered_vmas);
937
938 obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
939 obj->base.pending_write_domain = 0;
940 }
941 list_splice(&ordered_vmas, vmas);
942 list_splice(&pinned_vmas, vmas);
943
944 /* Attempt to pin all of the buffers into the GTT.
945 * This is done in 3 phases:
946 *
947 * 1a. Unbind all objects that do not match the GTT constraints for
948 * the execbuffer (fenceable, mappable, alignment etc).
949 * 1b. Increment pin count for already bound objects.
950 * 2. Bind new objects.
951 * 3. Decrement pin count.
952 *
953 * This avoid unnecessary unbinding of later objects in order to make
954 * room for the earlier objects *unless* we need to defragment.
955 */
956 retry = 0;
957 do {
958 int ret = 0;
959
960 /* Unbind any ill-fitting objects or pin. */
961 list_for_each_entry(vma, vmas, exec_list) {
962 if (!drm_mm_node_allocated(&vma->node))
963 continue;
964
965 if (eb_vma_misplaced(vma))
966 ret = i915_vma_unbind(vma);
967 else
968 ret = i915_gem_execbuffer_reserve_vma(vma,
969 engine,
970 need_relocs);
971 if (ret)
972 goto err;
973 }
974
975 /* Bind fresh objects */
976 list_for_each_entry(vma, vmas, exec_list) {
977 if (drm_mm_node_allocated(&vma->node))
978 continue;
979
980 ret = i915_gem_execbuffer_reserve_vma(vma, engine,
981 need_relocs);
982 if (ret)
983 goto err;
984 }
985
986 err:
987 if (ret != -ENOSPC || retry++)
988 return ret;
989
990 /* Decrement pin count for bound objects */
991 list_for_each_entry(vma, vmas, exec_list)
992 i915_gem_execbuffer_unreserve_vma(vma);
993
994 ret = i915_gem_evict_vm(vm, true);
995 if (ret)
996 return ret;
997 } while (1);
998 }
999
1000 static int
1001 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
1002 struct drm_i915_gem_execbuffer2 *args,
1003 struct drm_file *file,
1004 struct intel_engine_cs *engine,
1005 struct eb_vmas *eb,
1006 struct drm_i915_gem_exec_object2 *exec,
1007 struct i915_gem_context *ctx)
1008 {
1009 struct drm_i915_gem_relocation_entry *reloc;
1010 struct i915_address_space *vm;
1011 struct i915_vma *vma;
1012 bool need_relocs;
1013 int *reloc_offset;
1014 int i, total, ret;
1015 unsigned count = args->buffer_count;
1016
1017 vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
1018
1019 /* We may process another execbuffer during the unlock... */
1020 while (!list_empty(&eb->vmas)) {
1021 vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
1022 list_del_init(&vma->exec_list);
1023 i915_gem_execbuffer_unreserve_vma(vma);
1024 i915_vma_put(vma);
1025 }
1026
1027 mutex_unlock(&dev->struct_mutex);
1028
1029 total = 0;
1030 for (i = 0; i < count; i++)
1031 total += exec[i].relocation_count;
1032
1033 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
1034 reloc = drm_malloc_ab(total, sizeof(*reloc));
1035 if (reloc == NULL || reloc_offset == NULL) {
1036 drm_free_large(reloc);
1037 drm_free_large(reloc_offset);
1038 mutex_lock(&dev->struct_mutex);
1039 return -ENOMEM;
1040 }
1041
1042 total = 0;
1043 for (i = 0; i < count; i++) {
1044 struct drm_i915_gem_relocation_entry __user *user_relocs;
1045 u64 invalid_offset = (u64)-1;
1046 int j;
1047
1048 user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
1049
1050 if (copy_from_user(reloc+total, user_relocs,
1051 exec[i].relocation_count * sizeof(*reloc))) {
1052 ret = -EFAULT;
1053 mutex_lock(&dev->struct_mutex);
1054 goto err;
1055 }
1056
1057 /* As we do not update the known relocation offsets after
1058 * relocating (due to the complexities in lock handling),
1059 * we need to mark them as invalid now so that we force the
1060 * relocation processing next time. Just in case the target
1061 * object is evicted and then rebound into its old
1062 * presumed_offset before the next execbuffer - if that
1063 * happened we would make the mistake of assuming that the
1064 * relocations were valid.
1065 */
1066 for (j = 0; j < exec[i].relocation_count; j++) {
1067 if (__copy_to_user(&user_relocs[j].presumed_offset,
1068 &invalid_offset,
1069 sizeof(invalid_offset))) {
1070 ret = -EFAULT;
1071 mutex_lock(&dev->struct_mutex);
1072 goto err;
1073 }
1074 }
1075
1076 reloc_offset[i] = total;
1077 total += exec[i].relocation_count;
1078 }
1079
1080 ret = i915_mutex_lock_interruptible(dev);
1081 if (ret) {
1082 mutex_lock(&dev->struct_mutex);
1083 goto err;
1084 }
1085
1086 /* reacquire the objects */
1087 eb_reset(eb);
1088 ret = eb_lookup_vmas(eb, exec, args, vm, file);
1089 if (ret)
1090 goto err;
1091
1092 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1093 ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1094 &need_relocs);
1095 if (ret)
1096 goto err;
1097
1098 list_for_each_entry(vma, &eb->vmas, exec_list) {
1099 int offset = vma->exec_entry - exec;
1100 ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
1101 reloc + reloc_offset[offset]);
1102 if (ret)
1103 goto err;
1104 }
1105
1106 /* Leave the user relocations as are, this is the painfully slow path,
1107 * and we want to avoid the complication of dropping the lock whilst
1108 * having buffers reserved in the aperture and so causing spurious
1109 * ENOSPC for random operations.
1110 */
1111
1112 err:
1113 drm_free_large(reloc);
1114 drm_free_large(reloc_offset);
1115 return ret;
1116 }
1117
1118 static int
1119 i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
1120 struct list_head *vmas)
1121 {
1122 struct i915_vma *vma;
1123 int ret;
1124
1125 list_for_each_entry(vma, vmas, exec_list) {
1126 struct drm_i915_gem_object *obj = vma->obj;
1127
1128 if (vma->exec_entry->flags & EXEC_OBJECT_ASYNC)
1129 continue;
1130
1131 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU) {
1132 i915_gem_clflush_object(obj, 0);
1133 obj->base.write_domain = 0;
1134 }
1135
1136 ret = i915_gem_request_await_object
1137 (req, obj, obj->base.pending_write_domain);
1138 if (ret)
1139 return ret;
1140 }
1141
1142 /* Unconditionally flush any chipset caches (for streaming writes). */
1143 i915_gem_chipset_flush(req->engine->i915);
1144
1145 /* Unconditionally invalidate GPU caches and TLBs. */
1146 return req->engine->emit_flush(req, EMIT_INVALIDATE);
1147 }
1148
1149 static bool
1150 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1151 {
1152 if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
1153 return false;
1154
1155 /* Kernel clipping was a DRI1 misfeature */
1156 if (exec->num_cliprects || exec->cliprects_ptr)
1157 return false;
1158
1159 if (exec->DR4 == 0xffffffff) {
1160 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1161 exec->DR4 = 0;
1162 }
1163 if (exec->DR1 || exec->DR4)
1164 return false;
1165
1166 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1167 return false;
1168
1169 return true;
1170 }
1171
1172 static int
1173 validate_exec_list(struct drm_device *dev,
1174 struct drm_i915_gem_exec_object2 *exec,
1175 int count)
1176 {
1177 unsigned relocs_total = 0;
1178 unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1179 unsigned invalid_flags;
1180 int i;
1181
1182 /* INTERNAL flags must not overlap with external ones */
1183 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1184
1185 invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1186 if (USES_FULL_PPGTT(dev))
1187 invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1188
1189 for (i = 0; i < count; i++) {
1190 char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1191 int length; /* limited by fault_in_pages_readable() */
1192
1193 if (exec[i].flags & invalid_flags)
1194 return -EINVAL;
1195
1196 /* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1197 * any non-page-aligned or non-canonical addresses.
1198 */
1199 if (exec[i].flags & EXEC_OBJECT_PINNED) {
1200 if (exec[i].offset !=
1201 gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1202 return -EINVAL;
1203 }
1204
1205 /* From drm_mm perspective address space is continuous,
1206 * so from this point we're always using non-canonical
1207 * form internally.
1208 */
1209 exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1210
1211 if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1212 return -EINVAL;
1213
1214 /* pad_to_size was once a reserved field, so sanitize it */
1215 if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
1216 if (offset_in_page(exec[i].pad_to_size))
1217 return -EINVAL;
1218 } else {
1219 exec[i].pad_to_size = 0;
1220 }
1221
1222 /* First check for malicious input causing overflow in
1223 * the worst case where we need to allocate the entire
1224 * relocation tree as a single array.
1225 */
1226 if (exec[i].relocation_count > relocs_max - relocs_total)
1227 return -EINVAL;
1228 relocs_total += exec[i].relocation_count;
1229
1230 length = exec[i].relocation_count *
1231 sizeof(struct drm_i915_gem_relocation_entry);
1232 /*
1233 * We must check that the entire relocation array is safe
1234 * to read, but since we may need to update the presumed
1235 * offsets during execution, check for full write access.
1236 */
1237 if (!access_ok(VERIFY_WRITE, ptr, length))
1238 return -EFAULT;
1239
1240 if (likely(!i915.prefault_disable)) {
1241 if (fault_in_pages_readable(ptr, length))
1242 return -EFAULT;
1243 }
1244 }
1245
1246 return 0;
1247 }
1248
1249 static struct i915_gem_context *
1250 i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1251 struct intel_engine_cs *engine, const u32 ctx_id)
1252 {
1253 struct i915_gem_context *ctx;
1254
1255 ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
1256 if (IS_ERR(ctx))
1257 return ctx;
1258
1259 if (i915_gem_context_is_banned(ctx)) {
1260 DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1261 return ERR_PTR(-EIO);
1262 }
1263
1264 return ctx;
1265 }
1266
1267 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
1268 {
1269 return !(obj->cache_level == I915_CACHE_NONE ||
1270 obj->cache_level == I915_CACHE_WT);
1271 }
1272
1273 void i915_vma_move_to_active(struct i915_vma *vma,
1274 struct drm_i915_gem_request *req,
1275 unsigned int flags)
1276 {
1277 struct drm_i915_gem_object *obj = vma->obj;
1278 const unsigned int idx = req->engine->id;
1279
1280 lockdep_assert_held(&req->i915->drm.struct_mutex);
1281 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1282
1283 /* Add a reference if we're newly entering the active list.
1284 * The order in which we add operations to the retirement queue is
1285 * vital here: mark_active adds to the start of the callback list,
1286 * such that subsequent callbacks are called first. Therefore we
1287 * add the active reference first and queue for it to be dropped
1288 * *last*.
1289 */
1290 if (!i915_vma_is_active(vma))
1291 obj->active_count++;
1292 i915_vma_set_active(vma, idx);
1293 i915_gem_active_set(&vma->last_read[idx], req);
1294 list_move_tail(&vma->vm_link, &vma->vm->active_list);
1295
1296 if (flags & EXEC_OBJECT_WRITE) {
1297 if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1298 i915_gem_active_set(&obj->frontbuffer_write, req);
1299
1300 /* update for the implicit flush after a batch */
1301 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1302 if (!obj->cache_dirty && gpu_write_needs_clflush(obj))
1303 obj->cache_dirty = true;
1304 }
1305
1306 if (flags & EXEC_OBJECT_NEEDS_FENCE)
1307 i915_gem_active_set(&vma->last_fence, req);
1308 }
1309
1310 static void eb_export_fence(struct drm_i915_gem_object *obj,
1311 struct drm_i915_gem_request *req,
1312 unsigned int flags)
1313 {
1314 struct reservation_object *resv = obj->resv;
1315
1316 /* Ignore errors from failing to allocate the new fence, we can't
1317 * handle an error right now. Worst case should be missed
1318 * synchronisation leading to rendering corruption.
1319 */
1320 reservation_object_lock(resv, NULL);
1321 if (flags & EXEC_OBJECT_WRITE)
1322 reservation_object_add_excl_fence(resv, &req->fence);
1323 else if (reservation_object_reserve_shared(resv) == 0)
1324 reservation_object_add_shared_fence(resv, &req->fence);
1325 reservation_object_unlock(resv);
1326 }
1327
1328 static void
1329 i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1330 struct drm_i915_gem_request *req)
1331 {
1332 struct i915_vma *vma;
1333
1334 list_for_each_entry(vma, vmas, exec_list) {
1335 struct drm_i915_gem_object *obj = vma->obj;
1336
1337 obj->base.write_domain = obj->base.pending_write_domain;
1338 if (obj->base.write_domain)
1339 vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
1340 else
1341 obj->base.pending_read_domains |= obj->base.read_domains;
1342 obj->base.read_domains = obj->base.pending_read_domains;
1343
1344 i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
1345 eb_export_fence(obj, req, vma->exec_entry->flags);
1346 }
1347 }
1348
1349 static int
1350 i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1351 {
1352 u32 *cs;
1353 int i;
1354
1355 if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1356 DRM_DEBUG("sol reset is gen7/rcs only\n");
1357 return -EINVAL;
1358 }
1359
1360 cs = intel_ring_begin(req, 4 * 3);
1361 if (IS_ERR(cs))
1362 return PTR_ERR(cs);
1363
1364 for (i = 0; i < 4; i++) {
1365 *cs++ = MI_LOAD_REGISTER_IMM(1);
1366 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1367 *cs++ = 0;
1368 }
1369
1370 intel_ring_advance(req, cs);
1371
1372 return 0;
1373 }
1374
1375 static struct i915_vma *
1376 i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1377 struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1378 struct drm_i915_gem_object *batch_obj,
1379 struct eb_vmas *eb,
1380 u32 batch_start_offset,
1381 u32 batch_len,
1382 bool is_master)
1383 {
1384 struct drm_i915_gem_object *shadow_batch_obj;
1385 struct i915_vma *vma;
1386 int ret;
1387
1388 shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1389 PAGE_ALIGN(batch_len));
1390 if (IS_ERR(shadow_batch_obj))
1391 return ERR_CAST(shadow_batch_obj);
1392
1393 ret = intel_engine_cmd_parser(engine,
1394 batch_obj,
1395 shadow_batch_obj,
1396 batch_start_offset,
1397 batch_len,
1398 is_master);
1399 if (ret) {
1400 if (ret == -EACCES) /* unhandled chained batch */
1401 vma = NULL;
1402 else
1403 vma = ERR_PTR(ret);
1404 goto out;
1405 }
1406
1407 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1408 if (IS_ERR(vma))
1409 goto out;
1410
1411 memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1412
1413 vma->exec_entry = shadow_exec_entry;
1414 vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1415 i915_gem_object_get(shadow_batch_obj);
1416 list_add_tail(&vma->exec_list, &eb->vmas);
1417
1418 out:
1419 i915_gem_object_unpin_pages(shadow_batch_obj);
1420 return vma;
1421 }
1422
1423 static void
1424 add_to_client(struct drm_i915_gem_request *req,
1425 struct drm_file *file)
1426 {
1427 req->file_priv = file->driver_priv;
1428 list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
1429 }
1430
1431 static int
1432 execbuf_submit(struct i915_execbuffer_params *params,
1433 struct drm_i915_gem_execbuffer2 *args,
1434 struct list_head *vmas)
1435 {
1436 u64 exec_start, exec_len;
1437 int ret;
1438
1439 ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1440 if (ret)
1441 return ret;
1442
1443 ret = i915_switch_context(params->request);
1444 if (ret)
1445 return ret;
1446
1447 if (args->flags & I915_EXEC_CONSTANTS_MASK) {
1448 DRM_DEBUG("I915_EXEC_CONSTANTS_* unsupported\n");
1449 return -EINVAL;
1450 }
1451
1452 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1453 ret = i915_reset_gen7_sol_offsets(params->request);
1454 if (ret)
1455 return ret;
1456 }
1457
1458 exec_len = args->batch_len;
1459 exec_start = params->batch->node.start +
1460 params->args_batch_start_offset;
1461
1462 if (exec_len == 0)
1463 exec_len = params->batch->size - params->args_batch_start_offset;
1464
1465 ret = params->engine->emit_bb_start(params->request,
1466 exec_start, exec_len,
1467 params->dispatch_flags);
1468 if (ret)
1469 return ret;
1470
1471 i915_gem_execbuffer_move_to_active(vmas, params->request);
1472
1473 return 0;
1474 }
1475
1476 /**
1477 * Find one BSD ring to dispatch the corresponding BSD command.
1478 * The engine index is returned.
1479 */
1480 static unsigned int
1481 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1482 struct drm_file *file)
1483 {
1484 struct drm_i915_file_private *file_priv = file->driver_priv;
1485
1486 /* Check whether the file_priv has already selected one ring. */
1487 if ((int)file_priv->bsd_engine < 0)
1488 file_priv->bsd_engine = atomic_fetch_xor(1,
1489 &dev_priv->mm.bsd_engine_dispatch_index);
1490
1491 return file_priv->bsd_engine;
1492 }
1493
1494 #define I915_USER_RINGS (4)
1495
1496 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1497 [I915_EXEC_DEFAULT] = RCS,
1498 [I915_EXEC_RENDER] = RCS,
1499 [I915_EXEC_BLT] = BCS,
1500 [I915_EXEC_BSD] = VCS,
1501 [I915_EXEC_VEBOX] = VECS
1502 };
1503
1504 static struct intel_engine_cs *
1505 eb_select_engine(struct drm_i915_private *dev_priv,
1506 struct drm_file *file,
1507 struct drm_i915_gem_execbuffer2 *args)
1508 {
1509 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1510 struct intel_engine_cs *engine;
1511
1512 if (user_ring_id > I915_USER_RINGS) {
1513 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1514 return NULL;
1515 }
1516
1517 if ((user_ring_id != I915_EXEC_BSD) &&
1518 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1519 DRM_DEBUG("execbuf with non bsd ring but with invalid "
1520 "bsd dispatch flags: %d\n", (int)(args->flags));
1521 return NULL;
1522 }
1523
1524 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1525 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1526
1527 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1528 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1529 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1530 bsd_idx <= I915_EXEC_BSD_RING2) {
1531 bsd_idx >>= I915_EXEC_BSD_SHIFT;
1532 bsd_idx--;
1533 } else {
1534 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1535 bsd_idx);
1536 return NULL;
1537 }
1538
1539 engine = dev_priv->engine[_VCS(bsd_idx)];
1540 } else {
1541 engine = dev_priv->engine[user_ring_map[user_ring_id]];
1542 }
1543
1544 if (!engine) {
1545 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1546 return NULL;
1547 }
1548
1549 return engine;
1550 }
1551
1552 static int
1553 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1554 struct drm_file *file,
1555 struct drm_i915_gem_execbuffer2 *args,
1556 struct drm_i915_gem_exec_object2 *exec)
1557 {
1558 struct drm_i915_private *dev_priv = to_i915(dev);
1559 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1560 struct eb_vmas *eb;
1561 struct drm_i915_gem_exec_object2 shadow_exec_entry;
1562 struct intel_engine_cs *engine;
1563 struct i915_gem_context *ctx;
1564 struct i915_address_space *vm;
1565 struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1566 struct i915_execbuffer_params *params = &params_master;
1567 const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1568 u32 dispatch_flags;
1569 struct dma_fence *in_fence = NULL;
1570 struct sync_file *out_fence = NULL;
1571 int out_fence_fd = -1;
1572 int ret;
1573 bool need_relocs;
1574
1575 if (!i915_gem_check_execbuffer(args))
1576 return -EINVAL;
1577
1578 ret = validate_exec_list(dev, exec, args->buffer_count);
1579 if (ret)
1580 return ret;
1581
1582 dispatch_flags = 0;
1583 if (args->flags & I915_EXEC_SECURE) {
1584 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1585 return -EPERM;
1586
1587 dispatch_flags |= I915_DISPATCH_SECURE;
1588 }
1589 if (args->flags & I915_EXEC_IS_PINNED)
1590 dispatch_flags |= I915_DISPATCH_PINNED;
1591
1592 engine = eb_select_engine(dev_priv, file, args);
1593 if (!engine)
1594 return -EINVAL;
1595
1596 if (args->buffer_count < 1) {
1597 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1598 return -EINVAL;
1599 }
1600
1601 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1602 if (!HAS_RESOURCE_STREAMER(dev_priv)) {
1603 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1604 return -EINVAL;
1605 }
1606 if (engine->id != RCS) {
1607 DRM_DEBUG("RS is not available on %s\n",
1608 engine->name);
1609 return -EINVAL;
1610 }
1611
1612 dispatch_flags |= I915_DISPATCH_RS;
1613 }
1614
1615 if (args->flags & I915_EXEC_FENCE_IN) {
1616 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
1617 if (!in_fence)
1618 return -EINVAL;
1619 }
1620
1621 if (args->flags & I915_EXEC_FENCE_OUT) {
1622 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
1623 if (out_fence_fd < 0) {
1624 ret = out_fence_fd;
1625 goto err_in_fence;
1626 }
1627 }
1628
1629 /* Take a local wakeref for preparing to dispatch the execbuf as
1630 * we expect to access the hardware fairly frequently in the
1631 * process. Upon first dispatch, we acquire another prolonged
1632 * wakeref that we hold until the GPU has been idle for at least
1633 * 100ms.
1634 */
1635 intel_runtime_pm_get(dev_priv);
1636
1637 ret = i915_mutex_lock_interruptible(dev);
1638 if (ret)
1639 goto pre_mutex_err;
1640
1641 ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1642 if (IS_ERR(ctx)) {
1643 mutex_unlock(&dev->struct_mutex);
1644 ret = PTR_ERR(ctx);
1645 goto pre_mutex_err;
1646 }
1647
1648 i915_gem_context_get(ctx);
1649
1650 if (ctx->ppgtt)
1651 vm = &ctx->ppgtt->base;
1652 else
1653 vm = &ggtt->base;
1654
1655 memset(&params_master, 0x00, sizeof(params_master));
1656
1657 eb = eb_create(dev_priv, args);
1658 if (eb == NULL) {
1659 i915_gem_context_put(ctx);
1660 mutex_unlock(&dev->struct_mutex);
1661 ret = -ENOMEM;
1662 goto pre_mutex_err;
1663 }
1664
1665 /* Look up object handles */
1666 ret = eb_lookup_vmas(eb, exec, args, vm, file);
1667 if (ret)
1668 goto err;
1669
1670 /* take note of the batch buffer before we might reorder the lists */
1671 params->batch = eb_get_batch(eb);
1672
1673 /* Move the objects en-masse into the GTT, evicting if necessary. */
1674 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1675 ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1676 &need_relocs);
1677 if (ret)
1678 goto err;
1679
1680 /* The objects are in their final locations, apply the relocations. */
1681 if (need_relocs)
1682 ret = i915_gem_execbuffer_relocate(eb);
1683 if (ret) {
1684 if (ret == -EFAULT) {
1685 ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1686 engine,
1687 eb, exec, ctx);
1688 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1689 }
1690 if (ret)
1691 goto err;
1692 }
1693
1694 /* Set the pending read domains for the batch buffer to COMMAND */
1695 if (params->batch->obj->base.pending_write_domain) {
1696 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1697 ret = -EINVAL;
1698 goto err;
1699 }
1700 if (args->batch_start_offset > params->batch->size ||
1701 args->batch_len > params->batch->size - args->batch_start_offset) {
1702 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1703 ret = -EINVAL;
1704 goto err;
1705 }
1706
1707 params->args_batch_start_offset = args->batch_start_offset;
1708 if (engine->needs_cmd_parser && args->batch_len) {
1709 struct i915_vma *vma;
1710
1711 vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
1712 params->batch->obj,
1713 eb,
1714 args->batch_start_offset,
1715 args->batch_len,
1716 drm_is_current_master(file));
1717 if (IS_ERR(vma)) {
1718 ret = PTR_ERR(vma);
1719 goto err;
1720 }
1721
1722 if (vma) {
1723 /*
1724 * Batch parsed and accepted:
1725 *
1726 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1727 * bit from MI_BATCH_BUFFER_START commands issued in
1728 * the dispatch_execbuffer implementations. We
1729 * specifically don't want that set on batches the
1730 * command parser has accepted.
1731 */
1732 dispatch_flags |= I915_DISPATCH_SECURE;
1733 params->args_batch_start_offset = 0;
1734 params->batch = vma;
1735 }
1736 }
1737
1738 params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1739
1740 /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1741 * batch" bit. Hence we need to pin secure batches into the global gtt.
1742 * hsw should have this fixed, but bdw mucks it up again. */
1743 if (dispatch_flags & I915_DISPATCH_SECURE) {
1744 struct drm_i915_gem_object *obj = params->batch->obj;
1745 struct i915_vma *vma;
1746
1747 /*
1748 * So on first glance it looks freaky that we pin the batch here
1749 * outside of the reservation loop. But:
1750 * - The batch is already pinned into the relevant ppgtt, so we
1751 * already have the backing storage fully allocated.
1752 * - No other BO uses the global gtt (well contexts, but meh),
1753 * so we don't really have issues with multiple objects not
1754 * fitting due to fragmentation.
1755 * So this is actually safe.
1756 */
1757 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
1758 if (IS_ERR(vma)) {
1759 ret = PTR_ERR(vma);
1760 goto err;
1761 }
1762
1763 params->batch = vma;
1764 }
1765
1766 /* Allocate a request for this batch buffer nice and early. */
1767 params->request = i915_gem_request_alloc(engine, ctx);
1768 if (IS_ERR(params->request)) {
1769 ret = PTR_ERR(params->request);
1770 goto err_batch_unpin;
1771 }
1772
1773 if (in_fence) {
1774 ret = i915_gem_request_await_dma_fence(params->request,
1775 in_fence);
1776 if (ret < 0)
1777 goto err_request;
1778 }
1779
1780 if (out_fence_fd != -1) {
1781 out_fence = sync_file_create(&params->request->fence);
1782 if (!out_fence) {
1783 ret = -ENOMEM;
1784 goto err_request;
1785 }
1786 }
1787
1788 /* Whilst this request exists, batch_obj will be on the
1789 * active_list, and so will hold the active reference. Only when this
1790 * request is retired will the the batch_obj be moved onto the
1791 * inactive_list and lose its active reference. Hence we do not need
1792 * to explicitly hold another reference here.
1793 */
1794 params->request->batch = params->batch;
1795
1796 /*
1797 * Save assorted stuff away to pass through to *_submission().
1798 * NB: This data should be 'persistent' and not local as it will
1799 * kept around beyond the duration of the IOCTL once the GPU
1800 * scheduler arrives.
1801 */
1802 params->dev = dev;
1803 params->file = file;
1804 params->engine = engine;
1805 params->dispatch_flags = dispatch_flags;
1806 params->ctx = ctx;
1807
1808 trace_i915_gem_request_queue(params->request, dispatch_flags);
1809
1810 ret = execbuf_submit(params, args, &eb->vmas);
1811 err_request:
1812 __i915_add_request(params->request, ret == 0);
1813 add_to_client(params->request, file);
1814
1815 if (out_fence) {
1816 if (ret == 0) {
1817 fd_install(out_fence_fd, out_fence->file);
1818 args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
1819 args->rsvd2 |= (u64)out_fence_fd << 32;
1820 out_fence_fd = -1;
1821 } else {
1822 fput(out_fence->file);
1823 }
1824 }
1825
1826 err_batch_unpin:
1827 /*
1828 * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1829 * batch vma for correctness. For less ugly and less fragility this
1830 * needs to be adjusted to also track the ggtt batch vma properly as
1831 * active.
1832 */
1833 if (dispatch_flags & I915_DISPATCH_SECURE)
1834 i915_vma_unpin(params->batch);
1835 err:
1836 /* the request owns the ref now */
1837 i915_gem_context_put(ctx);
1838 eb_destroy(eb);
1839
1840 mutex_unlock(&dev->struct_mutex);
1841
1842 pre_mutex_err:
1843 /* intel_gpu_busy should also get a ref, so it will free when the device
1844 * is really idle. */
1845 intel_runtime_pm_put(dev_priv);
1846 if (out_fence_fd != -1)
1847 put_unused_fd(out_fence_fd);
1848 err_in_fence:
1849 dma_fence_put(in_fence);
1850 return ret;
1851 }
1852
1853 /*
1854 * Legacy execbuffer just creates an exec2 list from the original exec object
1855 * list array and passes it to the real function.
1856 */
1857 int
1858 i915_gem_execbuffer(struct drm_device *dev, void *data,
1859 struct drm_file *file)
1860 {
1861 struct drm_i915_gem_execbuffer *args = data;
1862 struct drm_i915_gem_execbuffer2 exec2;
1863 struct drm_i915_gem_exec_object *exec_list = NULL;
1864 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1865 int ret, i;
1866
1867 if (args->buffer_count < 1) {
1868 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1869 return -EINVAL;
1870 }
1871
1872 /* Copy in the exec list from userland */
1873 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1874 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1875 if (exec_list == NULL || exec2_list == NULL) {
1876 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1877 args->buffer_count);
1878 drm_free_large(exec_list);
1879 drm_free_large(exec2_list);
1880 return -ENOMEM;
1881 }
1882 ret = copy_from_user(exec_list,
1883 u64_to_user_ptr(args->buffers_ptr),
1884 sizeof(*exec_list) * args->buffer_count);
1885 if (ret != 0) {
1886 DRM_DEBUG("copy %d exec entries failed %d\n",
1887 args->buffer_count, ret);
1888 drm_free_large(exec_list);
1889 drm_free_large(exec2_list);
1890 return -EFAULT;
1891 }
1892
1893 for (i = 0; i < args->buffer_count; i++) {
1894 exec2_list[i].handle = exec_list[i].handle;
1895 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1896 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1897 exec2_list[i].alignment = exec_list[i].alignment;
1898 exec2_list[i].offset = exec_list[i].offset;
1899 if (INTEL_GEN(to_i915(dev)) < 4)
1900 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1901 else
1902 exec2_list[i].flags = 0;
1903 }
1904
1905 exec2.buffers_ptr = args->buffers_ptr;
1906 exec2.buffer_count = args->buffer_count;
1907 exec2.batch_start_offset = args->batch_start_offset;
1908 exec2.batch_len = args->batch_len;
1909 exec2.DR1 = args->DR1;
1910 exec2.DR4 = args->DR4;
1911 exec2.num_cliprects = args->num_cliprects;
1912 exec2.cliprects_ptr = args->cliprects_ptr;
1913 exec2.flags = I915_EXEC_RENDER;
1914 i915_execbuffer2_set_context_id(exec2, 0);
1915
1916 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1917 if (!ret) {
1918 struct drm_i915_gem_exec_object __user *user_exec_list =
1919 u64_to_user_ptr(args->buffers_ptr);
1920
1921 /* Copy the new buffer offsets back to the user's exec list. */
1922 for (i = 0; i < args->buffer_count; i++) {
1923 exec2_list[i].offset =
1924 gen8_canonical_addr(exec2_list[i].offset);
1925 ret = __copy_to_user(&user_exec_list[i].offset,
1926 &exec2_list[i].offset,
1927 sizeof(user_exec_list[i].offset));
1928 if (ret) {
1929 ret = -EFAULT;
1930 DRM_DEBUG("failed to copy %d exec entries "
1931 "back to user (%d)\n",
1932 args->buffer_count, ret);
1933 break;
1934 }
1935 }
1936 }
1937
1938 drm_free_large(exec_list);
1939 drm_free_large(exec2_list);
1940 return ret;
1941 }
1942
1943 int
1944 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1945 struct drm_file *file)
1946 {
1947 struct drm_i915_gem_execbuffer2 *args = data;
1948 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1949 int ret;
1950
1951 if (args->buffer_count < 1 ||
1952 args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1953 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1954 return -EINVAL;
1955 }
1956
1957 exec2_list = drm_malloc_gfp(args->buffer_count,
1958 sizeof(*exec2_list),
1959 GFP_TEMPORARY);
1960 if (exec2_list == NULL) {
1961 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1962 args->buffer_count);
1963 return -ENOMEM;
1964 }
1965 ret = copy_from_user(exec2_list,
1966 u64_to_user_ptr(args->buffers_ptr),
1967 sizeof(*exec2_list) * args->buffer_count);
1968 if (ret != 0) {
1969 DRM_DEBUG("copy %d exec entries failed %d\n",
1970 args->buffer_count, ret);
1971 drm_free_large(exec2_list);
1972 return -EFAULT;
1973 }
1974
1975 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1976 if (!ret) {
1977 /* Copy the new buffer offsets back to the user's exec list. */
1978 struct drm_i915_gem_exec_object2 __user *user_exec_list =
1979 u64_to_user_ptr(args->buffers_ptr);
1980 int i;
1981
1982 for (i = 0; i < args->buffer_count; i++) {
1983 exec2_list[i].offset =
1984 gen8_canonical_addr(exec2_list[i].offset);
1985 ret = __copy_to_user(&user_exec_list[i].offset,
1986 &exec2_list[i].offset,
1987 sizeof(user_exec_list[i].offset));
1988 if (ret) {
1989 ret = -EFAULT;
1990 DRM_DEBUG("failed to copy %d exec entries "
1991 "back to user\n",
1992 args->buffer_count);
1993 break;
1994 }
1995 }
1996 }
1997
1998 drm_free_large(exec2_list);
1999 return ret;
2000 }