Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48 unsigned alignment);
49 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
55
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57 unsigned long end)
58 {
59 drm_i915_private_t *dev_priv = dev->dev_private;
60
61 if (start >= end ||
62 (start & (PAGE_SIZE - 1)) != 0 ||
63 (end & (PAGE_SIZE - 1)) != 0) {
64 return -EINVAL;
65 }
66
67 drm_mm_init(&dev_priv->mm.gtt_space, start,
68 end - start);
69
70 dev->gtt_total = (uint32_t) (end - start);
71
72 return 0;
73 }
74
75 int
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77 struct drm_file *file_priv)
78 {
79 struct drm_i915_gem_init *args = data;
80 int ret;
81
82 mutex_lock(&dev->struct_mutex);
83 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84 mutex_unlock(&dev->struct_mutex);
85
86 return ret;
87 }
88
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91 struct drm_file *file_priv)
92 {
93 struct drm_i915_gem_get_aperture *args = data;
94
95 if (!(dev->driver->driver_features & DRIVER_GEM))
96 return -ENODEV;
97
98 args->aper_size = dev->gtt_total;
99 args->aper_available_size = (args->aper_size -
100 atomic_read(&dev->pin_memory));
101
102 return 0;
103 }
104
105
106 /**
107 * Creates a new mm object and returns a handle to it.
108 */
109 int
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111 struct drm_file *file_priv)
112 {
113 struct drm_i915_gem_create *args = data;
114 struct drm_gem_object *obj;
115 int handle, ret;
116
117 args->size = roundup(args->size, PAGE_SIZE);
118
119 /* Allocate the new object */
120 obj = drm_gem_object_alloc(dev, args->size);
121 if (obj == NULL)
122 return -ENOMEM;
123
124 ret = drm_gem_handle_create(file_priv, obj, &handle);
125 mutex_lock(&dev->struct_mutex);
126 drm_gem_object_handle_unreference(obj);
127 mutex_unlock(&dev->struct_mutex);
128
129 if (ret)
130 return ret;
131
132 args->handle = handle;
133
134 return 0;
135 }
136
137 static inline int
138 fast_shmem_read(struct page **pages,
139 loff_t page_base, int page_offset,
140 char __user *data,
141 int length)
142 {
143 char __iomem *vaddr;
144 int unwritten;
145
146 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
147 if (vaddr == NULL)
148 return -ENOMEM;
149 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
150 kunmap_atomic(vaddr, KM_USER0);
151
152 if (unwritten)
153 return -EFAULT;
154
155 return 0;
156 }
157
158 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
159 {
160 drm_i915_private_t *dev_priv = obj->dev->dev_private;
161 struct drm_i915_gem_object *obj_priv = obj->driver_private;
162
163 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
164 obj_priv->tiling_mode != I915_TILING_NONE;
165 }
166
167 static inline int
168 slow_shmem_copy(struct page *dst_page,
169 int dst_offset,
170 struct page *src_page,
171 int src_offset,
172 int length)
173 {
174 char *dst_vaddr, *src_vaddr;
175
176 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
177 if (dst_vaddr == NULL)
178 return -ENOMEM;
179
180 src_vaddr = kmap_atomic(src_page, KM_USER1);
181 if (src_vaddr == NULL) {
182 kunmap_atomic(dst_vaddr, KM_USER0);
183 return -ENOMEM;
184 }
185
186 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
187
188 kunmap_atomic(src_vaddr, KM_USER1);
189 kunmap_atomic(dst_vaddr, KM_USER0);
190
191 return 0;
192 }
193
194 static inline int
195 slow_shmem_bit17_copy(struct page *gpu_page,
196 int gpu_offset,
197 struct page *cpu_page,
198 int cpu_offset,
199 int length,
200 int is_read)
201 {
202 char *gpu_vaddr, *cpu_vaddr;
203
204 /* Use the unswizzled path if this page isn't affected. */
205 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
206 if (is_read)
207 return slow_shmem_copy(cpu_page, cpu_offset,
208 gpu_page, gpu_offset, length);
209 else
210 return slow_shmem_copy(gpu_page, gpu_offset,
211 cpu_page, cpu_offset, length);
212 }
213
214 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
215 if (gpu_vaddr == NULL)
216 return -ENOMEM;
217
218 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
219 if (cpu_vaddr == NULL) {
220 kunmap_atomic(gpu_vaddr, KM_USER0);
221 return -ENOMEM;
222 }
223
224 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225 * XORing with the other bits (A9 for Y, A9 and A10 for X)
226 */
227 while (length > 0) {
228 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229 int this_length = min(cacheline_end - gpu_offset, length);
230 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232 if (is_read) {
233 memcpy(cpu_vaddr + cpu_offset,
234 gpu_vaddr + swizzled_gpu_offset,
235 this_length);
236 } else {
237 memcpy(gpu_vaddr + swizzled_gpu_offset,
238 cpu_vaddr + cpu_offset,
239 this_length);
240 }
241 cpu_offset += this_length;
242 gpu_offset += this_length;
243 length -= this_length;
244 }
245
246 kunmap_atomic(cpu_vaddr, KM_USER1);
247 kunmap_atomic(gpu_vaddr, KM_USER0);
248
249 return 0;
250 }
251
252 /**
253 * This is the fast shmem pread path, which attempts to copy_from_user directly
254 * from the backing pages of the object to the user's address space. On a
255 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
256 */
257 static int
258 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
259 struct drm_i915_gem_pread *args,
260 struct drm_file *file_priv)
261 {
262 struct drm_i915_gem_object *obj_priv = obj->driver_private;
263 ssize_t remain;
264 loff_t offset, page_base;
265 char __user *user_data;
266 int page_offset, page_length;
267 int ret;
268
269 user_data = (char __user *) (uintptr_t) args->data_ptr;
270 remain = args->size;
271
272 mutex_lock(&dev->struct_mutex);
273
274 ret = i915_gem_object_get_pages(obj);
275 if (ret != 0)
276 goto fail_unlock;
277
278 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
279 args->size);
280 if (ret != 0)
281 goto fail_put_pages;
282
283 obj_priv = obj->driver_private;
284 offset = args->offset;
285
286 while (remain > 0) {
287 /* Operation in this page
288 *
289 * page_base = page offset within aperture
290 * page_offset = offset within page
291 * page_length = bytes to copy for this page
292 */
293 page_base = (offset & ~(PAGE_SIZE-1));
294 page_offset = offset & (PAGE_SIZE-1);
295 page_length = remain;
296 if ((page_offset + remain) > PAGE_SIZE)
297 page_length = PAGE_SIZE - page_offset;
298
299 ret = fast_shmem_read(obj_priv->pages,
300 page_base, page_offset,
301 user_data, page_length);
302 if (ret)
303 goto fail_put_pages;
304
305 remain -= page_length;
306 user_data += page_length;
307 offset += page_length;
308 }
309
310 fail_put_pages:
311 i915_gem_object_put_pages(obj);
312 fail_unlock:
313 mutex_unlock(&dev->struct_mutex);
314
315 return ret;
316 }
317
318 /**
319 * This is the fallback shmem pread path, which allocates temporary storage
320 * in kernel space to copy_to_user into outside of the struct_mutex, so we
321 * can copy out of the object's backing pages while holding the struct mutex
322 * and not take page faults.
323 */
324 static int
325 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
326 struct drm_i915_gem_pread *args,
327 struct drm_file *file_priv)
328 {
329 struct drm_i915_gem_object *obj_priv = obj->driver_private;
330 struct mm_struct *mm = current->mm;
331 struct page **user_pages;
332 ssize_t remain;
333 loff_t offset, pinned_pages, i;
334 loff_t first_data_page, last_data_page, num_pages;
335 int shmem_page_index, shmem_page_offset;
336 int data_page_index, data_page_offset;
337 int page_length;
338 int ret;
339 uint64_t data_ptr = args->data_ptr;
340 int do_bit17_swizzling;
341
342 remain = args->size;
343
344 /* Pin the user pages containing the data. We can't fault while
345 * holding the struct mutex, yet we want to hold it while
346 * dereferencing the user data.
347 */
348 first_data_page = data_ptr / PAGE_SIZE;
349 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
350 num_pages = last_data_page - first_data_page + 1;
351
352 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
353 if (user_pages == NULL)
354 return -ENOMEM;
355
356 down_read(&mm->mmap_sem);
357 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
358 num_pages, 1, 0, user_pages, NULL);
359 up_read(&mm->mmap_sem);
360 if (pinned_pages < num_pages) {
361 ret = -EFAULT;
362 goto fail_put_user_pages;
363 }
364
365 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
366
367 mutex_lock(&dev->struct_mutex);
368
369 ret = i915_gem_object_get_pages(obj);
370 if (ret != 0)
371 goto fail_unlock;
372
373 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
374 args->size);
375 if (ret != 0)
376 goto fail_put_pages;
377
378 obj_priv = obj->driver_private;
379 offset = args->offset;
380
381 while (remain > 0) {
382 /* Operation in this page
383 *
384 * shmem_page_index = page number within shmem file
385 * shmem_page_offset = offset within page in shmem file
386 * data_page_index = page number in get_user_pages return
387 * data_page_offset = offset with data_page_index page.
388 * page_length = bytes to copy for this page
389 */
390 shmem_page_index = offset / PAGE_SIZE;
391 shmem_page_offset = offset & ~PAGE_MASK;
392 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
393 data_page_offset = data_ptr & ~PAGE_MASK;
394
395 page_length = remain;
396 if ((shmem_page_offset + page_length) > PAGE_SIZE)
397 page_length = PAGE_SIZE - shmem_page_offset;
398 if ((data_page_offset + page_length) > PAGE_SIZE)
399 page_length = PAGE_SIZE - data_page_offset;
400
401 if (do_bit17_swizzling) {
402 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
403 shmem_page_offset,
404 user_pages[data_page_index],
405 data_page_offset,
406 page_length,
407 1);
408 } else {
409 ret = slow_shmem_copy(user_pages[data_page_index],
410 data_page_offset,
411 obj_priv->pages[shmem_page_index],
412 shmem_page_offset,
413 page_length);
414 }
415 if (ret)
416 goto fail_put_pages;
417
418 remain -= page_length;
419 data_ptr += page_length;
420 offset += page_length;
421 }
422
423 fail_put_pages:
424 i915_gem_object_put_pages(obj);
425 fail_unlock:
426 mutex_unlock(&dev->struct_mutex);
427 fail_put_user_pages:
428 for (i = 0; i < pinned_pages; i++) {
429 SetPageDirty(user_pages[i]);
430 page_cache_release(user_pages[i]);
431 }
432 drm_free_large(user_pages);
433
434 return ret;
435 }
436
437 /**
438 * Reads data from the object referenced by handle.
439 *
440 * On error, the contents of *data are undefined.
441 */
442 int
443 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444 struct drm_file *file_priv)
445 {
446 struct drm_i915_gem_pread *args = data;
447 struct drm_gem_object *obj;
448 struct drm_i915_gem_object *obj_priv;
449 int ret;
450
451 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
452 if (obj == NULL)
453 return -EBADF;
454 obj_priv = obj->driver_private;
455
456 /* Bounds check source.
457 *
458 * XXX: This could use review for overflow issues...
459 */
460 if (args->offset > obj->size || args->size > obj->size ||
461 args->offset + args->size > obj->size) {
462 drm_gem_object_unreference(obj);
463 return -EINVAL;
464 }
465
466 if (i915_gem_object_needs_bit17_swizzle(obj)) {
467 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
468 } else {
469 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
470 if (ret != 0)
471 ret = i915_gem_shmem_pread_slow(dev, obj, args,
472 file_priv);
473 }
474
475 drm_gem_object_unreference(obj);
476
477 return ret;
478 }
479
480 /* This is the fast write path which cannot handle
481 * page faults in the source data
482 */
483
484 static inline int
485 fast_user_write(struct io_mapping *mapping,
486 loff_t page_base, int page_offset,
487 char __user *user_data,
488 int length)
489 {
490 char *vaddr_atomic;
491 unsigned long unwritten;
492
493 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
494 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
495 user_data, length);
496 io_mapping_unmap_atomic(vaddr_atomic);
497 if (unwritten)
498 return -EFAULT;
499 return 0;
500 }
501
502 /* Here's the write path which can sleep for
503 * page faults
504 */
505
506 static inline int
507 slow_kernel_write(struct io_mapping *mapping,
508 loff_t gtt_base, int gtt_offset,
509 struct page *user_page, int user_offset,
510 int length)
511 {
512 char *src_vaddr, *dst_vaddr;
513 unsigned long unwritten;
514
515 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
516 src_vaddr = kmap_atomic(user_page, KM_USER1);
517 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
518 src_vaddr + user_offset,
519 length);
520 kunmap_atomic(src_vaddr, KM_USER1);
521 io_mapping_unmap_atomic(dst_vaddr);
522 if (unwritten)
523 return -EFAULT;
524 return 0;
525 }
526
527 static inline int
528 fast_shmem_write(struct page **pages,
529 loff_t page_base, int page_offset,
530 char __user *data,
531 int length)
532 {
533 char __iomem *vaddr;
534 unsigned long unwritten;
535
536 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
537 if (vaddr == NULL)
538 return -ENOMEM;
539 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
540 kunmap_atomic(vaddr, KM_USER0);
541
542 if (unwritten)
543 return -EFAULT;
544 return 0;
545 }
546
547 /**
548 * This is the fast pwrite path, where we copy the data directly from the
549 * user into the GTT, uncached.
550 */
551 static int
552 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
553 struct drm_i915_gem_pwrite *args,
554 struct drm_file *file_priv)
555 {
556 struct drm_i915_gem_object *obj_priv = obj->driver_private;
557 drm_i915_private_t *dev_priv = dev->dev_private;
558 ssize_t remain;
559 loff_t offset, page_base;
560 char __user *user_data;
561 int page_offset, page_length;
562 int ret;
563
564 user_data = (char __user *) (uintptr_t) args->data_ptr;
565 remain = args->size;
566 if (!access_ok(VERIFY_READ, user_data, remain))
567 return -EFAULT;
568
569
570 mutex_lock(&dev->struct_mutex);
571 ret = i915_gem_object_pin(obj, 0);
572 if (ret) {
573 mutex_unlock(&dev->struct_mutex);
574 return ret;
575 }
576 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
577 if (ret)
578 goto fail;
579
580 obj_priv = obj->driver_private;
581 offset = obj_priv->gtt_offset + args->offset;
582
583 while (remain > 0) {
584 /* Operation in this page
585 *
586 * page_base = page offset within aperture
587 * page_offset = offset within page
588 * page_length = bytes to copy for this page
589 */
590 page_base = (offset & ~(PAGE_SIZE-1));
591 page_offset = offset & (PAGE_SIZE-1);
592 page_length = remain;
593 if ((page_offset + remain) > PAGE_SIZE)
594 page_length = PAGE_SIZE - page_offset;
595
596 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
597 page_offset, user_data, page_length);
598
599 /* If we get a fault while copying data, then (presumably) our
600 * source page isn't available. Return the error and we'll
601 * retry in the slow path.
602 */
603 if (ret)
604 goto fail;
605
606 remain -= page_length;
607 user_data += page_length;
608 offset += page_length;
609 }
610
611 fail:
612 i915_gem_object_unpin(obj);
613 mutex_unlock(&dev->struct_mutex);
614
615 return ret;
616 }
617
618 /**
619 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
620 * the memory and maps it using kmap_atomic for copying.
621 *
622 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
623 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
624 */
625 static int
626 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
627 struct drm_i915_gem_pwrite *args,
628 struct drm_file *file_priv)
629 {
630 struct drm_i915_gem_object *obj_priv = obj->driver_private;
631 drm_i915_private_t *dev_priv = dev->dev_private;
632 ssize_t remain;
633 loff_t gtt_page_base, offset;
634 loff_t first_data_page, last_data_page, num_pages;
635 loff_t pinned_pages, i;
636 struct page **user_pages;
637 struct mm_struct *mm = current->mm;
638 int gtt_page_offset, data_page_offset, data_page_index, page_length;
639 int ret;
640 uint64_t data_ptr = args->data_ptr;
641
642 remain = args->size;
643
644 /* Pin the user pages containing the data. We can't fault while
645 * holding the struct mutex, and all of the pwrite implementations
646 * want to hold it while dereferencing the user data.
647 */
648 first_data_page = data_ptr / PAGE_SIZE;
649 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
650 num_pages = last_data_page - first_data_page + 1;
651
652 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
653 if (user_pages == NULL)
654 return -ENOMEM;
655
656 down_read(&mm->mmap_sem);
657 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
658 num_pages, 0, 0, user_pages, NULL);
659 up_read(&mm->mmap_sem);
660 if (pinned_pages < num_pages) {
661 ret = -EFAULT;
662 goto out_unpin_pages;
663 }
664
665 mutex_lock(&dev->struct_mutex);
666 ret = i915_gem_object_pin(obj, 0);
667 if (ret)
668 goto out_unlock;
669
670 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
671 if (ret)
672 goto out_unpin_object;
673
674 obj_priv = obj->driver_private;
675 offset = obj_priv->gtt_offset + args->offset;
676
677 while (remain > 0) {
678 /* Operation in this page
679 *
680 * gtt_page_base = page offset within aperture
681 * gtt_page_offset = offset within page in aperture
682 * data_page_index = page number in get_user_pages return
683 * data_page_offset = offset with data_page_index page.
684 * page_length = bytes to copy for this page
685 */
686 gtt_page_base = offset & PAGE_MASK;
687 gtt_page_offset = offset & ~PAGE_MASK;
688 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
689 data_page_offset = data_ptr & ~PAGE_MASK;
690
691 page_length = remain;
692 if ((gtt_page_offset + page_length) > PAGE_SIZE)
693 page_length = PAGE_SIZE - gtt_page_offset;
694 if ((data_page_offset + page_length) > PAGE_SIZE)
695 page_length = PAGE_SIZE - data_page_offset;
696
697 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
698 gtt_page_base, gtt_page_offset,
699 user_pages[data_page_index],
700 data_page_offset,
701 page_length);
702
703 /* If we get a fault while copying data, then (presumably) our
704 * source page isn't available. Return the error and we'll
705 * retry in the slow path.
706 */
707 if (ret)
708 goto out_unpin_object;
709
710 remain -= page_length;
711 offset += page_length;
712 data_ptr += page_length;
713 }
714
715 out_unpin_object:
716 i915_gem_object_unpin(obj);
717 out_unlock:
718 mutex_unlock(&dev->struct_mutex);
719 out_unpin_pages:
720 for (i = 0; i < pinned_pages; i++)
721 page_cache_release(user_pages[i]);
722 drm_free_large(user_pages);
723
724 return ret;
725 }
726
727 /**
728 * This is the fast shmem pwrite path, which attempts to directly
729 * copy_from_user into the kmapped pages backing the object.
730 */
731 static int
732 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
733 struct drm_i915_gem_pwrite *args,
734 struct drm_file *file_priv)
735 {
736 struct drm_i915_gem_object *obj_priv = obj->driver_private;
737 ssize_t remain;
738 loff_t offset, page_base;
739 char __user *user_data;
740 int page_offset, page_length;
741 int ret;
742
743 user_data = (char __user *) (uintptr_t) args->data_ptr;
744 remain = args->size;
745
746 mutex_lock(&dev->struct_mutex);
747
748 ret = i915_gem_object_get_pages(obj);
749 if (ret != 0)
750 goto fail_unlock;
751
752 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
753 if (ret != 0)
754 goto fail_put_pages;
755
756 obj_priv = obj->driver_private;
757 offset = args->offset;
758 obj_priv->dirty = 1;
759
760 while (remain > 0) {
761 /* Operation in this page
762 *
763 * page_base = page offset within aperture
764 * page_offset = offset within page
765 * page_length = bytes to copy for this page
766 */
767 page_base = (offset & ~(PAGE_SIZE-1));
768 page_offset = offset & (PAGE_SIZE-1);
769 page_length = remain;
770 if ((page_offset + remain) > PAGE_SIZE)
771 page_length = PAGE_SIZE - page_offset;
772
773 ret = fast_shmem_write(obj_priv->pages,
774 page_base, page_offset,
775 user_data, page_length);
776 if (ret)
777 goto fail_put_pages;
778
779 remain -= page_length;
780 user_data += page_length;
781 offset += page_length;
782 }
783
784 fail_put_pages:
785 i915_gem_object_put_pages(obj);
786 fail_unlock:
787 mutex_unlock(&dev->struct_mutex);
788
789 return ret;
790 }
791
792 /**
793 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
794 * the memory and maps it using kmap_atomic for copying.
795 *
796 * This avoids taking mmap_sem for faulting on the user's address while the
797 * struct_mutex is held.
798 */
799 static int
800 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
801 struct drm_i915_gem_pwrite *args,
802 struct drm_file *file_priv)
803 {
804 struct drm_i915_gem_object *obj_priv = obj->driver_private;
805 struct mm_struct *mm = current->mm;
806 struct page **user_pages;
807 ssize_t remain;
808 loff_t offset, pinned_pages, i;
809 loff_t first_data_page, last_data_page, num_pages;
810 int shmem_page_index, shmem_page_offset;
811 int data_page_index, data_page_offset;
812 int page_length;
813 int ret;
814 uint64_t data_ptr = args->data_ptr;
815 int do_bit17_swizzling;
816
817 remain = args->size;
818
819 /* Pin the user pages containing the data. We can't fault while
820 * holding the struct mutex, and all of the pwrite implementations
821 * want to hold it while dereferencing the user data.
822 */
823 first_data_page = data_ptr / PAGE_SIZE;
824 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
825 num_pages = last_data_page - first_data_page + 1;
826
827 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
828 if (user_pages == NULL)
829 return -ENOMEM;
830
831 down_read(&mm->mmap_sem);
832 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
833 num_pages, 0, 0, user_pages, NULL);
834 up_read(&mm->mmap_sem);
835 if (pinned_pages < num_pages) {
836 ret = -EFAULT;
837 goto fail_put_user_pages;
838 }
839
840 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
841
842 mutex_lock(&dev->struct_mutex);
843
844 ret = i915_gem_object_get_pages(obj);
845 if (ret != 0)
846 goto fail_unlock;
847
848 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
849 if (ret != 0)
850 goto fail_put_pages;
851
852 obj_priv = obj->driver_private;
853 offset = args->offset;
854 obj_priv->dirty = 1;
855
856 while (remain > 0) {
857 /* Operation in this page
858 *
859 * shmem_page_index = page number within shmem file
860 * shmem_page_offset = offset within page in shmem file
861 * data_page_index = page number in get_user_pages return
862 * data_page_offset = offset with data_page_index page.
863 * page_length = bytes to copy for this page
864 */
865 shmem_page_index = offset / PAGE_SIZE;
866 shmem_page_offset = offset & ~PAGE_MASK;
867 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
868 data_page_offset = data_ptr & ~PAGE_MASK;
869
870 page_length = remain;
871 if ((shmem_page_offset + page_length) > PAGE_SIZE)
872 page_length = PAGE_SIZE - shmem_page_offset;
873 if ((data_page_offset + page_length) > PAGE_SIZE)
874 page_length = PAGE_SIZE - data_page_offset;
875
876 if (do_bit17_swizzling) {
877 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
878 shmem_page_offset,
879 user_pages[data_page_index],
880 data_page_offset,
881 page_length,
882 0);
883 } else {
884 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
885 shmem_page_offset,
886 user_pages[data_page_index],
887 data_page_offset,
888 page_length);
889 }
890 if (ret)
891 goto fail_put_pages;
892
893 remain -= page_length;
894 data_ptr += page_length;
895 offset += page_length;
896 }
897
898 fail_put_pages:
899 i915_gem_object_put_pages(obj);
900 fail_unlock:
901 mutex_unlock(&dev->struct_mutex);
902 fail_put_user_pages:
903 for (i = 0; i < pinned_pages; i++)
904 page_cache_release(user_pages[i]);
905 drm_free_large(user_pages);
906
907 return ret;
908 }
909
910 /**
911 * Writes data to the object referenced by handle.
912 *
913 * On error, the contents of the buffer that were to be modified are undefined.
914 */
915 int
916 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917 struct drm_file *file_priv)
918 {
919 struct drm_i915_gem_pwrite *args = data;
920 struct drm_gem_object *obj;
921 struct drm_i915_gem_object *obj_priv;
922 int ret = 0;
923
924 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
925 if (obj == NULL)
926 return -EBADF;
927 obj_priv = obj->driver_private;
928
929 /* Bounds check destination.
930 *
931 * XXX: This could use review for overflow issues...
932 */
933 if (args->offset > obj->size || args->size > obj->size ||
934 args->offset + args->size > obj->size) {
935 drm_gem_object_unreference(obj);
936 return -EINVAL;
937 }
938
939 /* We can only do the GTT pwrite on untiled buffers, as otherwise
940 * it would end up going through the fenced access, and we'll get
941 * different detiling behavior between reading and writing.
942 * pread/pwrite currently are reading and writing from the CPU
943 * perspective, requiring manual detiling by the client.
944 */
945 if (obj_priv->phys_obj)
946 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
947 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
948 dev->gtt_total != 0) {
949 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
950 if (ret == -EFAULT) {
951 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
952 file_priv);
953 }
954 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
955 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
956 } else {
957 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
958 if (ret == -EFAULT) {
959 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
960 file_priv);
961 }
962 }
963
964 #if WATCH_PWRITE
965 if (ret)
966 DRM_INFO("pwrite failed %d\n", ret);
967 #endif
968
969 drm_gem_object_unreference(obj);
970
971 return ret;
972 }
973
974 /**
975 * Called when user space prepares to use an object with the CPU, either
976 * through the mmap ioctl's mapping or a GTT mapping.
977 */
978 int
979 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
980 struct drm_file *file_priv)
981 {
982 struct drm_i915_gem_set_domain *args = data;
983 struct drm_gem_object *obj;
984 uint32_t read_domains = args->read_domains;
985 uint32_t write_domain = args->write_domain;
986 int ret;
987
988 if (!(dev->driver->driver_features & DRIVER_GEM))
989 return -ENODEV;
990
991 /* Only handle setting domains to types used by the CPU. */
992 if (write_domain & I915_GEM_GPU_DOMAINS)
993 return -EINVAL;
994
995 if (read_domains & I915_GEM_GPU_DOMAINS)
996 return -EINVAL;
997
998 /* Having something in the write domain implies it's in the read
999 * domain, and only that read domain. Enforce that in the request.
1000 */
1001 if (write_domain != 0 && read_domains != write_domain)
1002 return -EINVAL;
1003
1004 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005 if (obj == NULL)
1006 return -EBADF;
1007
1008 mutex_lock(&dev->struct_mutex);
1009 #if WATCH_BUF
1010 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
1011 obj, obj->size, read_domains, write_domain);
1012 #endif
1013 if (read_domains & I915_GEM_DOMAIN_GTT) {
1014 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1015
1016 /* Silently promote "you're not bound, there was nothing to do"
1017 * to success, since the client was just asking us to
1018 * make sure everything was done.
1019 */
1020 if (ret == -EINVAL)
1021 ret = 0;
1022 } else {
1023 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1024 }
1025
1026 drm_gem_object_unreference(obj);
1027 mutex_unlock(&dev->struct_mutex);
1028 return ret;
1029 }
1030
1031 /**
1032 * Called when user space has done writes to this buffer
1033 */
1034 int
1035 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1036 struct drm_file *file_priv)
1037 {
1038 struct drm_i915_gem_sw_finish *args = data;
1039 struct drm_gem_object *obj;
1040 struct drm_i915_gem_object *obj_priv;
1041 int ret = 0;
1042
1043 if (!(dev->driver->driver_features & DRIVER_GEM))
1044 return -ENODEV;
1045
1046 mutex_lock(&dev->struct_mutex);
1047 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1048 if (obj == NULL) {
1049 mutex_unlock(&dev->struct_mutex);
1050 return -EBADF;
1051 }
1052
1053 #if WATCH_BUF
1054 DRM_INFO("%s: sw_finish %d (%p %d)\n",
1055 __func__, args->handle, obj, obj->size);
1056 #endif
1057 obj_priv = obj->driver_private;
1058
1059 /* Pinned buffers may be scanout, so flush the cache */
1060 if (obj_priv->pin_count)
1061 i915_gem_object_flush_cpu_write_domain(obj);
1062
1063 drm_gem_object_unreference(obj);
1064 mutex_unlock(&dev->struct_mutex);
1065 return ret;
1066 }
1067
1068 /**
1069 * Maps the contents of an object, returning the address it is mapped
1070 * into.
1071 *
1072 * While the mapping holds a reference on the contents of the object, it doesn't
1073 * imply a ref on the object itself.
1074 */
1075 int
1076 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078 {
1079 struct drm_i915_gem_mmap *args = data;
1080 struct drm_gem_object *obj;
1081 loff_t offset;
1082 unsigned long addr;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1088 if (obj == NULL)
1089 return -EBADF;
1090
1091 offset = args->offset;
1092
1093 down_write(&current->mm->mmap_sem);
1094 addr = do_mmap(obj->filp, 0, args->size,
1095 PROT_READ | PROT_WRITE, MAP_SHARED,
1096 args->offset);
1097 up_write(&current->mm->mmap_sem);
1098 mutex_lock(&dev->struct_mutex);
1099 drm_gem_object_unreference(obj);
1100 mutex_unlock(&dev->struct_mutex);
1101 if (IS_ERR((void *)addr))
1102 return addr;
1103
1104 args->addr_ptr = (uint64_t) addr;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * i915_gem_fault - fault a page into the GTT
1111 * vma: VMA in question
1112 * vmf: fault info
1113 *
1114 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1115 * from userspace. The fault handler takes care of binding the object to
1116 * the GTT (if needed), allocating and programming a fence register (again,
1117 * only if needed based on whether the old reg is still valid or the object
1118 * is tiled) and inserting a new PTE into the faulting process.
1119 *
1120 * Note that the faulting process may involve evicting existing objects
1121 * from the GTT and/or fence registers to make room. So performance may
1122 * suffer if the GTT working set is large or there are few fence registers
1123 * left.
1124 */
1125 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1126 {
1127 struct drm_gem_object *obj = vma->vm_private_data;
1128 struct drm_device *dev = obj->dev;
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1131 pgoff_t page_offset;
1132 unsigned long pfn;
1133 int ret = 0;
1134 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1135
1136 /* We don't use vmf->pgoff since that has the fake offset */
1137 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1138 PAGE_SHIFT;
1139
1140 /* Now bind it into the GTT if needed */
1141 mutex_lock(&dev->struct_mutex);
1142 if (!obj_priv->gtt_space) {
1143 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1144 if (ret) {
1145 mutex_unlock(&dev->struct_mutex);
1146 return VM_FAULT_SIGBUS;
1147 }
1148
1149 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1150 if (ret) {
1151 mutex_unlock(&dev->struct_mutex);
1152 return VM_FAULT_SIGBUS;
1153 }
1154
1155 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1156 }
1157
1158 /* Need a new fence register? */
1159 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1160 obj_priv->tiling_mode != I915_TILING_NONE) {
1161 ret = i915_gem_object_get_fence_reg(obj, write);
1162 if (ret) {
1163 mutex_unlock(&dev->struct_mutex);
1164 return VM_FAULT_SIGBUS;
1165 }
1166 }
1167
1168 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1169 page_offset;
1170
1171 /* Finally, remap it using the new GTT offset */
1172 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1173
1174 mutex_unlock(&dev->struct_mutex);
1175
1176 switch (ret) {
1177 case -ENOMEM:
1178 case -EAGAIN:
1179 return VM_FAULT_OOM;
1180 case -EFAULT:
1181 case -EINVAL:
1182 return VM_FAULT_SIGBUS;
1183 default:
1184 return VM_FAULT_NOPAGE;
1185 }
1186 }
1187
1188 /**
1189 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1190 * @obj: obj in question
1191 *
1192 * GEM memory mapping works by handing back to userspace a fake mmap offset
1193 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1194 * up the object based on the offset and sets up the various memory mapping
1195 * structures.
1196 *
1197 * This routine allocates and attaches a fake offset for @obj.
1198 */
1199 static int
1200 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1201 {
1202 struct drm_device *dev = obj->dev;
1203 struct drm_gem_mm *mm = dev->mm_private;
1204 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1205 struct drm_map_list *list;
1206 struct drm_local_map *map;
1207 int ret = 0;
1208
1209 /* Set the object up for mmap'ing */
1210 list = &obj->map_list;
1211 list->map = drm_calloc(1, sizeof(struct drm_map_list),
1212 DRM_MEM_DRIVER);
1213 if (!list->map)
1214 return -ENOMEM;
1215
1216 map = list->map;
1217 map->type = _DRM_GEM;
1218 map->size = obj->size;
1219 map->handle = obj;
1220
1221 /* Get a DRM GEM mmap offset allocated... */
1222 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1223 obj->size / PAGE_SIZE, 0, 0);
1224 if (!list->file_offset_node) {
1225 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1226 ret = -ENOMEM;
1227 goto out_free_list;
1228 }
1229
1230 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1231 obj->size / PAGE_SIZE, 0);
1232 if (!list->file_offset_node) {
1233 ret = -ENOMEM;
1234 goto out_free_list;
1235 }
1236
1237 list->hash.key = list->file_offset_node->start;
1238 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1239 DRM_ERROR("failed to add to map hash\n");
1240 goto out_free_mm;
1241 }
1242
1243 /* By now we should be all set, any drm_mmap request on the offset
1244 * below will get to our mmap & fault handler */
1245 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1246
1247 return 0;
1248
1249 out_free_mm:
1250 drm_mm_put_block(list->file_offset_node);
1251 out_free_list:
1252 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1253
1254 return ret;
1255 }
1256
1257 static void
1258 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1259 {
1260 struct drm_device *dev = obj->dev;
1261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1262 struct drm_gem_mm *mm = dev->mm_private;
1263 struct drm_map_list *list;
1264
1265 list = &obj->map_list;
1266 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1267
1268 if (list->file_offset_node) {
1269 drm_mm_put_block(list->file_offset_node);
1270 list->file_offset_node = NULL;
1271 }
1272
1273 if (list->map) {
1274 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1275 list->map = NULL;
1276 }
1277
1278 obj_priv->mmap_offset = 0;
1279 }
1280
1281 /**
1282 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1283 * @obj: object to check
1284 *
1285 * Return the required GTT alignment for an object, taking into account
1286 * potential fence register mapping if needed.
1287 */
1288 static uint32_t
1289 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1290 {
1291 struct drm_device *dev = obj->dev;
1292 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1293 int start, i;
1294
1295 /*
1296 * Minimum alignment is 4k (GTT page size), but might be greater
1297 * if a fence register is needed for the object.
1298 */
1299 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1300 return 4096;
1301
1302 /*
1303 * Previous chips need to be aligned to the size of the smallest
1304 * fence register that can contain the object.
1305 */
1306 if (IS_I9XX(dev))
1307 start = 1024*1024;
1308 else
1309 start = 512*1024;
1310
1311 for (i = start; i < obj->size; i <<= 1)
1312 ;
1313
1314 return i;
1315 }
1316
1317 /**
1318 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1319 * @dev: DRM device
1320 * @data: GTT mapping ioctl data
1321 * @file_priv: GEM object info
1322 *
1323 * Simply returns the fake offset to userspace so it can mmap it.
1324 * The mmap call will end up in drm_gem_mmap(), which will set things
1325 * up so we can get faults in the handler above.
1326 *
1327 * The fault handler will take care of binding the object into the GTT
1328 * (since it may have been evicted to make room for something), allocating
1329 * a fence register, and mapping the appropriate aperture address into
1330 * userspace.
1331 */
1332 int
1333 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1334 struct drm_file *file_priv)
1335 {
1336 struct drm_i915_gem_mmap_gtt *args = data;
1337 struct drm_i915_private *dev_priv = dev->dev_private;
1338 struct drm_gem_object *obj;
1339 struct drm_i915_gem_object *obj_priv;
1340 int ret;
1341
1342 if (!(dev->driver->driver_features & DRIVER_GEM))
1343 return -ENODEV;
1344
1345 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1346 if (obj == NULL)
1347 return -EBADF;
1348
1349 mutex_lock(&dev->struct_mutex);
1350
1351 obj_priv = obj->driver_private;
1352
1353 if (!obj_priv->mmap_offset) {
1354 ret = i915_gem_create_mmap_offset(obj);
1355 if (ret) {
1356 drm_gem_object_unreference(obj);
1357 mutex_unlock(&dev->struct_mutex);
1358 return ret;
1359 }
1360 }
1361
1362 args->offset = obj_priv->mmap_offset;
1363
1364 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1365
1366 /* Make sure the alignment is correct for fence regs etc */
1367 if (obj_priv->agp_mem &&
1368 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1369 drm_gem_object_unreference(obj);
1370 mutex_unlock(&dev->struct_mutex);
1371 return -EINVAL;
1372 }
1373
1374 /*
1375 * Pull it into the GTT so that we have a page list (makes the
1376 * initial fault faster and any subsequent flushing possible).
1377 */
1378 if (!obj_priv->agp_mem) {
1379 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1380 if (ret) {
1381 drm_gem_object_unreference(obj);
1382 mutex_unlock(&dev->struct_mutex);
1383 return ret;
1384 }
1385 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1386 }
1387
1388 drm_gem_object_unreference(obj);
1389 mutex_unlock(&dev->struct_mutex);
1390
1391 return 0;
1392 }
1393
1394 void
1395 i915_gem_object_put_pages(struct drm_gem_object *obj)
1396 {
1397 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1398 int page_count = obj->size / PAGE_SIZE;
1399 int i;
1400
1401 BUG_ON(obj_priv->pages_refcount == 0);
1402
1403 if (--obj_priv->pages_refcount != 0)
1404 return;
1405
1406 if (obj_priv->tiling_mode != I915_TILING_NONE)
1407 i915_gem_object_save_bit_17_swizzle(obj);
1408
1409 for (i = 0; i < page_count; i++)
1410 if (obj_priv->pages[i] != NULL) {
1411 if (obj_priv->dirty)
1412 set_page_dirty(obj_priv->pages[i]);
1413 mark_page_accessed(obj_priv->pages[i]);
1414 page_cache_release(obj_priv->pages[i]);
1415 }
1416 obj_priv->dirty = 0;
1417
1418 drm_free_large(obj_priv->pages);
1419 obj_priv->pages = NULL;
1420 }
1421
1422 static void
1423 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1424 {
1425 struct drm_device *dev = obj->dev;
1426 drm_i915_private_t *dev_priv = dev->dev_private;
1427 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1428
1429 /* Add a reference if we're newly entering the active list. */
1430 if (!obj_priv->active) {
1431 drm_gem_object_reference(obj);
1432 obj_priv->active = 1;
1433 }
1434 /* Move from whatever list we were on to the tail of execution. */
1435 spin_lock(&dev_priv->mm.active_list_lock);
1436 list_move_tail(&obj_priv->list,
1437 &dev_priv->mm.active_list);
1438 spin_unlock(&dev_priv->mm.active_list_lock);
1439 obj_priv->last_rendering_seqno = seqno;
1440 }
1441
1442 static void
1443 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1444 {
1445 struct drm_device *dev = obj->dev;
1446 drm_i915_private_t *dev_priv = dev->dev_private;
1447 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1448
1449 BUG_ON(!obj_priv->active);
1450 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1451 obj_priv->last_rendering_seqno = 0;
1452 }
1453
1454 static void
1455 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1456 {
1457 struct drm_device *dev = obj->dev;
1458 drm_i915_private_t *dev_priv = dev->dev_private;
1459 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1460
1461 i915_verify_inactive(dev, __FILE__, __LINE__);
1462 if (obj_priv->pin_count != 0)
1463 list_del_init(&obj_priv->list);
1464 else
1465 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1466
1467 obj_priv->last_rendering_seqno = 0;
1468 if (obj_priv->active) {
1469 obj_priv->active = 0;
1470 drm_gem_object_unreference(obj);
1471 }
1472 i915_verify_inactive(dev, __FILE__, __LINE__);
1473 }
1474
1475 /**
1476 * Creates a new sequence number, emitting a write of it to the status page
1477 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1478 *
1479 * Must be called with struct_lock held.
1480 *
1481 * Returned sequence numbers are nonzero on success.
1482 */
1483 static uint32_t
1484 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1485 uint32_t flush_domains)
1486 {
1487 drm_i915_private_t *dev_priv = dev->dev_private;
1488 struct drm_i915_file_private *i915_file_priv = NULL;
1489 struct drm_i915_gem_request *request;
1490 uint32_t seqno;
1491 int was_empty;
1492 RING_LOCALS;
1493
1494 if (file_priv != NULL)
1495 i915_file_priv = file_priv->driver_priv;
1496
1497 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1498 if (request == NULL)
1499 return 0;
1500
1501 /* Grab the seqno we're going to make this request be, and bump the
1502 * next (skipping 0 so it can be the reserved no-seqno value).
1503 */
1504 seqno = dev_priv->mm.next_gem_seqno;
1505 dev_priv->mm.next_gem_seqno++;
1506 if (dev_priv->mm.next_gem_seqno == 0)
1507 dev_priv->mm.next_gem_seqno++;
1508
1509 BEGIN_LP_RING(4);
1510 OUT_RING(MI_STORE_DWORD_INDEX);
1511 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1512 OUT_RING(seqno);
1513
1514 OUT_RING(MI_USER_INTERRUPT);
1515 ADVANCE_LP_RING();
1516
1517 DRM_DEBUG("%d\n", seqno);
1518
1519 request->seqno = seqno;
1520 request->emitted_jiffies = jiffies;
1521 was_empty = list_empty(&dev_priv->mm.request_list);
1522 list_add_tail(&request->list, &dev_priv->mm.request_list);
1523 if (i915_file_priv) {
1524 list_add_tail(&request->client_list,
1525 &i915_file_priv->mm.request_list);
1526 } else {
1527 INIT_LIST_HEAD(&request->client_list);
1528 }
1529
1530 /* Associate any objects on the flushing list matching the write
1531 * domain we're flushing with our flush.
1532 */
1533 if (flush_domains != 0) {
1534 struct drm_i915_gem_object *obj_priv, *next;
1535
1536 list_for_each_entry_safe(obj_priv, next,
1537 &dev_priv->mm.flushing_list, list) {
1538 struct drm_gem_object *obj = obj_priv->obj;
1539
1540 if ((obj->write_domain & flush_domains) ==
1541 obj->write_domain) {
1542 obj->write_domain = 0;
1543 i915_gem_object_move_to_active(obj, seqno);
1544 }
1545 }
1546
1547 }
1548
1549 if (was_empty && !dev_priv->mm.suspended)
1550 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1551 return seqno;
1552 }
1553
1554 /**
1555 * Command execution barrier
1556 *
1557 * Ensures that all commands in the ring are finished
1558 * before signalling the CPU
1559 */
1560 static uint32_t
1561 i915_retire_commands(struct drm_device *dev)
1562 {
1563 drm_i915_private_t *dev_priv = dev->dev_private;
1564 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1565 uint32_t flush_domains = 0;
1566 RING_LOCALS;
1567
1568 /* The sampler always gets flushed on i965 (sigh) */
1569 if (IS_I965G(dev))
1570 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1571 BEGIN_LP_RING(2);
1572 OUT_RING(cmd);
1573 OUT_RING(0); /* noop */
1574 ADVANCE_LP_RING();
1575 return flush_domains;
1576 }
1577
1578 /**
1579 * Moves buffers associated only with the given active seqno from the active
1580 * to inactive list, potentially freeing them.
1581 */
1582 static void
1583 i915_gem_retire_request(struct drm_device *dev,
1584 struct drm_i915_gem_request *request)
1585 {
1586 drm_i915_private_t *dev_priv = dev->dev_private;
1587
1588 /* Move any buffers on the active list that are no longer referenced
1589 * by the ringbuffer to the flushing/inactive lists as appropriate.
1590 */
1591 spin_lock(&dev_priv->mm.active_list_lock);
1592 while (!list_empty(&dev_priv->mm.active_list)) {
1593 struct drm_gem_object *obj;
1594 struct drm_i915_gem_object *obj_priv;
1595
1596 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1597 struct drm_i915_gem_object,
1598 list);
1599 obj = obj_priv->obj;
1600
1601 /* If the seqno being retired doesn't match the oldest in the
1602 * list, then the oldest in the list must still be newer than
1603 * this seqno.
1604 */
1605 if (obj_priv->last_rendering_seqno != request->seqno)
1606 goto out;
1607
1608 #if WATCH_LRU
1609 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1610 __func__, request->seqno, obj);
1611 #endif
1612
1613 if (obj->write_domain != 0)
1614 i915_gem_object_move_to_flushing(obj);
1615 else {
1616 /* Take a reference on the object so it won't be
1617 * freed while the spinlock is held. The list
1618 * protection for this spinlock is safe when breaking
1619 * the lock like this since the next thing we do
1620 * is just get the head of the list again.
1621 */
1622 drm_gem_object_reference(obj);
1623 i915_gem_object_move_to_inactive(obj);
1624 spin_unlock(&dev_priv->mm.active_list_lock);
1625 drm_gem_object_unreference(obj);
1626 spin_lock(&dev_priv->mm.active_list_lock);
1627 }
1628 }
1629 out:
1630 spin_unlock(&dev_priv->mm.active_list_lock);
1631 }
1632
1633 /**
1634 * Returns true if seq1 is later than seq2.
1635 */
1636 static int
1637 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1638 {
1639 return (int32_t)(seq1 - seq2) >= 0;
1640 }
1641
1642 uint32_t
1643 i915_get_gem_seqno(struct drm_device *dev)
1644 {
1645 drm_i915_private_t *dev_priv = dev->dev_private;
1646
1647 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1648 }
1649
1650 /**
1651 * This function clears the request list as sequence numbers are passed.
1652 */
1653 void
1654 i915_gem_retire_requests(struct drm_device *dev)
1655 {
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657 uint32_t seqno;
1658
1659 if (!dev_priv->hw_status_page)
1660 return;
1661
1662 seqno = i915_get_gem_seqno(dev);
1663
1664 while (!list_empty(&dev_priv->mm.request_list)) {
1665 struct drm_i915_gem_request *request;
1666 uint32_t retiring_seqno;
1667
1668 request = list_first_entry(&dev_priv->mm.request_list,
1669 struct drm_i915_gem_request,
1670 list);
1671 retiring_seqno = request->seqno;
1672
1673 if (i915_seqno_passed(seqno, retiring_seqno) ||
1674 dev_priv->mm.wedged) {
1675 i915_gem_retire_request(dev, request);
1676
1677 list_del(&request->list);
1678 list_del(&request->client_list);
1679 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1680 } else
1681 break;
1682 }
1683 }
1684
1685 void
1686 i915_gem_retire_work_handler(struct work_struct *work)
1687 {
1688 drm_i915_private_t *dev_priv;
1689 struct drm_device *dev;
1690
1691 dev_priv = container_of(work, drm_i915_private_t,
1692 mm.retire_work.work);
1693 dev = dev_priv->dev;
1694
1695 mutex_lock(&dev->struct_mutex);
1696 i915_gem_retire_requests(dev);
1697 if (!dev_priv->mm.suspended &&
1698 !list_empty(&dev_priv->mm.request_list))
1699 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1700 mutex_unlock(&dev->struct_mutex);
1701 }
1702
1703 /**
1704 * Waits for a sequence number to be signaled, and cleans up the
1705 * request and object lists appropriately for that event.
1706 */
1707 static int
1708 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1709 {
1710 drm_i915_private_t *dev_priv = dev->dev_private;
1711 u32 ier;
1712 int ret = 0;
1713
1714 BUG_ON(seqno == 0);
1715
1716 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1717 if (IS_IGDNG(dev))
1718 ier = I915_READ(DEIER) | I915_READ(GTIER);
1719 else
1720 ier = I915_READ(IER);
1721 if (!ier) {
1722 DRM_ERROR("something (likely vbetool) disabled "
1723 "interrupts, re-enabling\n");
1724 i915_driver_irq_preinstall(dev);
1725 i915_driver_irq_postinstall(dev);
1726 }
1727
1728 dev_priv->mm.waiting_gem_seqno = seqno;
1729 i915_user_irq_get(dev);
1730 ret = wait_event_interruptible(dev_priv->irq_queue,
1731 i915_seqno_passed(i915_get_gem_seqno(dev),
1732 seqno) ||
1733 dev_priv->mm.wedged);
1734 i915_user_irq_put(dev);
1735 dev_priv->mm.waiting_gem_seqno = 0;
1736 }
1737 if (dev_priv->mm.wedged)
1738 ret = -EIO;
1739
1740 if (ret && ret != -ERESTARTSYS)
1741 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1742 __func__, ret, seqno, i915_get_gem_seqno(dev));
1743
1744 /* Directly dispatch request retiring. While we have the work queue
1745 * to handle this, the waiter on a request often wants an associated
1746 * buffer to have made it to the inactive list, and we would need
1747 * a separate wait queue to handle that.
1748 */
1749 if (ret == 0)
1750 i915_gem_retire_requests(dev);
1751
1752 return ret;
1753 }
1754
1755 static void
1756 i915_gem_flush(struct drm_device *dev,
1757 uint32_t invalidate_domains,
1758 uint32_t flush_domains)
1759 {
1760 drm_i915_private_t *dev_priv = dev->dev_private;
1761 uint32_t cmd;
1762 RING_LOCALS;
1763
1764 #if WATCH_EXEC
1765 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1766 invalidate_domains, flush_domains);
1767 #endif
1768
1769 if (flush_domains & I915_GEM_DOMAIN_CPU)
1770 drm_agp_chipset_flush(dev);
1771
1772 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1773 /*
1774 * read/write caches:
1775 *
1776 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1777 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1778 * also flushed at 2d versus 3d pipeline switches.
1779 *
1780 * read-only caches:
1781 *
1782 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1783 * MI_READ_FLUSH is set, and is always flushed on 965.
1784 *
1785 * I915_GEM_DOMAIN_COMMAND may not exist?
1786 *
1787 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1788 * invalidated when MI_EXE_FLUSH is set.
1789 *
1790 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1791 * invalidated with every MI_FLUSH.
1792 *
1793 * TLBs:
1794 *
1795 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1796 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1797 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1798 * are flushed at any MI_FLUSH.
1799 */
1800
1801 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1802 if ((invalidate_domains|flush_domains) &
1803 I915_GEM_DOMAIN_RENDER)
1804 cmd &= ~MI_NO_WRITE_FLUSH;
1805 if (!IS_I965G(dev)) {
1806 /*
1807 * On the 965, the sampler cache always gets flushed
1808 * and this bit is reserved.
1809 */
1810 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1811 cmd |= MI_READ_FLUSH;
1812 }
1813 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1814 cmd |= MI_EXE_FLUSH;
1815
1816 #if WATCH_EXEC
1817 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1818 #endif
1819 BEGIN_LP_RING(2);
1820 OUT_RING(cmd);
1821 OUT_RING(0); /* noop */
1822 ADVANCE_LP_RING();
1823 }
1824 }
1825
1826 /**
1827 * Ensures that all rendering to the object has completed and the object is
1828 * safe to unbind from the GTT or access from the CPU.
1829 */
1830 static int
1831 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1832 {
1833 struct drm_device *dev = obj->dev;
1834 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1835 int ret;
1836
1837 /* This function only exists to support waiting for existing rendering,
1838 * not for emitting required flushes.
1839 */
1840 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1841
1842 /* If there is rendering queued on the buffer being evicted, wait for
1843 * it.
1844 */
1845 if (obj_priv->active) {
1846 #if WATCH_BUF
1847 DRM_INFO("%s: object %p wait for seqno %08x\n",
1848 __func__, obj, obj_priv->last_rendering_seqno);
1849 #endif
1850 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1851 if (ret != 0)
1852 return ret;
1853 }
1854
1855 return 0;
1856 }
1857
1858 /**
1859 * Unbinds an object from the GTT aperture.
1860 */
1861 int
1862 i915_gem_object_unbind(struct drm_gem_object *obj)
1863 {
1864 struct drm_device *dev = obj->dev;
1865 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1866 loff_t offset;
1867 int ret = 0;
1868
1869 #if WATCH_BUF
1870 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1871 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1872 #endif
1873 if (obj_priv->gtt_space == NULL)
1874 return 0;
1875
1876 if (obj_priv->pin_count != 0) {
1877 DRM_ERROR("Attempting to unbind pinned buffer\n");
1878 return -EINVAL;
1879 }
1880
1881 /* Move the object to the CPU domain to ensure that
1882 * any possible CPU writes while it's not in the GTT
1883 * are flushed when we go to remap it. This will
1884 * also ensure that all pending GPU writes are finished
1885 * before we unbind.
1886 */
1887 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1888 if (ret) {
1889 if (ret != -ERESTARTSYS)
1890 DRM_ERROR("set_domain failed: %d\n", ret);
1891 return ret;
1892 }
1893
1894 if (obj_priv->agp_mem != NULL) {
1895 drm_unbind_agp(obj_priv->agp_mem);
1896 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1897 obj_priv->agp_mem = NULL;
1898 }
1899
1900 BUG_ON(obj_priv->active);
1901
1902 /* blow away mappings if mapped through GTT */
1903 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1904 if (dev->dev_mapping)
1905 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1906
1907 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1908 i915_gem_clear_fence_reg(obj);
1909
1910 i915_gem_object_put_pages(obj);
1911
1912 if (obj_priv->gtt_space) {
1913 atomic_dec(&dev->gtt_count);
1914 atomic_sub(obj->size, &dev->gtt_memory);
1915
1916 drm_mm_put_block(obj_priv->gtt_space);
1917 obj_priv->gtt_space = NULL;
1918 }
1919
1920 /* Remove ourselves from the LRU list if present. */
1921 if (!list_empty(&obj_priv->list))
1922 list_del_init(&obj_priv->list);
1923
1924 return 0;
1925 }
1926
1927 static int
1928 i915_gem_evict_something(struct drm_device *dev)
1929 {
1930 drm_i915_private_t *dev_priv = dev->dev_private;
1931 struct drm_gem_object *obj;
1932 struct drm_i915_gem_object *obj_priv;
1933 int ret = 0;
1934
1935 for (;;) {
1936 /* If there's an inactive buffer available now, grab it
1937 * and be done.
1938 */
1939 if (!list_empty(&dev_priv->mm.inactive_list)) {
1940 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1941 struct drm_i915_gem_object,
1942 list);
1943 obj = obj_priv->obj;
1944 BUG_ON(obj_priv->pin_count != 0);
1945 #if WATCH_LRU
1946 DRM_INFO("%s: evicting %p\n", __func__, obj);
1947 #endif
1948 BUG_ON(obj_priv->active);
1949
1950 /* Wait on the rendering and unbind the buffer. */
1951 ret = i915_gem_object_unbind(obj);
1952 break;
1953 }
1954
1955 /* If we didn't get anything, but the ring is still processing
1956 * things, wait for one of those things to finish and hopefully
1957 * leave us a buffer to evict.
1958 */
1959 if (!list_empty(&dev_priv->mm.request_list)) {
1960 struct drm_i915_gem_request *request;
1961
1962 request = list_first_entry(&dev_priv->mm.request_list,
1963 struct drm_i915_gem_request,
1964 list);
1965
1966 ret = i915_wait_request(dev, request->seqno);
1967 if (ret)
1968 break;
1969
1970 /* if waiting caused an object to become inactive,
1971 * then loop around and wait for it. Otherwise, we
1972 * assume that waiting freed and unbound something,
1973 * so there should now be some space in the GTT
1974 */
1975 if (!list_empty(&dev_priv->mm.inactive_list))
1976 continue;
1977 break;
1978 }
1979
1980 /* If we didn't have anything on the request list but there
1981 * are buffers awaiting a flush, emit one and try again.
1982 * When we wait on it, those buffers waiting for that flush
1983 * will get moved to inactive.
1984 */
1985 if (!list_empty(&dev_priv->mm.flushing_list)) {
1986 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1987 struct drm_i915_gem_object,
1988 list);
1989 obj = obj_priv->obj;
1990
1991 i915_gem_flush(dev,
1992 obj->write_domain,
1993 obj->write_domain);
1994 i915_add_request(dev, NULL, obj->write_domain);
1995
1996 obj = NULL;
1997 continue;
1998 }
1999
2000 DRM_ERROR("inactive empty %d request empty %d "
2001 "flushing empty %d\n",
2002 list_empty(&dev_priv->mm.inactive_list),
2003 list_empty(&dev_priv->mm.request_list),
2004 list_empty(&dev_priv->mm.flushing_list));
2005 /* If we didn't do any of the above, there's nothing to be done
2006 * and we just can't fit it in.
2007 */
2008 return -ENOSPC;
2009 }
2010 return ret;
2011 }
2012
2013 static int
2014 i915_gem_evict_everything(struct drm_device *dev)
2015 {
2016 int ret;
2017
2018 for (;;) {
2019 ret = i915_gem_evict_something(dev);
2020 if (ret != 0)
2021 break;
2022 }
2023 if (ret == -ENOSPC)
2024 return 0;
2025 return ret;
2026 }
2027
2028 int
2029 i915_gem_object_get_pages(struct drm_gem_object *obj)
2030 {
2031 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2032 int page_count, i;
2033 struct address_space *mapping;
2034 struct inode *inode;
2035 struct page *page;
2036 int ret;
2037
2038 if (obj_priv->pages_refcount++ != 0)
2039 return 0;
2040
2041 /* Get the list of pages out of our struct file. They'll be pinned
2042 * at this point until we release them.
2043 */
2044 page_count = obj->size / PAGE_SIZE;
2045 BUG_ON(obj_priv->pages != NULL);
2046 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2047 if (obj_priv->pages == NULL) {
2048 DRM_ERROR("Faled to allocate page list\n");
2049 obj_priv->pages_refcount--;
2050 return -ENOMEM;
2051 }
2052
2053 inode = obj->filp->f_path.dentry->d_inode;
2054 mapping = inode->i_mapping;
2055 for (i = 0; i < page_count; i++) {
2056 page = read_mapping_page(mapping, i, NULL);
2057 if (IS_ERR(page)) {
2058 ret = PTR_ERR(page);
2059 DRM_ERROR("read_mapping_page failed: %d\n", ret);
2060 i915_gem_object_put_pages(obj);
2061 return ret;
2062 }
2063 obj_priv->pages[i] = page;
2064 }
2065
2066 if (obj_priv->tiling_mode != I915_TILING_NONE)
2067 i915_gem_object_do_bit_17_swizzle(obj);
2068
2069 return 0;
2070 }
2071
2072 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2073 {
2074 struct drm_gem_object *obj = reg->obj;
2075 struct drm_device *dev = obj->dev;
2076 drm_i915_private_t *dev_priv = dev->dev_private;
2077 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2078 int regnum = obj_priv->fence_reg;
2079 uint64_t val;
2080
2081 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2082 0xfffff000) << 32;
2083 val |= obj_priv->gtt_offset & 0xfffff000;
2084 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2085 if (obj_priv->tiling_mode == I915_TILING_Y)
2086 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2087 val |= I965_FENCE_REG_VALID;
2088
2089 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2090 }
2091
2092 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2093 {
2094 struct drm_gem_object *obj = reg->obj;
2095 struct drm_device *dev = obj->dev;
2096 drm_i915_private_t *dev_priv = dev->dev_private;
2097 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2098 int regnum = obj_priv->fence_reg;
2099 int tile_width;
2100 uint32_t fence_reg, val;
2101 uint32_t pitch_val;
2102
2103 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2104 (obj_priv->gtt_offset & (obj->size - 1))) {
2105 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2106 __func__, obj_priv->gtt_offset, obj->size);
2107 return;
2108 }
2109
2110 if (obj_priv->tiling_mode == I915_TILING_Y &&
2111 HAS_128_BYTE_Y_TILING(dev))
2112 tile_width = 128;
2113 else
2114 tile_width = 512;
2115
2116 /* Note: pitch better be a power of two tile widths */
2117 pitch_val = obj_priv->stride / tile_width;
2118 pitch_val = ffs(pitch_val) - 1;
2119
2120 val = obj_priv->gtt_offset;
2121 if (obj_priv->tiling_mode == I915_TILING_Y)
2122 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2123 val |= I915_FENCE_SIZE_BITS(obj->size);
2124 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2125 val |= I830_FENCE_REG_VALID;
2126
2127 if (regnum < 8)
2128 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2129 else
2130 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2131 I915_WRITE(fence_reg, val);
2132 }
2133
2134 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2135 {
2136 struct drm_gem_object *obj = reg->obj;
2137 struct drm_device *dev = obj->dev;
2138 drm_i915_private_t *dev_priv = dev->dev_private;
2139 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2140 int regnum = obj_priv->fence_reg;
2141 uint32_t val;
2142 uint32_t pitch_val;
2143 uint32_t fence_size_bits;
2144
2145 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2146 (obj_priv->gtt_offset & (obj->size - 1))) {
2147 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2148 __func__, obj_priv->gtt_offset);
2149 return;
2150 }
2151
2152 pitch_val = obj_priv->stride / 128;
2153 pitch_val = ffs(pitch_val) - 1;
2154 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2155
2156 val = obj_priv->gtt_offset;
2157 if (obj_priv->tiling_mode == I915_TILING_Y)
2158 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2159 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2160 WARN_ON(fence_size_bits & ~0x00000f00);
2161 val |= fence_size_bits;
2162 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2163 val |= I830_FENCE_REG_VALID;
2164
2165 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2166
2167 }
2168
2169 /**
2170 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2171 * @obj: object to map through a fence reg
2172 * @write: object is about to be written
2173 *
2174 * When mapping objects through the GTT, userspace wants to be able to write
2175 * to them without having to worry about swizzling if the object is tiled.
2176 *
2177 * This function walks the fence regs looking for a free one for @obj,
2178 * stealing one if it can't find any.
2179 *
2180 * It then sets up the reg based on the object's properties: address, pitch
2181 * and tiling format.
2182 */
2183 static int
2184 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
2185 {
2186 struct drm_device *dev = obj->dev;
2187 struct drm_i915_private *dev_priv = dev->dev_private;
2188 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2189 struct drm_i915_fence_reg *reg = NULL;
2190 struct drm_i915_gem_object *old_obj_priv = NULL;
2191 int i, ret, avail;
2192
2193 switch (obj_priv->tiling_mode) {
2194 case I915_TILING_NONE:
2195 WARN(1, "allocating a fence for non-tiled object?\n");
2196 break;
2197 case I915_TILING_X:
2198 if (!obj_priv->stride)
2199 return -EINVAL;
2200 WARN((obj_priv->stride & (512 - 1)),
2201 "object 0x%08x is X tiled but has non-512B pitch\n",
2202 obj_priv->gtt_offset);
2203 break;
2204 case I915_TILING_Y:
2205 if (!obj_priv->stride)
2206 return -EINVAL;
2207 WARN((obj_priv->stride & (128 - 1)),
2208 "object 0x%08x is Y tiled but has non-128B pitch\n",
2209 obj_priv->gtt_offset);
2210 break;
2211 }
2212
2213 /* First try to find a free reg */
2214 try_again:
2215 avail = 0;
2216 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2217 reg = &dev_priv->fence_regs[i];
2218 if (!reg->obj)
2219 break;
2220
2221 old_obj_priv = reg->obj->driver_private;
2222 if (!old_obj_priv->pin_count)
2223 avail++;
2224 }
2225
2226 /* None available, try to steal one or wait for a user to finish */
2227 if (i == dev_priv->num_fence_regs) {
2228 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2229 loff_t offset;
2230
2231 if (avail == 0)
2232 return -ENOSPC;
2233
2234 for (i = dev_priv->fence_reg_start;
2235 i < dev_priv->num_fence_regs; i++) {
2236 uint32_t this_seqno;
2237
2238 reg = &dev_priv->fence_regs[i];
2239 old_obj_priv = reg->obj->driver_private;
2240
2241 if (old_obj_priv->pin_count)
2242 continue;
2243
2244 /* i915 uses fences for GPU access to tiled buffers */
2245 if (IS_I965G(dev) || !old_obj_priv->active)
2246 break;
2247
2248 /* find the seqno of the first available fence */
2249 this_seqno = old_obj_priv->last_rendering_seqno;
2250 if (this_seqno != 0 &&
2251 reg->obj->write_domain == 0 &&
2252 i915_seqno_passed(seqno, this_seqno))
2253 seqno = this_seqno;
2254 }
2255
2256 /*
2257 * Now things get ugly... we have to wait for one of the
2258 * objects to finish before trying again.
2259 */
2260 if (i == dev_priv->num_fence_regs) {
2261 if (seqno == dev_priv->mm.next_gem_seqno) {
2262 i915_gem_flush(dev,
2263 I915_GEM_GPU_DOMAINS,
2264 I915_GEM_GPU_DOMAINS);
2265 seqno = i915_add_request(dev, NULL,
2266 I915_GEM_GPU_DOMAINS);
2267 if (seqno == 0)
2268 return -ENOMEM;
2269 }
2270
2271 ret = i915_wait_request(dev, seqno);
2272 if (ret)
2273 return ret;
2274 goto try_again;
2275 }
2276
2277 /*
2278 * Zap this virtual mapping so we can set up a fence again
2279 * for this object next time we need it.
2280 */
2281 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2282 if (dev->dev_mapping)
2283 unmap_mapping_range(dev->dev_mapping, offset,
2284 reg->obj->size, 1);
2285 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2286 }
2287
2288 obj_priv->fence_reg = i;
2289 reg->obj = obj;
2290
2291 if (IS_I965G(dev))
2292 i965_write_fence_reg(reg);
2293 else if (IS_I9XX(dev))
2294 i915_write_fence_reg(reg);
2295 else
2296 i830_write_fence_reg(reg);
2297
2298 return 0;
2299 }
2300
2301 /**
2302 * i915_gem_clear_fence_reg - clear out fence register info
2303 * @obj: object to clear
2304 *
2305 * Zeroes out the fence register itself and clears out the associated
2306 * data structures in dev_priv and obj_priv.
2307 */
2308 static void
2309 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2310 {
2311 struct drm_device *dev = obj->dev;
2312 drm_i915_private_t *dev_priv = dev->dev_private;
2313 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2314
2315 if (IS_I965G(dev))
2316 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2317 else {
2318 uint32_t fence_reg;
2319
2320 if (obj_priv->fence_reg < 8)
2321 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2322 else
2323 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2324 8) * 4;
2325
2326 I915_WRITE(fence_reg, 0);
2327 }
2328
2329 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2330 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2331 }
2332
2333 /**
2334 * Finds free space in the GTT aperture and binds the object there.
2335 */
2336 static int
2337 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2338 {
2339 struct drm_device *dev = obj->dev;
2340 drm_i915_private_t *dev_priv = dev->dev_private;
2341 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2342 struct drm_mm_node *free_space;
2343 int page_count, ret;
2344
2345 if (dev_priv->mm.suspended)
2346 return -EBUSY;
2347 if (alignment == 0)
2348 alignment = i915_gem_get_gtt_alignment(obj);
2349 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2350 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2351 return -EINVAL;
2352 }
2353
2354 search_free:
2355 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2356 obj->size, alignment, 0);
2357 if (free_space != NULL) {
2358 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2359 alignment);
2360 if (obj_priv->gtt_space != NULL) {
2361 obj_priv->gtt_space->private = obj;
2362 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2363 }
2364 }
2365 if (obj_priv->gtt_space == NULL) {
2366 bool lists_empty;
2367
2368 /* If the gtt is empty and we're still having trouble
2369 * fitting our object in, we're out of memory.
2370 */
2371 #if WATCH_LRU
2372 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2373 #endif
2374 spin_lock(&dev_priv->mm.active_list_lock);
2375 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2376 list_empty(&dev_priv->mm.flushing_list) &&
2377 list_empty(&dev_priv->mm.active_list));
2378 spin_unlock(&dev_priv->mm.active_list_lock);
2379 if (lists_empty) {
2380 DRM_ERROR("GTT full, but LRU list empty\n");
2381 return -ENOSPC;
2382 }
2383
2384 ret = i915_gem_evict_something(dev);
2385 if (ret != 0) {
2386 if (ret != -ERESTARTSYS)
2387 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2388 return ret;
2389 }
2390 goto search_free;
2391 }
2392
2393 #if WATCH_BUF
2394 DRM_INFO("Binding object of size %d at 0x%08x\n",
2395 obj->size, obj_priv->gtt_offset);
2396 #endif
2397 ret = i915_gem_object_get_pages(obj);
2398 if (ret) {
2399 drm_mm_put_block(obj_priv->gtt_space);
2400 obj_priv->gtt_space = NULL;
2401 return ret;
2402 }
2403
2404 page_count = obj->size / PAGE_SIZE;
2405 /* Create an AGP memory structure pointing at our pages, and bind it
2406 * into the GTT.
2407 */
2408 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2409 obj_priv->pages,
2410 page_count,
2411 obj_priv->gtt_offset,
2412 obj_priv->agp_type);
2413 if (obj_priv->agp_mem == NULL) {
2414 i915_gem_object_put_pages(obj);
2415 drm_mm_put_block(obj_priv->gtt_space);
2416 obj_priv->gtt_space = NULL;
2417 return -ENOMEM;
2418 }
2419 atomic_inc(&dev->gtt_count);
2420 atomic_add(obj->size, &dev->gtt_memory);
2421
2422 /* Assert that the object is not currently in any GPU domain. As it
2423 * wasn't in the GTT, there shouldn't be any way it could have been in
2424 * a GPU cache
2425 */
2426 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2427 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2428
2429 return 0;
2430 }
2431
2432 void
2433 i915_gem_clflush_object(struct drm_gem_object *obj)
2434 {
2435 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2436
2437 /* If we don't have a page list set up, then we're not pinned
2438 * to GPU, and we can ignore the cache flush because it'll happen
2439 * again at bind time.
2440 */
2441 if (obj_priv->pages == NULL)
2442 return;
2443
2444 /* XXX: The 865 in particular appears to be weird in how it handles
2445 * cache flushing. We haven't figured it out, but the
2446 * clflush+agp_chipset_flush doesn't appear to successfully get the
2447 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2448 */
2449 if (IS_I865G(obj->dev)) {
2450 wbinvd();
2451 return;
2452 }
2453
2454 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2455 }
2456
2457 /** Flushes any GPU write domain for the object if it's dirty. */
2458 static void
2459 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2460 {
2461 struct drm_device *dev = obj->dev;
2462 uint32_t seqno;
2463
2464 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2465 return;
2466
2467 /* Queue the GPU write cache flushing we need. */
2468 i915_gem_flush(dev, 0, obj->write_domain);
2469 seqno = i915_add_request(dev, NULL, obj->write_domain);
2470 obj->write_domain = 0;
2471 i915_gem_object_move_to_active(obj, seqno);
2472 }
2473
2474 /** Flushes the GTT write domain for the object if it's dirty. */
2475 static void
2476 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2477 {
2478 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2479 return;
2480
2481 /* No actual flushing is required for the GTT write domain. Writes
2482 * to it immediately go to main memory as far as we know, so there's
2483 * no chipset flush. It also doesn't land in render cache.
2484 */
2485 obj->write_domain = 0;
2486 }
2487
2488 /** Flushes the CPU write domain for the object if it's dirty. */
2489 static void
2490 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2491 {
2492 struct drm_device *dev = obj->dev;
2493
2494 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2495 return;
2496
2497 i915_gem_clflush_object(obj);
2498 drm_agp_chipset_flush(dev);
2499 obj->write_domain = 0;
2500 }
2501
2502 /**
2503 * Moves a single object to the GTT read, and possibly write domain.
2504 *
2505 * This function returns when the move is complete, including waiting on
2506 * flushes to occur.
2507 */
2508 int
2509 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2510 {
2511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2512 int ret;
2513
2514 /* Not valid to be called on unbound objects. */
2515 if (obj_priv->gtt_space == NULL)
2516 return -EINVAL;
2517
2518 i915_gem_object_flush_gpu_write_domain(obj);
2519 /* Wait on any GPU rendering and flushing to occur. */
2520 ret = i915_gem_object_wait_rendering(obj);
2521 if (ret != 0)
2522 return ret;
2523
2524 /* If we're writing through the GTT domain, then CPU and GPU caches
2525 * will need to be invalidated at next use.
2526 */
2527 if (write)
2528 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2529
2530 i915_gem_object_flush_cpu_write_domain(obj);
2531
2532 /* It should now be out of any other write domains, and we can update
2533 * the domain values for our changes.
2534 */
2535 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2536 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2537 if (write) {
2538 obj->write_domain = I915_GEM_DOMAIN_GTT;
2539 obj_priv->dirty = 1;
2540 }
2541
2542 return 0;
2543 }
2544
2545 /**
2546 * Moves a single object to the CPU read, and possibly write domain.
2547 *
2548 * This function returns when the move is complete, including waiting on
2549 * flushes to occur.
2550 */
2551 static int
2552 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2553 {
2554 int ret;
2555
2556 i915_gem_object_flush_gpu_write_domain(obj);
2557 /* Wait on any GPU rendering and flushing to occur. */
2558 ret = i915_gem_object_wait_rendering(obj);
2559 if (ret != 0)
2560 return ret;
2561
2562 i915_gem_object_flush_gtt_write_domain(obj);
2563
2564 /* If we have a partially-valid cache of the object in the CPU,
2565 * finish invalidating it and free the per-page flags.
2566 */
2567 i915_gem_object_set_to_full_cpu_read_domain(obj);
2568
2569 /* Flush the CPU cache if it's still invalid. */
2570 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2571 i915_gem_clflush_object(obj);
2572
2573 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2574 }
2575
2576 /* It should now be out of any other write domains, and we can update
2577 * the domain values for our changes.
2578 */
2579 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2580
2581 /* If we're writing through the CPU, then the GPU read domains will
2582 * need to be invalidated at next use.
2583 */
2584 if (write) {
2585 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2586 obj->write_domain = I915_GEM_DOMAIN_CPU;
2587 }
2588
2589 return 0;
2590 }
2591
2592 /*
2593 * Set the next domain for the specified object. This
2594 * may not actually perform the necessary flushing/invaliding though,
2595 * as that may want to be batched with other set_domain operations
2596 *
2597 * This is (we hope) the only really tricky part of gem. The goal
2598 * is fairly simple -- track which caches hold bits of the object
2599 * and make sure they remain coherent. A few concrete examples may
2600 * help to explain how it works. For shorthand, we use the notation
2601 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2602 * a pair of read and write domain masks.
2603 *
2604 * Case 1: the batch buffer
2605 *
2606 * 1. Allocated
2607 * 2. Written by CPU
2608 * 3. Mapped to GTT
2609 * 4. Read by GPU
2610 * 5. Unmapped from GTT
2611 * 6. Freed
2612 *
2613 * Let's take these a step at a time
2614 *
2615 * 1. Allocated
2616 * Pages allocated from the kernel may still have
2617 * cache contents, so we set them to (CPU, CPU) always.
2618 * 2. Written by CPU (using pwrite)
2619 * The pwrite function calls set_domain (CPU, CPU) and
2620 * this function does nothing (as nothing changes)
2621 * 3. Mapped by GTT
2622 * This function asserts that the object is not
2623 * currently in any GPU-based read or write domains
2624 * 4. Read by GPU
2625 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2626 * As write_domain is zero, this function adds in the
2627 * current read domains (CPU+COMMAND, 0).
2628 * flush_domains is set to CPU.
2629 * invalidate_domains is set to COMMAND
2630 * clflush is run to get data out of the CPU caches
2631 * then i915_dev_set_domain calls i915_gem_flush to
2632 * emit an MI_FLUSH and drm_agp_chipset_flush
2633 * 5. Unmapped from GTT
2634 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2635 * flush_domains and invalidate_domains end up both zero
2636 * so no flushing/invalidating happens
2637 * 6. Freed
2638 * yay, done
2639 *
2640 * Case 2: The shared render buffer
2641 *
2642 * 1. Allocated
2643 * 2. Mapped to GTT
2644 * 3. Read/written by GPU
2645 * 4. set_domain to (CPU,CPU)
2646 * 5. Read/written by CPU
2647 * 6. Read/written by GPU
2648 *
2649 * 1. Allocated
2650 * Same as last example, (CPU, CPU)
2651 * 2. Mapped to GTT
2652 * Nothing changes (assertions find that it is not in the GPU)
2653 * 3. Read/written by GPU
2654 * execbuffer calls set_domain (RENDER, RENDER)
2655 * flush_domains gets CPU
2656 * invalidate_domains gets GPU
2657 * clflush (obj)
2658 * MI_FLUSH and drm_agp_chipset_flush
2659 * 4. set_domain (CPU, CPU)
2660 * flush_domains gets GPU
2661 * invalidate_domains gets CPU
2662 * wait_rendering (obj) to make sure all drawing is complete.
2663 * This will include an MI_FLUSH to get the data from GPU
2664 * to memory
2665 * clflush (obj) to invalidate the CPU cache
2666 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2667 * 5. Read/written by CPU
2668 * cache lines are loaded and dirtied
2669 * 6. Read written by GPU
2670 * Same as last GPU access
2671 *
2672 * Case 3: The constant buffer
2673 *
2674 * 1. Allocated
2675 * 2. Written by CPU
2676 * 3. Read by GPU
2677 * 4. Updated (written) by CPU again
2678 * 5. Read by GPU
2679 *
2680 * 1. Allocated
2681 * (CPU, CPU)
2682 * 2. Written by CPU
2683 * (CPU, CPU)
2684 * 3. Read by GPU
2685 * (CPU+RENDER, 0)
2686 * flush_domains = CPU
2687 * invalidate_domains = RENDER
2688 * clflush (obj)
2689 * MI_FLUSH
2690 * drm_agp_chipset_flush
2691 * 4. Updated (written) by CPU again
2692 * (CPU, CPU)
2693 * flush_domains = 0 (no previous write domain)
2694 * invalidate_domains = 0 (no new read domains)
2695 * 5. Read by GPU
2696 * (CPU+RENDER, 0)
2697 * flush_domains = CPU
2698 * invalidate_domains = RENDER
2699 * clflush (obj)
2700 * MI_FLUSH
2701 * drm_agp_chipset_flush
2702 */
2703 static void
2704 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2705 {
2706 struct drm_device *dev = obj->dev;
2707 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2708 uint32_t invalidate_domains = 0;
2709 uint32_t flush_domains = 0;
2710
2711 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2712 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2713
2714 #if WATCH_BUF
2715 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2716 __func__, obj,
2717 obj->read_domains, obj->pending_read_domains,
2718 obj->write_domain, obj->pending_write_domain);
2719 #endif
2720 /*
2721 * If the object isn't moving to a new write domain,
2722 * let the object stay in multiple read domains
2723 */
2724 if (obj->pending_write_domain == 0)
2725 obj->pending_read_domains |= obj->read_domains;
2726 else
2727 obj_priv->dirty = 1;
2728
2729 /*
2730 * Flush the current write domain if
2731 * the new read domains don't match. Invalidate
2732 * any read domains which differ from the old
2733 * write domain
2734 */
2735 if (obj->write_domain &&
2736 obj->write_domain != obj->pending_read_domains) {
2737 flush_domains |= obj->write_domain;
2738 invalidate_domains |=
2739 obj->pending_read_domains & ~obj->write_domain;
2740 }
2741 /*
2742 * Invalidate any read caches which may have
2743 * stale data. That is, any new read domains.
2744 */
2745 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2746 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2747 #if WATCH_BUF
2748 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2749 __func__, flush_domains, invalidate_domains);
2750 #endif
2751 i915_gem_clflush_object(obj);
2752 }
2753
2754 /* The actual obj->write_domain will be updated with
2755 * pending_write_domain after we emit the accumulated flush for all
2756 * of our domain changes in execbuffers (which clears objects'
2757 * write_domains). So if we have a current write domain that we
2758 * aren't changing, set pending_write_domain to that.
2759 */
2760 if (flush_domains == 0 && obj->pending_write_domain == 0)
2761 obj->pending_write_domain = obj->write_domain;
2762 obj->read_domains = obj->pending_read_domains;
2763
2764 dev->invalidate_domains |= invalidate_domains;
2765 dev->flush_domains |= flush_domains;
2766 #if WATCH_BUF
2767 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2768 __func__,
2769 obj->read_domains, obj->write_domain,
2770 dev->invalidate_domains, dev->flush_domains);
2771 #endif
2772 }
2773
2774 /**
2775 * Moves the object from a partially CPU read to a full one.
2776 *
2777 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2778 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2779 */
2780 static void
2781 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2782 {
2783 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2784
2785 if (!obj_priv->page_cpu_valid)
2786 return;
2787
2788 /* If we're partially in the CPU read domain, finish moving it in.
2789 */
2790 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2791 int i;
2792
2793 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2794 if (obj_priv->page_cpu_valid[i])
2795 continue;
2796 drm_clflush_pages(obj_priv->pages + i, 1);
2797 }
2798 }
2799
2800 /* Free the page_cpu_valid mappings which are now stale, whether
2801 * or not we've got I915_GEM_DOMAIN_CPU.
2802 */
2803 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2804 DRM_MEM_DRIVER);
2805 obj_priv->page_cpu_valid = NULL;
2806 }
2807
2808 /**
2809 * Set the CPU read domain on a range of the object.
2810 *
2811 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2812 * not entirely valid. The page_cpu_valid member of the object flags which
2813 * pages have been flushed, and will be respected by
2814 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2815 * of the whole object.
2816 *
2817 * This function returns when the move is complete, including waiting on
2818 * flushes to occur.
2819 */
2820 static int
2821 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2822 uint64_t offset, uint64_t size)
2823 {
2824 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2825 int i, ret;
2826
2827 if (offset == 0 && size == obj->size)
2828 return i915_gem_object_set_to_cpu_domain(obj, 0);
2829
2830 i915_gem_object_flush_gpu_write_domain(obj);
2831 /* Wait on any GPU rendering and flushing to occur. */
2832 ret = i915_gem_object_wait_rendering(obj);
2833 if (ret != 0)
2834 return ret;
2835 i915_gem_object_flush_gtt_write_domain(obj);
2836
2837 /* If we're already fully in the CPU read domain, we're done. */
2838 if (obj_priv->page_cpu_valid == NULL &&
2839 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2840 return 0;
2841
2842 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2843 * newly adding I915_GEM_DOMAIN_CPU
2844 */
2845 if (obj_priv->page_cpu_valid == NULL) {
2846 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2847 DRM_MEM_DRIVER);
2848 if (obj_priv->page_cpu_valid == NULL)
2849 return -ENOMEM;
2850 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2851 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2852
2853 /* Flush the cache on any pages that are still invalid from the CPU's
2854 * perspective.
2855 */
2856 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2857 i++) {
2858 if (obj_priv->page_cpu_valid[i])
2859 continue;
2860
2861 drm_clflush_pages(obj_priv->pages + i, 1);
2862
2863 obj_priv->page_cpu_valid[i] = 1;
2864 }
2865
2866 /* It should now be out of any other write domains, and we can update
2867 * the domain values for our changes.
2868 */
2869 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2870
2871 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2872
2873 return 0;
2874 }
2875
2876 /**
2877 * Pin an object to the GTT and evaluate the relocations landing in it.
2878 */
2879 static int
2880 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2881 struct drm_file *file_priv,
2882 struct drm_i915_gem_exec_object *entry,
2883 struct drm_i915_gem_relocation_entry *relocs)
2884 {
2885 struct drm_device *dev = obj->dev;
2886 drm_i915_private_t *dev_priv = dev->dev_private;
2887 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2888 int i, ret;
2889 void __iomem *reloc_page;
2890
2891 /* Choose the GTT offset for our buffer and put it there. */
2892 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2893 if (ret)
2894 return ret;
2895
2896 entry->offset = obj_priv->gtt_offset;
2897
2898 /* Apply the relocations, using the GTT aperture to avoid cache
2899 * flushing requirements.
2900 */
2901 for (i = 0; i < entry->relocation_count; i++) {
2902 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2903 struct drm_gem_object *target_obj;
2904 struct drm_i915_gem_object *target_obj_priv;
2905 uint32_t reloc_val, reloc_offset;
2906 uint32_t __iomem *reloc_entry;
2907
2908 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2909 reloc->target_handle);
2910 if (target_obj == NULL) {
2911 i915_gem_object_unpin(obj);
2912 return -EBADF;
2913 }
2914 target_obj_priv = target_obj->driver_private;
2915
2916 /* The target buffer should have appeared before us in the
2917 * exec_object list, so it should have a GTT space bound by now.
2918 */
2919 if (target_obj_priv->gtt_space == NULL) {
2920 DRM_ERROR("No GTT space found for object %d\n",
2921 reloc->target_handle);
2922 drm_gem_object_unreference(target_obj);
2923 i915_gem_object_unpin(obj);
2924 return -EINVAL;
2925 }
2926
2927 if (reloc->offset > obj->size - 4) {
2928 DRM_ERROR("Relocation beyond object bounds: "
2929 "obj %p target %d offset %d size %d.\n",
2930 obj, reloc->target_handle,
2931 (int) reloc->offset, (int) obj->size);
2932 drm_gem_object_unreference(target_obj);
2933 i915_gem_object_unpin(obj);
2934 return -EINVAL;
2935 }
2936 if (reloc->offset & 3) {
2937 DRM_ERROR("Relocation not 4-byte aligned: "
2938 "obj %p target %d offset %d.\n",
2939 obj, reloc->target_handle,
2940 (int) reloc->offset);
2941 drm_gem_object_unreference(target_obj);
2942 i915_gem_object_unpin(obj);
2943 return -EINVAL;
2944 }
2945
2946 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2947 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2948 DRM_ERROR("reloc with read/write CPU domains: "
2949 "obj %p target %d offset %d "
2950 "read %08x write %08x",
2951 obj, reloc->target_handle,
2952 (int) reloc->offset,
2953 reloc->read_domains,
2954 reloc->write_domain);
2955 drm_gem_object_unreference(target_obj);
2956 i915_gem_object_unpin(obj);
2957 return -EINVAL;
2958 }
2959
2960 if (reloc->write_domain && target_obj->pending_write_domain &&
2961 reloc->write_domain != target_obj->pending_write_domain) {
2962 DRM_ERROR("Write domain conflict: "
2963 "obj %p target %d offset %d "
2964 "new %08x old %08x\n",
2965 obj, reloc->target_handle,
2966 (int) reloc->offset,
2967 reloc->write_domain,
2968 target_obj->pending_write_domain);
2969 drm_gem_object_unreference(target_obj);
2970 i915_gem_object_unpin(obj);
2971 return -EINVAL;
2972 }
2973
2974 #if WATCH_RELOC
2975 DRM_INFO("%s: obj %p offset %08x target %d "
2976 "read %08x write %08x gtt %08x "
2977 "presumed %08x delta %08x\n",
2978 __func__,
2979 obj,
2980 (int) reloc->offset,
2981 (int) reloc->target_handle,
2982 (int) reloc->read_domains,
2983 (int) reloc->write_domain,
2984 (int) target_obj_priv->gtt_offset,
2985 (int) reloc->presumed_offset,
2986 reloc->delta);
2987 #endif
2988
2989 target_obj->pending_read_domains |= reloc->read_domains;
2990 target_obj->pending_write_domain |= reloc->write_domain;
2991
2992 /* If the relocation already has the right value in it, no
2993 * more work needs to be done.
2994 */
2995 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
2996 drm_gem_object_unreference(target_obj);
2997 continue;
2998 }
2999
3000 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3001 if (ret != 0) {
3002 drm_gem_object_unreference(target_obj);
3003 i915_gem_object_unpin(obj);
3004 return -EINVAL;
3005 }
3006
3007 /* Map the page containing the relocation we're going to
3008 * perform.
3009 */
3010 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3011 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3012 (reloc_offset &
3013 ~(PAGE_SIZE - 1)));
3014 reloc_entry = (uint32_t __iomem *)(reloc_page +
3015 (reloc_offset & (PAGE_SIZE - 1)));
3016 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3017
3018 #if WATCH_BUF
3019 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3020 obj, (unsigned int) reloc->offset,
3021 readl(reloc_entry), reloc_val);
3022 #endif
3023 writel(reloc_val, reloc_entry);
3024 io_mapping_unmap_atomic(reloc_page);
3025
3026 /* The updated presumed offset for this entry will be
3027 * copied back out to the user.
3028 */
3029 reloc->presumed_offset = target_obj_priv->gtt_offset;
3030
3031 drm_gem_object_unreference(target_obj);
3032 }
3033
3034 #if WATCH_BUF
3035 if (0)
3036 i915_gem_dump_object(obj, 128, __func__, ~0);
3037 #endif
3038 return 0;
3039 }
3040
3041 /** Dispatch a batchbuffer to the ring
3042 */
3043 static int
3044 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3045 struct drm_i915_gem_execbuffer *exec,
3046 struct drm_clip_rect *cliprects,
3047 uint64_t exec_offset)
3048 {
3049 drm_i915_private_t *dev_priv = dev->dev_private;
3050 int nbox = exec->num_cliprects;
3051 int i = 0, count;
3052 uint32_t exec_start, exec_len;
3053 RING_LOCALS;
3054
3055 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3056 exec_len = (uint32_t) exec->batch_len;
3057
3058 count = nbox ? nbox : 1;
3059
3060 for (i = 0; i < count; i++) {
3061 if (i < nbox) {
3062 int ret = i915_emit_box(dev, cliprects, i,
3063 exec->DR1, exec->DR4);
3064 if (ret)
3065 return ret;
3066 }
3067
3068 if (IS_I830(dev) || IS_845G(dev)) {
3069 BEGIN_LP_RING(4);
3070 OUT_RING(MI_BATCH_BUFFER);
3071 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3072 OUT_RING(exec_start + exec_len - 4);
3073 OUT_RING(0);
3074 ADVANCE_LP_RING();
3075 } else {
3076 BEGIN_LP_RING(2);
3077 if (IS_I965G(dev)) {
3078 OUT_RING(MI_BATCH_BUFFER_START |
3079 (2 << 6) |
3080 MI_BATCH_NON_SECURE_I965);
3081 OUT_RING(exec_start);
3082 } else {
3083 OUT_RING(MI_BATCH_BUFFER_START |
3084 (2 << 6));
3085 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3086 }
3087 ADVANCE_LP_RING();
3088 }
3089 }
3090
3091 /* XXX breadcrumb */
3092 return 0;
3093 }
3094
3095 /* Throttle our rendering by waiting until the ring has completed our requests
3096 * emitted over 20 msec ago.
3097 *
3098 * Note that if we were to use the current jiffies each time around the loop,
3099 * we wouldn't escape the function with any frames outstanding if the time to
3100 * render a frame was over 20ms.
3101 *
3102 * This should get us reasonable parallelism between CPU and GPU but also
3103 * relatively low latency when blocking on a particular request to finish.
3104 */
3105 static int
3106 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3107 {
3108 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3109 int ret = 0;
3110 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3111
3112 mutex_lock(&dev->struct_mutex);
3113 while (!list_empty(&i915_file_priv->mm.request_list)) {
3114 struct drm_i915_gem_request *request;
3115
3116 request = list_first_entry(&i915_file_priv->mm.request_list,
3117 struct drm_i915_gem_request,
3118 client_list);
3119
3120 if (time_after_eq(request->emitted_jiffies, recent_enough))
3121 break;
3122
3123 ret = i915_wait_request(dev, request->seqno);
3124 if (ret != 0)
3125 break;
3126 }
3127 mutex_unlock(&dev->struct_mutex);
3128
3129 return ret;
3130 }
3131
3132 static int
3133 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3134 uint32_t buffer_count,
3135 struct drm_i915_gem_relocation_entry **relocs)
3136 {
3137 uint32_t reloc_count = 0, reloc_index = 0, i;
3138 int ret;
3139
3140 *relocs = NULL;
3141 for (i = 0; i < buffer_count; i++) {
3142 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3143 return -EINVAL;
3144 reloc_count += exec_list[i].relocation_count;
3145 }
3146
3147 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3148 if (*relocs == NULL)
3149 return -ENOMEM;
3150
3151 for (i = 0; i < buffer_count; i++) {
3152 struct drm_i915_gem_relocation_entry __user *user_relocs;
3153
3154 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3155
3156 ret = copy_from_user(&(*relocs)[reloc_index],
3157 user_relocs,
3158 exec_list[i].relocation_count *
3159 sizeof(**relocs));
3160 if (ret != 0) {
3161 drm_free_large(*relocs);
3162 *relocs = NULL;
3163 return -EFAULT;
3164 }
3165
3166 reloc_index += exec_list[i].relocation_count;
3167 }
3168
3169 return 0;
3170 }
3171
3172 static int
3173 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3174 uint32_t buffer_count,
3175 struct drm_i915_gem_relocation_entry *relocs)
3176 {
3177 uint32_t reloc_count = 0, i;
3178 int ret = 0;
3179
3180 for (i = 0; i < buffer_count; i++) {
3181 struct drm_i915_gem_relocation_entry __user *user_relocs;
3182 int unwritten;
3183
3184 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3185
3186 unwritten = copy_to_user(user_relocs,
3187 &relocs[reloc_count],
3188 exec_list[i].relocation_count *
3189 sizeof(*relocs));
3190
3191 if (unwritten) {
3192 ret = -EFAULT;
3193 goto err;
3194 }
3195
3196 reloc_count += exec_list[i].relocation_count;
3197 }
3198
3199 err:
3200 drm_free_large(relocs);
3201
3202 return ret;
3203 }
3204
3205 static int
3206 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3207 uint64_t exec_offset)
3208 {
3209 uint32_t exec_start, exec_len;
3210
3211 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3212 exec_len = (uint32_t) exec->batch_len;
3213
3214 if ((exec_start | exec_len) & 0x7)
3215 return -EINVAL;
3216
3217 if (!exec_start)
3218 return -EINVAL;
3219
3220 return 0;
3221 }
3222
3223 int
3224 i915_gem_execbuffer(struct drm_device *dev, void *data,
3225 struct drm_file *file_priv)
3226 {
3227 drm_i915_private_t *dev_priv = dev->dev_private;
3228 struct drm_i915_gem_execbuffer *args = data;
3229 struct drm_i915_gem_exec_object *exec_list = NULL;
3230 struct drm_gem_object **object_list = NULL;
3231 struct drm_gem_object *batch_obj;
3232 struct drm_i915_gem_object *obj_priv;
3233 struct drm_clip_rect *cliprects = NULL;
3234 struct drm_i915_gem_relocation_entry *relocs;
3235 int ret, ret2, i, pinned = 0;
3236 uint64_t exec_offset;
3237 uint32_t seqno, flush_domains, reloc_index;
3238 int pin_tries;
3239
3240 #if WATCH_EXEC
3241 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3242 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3243 #endif
3244
3245 if (args->buffer_count < 1) {
3246 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3247 return -EINVAL;
3248 }
3249 /* Copy in the exec list from userland */
3250 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3251 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3252 if (exec_list == NULL || object_list == NULL) {
3253 DRM_ERROR("Failed to allocate exec or object list "
3254 "for %d buffers\n",
3255 args->buffer_count);
3256 ret = -ENOMEM;
3257 goto pre_mutex_err;
3258 }
3259 ret = copy_from_user(exec_list,
3260 (struct drm_i915_relocation_entry __user *)
3261 (uintptr_t) args->buffers_ptr,
3262 sizeof(*exec_list) * args->buffer_count);
3263 if (ret != 0) {
3264 DRM_ERROR("copy %d exec entries failed %d\n",
3265 args->buffer_count, ret);
3266 goto pre_mutex_err;
3267 }
3268
3269 if (args->num_cliprects != 0) {
3270 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3271 DRM_MEM_DRIVER);
3272 if (cliprects == NULL)
3273 goto pre_mutex_err;
3274
3275 ret = copy_from_user(cliprects,
3276 (struct drm_clip_rect __user *)
3277 (uintptr_t) args->cliprects_ptr,
3278 sizeof(*cliprects) * args->num_cliprects);
3279 if (ret != 0) {
3280 DRM_ERROR("copy %d cliprects failed: %d\n",
3281 args->num_cliprects, ret);
3282 goto pre_mutex_err;
3283 }
3284 }
3285
3286 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3287 &relocs);
3288 if (ret != 0)
3289 goto pre_mutex_err;
3290
3291 mutex_lock(&dev->struct_mutex);
3292
3293 i915_verify_inactive(dev, __FILE__, __LINE__);
3294
3295 if (dev_priv->mm.wedged) {
3296 DRM_ERROR("Execbuf while wedged\n");
3297 mutex_unlock(&dev->struct_mutex);
3298 ret = -EIO;
3299 goto pre_mutex_err;
3300 }
3301
3302 if (dev_priv->mm.suspended) {
3303 DRM_ERROR("Execbuf while VT-switched.\n");
3304 mutex_unlock(&dev->struct_mutex);
3305 ret = -EBUSY;
3306 goto pre_mutex_err;
3307 }
3308
3309 /* Look up object handles */
3310 for (i = 0; i < args->buffer_count; i++) {
3311 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3312 exec_list[i].handle);
3313 if (object_list[i] == NULL) {
3314 DRM_ERROR("Invalid object handle %d at index %d\n",
3315 exec_list[i].handle, i);
3316 ret = -EBADF;
3317 goto err;
3318 }
3319
3320 obj_priv = object_list[i]->driver_private;
3321 if (obj_priv->in_execbuffer) {
3322 DRM_ERROR("Object %p appears more than once in object list\n",
3323 object_list[i]);
3324 ret = -EBADF;
3325 goto err;
3326 }
3327 obj_priv->in_execbuffer = true;
3328 }
3329
3330 /* Pin and relocate */
3331 for (pin_tries = 0; ; pin_tries++) {
3332 ret = 0;
3333 reloc_index = 0;
3334
3335 for (i = 0; i < args->buffer_count; i++) {
3336 object_list[i]->pending_read_domains = 0;
3337 object_list[i]->pending_write_domain = 0;
3338 ret = i915_gem_object_pin_and_relocate(object_list[i],
3339 file_priv,
3340 &exec_list[i],
3341 &relocs[reloc_index]);
3342 if (ret)
3343 break;
3344 pinned = i + 1;
3345 reloc_index += exec_list[i].relocation_count;
3346 }
3347 /* success */
3348 if (ret == 0)
3349 break;
3350
3351 /* error other than GTT full, or we've already tried again */
3352 if (ret != -ENOSPC || pin_tries >= 1) {
3353 if (ret != -ERESTARTSYS)
3354 DRM_ERROR("Failed to pin buffers %d\n", ret);
3355 goto err;
3356 }
3357
3358 /* unpin all of our buffers */
3359 for (i = 0; i < pinned; i++)
3360 i915_gem_object_unpin(object_list[i]);
3361 pinned = 0;
3362
3363 /* evict everyone we can from the aperture */
3364 ret = i915_gem_evict_everything(dev);
3365 if (ret)
3366 goto err;
3367 }
3368
3369 /* Set the pending read domains for the batch buffer to COMMAND */
3370 batch_obj = object_list[args->buffer_count-1];
3371 if (batch_obj->pending_write_domain) {
3372 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3373 ret = -EINVAL;
3374 goto err;
3375 }
3376 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3377
3378 /* Sanity check the batch buffer, prior to moving objects */
3379 exec_offset = exec_list[args->buffer_count - 1].offset;
3380 ret = i915_gem_check_execbuffer (args, exec_offset);
3381 if (ret != 0) {
3382 DRM_ERROR("execbuf with invalid offset/length\n");
3383 goto err;
3384 }
3385
3386 i915_verify_inactive(dev, __FILE__, __LINE__);
3387
3388 /* Zero the global flush/invalidate flags. These
3389 * will be modified as new domains are computed
3390 * for each object
3391 */
3392 dev->invalidate_domains = 0;
3393 dev->flush_domains = 0;
3394
3395 for (i = 0; i < args->buffer_count; i++) {
3396 struct drm_gem_object *obj = object_list[i];
3397
3398 /* Compute new gpu domains and update invalidate/flush */
3399 i915_gem_object_set_to_gpu_domain(obj);
3400 }
3401
3402 i915_verify_inactive(dev, __FILE__, __LINE__);
3403
3404 if (dev->invalidate_domains | dev->flush_domains) {
3405 #if WATCH_EXEC
3406 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3407 __func__,
3408 dev->invalidate_domains,
3409 dev->flush_domains);
3410 #endif
3411 i915_gem_flush(dev,
3412 dev->invalidate_domains,
3413 dev->flush_domains);
3414 if (dev->flush_domains)
3415 (void)i915_add_request(dev, file_priv,
3416 dev->flush_domains);
3417 }
3418
3419 for (i = 0; i < args->buffer_count; i++) {
3420 struct drm_gem_object *obj = object_list[i];
3421
3422 obj->write_domain = obj->pending_write_domain;
3423 }
3424
3425 i915_verify_inactive(dev, __FILE__, __LINE__);
3426
3427 #if WATCH_COHERENCY
3428 for (i = 0; i < args->buffer_count; i++) {
3429 i915_gem_object_check_coherency(object_list[i],
3430 exec_list[i].handle);
3431 }
3432 #endif
3433
3434 #if WATCH_EXEC
3435 i915_gem_dump_object(batch_obj,
3436 args->batch_len,
3437 __func__,
3438 ~0);
3439 #endif
3440
3441 /* Exec the batchbuffer */
3442 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3443 if (ret) {
3444 DRM_ERROR("dispatch failed %d\n", ret);
3445 goto err;
3446 }
3447
3448 /*
3449 * Ensure that the commands in the batch buffer are
3450 * finished before the interrupt fires
3451 */
3452 flush_domains = i915_retire_commands(dev);
3453
3454 i915_verify_inactive(dev, __FILE__, __LINE__);
3455
3456 /*
3457 * Get a seqno representing the execution of the current buffer,
3458 * which we can wait on. We would like to mitigate these interrupts,
3459 * likely by only creating seqnos occasionally (so that we have
3460 * *some* interrupts representing completion of buffers that we can
3461 * wait on when trying to clear up gtt space).
3462 */
3463 seqno = i915_add_request(dev, file_priv, flush_domains);
3464 BUG_ON(seqno == 0);
3465 for (i = 0; i < args->buffer_count; i++) {
3466 struct drm_gem_object *obj = object_list[i];
3467
3468 i915_gem_object_move_to_active(obj, seqno);
3469 #if WATCH_LRU
3470 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3471 #endif
3472 }
3473 #if WATCH_LRU
3474 i915_dump_lru(dev, __func__);
3475 #endif
3476
3477 i915_verify_inactive(dev, __FILE__, __LINE__);
3478
3479 err:
3480 for (i = 0; i < pinned; i++)
3481 i915_gem_object_unpin(object_list[i]);
3482
3483 for (i = 0; i < args->buffer_count; i++) {
3484 if (object_list[i]) {
3485 obj_priv = object_list[i]->driver_private;
3486 obj_priv->in_execbuffer = false;
3487 }
3488 drm_gem_object_unreference(object_list[i]);
3489 }
3490
3491 mutex_unlock(&dev->struct_mutex);
3492
3493 if (!ret) {
3494 /* Copy the new buffer offsets back to the user's exec list. */
3495 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3496 (uintptr_t) args->buffers_ptr,
3497 exec_list,
3498 sizeof(*exec_list) * args->buffer_count);
3499 if (ret) {
3500 ret = -EFAULT;
3501 DRM_ERROR("failed to copy %d exec entries "
3502 "back to user (%d)\n",
3503 args->buffer_count, ret);
3504 }
3505 }
3506
3507 /* Copy the updated relocations out regardless of current error
3508 * state. Failure to update the relocs would mean that the next
3509 * time userland calls execbuf, it would do so with presumed offset
3510 * state that didn't match the actual object state.
3511 */
3512 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3513 relocs);
3514 if (ret2 != 0) {
3515 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3516
3517 if (ret == 0)
3518 ret = ret2;
3519 }
3520
3521 pre_mutex_err:
3522 drm_free_large(object_list);
3523 drm_free_large(exec_list);
3524 drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3525 DRM_MEM_DRIVER);
3526
3527 return ret;
3528 }
3529
3530 int
3531 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3532 {
3533 struct drm_device *dev = obj->dev;
3534 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3535 int ret;
3536
3537 i915_verify_inactive(dev, __FILE__, __LINE__);
3538 if (obj_priv->gtt_space == NULL) {
3539 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3540 if (ret != 0) {
3541 if (ret != -EBUSY && ret != -ERESTARTSYS)
3542 DRM_ERROR("Failure to bind: %d\n", ret);
3543 return ret;
3544 }
3545 }
3546 /*
3547 * Pre-965 chips need a fence register set up in order to
3548 * properly handle tiled surfaces.
3549 */
3550 if (!IS_I965G(dev) &&
3551 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3552 obj_priv->tiling_mode != I915_TILING_NONE) {
3553 ret = i915_gem_object_get_fence_reg(obj, true);
3554 if (ret != 0) {
3555 if (ret != -EBUSY && ret != -ERESTARTSYS)
3556 DRM_ERROR("Failure to install fence: %d\n",
3557 ret);
3558 return ret;
3559 }
3560 }
3561 obj_priv->pin_count++;
3562
3563 /* If the object is not active and not pending a flush,
3564 * remove it from the inactive list
3565 */
3566 if (obj_priv->pin_count == 1) {
3567 atomic_inc(&dev->pin_count);
3568 atomic_add(obj->size, &dev->pin_memory);
3569 if (!obj_priv->active &&
3570 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3571 !list_empty(&obj_priv->list))
3572 list_del_init(&obj_priv->list);
3573 }
3574 i915_verify_inactive(dev, __FILE__, __LINE__);
3575
3576 return 0;
3577 }
3578
3579 void
3580 i915_gem_object_unpin(struct drm_gem_object *obj)
3581 {
3582 struct drm_device *dev = obj->dev;
3583 drm_i915_private_t *dev_priv = dev->dev_private;
3584 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3585
3586 i915_verify_inactive(dev, __FILE__, __LINE__);
3587 obj_priv->pin_count--;
3588 BUG_ON(obj_priv->pin_count < 0);
3589 BUG_ON(obj_priv->gtt_space == NULL);
3590
3591 /* If the object is no longer pinned, and is
3592 * neither active nor being flushed, then stick it on
3593 * the inactive list
3594 */
3595 if (obj_priv->pin_count == 0) {
3596 if (!obj_priv->active &&
3597 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3598 list_move_tail(&obj_priv->list,
3599 &dev_priv->mm.inactive_list);
3600 atomic_dec(&dev->pin_count);
3601 atomic_sub(obj->size, &dev->pin_memory);
3602 }
3603 i915_verify_inactive(dev, __FILE__, __LINE__);
3604 }
3605
3606 int
3607 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3608 struct drm_file *file_priv)
3609 {
3610 struct drm_i915_gem_pin *args = data;
3611 struct drm_gem_object *obj;
3612 struct drm_i915_gem_object *obj_priv;
3613 int ret;
3614
3615 mutex_lock(&dev->struct_mutex);
3616
3617 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3618 if (obj == NULL) {
3619 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3620 args->handle);
3621 mutex_unlock(&dev->struct_mutex);
3622 return -EBADF;
3623 }
3624 obj_priv = obj->driver_private;
3625
3626 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3627 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3628 args->handle);
3629 drm_gem_object_unreference(obj);
3630 mutex_unlock(&dev->struct_mutex);
3631 return -EINVAL;
3632 }
3633
3634 obj_priv->user_pin_count++;
3635 obj_priv->pin_filp = file_priv;
3636 if (obj_priv->user_pin_count == 1) {
3637 ret = i915_gem_object_pin(obj, args->alignment);
3638 if (ret != 0) {
3639 drm_gem_object_unreference(obj);
3640 mutex_unlock(&dev->struct_mutex);
3641 return ret;
3642 }
3643 }
3644
3645 /* XXX - flush the CPU caches for pinned objects
3646 * as the X server doesn't manage domains yet
3647 */
3648 i915_gem_object_flush_cpu_write_domain(obj);
3649 args->offset = obj_priv->gtt_offset;
3650 drm_gem_object_unreference(obj);
3651 mutex_unlock(&dev->struct_mutex);
3652
3653 return 0;
3654 }
3655
3656 int
3657 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3658 struct drm_file *file_priv)
3659 {
3660 struct drm_i915_gem_pin *args = data;
3661 struct drm_gem_object *obj;
3662 struct drm_i915_gem_object *obj_priv;
3663
3664 mutex_lock(&dev->struct_mutex);
3665
3666 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3667 if (obj == NULL) {
3668 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3669 args->handle);
3670 mutex_unlock(&dev->struct_mutex);
3671 return -EBADF;
3672 }
3673
3674 obj_priv = obj->driver_private;
3675 if (obj_priv->pin_filp != file_priv) {
3676 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3677 args->handle);
3678 drm_gem_object_unreference(obj);
3679 mutex_unlock(&dev->struct_mutex);
3680 return -EINVAL;
3681 }
3682 obj_priv->user_pin_count--;
3683 if (obj_priv->user_pin_count == 0) {
3684 obj_priv->pin_filp = NULL;
3685 i915_gem_object_unpin(obj);
3686 }
3687
3688 drm_gem_object_unreference(obj);
3689 mutex_unlock(&dev->struct_mutex);
3690 return 0;
3691 }
3692
3693 int
3694 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3695 struct drm_file *file_priv)
3696 {
3697 struct drm_i915_gem_busy *args = data;
3698 struct drm_gem_object *obj;
3699 struct drm_i915_gem_object *obj_priv;
3700
3701 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3702 if (obj == NULL) {
3703 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3704 args->handle);
3705 return -EBADF;
3706 }
3707
3708 mutex_lock(&dev->struct_mutex);
3709 /* Update the active list for the hardware's current position.
3710 * Otherwise this only updates on a delayed timer or when irqs are
3711 * actually unmasked, and our working set ends up being larger than
3712 * required.
3713 */
3714 i915_gem_retire_requests(dev);
3715
3716 obj_priv = obj->driver_private;
3717 /* Don't count being on the flushing list against the object being
3718 * done. Otherwise, a buffer left on the flushing list but not getting
3719 * flushed (because nobody's flushing that domain) won't ever return
3720 * unbusy and get reused by libdrm's bo cache. The other expected
3721 * consumer of this interface, OpenGL's occlusion queries, also specs
3722 * that the objects get unbusy "eventually" without any interference.
3723 */
3724 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3725
3726 drm_gem_object_unreference(obj);
3727 mutex_unlock(&dev->struct_mutex);
3728 return 0;
3729 }
3730
3731 int
3732 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3733 struct drm_file *file_priv)
3734 {
3735 return i915_gem_ring_throttle(dev, file_priv);
3736 }
3737
3738 int i915_gem_init_object(struct drm_gem_object *obj)
3739 {
3740 struct drm_i915_gem_object *obj_priv;
3741
3742 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3743 if (obj_priv == NULL)
3744 return -ENOMEM;
3745
3746 /*
3747 * We've just allocated pages from the kernel,
3748 * so they've just been written by the CPU with
3749 * zeros. They'll need to be clflushed before we
3750 * use them with the GPU.
3751 */
3752 obj->write_domain = I915_GEM_DOMAIN_CPU;
3753 obj->read_domains = I915_GEM_DOMAIN_CPU;
3754
3755 obj_priv->agp_type = AGP_USER_MEMORY;
3756
3757 obj->driver_private = obj_priv;
3758 obj_priv->obj = obj;
3759 obj_priv->fence_reg = I915_FENCE_REG_NONE;
3760 INIT_LIST_HEAD(&obj_priv->list);
3761
3762 return 0;
3763 }
3764
3765 void i915_gem_free_object(struct drm_gem_object *obj)
3766 {
3767 struct drm_device *dev = obj->dev;
3768 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3769
3770 while (obj_priv->pin_count > 0)
3771 i915_gem_object_unpin(obj);
3772
3773 if (obj_priv->phys_obj)
3774 i915_gem_detach_phys_object(dev, obj);
3775
3776 i915_gem_object_unbind(obj);
3777
3778 i915_gem_free_mmap_offset(obj);
3779
3780 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3781 kfree(obj_priv->bit_17);
3782 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3783 }
3784
3785 /** Unbinds all objects that are on the given buffer list. */
3786 static int
3787 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3788 {
3789 struct drm_gem_object *obj;
3790 struct drm_i915_gem_object *obj_priv;
3791 int ret;
3792
3793 while (!list_empty(head)) {
3794 obj_priv = list_first_entry(head,
3795 struct drm_i915_gem_object,
3796 list);
3797 obj = obj_priv->obj;
3798
3799 if (obj_priv->pin_count != 0) {
3800 DRM_ERROR("Pinned object in unbind list\n");
3801 mutex_unlock(&dev->struct_mutex);
3802 return -EINVAL;
3803 }
3804
3805 ret = i915_gem_object_unbind(obj);
3806 if (ret != 0) {
3807 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3808 ret);
3809 mutex_unlock(&dev->struct_mutex);
3810 return ret;
3811 }
3812 }
3813
3814
3815 return 0;
3816 }
3817
3818 int
3819 i915_gem_idle(struct drm_device *dev)
3820 {
3821 drm_i915_private_t *dev_priv = dev->dev_private;
3822 uint32_t seqno, cur_seqno, last_seqno;
3823 int stuck, ret;
3824
3825 mutex_lock(&dev->struct_mutex);
3826
3827 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3828 mutex_unlock(&dev->struct_mutex);
3829 return 0;
3830 }
3831
3832 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3833 * We need to replace this with a semaphore, or something.
3834 */
3835 dev_priv->mm.suspended = 1;
3836
3837 /* Cancel the retire work handler, wait for it to finish if running
3838 */
3839 mutex_unlock(&dev->struct_mutex);
3840 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3841 mutex_lock(&dev->struct_mutex);
3842
3843 i915_kernel_lost_context(dev);
3844
3845 /* Flush the GPU along with all non-CPU write domains
3846 */
3847 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3848 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3849
3850 if (seqno == 0) {
3851 mutex_unlock(&dev->struct_mutex);
3852 return -ENOMEM;
3853 }
3854
3855 dev_priv->mm.waiting_gem_seqno = seqno;
3856 last_seqno = 0;
3857 stuck = 0;
3858 for (;;) {
3859 cur_seqno = i915_get_gem_seqno(dev);
3860 if (i915_seqno_passed(cur_seqno, seqno))
3861 break;
3862 if (last_seqno == cur_seqno) {
3863 if (stuck++ > 100) {
3864 DRM_ERROR("hardware wedged\n");
3865 dev_priv->mm.wedged = 1;
3866 DRM_WAKEUP(&dev_priv->irq_queue);
3867 break;
3868 }
3869 }
3870 msleep(10);
3871 last_seqno = cur_seqno;
3872 }
3873 dev_priv->mm.waiting_gem_seqno = 0;
3874
3875 i915_gem_retire_requests(dev);
3876
3877 spin_lock(&dev_priv->mm.active_list_lock);
3878 if (!dev_priv->mm.wedged) {
3879 /* Active and flushing should now be empty as we've
3880 * waited for a sequence higher than any pending execbuffer
3881 */
3882 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3883 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3884 /* Request should now be empty as we've also waited
3885 * for the last request in the list
3886 */
3887 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3888 }
3889
3890 /* Empty the active and flushing lists to inactive. If there's
3891 * anything left at this point, it means that we're wedged and
3892 * nothing good's going to happen by leaving them there. So strip
3893 * the GPU domains and just stuff them onto inactive.
3894 */
3895 while (!list_empty(&dev_priv->mm.active_list)) {
3896 struct drm_i915_gem_object *obj_priv;
3897
3898 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3899 struct drm_i915_gem_object,
3900 list);
3901 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3902 i915_gem_object_move_to_inactive(obj_priv->obj);
3903 }
3904 spin_unlock(&dev_priv->mm.active_list_lock);
3905
3906 while (!list_empty(&dev_priv->mm.flushing_list)) {
3907 struct drm_i915_gem_object *obj_priv;
3908
3909 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3910 struct drm_i915_gem_object,
3911 list);
3912 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3913 i915_gem_object_move_to_inactive(obj_priv->obj);
3914 }
3915
3916
3917 /* Move all inactive buffers out of the GTT. */
3918 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3919 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3920 if (ret) {
3921 mutex_unlock(&dev->struct_mutex);
3922 return ret;
3923 }
3924
3925 i915_gem_cleanup_ringbuffer(dev);
3926 mutex_unlock(&dev->struct_mutex);
3927
3928 return 0;
3929 }
3930
3931 static int
3932 i915_gem_init_hws(struct drm_device *dev)
3933 {
3934 drm_i915_private_t *dev_priv = dev->dev_private;
3935 struct drm_gem_object *obj;
3936 struct drm_i915_gem_object *obj_priv;
3937 int ret;
3938
3939 /* If we need a physical address for the status page, it's already
3940 * initialized at driver load time.
3941 */
3942 if (!I915_NEED_GFX_HWS(dev))
3943 return 0;
3944
3945 obj = drm_gem_object_alloc(dev, 4096);
3946 if (obj == NULL) {
3947 DRM_ERROR("Failed to allocate status page\n");
3948 return -ENOMEM;
3949 }
3950 obj_priv = obj->driver_private;
3951 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3952
3953 ret = i915_gem_object_pin(obj, 4096);
3954 if (ret != 0) {
3955 drm_gem_object_unreference(obj);
3956 return ret;
3957 }
3958
3959 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3960
3961 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3962 if (dev_priv->hw_status_page == NULL) {
3963 DRM_ERROR("Failed to map status page.\n");
3964 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3965 i915_gem_object_unpin(obj);
3966 drm_gem_object_unreference(obj);
3967 return -EINVAL;
3968 }
3969 dev_priv->hws_obj = obj;
3970 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3971 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3972 I915_READ(HWS_PGA); /* posting read */
3973 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3974
3975 return 0;
3976 }
3977
3978 static void
3979 i915_gem_cleanup_hws(struct drm_device *dev)
3980 {
3981 drm_i915_private_t *dev_priv = dev->dev_private;
3982 struct drm_gem_object *obj;
3983 struct drm_i915_gem_object *obj_priv;
3984
3985 if (dev_priv->hws_obj == NULL)
3986 return;
3987
3988 obj = dev_priv->hws_obj;
3989 obj_priv = obj->driver_private;
3990
3991 kunmap(obj_priv->pages[0]);
3992 i915_gem_object_unpin(obj);
3993 drm_gem_object_unreference(obj);
3994 dev_priv->hws_obj = NULL;
3995
3996 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3997 dev_priv->hw_status_page = NULL;
3998
3999 /* Write high address into HWS_PGA when disabling. */
4000 I915_WRITE(HWS_PGA, 0x1ffff000);
4001 }
4002
4003 int
4004 i915_gem_init_ringbuffer(struct drm_device *dev)
4005 {
4006 drm_i915_private_t *dev_priv = dev->dev_private;
4007 struct drm_gem_object *obj;
4008 struct drm_i915_gem_object *obj_priv;
4009 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4010 int ret;
4011 u32 head;
4012
4013 ret = i915_gem_init_hws(dev);
4014 if (ret != 0)
4015 return ret;
4016
4017 obj = drm_gem_object_alloc(dev, 128 * 1024);
4018 if (obj == NULL) {
4019 DRM_ERROR("Failed to allocate ringbuffer\n");
4020 i915_gem_cleanup_hws(dev);
4021 return -ENOMEM;
4022 }
4023 obj_priv = obj->driver_private;
4024
4025 ret = i915_gem_object_pin(obj, 4096);
4026 if (ret != 0) {
4027 drm_gem_object_unreference(obj);
4028 i915_gem_cleanup_hws(dev);
4029 return ret;
4030 }
4031
4032 /* Set up the kernel mapping for the ring. */
4033 ring->Size = obj->size;
4034 ring->tail_mask = obj->size - 1;
4035
4036 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4037 ring->map.size = obj->size;
4038 ring->map.type = 0;
4039 ring->map.flags = 0;
4040 ring->map.mtrr = 0;
4041
4042 drm_core_ioremap_wc(&ring->map, dev);
4043 if (ring->map.handle == NULL) {
4044 DRM_ERROR("Failed to map ringbuffer.\n");
4045 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4046 i915_gem_object_unpin(obj);
4047 drm_gem_object_unreference(obj);
4048 i915_gem_cleanup_hws(dev);
4049 return -EINVAL;
4050 }
4051 ring->ring_obj = obj;
4052 ring->virtual_start = ring->map.handle;
4053
4054 /* Stop the ring if it's running. */
4055 I915_WRITE(PRB0_CTL, 0);
4056 I915_WRITE(PRB0_TAIL, 0);
4057 I915_WRITE(PRB0_HEAD, 0);
4058
4059 /* Initialize the ring. */
4060 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4061 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4062
4063 /* G45 ring initialization fails to reset head to zero */
4064 if (head != 0) {
4065 DRM_ERROR("Ring head not reset to zero "
4066 "ctl %08x head %08x tail %08x start %08x\n",
4067 I915_READ(PRB0_CTL),
4068 I915_READ(PRB0_HEAD),
4069 I915_READ(PRB0_TAIL),
4070 I915_READ(PRB0_START));
4071 I915_WRITE(PRB0_HEAD, 0);
4072
4073 DRM_ERROR("Ring head forced to zero "
4074 "ctl %08x head %08x tail %08x start %08x\n",
4075 I915_READ(PRB0_CTL),
4076 I915_READ(PRB0_HEAD),
4077 I915_READ(PRB0_TAIL),
4078 I915_READ(PRB0_START));
4079 }
4080
4081 I915_WRITE(PRB0_CTL,
4082 ((obj->size - 4096) & RING_NR_PAGES) |
4083 RING_NO_REPORT |
4084 RING_VALID);
4085
4086 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4087
4088 /* If the head is still not zero, the ring is dead */
4089 if (head != 0) {
4090 DRM_ERROR("Ring initialization failed "
4091 "ctl %08x head %08x tail %08x start %08x\n",
4092 I915_READ(PRB0_CTL),
4093 I915_READ(PRB0_HEAD),
4094 I915_READ(PRB0_TAIL),
4095 I915_READ(PRB0_START));
4096 return -EIO;
4097 }
4098
4099 /* Update our cache of the ring state */
4100 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4101 i915_kernel_lost_context(dev);
4102 else {
4103 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4104 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4105 ring->space = ring->head - (ring->tail + 8);
4106 if (ring->space < 0)
4107 ring->space += ring->Size;
4108 }
4109
4110 return 0;
4111 }
4112
4113 void
4114 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4115 {
4116 drm_i915_private_t *dev_priv = dev->dev_private;
4117
4118 if (dev_priv->ring.ring_obj == NULL)
4119 return;
4120
4121 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4122
4123 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4124 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4125 dev_priv->ring.ring_obj = NULL;
4126 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4127
4128 i915_gem_cleanup_hws(dev);
4129 }
4130
4131 int
4132 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4133 struct drm_file *file_priv)
4134 {
4135 drm_i915_private_t *dev_priv = dev->dev_private;
4136 int ret;
4137
4138 if (drm_core_check_feature(dev, DRIVER_MODESET))
4139 return 0;
4140
4141 if (dev_priv->mm.wedged) {
4142 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4143 dev_priv->mm.wedged = 0;
4144 }
4145
4146 mutex_lock(&dev->struct_mutex);
4147 dev_priv->mm.suspended = 0;
4148
4149 ret = i915_gem_init_ringbuffer(dev);
4150 if (ret != 0) {
4151 mutex_unlock(&dev->struct_mutex);
4152 return ret;
4153 }
4154
4155 spin_lock(&dev_priv->mm.active_list_lock);
4156 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4157 spin_unlock(&dev_priv->mm.active_list_lock);
4158
4159 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4160 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4161 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4162 mutex_unlock(&dev->struct_mutex);
4163
4164 drm_irq_install(dev);
4165
4166 return 0;
4167 }
4168
4169 int
4170 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4171 struct drm_file *file_priv)
4172 {
4173 int ret;
4174
4175 if (drm_core_check_feature(dev, DRIVER_MODESET))
4176 return 0;
4177
4178 ret = i915_gem_idle(dev);
4179 drm_irq_uninstall(dev);
4180
4181 return ret;
4182 }
4183
4184 void
4185 i915_gem_lastclose(struct drm_device *dev)
4186 {
4187 int ret;
4188
4189 if (drm_core_check_feature(dev, DRIVER_MODESET))
4190 return;
4191
4192 ret = i915_gem_idle(dev);
4193 if (ret)
4194 DRM_ERROR("failed to idle hardware: %d\n", ret);
4195 }
4196
4197 void
4198 i915_gem_load(struct drm_device *dev)
4199 {
4200 drm_i915_private_t *dev_priv = dev->dev_private;
4201
4202 spin_lock_init(&dev_priv->mm.active_list_lock);
4203 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4204 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4205 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4206 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4207 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4208 i915_gem_retire_work_handler);
4209 dev_priv->mm.next_gem_seqno = 1;
4210
4211 /* Old X drivers will take 0-2 for front, back, depth buffers */
4212 dev_priv->fence_reg_start = 3;
4213
4214 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4215 dev_priv->num_fence_regs = 16;
4216 else
4217 dev_priv->num_fence_regs = 8;
4218
4219 i915_gem_detect_bit_6_swizzle(dev);
4220 }
4221
4222 /*
4223 * Create a physically contiguous memory object for this object
4224 * e.g. for cursor + overlay regs
4225 */
4226 int i915_gem_init_phys_object(struct drm_device *dev,
4227 int id, int size)
4228 {
4229 drm_i915_private_t *dev_priv = dev->dev_private;
4230 struct drm_i915_gem_phys_object *phys_obj;
4231 int ret;
4232
4233 if (dev_priv->mm.phys_objs[id - 1] || !size)
4234 return 0;
4235
4236 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4237 if (!phys_obj)
4238 return -ENOMEM;
4239
4240 phys_obj->id = id;
4241
4242 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4243 if (!phys_obj->handle) {
4244 ret = -ENOMEM;
4245 goto kfree_obj;
4246 }
4247 #ifdef CONFIG_X86
4248 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4249 #endif
4250
4251 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4252
4253 return 0;
4254 kfree_obj:
4255 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4256 return ret;
4257 }
4258
4259 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4260 {
4261 drm_i915_private_t *dev_priv = dev->dev_private;
4262 struct drm_i915_gem_phys_object *phys_obj;
4263
4264 if (!dev_priv->mm.phys_objs[id - 1])
4265 return;
4266
4267 phys_obj = dev_priv->mm.phys_objs[id - 1];
4268 if (phys_obj->cur_obj) {
4269 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4270 }
4271
4272 #ifdef CONFIG_X86
4273 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4274 #endif
4275 drm_pci_free(dev, phys_obj->handle);
4276 kfree(phys_obj);
4277 dev_priv->mm.phys_objs[id - 1] = NULL;
4278 }
4279
4280 void i915_gem_free_all_phys_object(struct drm_device *dev)
4281 {
4282 int i;
4283
4284 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4285 i915_gem_free_phys_object(dev, i);
4286 }
4287
4288 void i915_gem_detach_phys_object(struct drm_device *dev,
4289 struct drm_gem_object *obj)
4290 {
4291 struct drm_i915_gem_object *obj_priv;
4292 int i;
4293 int ret;
4294 int page_count;
4295
4296 obj_priv = obj->driver_private;
4297 if (!obj_priv->phys_obj)
4298 return;
4299
4300 ret = i915_gem_object_get_pages(obj);
4301 if (ret)
4302 goto out;
4303
4304 page_count = obj->size / PAGE_SIZE;
4305
4306 for (i = 0; i < page_count; i++) {
4307 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4308 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4309
4310 memcpy(dst, src, PAGE_SIZE);
4311 kunmap_atomic(dst, KM_USER0);
4312 }
4313 drm_clflush_pages(obj_priv->pages, page_count);
4314 drm_agp_chipset_flush(dev);
4315 out:
4316 obj_priv->phys_obj->cur_obj = NULL;
4317 obj_priv->phys_obj = NULL;
4318 }
4319
4320 int
4321 i915_gem_attach_phys_object(struct drm_device *dev,
4322 struct drm_gem_object *obj, int id)
4323 {
4324 drm_i915_private_t *dev_priv = dev->dev_private;
4325 struct drm_i915_gem_object *obj_priv;
4326 int ret = 0;
4327 int page_count;
4328 int i;
4329
4330 if (id > I915_MAX_PHYS_OBJECT)
4331 return -EINVAL;
4332
4333 obj_priv = obj->driver_private;
4334
4335 if (obj_priv->phys_obj) {
4336 if (obj_priv->phys_obj->id == id)
4337 return 0;
4338 i915_gem_detach_phys_object(dev, obj);
4339 }
4340
4341
4342 /* create a new object */
4343 if (!dev_priv->mm.phys_objs[id - 1]) {
4344 ret = i915_gem_init_phys_object(dev, id,
4345 obj->size);
4346 if (ret) {
4347 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4348 goto out;
4349 }
4350 }
4351
4352 /* bind to the object */
4353 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4354 obj_priv->phys_obj->cur_obj = obj;
4355
4356 ret = i915_gem_object_get_pages(obj);
4357 if (ret) {
4358 DRM_ERROR("failed to get page list\n");
4359 goto out;
4360 }
4361
4362 page_count = obj->size / PAGE_SIZE;
4363
4364 for (i = 0; i < page_count; i++) {
4365 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4366 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4367
4368 memcpy(dst, src, PAGE_SIZE);
4369 kunmap_atomic(src, KM_USER0);
4370 }
4371
4372 return 0;
4373 out:
4374 return ret;
4375 }
4376
4377 static int
4378 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4379 struct drm_i915_gem_pwrite *args,
4380 struct drm_file *file_priv)
4381 {
4382 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4383 void *obj_addr;
4384 int ret;
4385 char __user *user_data;
4386
4387 user_data = (char __user *) (uintptr_t) args->data_ptr;
4388 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4389
4390 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4391 ret = copy_from_user(obj_addr, user_data, args->size);
4392 if (ret)
4393 return -EFAULT;
4394
4395 drm_agp_chipset_flush(dev);
4396 return 0;
4397 }
4398
4399 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4400 {
4401 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4402
4403 /* Clean up our request list when the client is going away, so that
4404 * later retire_requests won't dereference our soon-to-be-gone
4405 * file_priv.
4406 */
4407 mutex_lock(&dev->struct_mutex);
4408 while (!list_empty(&i915_file_priv->mm.request_list))
4409 list_del_init(i915_file_priv->mm.request_list.next);
4410 mutex_unlock(&dev->struct_mutex);
4411 }