Merge branch 'copy_user' of git://git.marvell.com/orion into devel
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48 unsigned alignment);
49 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
55
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57 unsigned long end)
58 {
59 drm_i915_private_t *dev_priv = dev->dev_private;
60
61 if (start >= end ||
62 (start & (PAGE_SIZE - 1)) != 0 ||
63 (end & (PAGE_SIZE - 1)) != 0) {
64 return -EINVAL;
65 }
66
67 drm_mm_init(&dev_priv->mm.gtt_space, start,
68 end - start);
69
70 dev->gtt_total = (uint32_t) (end - start);
71
72 return 0;
73 }
74
75 int
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77 struct drm_file *file_priv)
78 {
79 struct drm_i915_gem_init *args = data;
80 int ret;
81
82 mutex_lock(&dev->struct_mutex);
83 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84 mutex_unlock(&dev->struct_mutex);
85
86 return ret;
87 }
88
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91 struct drm_file *file_priv)
92 {
93 struct drm_i915_gem_get_aperture *args = data;
94
95 if (!(dev->driver->driver_features & DRIVER_GEM))
96 return -ENODEV;
97
98 args->aper_size = dev->gtt_total;
99 args->aper_available_size = (args->aper_size -
100 atomic_read(&dev->pin_memory));
101
102 return 0;
103 }
104
105
106 /**
107 * Creates a new mm object and returns a handle to it.
108 */
109 int
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111 struct drm_file *file_priv)
112 {
113 struct drm_i915_gem_create *args = data;
114 struct drm_gem_object *obj;
115 int handle, ret;
116
117 args->size = roundup(args->size, PAGE_SIZE);
118
119 /* Allocate the new object */
120 obj = drm_gem_object_alloc(dev, args->size);
121 if (obj == NULL)
122 return -ENOMEM;
123
124 ret = drm_gem_handle_create(file_priv, obj, &handle);
125 mutex_lock(&dev->struct_mutex);
126 drm_gem_object_handle_unreference(obj);
127 mutex_unlock(&dev->struct_mutex);
128
129 if (ret)
130 return ret;
131
132 args->handle = handle;
133
134 return 0;
135 }
136
137 static inline int
138 fast_shmem_read(struct page **pages,
139 loff_t page_base, int page_offset,
140 char __user *data,
141 int length)
142 {
143 char __iomem *vaddr;
144 int unwritten;
145
146 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
147 if (vaddr == NULL)
148 return -ENOMEM;
149 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
150 kunmap_atomic(vaddr, KM_USER0);
151
152 if (unwritten)
153 return -EFAULT;
154
155 return 0;
156 }
157
158 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
159 {
160 drm_i915_private_t *dev_priv = obj->dev->dev_private;
161 struct drm_i915_gem_object *obj_priv = obj->driver_private;
162
163 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
164 obj_priv->tiling_mode != I915_TILING_NONE;
165 }
166
167 static inline int
168 slow_shmem_copy(struct page *dst_page,
169 int dst_offset,
170 struct page *src_page,
171 int src_offset,
172 int length)
173 {
174 char *dst_vaddr, *src_vaddr;
175
176 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
177 if (dst_vaddr == NULL)
178 return -ENOMEM;
179
180 src_vaddr = kmap_atomic(src_page, KM_USER1);
181 if (src_vaddr == NULL) {
182 kunmap_atomic(dst_vaddr, KM_USER0);
183 return -ENOMEM;
184 }
185
186 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
187
188 kunmap_atomic(src_vaddr, KM_USER1);
189 kunmap_atomic(dst_vaddr, KM_USER0);
190
191 return 0;
192 }
193
194 static inline int
195 slow_shmem_bit17_copy(struct page *gpu_page,
196 int gpu_offset,
197 struct page *cpu_page,
198 int cpu_offset,
199 int length,
200 int is_read)
201 {
202 char *gpu_vaddr, *cpu_vaddr;
203
204 /* Use the unswizzled path if this page isn't affected. */
205 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
206 if (is_read)
207 return slow_shmem_copy(cpu_page, cpu_offset,
208 gpu_page, gpu_offset, length);
209 else
210 return slow_shmem_copy(gpu_page, gpu_offset,
211 cpu_page, cpu_offset, length);
212 }
213
214 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
215 if (gpu_vaddr == NULL)
216 return -ENOMEM;
217
218 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
219 if (cpu_vaddr == NULL) {
220 kunmap_atomic(gpu_vaddr, KM_USER0);
221 return -ENOMEM;
222 }
223
224 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225 * XORing with the other bits (A9 for Y, A9 and A10 for X)
226 */
227 while (length > 0) {
228 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229 int this_length = min(cacheline_end - gpu_offset, length);
230 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232 if (is_read) {
233 memcpy(cpu_vaddr + cpu_offset,
234 gpu_vaddr + swizzled_gpu_offset,
235 this_length);
236 } else {
237 memcpy(gpu_vaddr + swizzled_gpu_offset,
238 cpu_vaddr + cpu_offset,
239 this_length);
240 }
241 cpu_offset += this_length;
242 gpu_offset += this_length;
243 length -= this_length;
244 }
245
246 kunmap_atomic(cpu_vaddr, KM_USER1);
247 kunmap_atomic(gpu_vaddr, KM_USER0);
248
249 return 0;
250 }
251
252 /**
253 * This is the fast shmem pread path, which attempts to copy_from_user directly
254 * from the backing pages of the object to the user's address space. On a
255 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
256 */
257 static int
258 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
259 struct drm_i915_gem_pread *args,
260 struct drm_file *file_priv)
261 {
262 struct drm_i915_gem_object *obj_priv = obj->driver_private;
263 ssize_t remain;
264 loff_t offset, page_base;
265 char __user *user_data;
266 int page_offset, page_length;
267 int ret;
268
269 user_data = (char __user *) (uintptr_t) args->data_ptr;
270 remain = args->size;
271
272 mutex_lock(&dev->struct_mutex);
273
274 ret = i915_gem_object_get_pages(obj);
275 if (ret != 0)
276 goto fail_unlock;
277
278 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
279 args->size);
280 if (ret != 0)
281 goto fail_put_pages;
282
283 obj_priv = obj->driver_private;
284 offset = args->offset;
285
286 while (remain > 0) {
287 /* Operation in this page
288 *
289 * page_base = page offset within aperture
290 * page_offset = offset within page
291 * page_length = bytes to copy for this page
292 */
293 page_base = (offset & ~(PAGE_SIZE-1));
294 page_offset = offset & (PAGE_SIZE-1);
295 page_length = remain;
296 if ((page_offset + remain) > PAGE_SIZE)
297 page_length = PAGE_SIZE - page_offset;
298
299 ret = fast_shmem_read(obj_priv->pages,
300 page_base, page_offset,
301 user_data, page_length);
302 if (ret)
303 goto fail_put_pages;
304
305 remain -= page_length;
306 user_data += page_length;
307 offset += page_length;
308 }
309
310 fail_put_pages:
311 i915_gem_object_put_pages(obj);
312 fail_unlock:
313 mutex_unlock(&dev->struct_mutex);
314
315 return ret;
316 }
317
318 /**
319 * This is the fallback shmem pread path, which allocates temporary storage
320 * in kernel space to copy_to_user into outside of the struct_mutex, so we
321 * can copy out of the object's backing pages while holding the struct mutex
322 * and not take page faults.
323 */
324 static int
325 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
326 struct drm_i915_gem_pread *args,
327 struct drm_file *file_priv)
328 {
329 struct drm_i915_gem_object *obj_priv = obj->driver_private;
330 struct mm_struct *mm = current->mm;
331 struct page **user_pages;
332 ssize_t remain;
333 loff_t offset, pinned_pages, i;
334 loff_t first_data_page, last_data_page, num_pages;
335 int shmem_page_index, shmem_page_offset;
336 int data_page_index, data_page_offset;
337 int page_length;
338 int ret;
339 uint64_t data_ptr = args->data_ptr;
340 int do_bit17_swizzling;
341
342 remain = args->size;
343
344 /* Pin the user pages containing the data. We can't fault while
345 * holding the struct mutex, yet we want to hold it while
346 * dereferencing the user data.
347 */
348 first_data_page = data_ptr / PAGE_SIZE;
349 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
350 num_pages = last_data_page - first_data_page + 1;
351
352 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
353 if (user_pages == NULL)
354 return -ENOMEM;
355
356 down_read(&mm->mmap_sem);
357 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
358 num_pages, 1, 0, user_pages, NULL);
359 up_read(&mm->mmap_sem);
360 if (pinned_pages < num_pages) {
361 ret = -EFAULT;
362 goto fail_put_user_pages;
363 }
364
365 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
366
367 mutex_lock(&dev->struct_mutex);
368
369 ret = i915_gem_object_get_pages(obj);
370 if (ret != 0)
371 goto fail_unlock;
372
373 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
374 args->size);
375 if (ret != 0)
376 goto fail_put_pages;
377
378 obj_priv = obj->driver_private;
379 offset = args->offset;
380
381 while (remain > 0) {
382 /* Operation in this page
383 *
384 * shmem_page_index = page number within shmem file
385 * shmem_page_offset = offset within page in shmem file
386 * data_page_index = page number in get_user_pages return
387 * data_page_offset = offset with data_page_index page.
388 * page_length = bytes to copy for this page
389 */
390 shmem_page_index = offset / PAGE_SIZE;
391 shmem_page_offset = offset & ~PAGE_MASK;
392 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
393 data_page_offset = data_ptr & ~PAGE_MASK;
394
395 page_length = remain;
396 if ((shmem_page_offset + page_length) > PAGE_SIZE)
397 page_length = PAGE_SIZE - shmem_page_offset;
398 if ((data_page_offset + page_length) > PAGE_SIZE)
399 page_length = PAGE_SIZE - data_page_offset;
400
401 if (do_bit17_swizzling) {
402 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
403 shmem_page_offset,
404 user_pages[data_page_index],
405 data_page_offset,
406 page_length,
407 1);
408 } else {
409 ret = slow_shmem_copy(user_pages[data_page_index],
410 data_page_offset,
411 obj_priv->pages[shmem_page_index],
412 shmem_page_offset,
413 page_length);
414 }
415 if (ret)
416 goto fail_put_pages;
417
418 remain -= page_length;
419 data_ptr += page_length;
420 offset += page_length;
421 }
422
423 fail_put_pages:
424 i915_gem_object_put_pages(obj);
425 fail_unlock:
426 mutex_unlock(&dev->struct_mutex);
427 fail_put_user_pages:
428 for (i = 0; i < pinned_pages; i++) {
429 SetPageDirty(user_pages[i]);
430 page_cache_release(user_pages[i]);
431 }
432 drm_free_large(user_pages);
433
434 return ret;
435 }
436
437 /**
438 * Reads data from the object referenced by handle.
439 *
440 * On error, the contents of *data are undefined.
441 */
442 int
443 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444 struct drm_file *file_priv)
445 {
446 struct drm_i915_gem_pread *args = data;
447 struct drm_gem_object *obj;
448 struct drm_i915_gem_object *obj_priv;
449 int ret;
450
451 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
452 if (obj == NULL)
453 return -EBADF;
454 obj_priv = obj->driver_private;
455
456 /* Bounds check source.
457 *
458 * XXX: This could use review for overflow issues...
459 */
460 if (args->offset > obj->size || args->size > obj->size ||
461 args->offset + args->size > obj->size) {
462 drm_gem_object_unreference(obj);
463 return -EINVAL;
464 }
465
466 if (i915_gem_object_needs_bit17_swizzle(obj)) {
467 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
468 } else {
469 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
470 if (ret != 0)
471 ret = i915_gem_shmem_pread_slow(dev, obj, args,
472 file_priv);
473 }
474
475 drm_gem_object_unreference(obj);
476
477 return ret;
478 }
479
480 /* This is the fast write path which cannot handle
481 * page faults in the source data
482 */
483
484 static inline int
485 fast_user_write(struct io_mapping *mapping,
486 loff_t page_base, int page_offset,
487 char __user *user_data,
488 int length)
489 {
490 char *vaddr_atomic;
491 unsigned long unwritten;
492
493 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
494 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
495 user_data, length);
496 io_mapping_unmap_atomic(vaddr_atomic);
497 if (unwritten)
498 return -EFAULT;
499 return 0;
500 }
501
502 /* Here's the write path which can sleep for
503 * page faults
504 */
505
506 static inline int
507 slow_kernel_write(struct io_mapping *mapping,
508 loff_t gtt_base, int gtt_offset,
509 struct page *user_page, int user_offset,
510 int length)
511 {
512 char *src_vaddr, *dst_vaddr;
513 unsigned long unwritten;
514
515 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
516 src_vaddr = kmap_atomic(user_page, KM_USER1);
517 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
518 src_vaddr + user_offset,
519 length);
520 kunmap_atomic(src_vaddr, KM_USER1);
521 io_mapping_unmap_atomic(dst_vaddr);
522 if (unwritten)
523 return -EFAULT;
524 return 0;
525 }
526
527 static inline int
528 fast_shmem_write(struct page **pages,
529 loff_t page_base, int page_offset,
530 char __user *data,
531 int length)
532 {
533 char __iomem *vaddr;
534 unsigned long unwritten;
535
536 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
537 if (vaddr == NULL)
538 return -ENOMEM;
539 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
540 kunmap_atomic(vaddr, KM_USER0);
541
542 if (unwritten)
543 return -EFAULT;
544 return 0;
545 }
546
547 /**
548 * This is the fast pwrite path, where we copy the data directly from the
549 * user into the GTT, uncached.
550 */
551 static int
552 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
553 struct drm_i915_gem_pwrite *args,
554 struct drm_file *file_priv)
555 {
556 struct drm_i915_gem_object *obj_priv = obj->driver_private;
557 drm_i915_private_t *dev_priv = dev->dev_private;
558 ssize_t remain;
559 loff_t offset, page_base;
560 char __user *user_data;
561 int page_offset, page_length;
562 int ret;
563
564 user_data = (char __user *) (uintptr_t) args->data_ptr;
565 remain = args->size;
566 if (!access_ok(VERIFY_READ, user_data, remain))
567 return -EFAULT;
568
569
570 mutex_lock(&dev->struct_mutex);
571 ret = i915_gem_object_pin(obj, 0);
572 if (ret) {
573 mutex_unlock(&dev->struct_mutex);
574 return ret;
575 }
576 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
577 if (ret)
578 goto fail;
579
580 obj_priv = obj->driver_private;
581 offset = obj_priv->gtt_offset + args->offset;
582
583 while (remain > 0) {
584 /* Operation in this page
585 *
586 * page_base = page offset within aperture
587 * page_offset = offset within page
588 * page_length = bytes to copy for this page
589 */
590 page_base = (offset & ~(PAGE_SIZE-1));
591 page_offset = offset & (PAGE_SIZE-1);
592 page_length = remain;
593 if ((page_offset + remain) > PAGE_SIZE)
594 page_length = PAGE_SIZE - page_offset;
595
596 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
597 page_offset, user_data, page_length);
598
599 /* If we get a fault while copying data, then (presumably) our
600 * source page isn't available. Return the error and we'll
601 * retry in the slow path.
602 */
603 if (ret)
604 goto fail;
605
606 remain -= page_length;
607 user_data += page_length;
608 offset += page_length;
609 }
610
611 fail:
612 i915_gem_object_unpin(obj);
613 mutex_unlock(&dev->struct_mutex);
614
615 return ret;
616 }
617
618 /**
619 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
620 * the memory and maps it using kmap_atomic for copying.
621 *
622 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
623 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
624 */
625 static int
626 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
627 struct drm_i915_gem_pwrite *args,
628 struct drm_file *file_priv)
629 {
630 struct drm_i915_gem_object *obj_priv = obj->driver_private;
631 drm_i915_private_t *dev_priv = dev->dev_private;
632 ssize_t remain;
633 loff_t gtt_page_base, offset;
634 loff_t first_data_page, last_data_page, num_pages;
635 loff_t pinned_pages, i;
636 struct page **user_pages;
637 struct mm_struct *mm = current->mm;
638 int gtt_page_offset, data_page_offset, data_page_index, page_length;
639 int ret;
640 uint64_t data_ptr = args->data_ptr;
641
642 remain = args->size;
643
644 /* Pin the user pages containing the data. We can't fault while
645 * holding the struct mutex, and all of the pwrite implementations
646 * want to hold it while dereferencing the user data.
647 */
648 first_data_page = data_ptr / PAGE_SIZE;
649 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
650 num_pages = last_data_page - first_data_page + 1;
651
652 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
653 if (user_pages == NULL)
654 return -ENOMEM;
655
656 down_read(&mm->mmap_sem);
657 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
658 num_pages, 0, 0, user_pages, NULL);
659 up_read(&mm->mmap_sem);
660 if (pinned_pages < num_pages) {
661 ret = -EFAULT;
662 goto out_unpin_pages;
663 }
664
665 mutex_lock(&dev->struct_mutex);
666 ret = i915_gem_object_pin(obj, 0);
667 if (ret)
668 goto out_unlock;
669
670 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
671 if (ret)
672 goto out_unpin_object;
673
674 obj_priv = obj->driver_private;
675 offset = obj_priv->gtt_offset + args->offset;
676
677 while (remain > 0) {
678 /* Operation in this page
679 *
680 * gtt_page_base = page offset within aperture
681 * gtt_page_offset = offset within page in aperture
682 * data_page_index = page number in get_user_pages return
683 * data_page_offset = offset with data_page_index page.
684 * page_length = bytes to copy for this page
685 */
686 gtt_page_base = offset & PAGE_MASK;
687 gtt_page_offset = offset & ~PAGE_MASK;
688 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
689 data_page_offset = data_ptr & ~PAGE_MASK;
690
691 page_length = remain;
692 if ((gtt_page_offset + page_length) > PAGE_SIZE)
693 page_length = PAGE_SIZE - gtt_page_offset;
694 if ((data_page_offset + page_length) > PAGE_SIZE)
695 page_length = PAGE_SIZE - data_page_offset;
696
697 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
698 gtt_page_base, gtt_page_offset,
699 user_pages[data_page_index],
700 data_page_offset,
701 page_length);
702
703 /* If we get a fault while copying data, then (presumably) our
704 * source page isn't available. Return the error and we'll
705 * retry in the slow path.
706 */
707 if (ret)
708 goto out_unpin_object;
709
710 remain -= page_length;
711 offset += page_length;
712 data_ptr += page_length;
713 }
714
715 out_unpin_object:
716 i915_gem_object_unpin(obj);
717 out_unlock:
718 mutex_unlock(&dev->struct_mutex);
719 out_unpin_pages:
720 for (i = 0; i < pinned_pages; i++)
721 page_cache_release(user_pages[i]);
722 drm_free_large(user_pages);
723
724 return ret;
725 }
726
727 /**
728 * This is the fast shmem pwrite path, which attempts to directly
729 * copy_from_user into the kmapped pages backing the object.
730 */
731 static int
732 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
733 struct drm_i915_gem_pwrite *args,
734 struct drm_file *file_priv)
735 {
736 struct drm_i915_gem_object *obj_priv = obj->driver_private;
737 ssize_t remain;
738 loff_t offset, page_base;
739 char __user *user_data;
740 int page_offset, page_length;
741 int ret;
742
743 user_data = (char __user *) (uintptr_t) args->data_ptr;
744 remain = args->size;
745
746 mutex_lock(&dev->struct_mutex);
747
748 ret = i915_gem_object_get_pages(obj);
749 if (ret != 0)
750 goto fail_unlock;
751
752 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
753 if (ret != 0)
754 goto fail_put_pages;
755
756 obj_priv = obj->driver_private;
757 offset = args->offset;
758 obj_priv->dirty = 1;
759
760 while (remain > 0) {
761 /* Operation in this page
762 *
763 * page_base = page offset within aperture
764 * page_offset = offset within page
765 * page_length = bytes to copy for this page
766 */
767 page_base = (offset & ~(PAGE_SIZE-1));
768 page_offset = offset & (PAGE_SIZE-1);
769 page_length = remain;
770 if ((page_offset + remain) > PAGE_SIZE)
771 page_length = PAGE_SIZE - page_offset;
772
773 ret = fast_shmem_write(obj_priv->pages,
774 page_base, page_offset,
775 user_data, page_length);
776 if (ret)
777 goto fail_put_pages;
778
779 remain -= page_length;
780 user_data += page_length;
781 offset += page_length;
782 }
783
784 fail_put_pages:
785 i915_gem_object_put_pages(obj);
786 fail_unlock:
787 mutex_unlock(&dev->struct_mutex);
788
789 return ret;
790 }
791
792 /**
793 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
794 * the memory and maps it using kmap_atomic for copying.
795 *
796 * This avoids taking mmap_sem for faulting on the user's address while the
797 * struct_mutex is held.
798 */
799 static int
800 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
801 struct drm_i915_gem_pwrite *args,
802 struct drm_file *file_priv)
803 {
804 struct drm_i915_gem_object *obj_priv = obj->driver_private;
805 struct mm_struct *mm = current->mm;
806 struct page **user_pages;
807 ssize_t remain;
808 loff_t offset, pinned_pages, i;
809 loff_t first_data_page, last_data_page, num_pages;
810 int shmem_page_index, shmem_page_offset;
811 int data_page_index, data_page_offset;
812 int page_length;
813 int ret;
814 uint64_t data_ptr = args->data_ptr;
815 int do_bit17_swizzling;
816
817 remain = args->size;
818
819 /* Pin the user pages containing the data. We can't fault while
820 * holding the struct mutex, and all of the pwrite implementations
821 * want to hold it while dereferencing the user data.
822 */
823 first_data_page = data_ptr / PAGE_SIZE;
824 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
825 num_pages = last_data_page - first_data_page + 1;
826
827 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
828 if (user_pages == NULL)
829 return -ENOMEM;
830
831 down_read(&mm->mmap_sem);
832 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
833 num_pages, 0, 0, user_pages, NULL);
834 up_read(&mm->mmap_sem);
835 if (pinned_pages < num_pages) {
836 ret = -EFAULT;
837 goto fail_put_user_pages;
838 }
839
840 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
841
842 mutex_lock(&dev->struct_mutex);
843
844 ret = i915_gem_object_get_pages(obj);
845 if (ret != 0)
846 goto fail_unlock;
847
848 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
849 if (ret != 0)
850 goto fail_put_pages;
851
852 obj_priv = obj->driver_private;
853 offset = args->offset;
854 obj_priv->dirty = 1;
855
856 while (remain > 0) {
857 /* Operation in this page
858 *
859 * shmem_page_index = page number within shmem file
860 * shmem_page_offset = offset within page in shmem file
861 * data_page_index = page number in get_user_pages return
862 * data_page_offset = offset with data_page_index page.
863 * page_length = bytes to copy for this page
864 */
865 shmem_page_index = offset / PAGE_SIZE;
866 shmem_page_offset = offset & ~PAGE_MASK;
867 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
868 data_page_offset = data_ptr & ~PAGE_MASK;
869
870 page_length = remain;
871 if ((shmem_page_offset + page_length) > PAGE_SIZE)
872 page_length = PAGE_SIZE - shmem_page_offset;
873 if ((data_page_offset + page_length) > PAGE_SIZE)
874 page_length = PAGE_SIZE - data_page_offset;
875
876 if (do_bit17_swizzling) {
877 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
878 shmem_page_offset,
879 user_pages[data_page_index],
880 data_page_offset,
881 page_length,
882 0);
883 } else {
884 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
885 shmem_page_offset,
886 user_pages[data_page_index],
887 data_page_offset,
888 page_length);
889 }
890 if (ret)
891 goto fail_put_pages;
892
893 remain -= page_length;
894 data_ptr += page_length;
895 offset += page_length;
896 }
897
898 fail_put_pages:
899 i915_gem_object_put_pages(obj);
900 fail_unlock:
901 mutex_unlock(&dev->struct_mutex);
902 fail_put_user_pages:
903 for (i = 0; i < pinned_pages; i++)
904 page_cache_release(user_pages[i]);
905 drm_free_large(user_pages);
906
907 return ret;
908 }
909
910 /**
911 * Writes data to the object referenced by handle.
912 *
913 * On error, the contents of the buffer that were to be modified are undefined.
914 */
915 int
916 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917 struct drm_file *file_priv)
918 {
919 struct drm_i915_gem_pwrite *args = data;
920 struct drm_gem_object *obj;
921 struct drm_i915_gem_object *obj_priv;
922 int ret = 0;
923
924 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
925 if (obj == NULL)
926 return -EBADF;
927 obj_priv = obj->driver_private;
928
929 /* Bounds check destination.
930 *
931 * XXX: This could use review for overflow issues...
932 */
933 if (args->offset > obj->size || args->size > obj->size ||
934 args->offset + args->size > obj->size) {
935 drm_gem_object_unreference(obj);
936 return -EINVAL;
937 }
938
939 /* We can only do the GTT pwrite on untiled buffers, as otherwise
940 * it would end up going through the fenced access, and we'll get
941 * different detiling behavior between reading and writing.
942 * pread/pwrite currently are reading and writing from the CPU
943 * perspective, requiring manual detiling by the client.
944 */
945 if (obj_priv->phys_obj)
946 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
947 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
948 dev->gtt_total != 0) {
949 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
950 if (ret == -EFAULT) {
951 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
952 file_priv);
953 }
954 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
955 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
956 } else {
957 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
958 if (ret == -EFAULT) {
959 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
960 file_priv);
961 }
962 }
963
964 #if WATCH_PWRITE
965 if (ret)
966 DRM_INFO("pwrite failed %d\n", ret);
967 #endif
968
969 drm_gem_object_unreference(obj);
970
971 return ret;
972 }
973
974 /**
975 * Called when user space prepares to use an object with the CPU, either
976 * through the mmap ioctl's mapping or a GTT mapping.
977 */
978 int
979 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
980 struct drm_file *file_priv)
981 {
982 struct drm_i915_gem_set_domain *args = data;
983 struct drm_gem_object *obj;
984 uint32_t read_domains = args->read_domains;
985 uint32_t write_domain = args->write_domain;
986 int ret;
987
988 if (!(dev->driver->driver_features & DRIVER_GEM))
989 return -ENODEV;
990
991 /* Only handle setting domains to types used by the CPU. */
992 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
993 return -EINVAL;
994
995 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
996 return -EINVAL;
997
998 /* Having something in the write domain implies it's in the read
999 * domain, and only that read domain. Enforce that in the request.
1000 */
1001 if (write_domain != 0 && read_domains != write_domain)
1002 return -EINVAL;
1003
1004 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005 if (obj == NULL)
1006 return -EBADF;
1007
1008 mutex_lock(&dev->struct_mutex);
1009 #if WATCH_BUF
1010 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
1011 obj, obj->size, read_domains, write_domain);
1012 #endif
1013 if (read_domains & I915_GEM_DOMAIN_GTT) {
1014 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1015
1016 /* Silently promote "you're not bound, there was nothing to do"
1017 * to success, since the client was just asking us to
1018 * make sure everything was done.
1019 */
1020 if (ret == -EINVAL)
1021 ret = 0;
1022 } else {
1023 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1024 }
1025
1026 drm_gem_object_unreference(obj);
1027 mutex_unlock(&dev->struct_mutex);
1028 return ret;
1029 }
1030
1031 /**
1032 * Called when user space has done writes to this buffer
1033 */
1034 int
1035 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1036 struct drm_file *file_priv)
1037 {
1038 struct drm_i915_gem_sw_finish *args = data;
1039 struct drm_gem_object *obj;
1040 struct drm_i915_gem_object *obj_priv;
1041 int ret = 0;
1042
1043 if (!(dev->driver->driver_features & DRIVER_GEM))
1044 return -ENODEV;
1045
1046 mutex_lock(&dev->struct_mutex);
1047 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1048 if (obj == NULL) {
1049 mutex_unlock(&dev->struct_mutex);
1050 return -EBADF;
1051 }
1052
1053 #if WATCH_BUF
1054 DRM_INFO("%s: sw_finish %d (%p %d)\n",
1055 __func__, args->handle, obj, obj->size);
1056 #endif
1057 obj_priv = obj->driver_private;
1058
1059 /* Pinned buffers may be scanout, so flush the cache */
1060 if (obj_priv->pin_count)
1061 i915_gem_object_flush_cpu_write_domain(obj);
1062
1063 drm_gem_object_unreference(obj);
1064 mutex_unlock(&dev->struct_mutex);
1065 return ret;
1066 }
1067
1068 /**
1069 * Maps the contents of an object, returning the address it is mapped
1070 * into.
1071 *
1072 * While the mapping holds a reference on the contents of the object, it doesn't
1073 * imply a ref on the object itself.
1074 */
1075 int
1076 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078 {
1079 struct drm_i915_gem_mmap *args = data;
1080 struct drm_gem_object *obj;
1081 loff_t offset;
1082 unsigned long addr;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1088 if (obj == NULL)
1089 return -EBADF;
1090
1091 offset = args->offset;
1092
1093 down_write(&current->mm->mmap_sem);
1094 addr = do_mmap(obj->filp, 0, args->size,
1095 PROT_READ | PROT_WRITE, MAP_SHARED,
1096 args->offset);
1097 up_write(&current->mm->mmap_sem);
1098 mutex_lock(&dev->struct_mutex);
1099 drm_gem_object_unreference(obj);
1100 mutex_unlock(&dev->struct_mutex);
1101 if (IS_ERR((void *)addr))
1102 return addr;
1103
1104 args->addr_ptr = (uint64_t) addr;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * i915_gem_fault - fault a page into the GTT
1111 * vma: VMA in question
1112 * vmf: fault info
1113 *
1114 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1115 * from userspace. The fault handler takes care of binding the object to
1116 * the GTT (if needed), allocating and programming a fence register (again,
1117 * only if needed based on whether the old reg is still valid or the object
1118 * is tiled) and inserting a new PTE into the faulting process.
1119 *
1120 * Note that the faulting process may involve evicting existing objects
1121 * from the GTT and/or fence registers to make room. So performance may
1122 * suffer if the GTT working set is large or there are few fence registers
1123 * left.
1124 */
1125 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1126 {
1127 struct drm_gem_object *obj = vma->vm_private_data;
1128 struct drm_device *dev = obj->dev;
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1131 pgoff_t page_offset;
1132 unsigned long pfn;
1133 int ret = 0;
1134 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1135
1136 /* We don't use vmf->pgoff since that has the fake offset */
1137 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1138 PAGE_SHIFT;
1139
1140 /* Now bind it into the GTT if needed */
1141 mutex_lock(&dev->struct_mutex);
1142 if (!obj_priv->gtt_space) {
1143 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1144 if (ret) {
1145 mutex_unlock(&dev->struct_mutex);
1146 return VM_FAULT_SIGBUS;
1147 }
1148
1149 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1150 if (ret) {
1151 mutex_unlock(&dev->struct_mutex);
1152 return VM_FAULT_SIGBUS;
1153 }
1154
1155 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1156 }
1157
1158 /* Need a new fence register? */
1159 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1160 obj_priv->tiling_mode != I915_TILING_NONE) {
1161 ret = i915_gem_object_get_fence_reg(obj, write);
1162 if (ret) {
1163 mutex_unlock(&dev->struct_mutex);
1164 return VM_FAULT_SIGBUS;
1165 }
1166 }
1167
1168 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1169 page_offset;
1170
1171 /* Finally, remap it using the new GTT offset */
1172 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1173
1174 mutex_unlock(&dev->struct_mutex);
1175
1176 switch (ret) {
1177 case -ENOMEM:
1178 case -EAGAIN:
1179 return VM_FAULT_OOM;
1180 case -EFAULT:
1181 case -EINVAL:
1182 return VM_FAULT_SIGBUS;
1183 default:
1184 return VM_FAULT_NOPAGE;
1185 }
1186 }
1187
1188 /**
1189 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1190 * @obj: obj in question
1191 *
1192 * GEM memory mapping works by handing back to userspace a fake mmap offset
1193 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1194 * up the object based on the offset and sets up the various memory mapping
1195 * structures.
1196 *
1197 * This routine allocates and attaches a fake offset for @obj.
1198 */
1199 static int
1200 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1201 {
1202 struct drm_device *dev = obj->dev;
1203 struct drm_gem_mm *mm = dev->mm_private;
1204 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1205 struct drm_map_list *list;
1206 struct drm_local_map *map;
1207 int ret = 0;
1208
1209 /* Set the object up for mmap'ing */
1210 list = &obj->map_list;
1211 list->map = drm_calloc(1, sizeof(struct drm_map_list),
1212 DRM_MEM_DRIVER);
1213 if (!list->map)
1214 return -ENOMEM;
1215
1216 map = list->map;
1217 map->type = _DRM_GEM;
1218 map->size = obj->size;
1219 map->handle = obj;
1220
1221 /* Get a DRM GEM mmap offset allocated... */
1222 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1223 obj->size / PAGE_SIZE, 0, 0);
1224 if (!list->file_offset_node) {
1225 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1226 ret = -ENOMEM;
1227 goto out_free_list;
1228 }
1229
1230 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1231 obj->size / PAGE_SIZE, 0);
1232 if (!list->file_offset_node) {
1233 ret = -ENOMEM;
1234 goto out_free_list;
1235 }
1236
1237 list->hash.key = list->file_offset_node->start;
1238 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1239 DRM_ERROR("failed to add to map hash\n");
1240 goto out_free_mm;
1241 }
1242
1243 /* By now we should be all set, any drm_mmap request on the offset
1244 * below will get to our mmap & fault handler */
1245 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1246
1247 return 0;
1248
1249 out_free_mm:
1250 drm_mm_put_block(list->file_offset_node);
1251 out_free_list:
1252 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1253
1254 return ret;
1255 }
1256
1257 static void
1258 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1259 {
1260 struct drm_device *dev = obj->dev;
1261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1262 struct drm_gem_mm *mm = dev->mm_private;
1263 struct drm_map_list *list;
1264
1265 list = &obj->map_list;
1266 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1267
1268 if (list->file_offset_node) {
1269 drm_mm_put_block(list->file_offset_node);
1270 list->file_offset_node = NULL;
1271 }
1272
1273 if (list->map) {
1274 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1275 list->map = NULL;
1276 }
1277
1278 obj_priv->mmap_offset = 0;
1279 }
1280
1281 /**
1282 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1283 * @obj: object to check
1284 *
1285 * Return the required GTT alignment for an object, taking into account
1286 * potential fence register mapping if needed.
1287 */
1288 static uint32_t
1289 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1290 {
1291 struct drm_device *dev = obj->dev;
1292 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1293 int start, i;
1294
1295 /*
1296 * Minimum alignment is 4k (GTT page size), but might be greater
1297 * if a fence register is needed for the object.
1298 */
1299 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1300 return 4096;
1301
1302 /*
1303 * Previous chips need to be aligned to the size of the smallest
1304 * fence register that can contain the object.
1305 */
1306 if (IS_I9XX(dev))
1307 start = 1024*1024;
1308 else
1309 start = 512*1024;
1310
1311 for (i = start; i < obj->size; i <<= 1)
1312 ;
1313
1314 return i;
1315 }
1316
1317 /**
1318 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1319 * @dev: DRM device
1320 * @data: GTT mapping ioctl data
1321 * @file_priv: GEM object info
1322 *
1323 * Simply returns the fake offset to userspace so it can mmap it.
1324 * The mmap call will end up in drm_gem_mmap(), which will set things
1325 * up so we can get faults in the handler above.
1326 *
1327 * The fault handler will take care of binding the object into the GTT
1328 * (since it may have been evicted to make room for something), allocating
1329 * a fence register, and mapping the appropriate aperture address into
1330 * userspace.
1331 */
1332 int
1333 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1334 struct drm_file *file_priv)
1335 {
1336 struct drm_i915_gem_mmap_gtt *args = data;
1337 struct drm_i915_private *dev_priv = dev->dev_private;
1338 struct drm_gem_object *obj;
1339 struct drm_i915_gem_object *obj_priv;
1340 int ret;
1341
1342 if (!(dev->driver->driver_features & DRIVER_GEM))
1343 return -ENODEV;
1344
1345 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1346 if (obj == NULL)
1347 return -EBADF;
1348
1349 mutex_lock(&dev->struct_mutex);
1350
1351 obj_priv = obj->driver_private;
1352
1353 if (!obj_priv->mmap_offset) {
1354 ret = i915_gem_create_mmap_offset(obj);
1355 if (ret) {
1356 drm_gem_object_unreference(obj);
1357 mutex_unlock(&dev->struct_mutex);
1358 return ret;
1359 }
1360 }
1361
1362 args->offset = obj_priv->mmap_offset;
1363
1364 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1365
1366 /* Make sure the alignment is correct for fence regs etc */
1367 if (obj_priv->agp_mem &&
1368 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1369 drm_gem_object_unreference(obj);
1370 mutex_unlock(&dev->struct_mutex);
1371 return -EINVAL;
1372 }
1373
1374 /*
1375 * Pull it into the GTT so that we have a page list (makes the
1376 * initial fault faster and any subsequent flushing possible).
1377 */
1378 if (!obj_priv->agp_mem) {
1379 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1380 if (ret) {
1381 drm_gem_object_unreference(obj);
1382 mutex_unlock(&dev->struct_mutex);
1383 return ret;
1384 }
1385 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1386 }
1387
1388 drm_gem_object_unreference(obj);
1389 mutex_unlock(&dev->struct_mutex);
1390
1391 return 0;
1392 }
1393
1394 void
1395 i915_gem_object_put_pages(struct drm_gem_object *obj)
1396 {
1397 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1398 int page_count = obj->size / PAGE_SIZE;
1399 int i;
1400
1401 BUG_ON(obj_priv->pages_refcount == 0);
1402
1403 if (--obj_priv->pages_refcount != 0)
1404 return;
1405
1406 if (obj_priv->tiling_mode != I915_TILING_NONE)
1407 i915_gem_object_save_bit_17_swizzle(obj);
1408
1409 for (i = 0; i < page_count; i++)
1410 if (obj_priv->pages[i] != NULL) {
1411 if (obj_priv->dirty)
1412 set_page_dirty(obj_priv->pages[i]);
1413 mark_page_accessed(obj_priv->pages[i]);
1414 page_cache_release(obj_priv->pages[i]);
1415 }
1416 obj_priv->dirty = 0;
1417
1418 drm_free_large(obj_priv->pages);
1419 obj_priv->pages = NULL;
1420 }
1421
1422 static void
1423 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1424 {
1425 struct drm_device *dev = obj->dev;
1426 drm_i915_private_t *dev_priv = dev->dev_private;
1427 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1428
1429 /* Add a reference if we're newly entering the active list. */
1430 if (!obj_priv->active) {
1431 drm_gem_object_reference(obj);
1432 obj_priv->active = 1;
1433 }
1434 /* Move from whatever list we were on to the tail of execution. */
1435 spin_lock(&dev_priv->mm.active_list_lock);
1436 list_move_tail(&obj_priv->list,
1437 &dev_priv->mm.active_list);
1438 spin_unlock(&dev_priv->mm.active_list_lock);
1439 obj_priv->last_rendering_seqno = seqno;
1440 }
1441
1442 static void
1443 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1444 {
1445 struct drm_device *dev = obj->dev;
1446 drm_i915_private_t *dev_priv = dev->dev_private;
1447 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1448
1449 BUG_ON(!obj_priv->active);
1450 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1451 obj_priv->last_rendering_seqno = 0;
1452 }
1453
1454 static void
1455 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1456 {
1457 struct drm_device *dev = obj->dev;
1458 drm_i915_private_t *dev_priv = dev->dev_private;
1459 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1460
1461 i915_verify_inactive(dev, __FILE__, __LINE__);
1462 if (obj_priv->pin_count != 0)
1463 list_del_init(&obj_priv->list);
1464 else
1465 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1466
1467 obj_priv->last_rendering_seqno = 0;
1468 if (obj_priv->active) {
1469 obj_priv->active = 0;
1470 drm_gem_object_unreference(obj);
1471 }
1472 i915_verify_inactive(dev, __FILE__, __LINE__);
1473 }
1474
1475 /**
1476 * Creates a new sequence number, emitting a write of it to the status page
1477 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1478 *
1479 * Must be called with struct_lock held.
1480 *
1481 * Returned sequence numbers are nonzero on success.
1482 */
1483 static uint32_t
1484 i915_add_request(struct drm_device *dev, uint32_t flush_domains)
1485 {
1486 drm_i915_private_t *dev_priv = dev->dev_private;
1487 struct drm_i915_gem_request *request;
1488 uint32_t seqno;
1489 int was_empty;
1490 RING_LOCALS;
1491
1492 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1493 if (request == NULL)
1494 return 0;
1495
1496 /* Grab the seqno we're going to make this request be, and bump the
1497 * next (skipping 0 so it can be the reserved no-seqno value).
1498 */
1499 seqno = dev_priv->mm.next_gem_seqno;
1500 dev_priv->mm.next_gem_seqno++;
1501 if (dev_priv->mm.next_gem_seqno == 0)
1502 dev_priv->mm.next_gem_seqno++;
1503
1504 BEGIN_LP_RING(4);
1505 OUT_RING(MI_STORE_DWORD_INDEX);
1506 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1507 OUT_RING(seqno);
1508
1509 OUT_RING(MI_USER_INTERRUPT);
1510 ADVANCE_LP_RING();
1511
1512 DRM_DEBUG("%d\n", seqno);
1513
1514 request->seqno = seqno;
1515 request->emitted_jiffies = jiffies;
1516 was_empty = list_empty(&dev_priv->mm.request_list);
1517 list_add_tail(&request->list, &dev_priv->mm.request_list);
1518
1519 /* Associate any objects on the flushing list matching the write
1520 * domain we're flushing with our flush.
1521 */
1522 if (flush_domains != 0) {
1523 struct drm_i915_gem_object *obj_priv, *next;
1524
1525 list_for_each_entry_safe(obj_priv, next,
1526 &dev_priv->mm.flushing_list, list) {
1527 struct drm_gem_object *obj = obj_priv->obj;
1528
1529 if ((obj->write_domain & flush_domains) ==
1530 obj->write_domain) {
1531 obj->write_domain = 0;
1532 i915_gem_object_move_to_active(obj, seqno);
1533 }
1534 }
1535
1536 }
1537
1538 if (was_empty && !dev_priv->mm.suspended)
1539 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1540 return seqno;
1541 }
1542
1543 /**
1544 * Command execution barrier
1545 *
1546 * Ensures that all commands in the ring are finished
1547 * before signalling the CPU
1548 */
1549 static uint32_t
1550 i915_retire_commands(struct drm_device *dev)
1551 {
1552 drm_i915_private_t *dev_priv = dev->dev_private;
1553 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1554 uint32_t flush_domains = 0;
1555 RING_LOCALS;
1556
1557 /* The sampler always gets flushed on i965 (sigh) */
1558 if (IS_I965G(dev))
1559 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1560 BEGIN_LP_RING(2);
1561 OUT_RING(cmd);
1562 OUT_RING(0); /* noop */
1563 ADVANCE_LP_RING();
1564 return flush_domains;
1565 }
1566
1567 /**
1568 * Moves buffers associated only with the given active seqno from the active
1569 * to inactive list, potentially freeing them.
1570 */
1571 static void
1572 i915_gem_retire_request(struct drm_device *dev,
1573 struct drm_i915_gem_request *request)
1574 {
1575 drm_i915_private_t *dev_priv = dev->dev_private;
1576
1577 /* Move any buffers on the active list that are no longer referenced
1578 * by the ringbuffer to the flushing/inactive lists as appropriate.
1579 */
1580 spin_lock(&dev_priv->mm.active_list_lock);
1581 while (!list_empty(&dev_priv->mm.active_list)) {
1582 struct drm_gem_object *obj;
1583 struct drm_i915_gem_object *obj_priv;
1584
1585 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1586 struct drm_i915_gem_object,
1587 list);
1588 obj = obj_priv->obj;
1589
1590 /* If the seqno being retired doesn't match the oldest in the
1591 * list, then the oldest in the list must still be newer than
1592 * this seqno.
1593 */
1594 if (obj_priv->last_rendering_seqno != request->seqno)
1595 goto out;
1596
1597 #if WATCH_LRU
1598 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1599 __func__, request->seqno, obj);
1600 #endif
1601
1602 if (obj->write_domain != 0)
1603 i915_gem_object_move_to_flushing(obj);
1604 else {
1605 /* Take a reference on the object so it won't be
1606 * freed while the spinlock is held. The list
1607 * protection for this spinlock is safe when breaking
1608 * the lock like this since the next thing we do
1609 * is just get the head of the list again.
1610 */
1611 drm_gem_object_reference(obj);
1612 i915_gem_object_move_to_inactive(obj);
1613 spin_unlock(&dev_priv->mm.active_list_lock);
1614 drm_gem_object_unreference(obj);
1615 spin_lock(&dev_priv->mm.active_list_lock);
1616 }
1617 }
1618 out:
1619 spin_unlock(&dev_priv->mm.active_list_lock);
1620 }
1621
1622 /**
1623 * Returns true if seq1 is later than seq2.
1624 */
1625 static int
1626 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1627 {
1628 return (int32_t)(seq1 - seq2) >= 0;
1629 }
1630
1631 uint32_t
1632 i915_get_gem_seqno(struct drm_device *dev)
1633 {
1634 drm_i915_private_t *dev_priv = dev->dev_private;
1635
1636 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1637 }
1638
1639 /**
1640 * This function clears the request list as sequence numbers are passed.
1641 */
1642 void
1643 i915_gem_retire_requests(struct drm_device *dev)
1644 {
1645 drm_i915_private_t *dev_priv = dev->dev_private;
1646 uint32_t seqno;
1647
1648 if (!dev_priv->hw_status_page)
1649 return;
1650
1651 seqno = i915_get_gem_seqno(dev);
1652
1653 while (!list_empty(&dev_priv->mm.request_list)) {
1654 struct drm_i915_gem_request *request;
1655 uint32_t retiring_seqno;
1656
1657 request = list_first_entry(&dev_priv->mm.request_list,
1658 struct drm_i915_gem_request,
1659 list);
1660 retiring_seqno = request->seqno;
1661
1662 if (i915_seqno_passed(seqno, retiring_seqno) ||
1663 dev_priv->mm.wedged) {
1664 i915_gem_retire_request(dev, request);
1665
1666 list_del(&request->list);
1667 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1668 } else
1669 break;
1670 }
1671 }
1672
1673 void
1674 i915_gem_retire_work_handler(struct work_struct *work)
1675 {
1676 drm_i915_private_t *dev_priv;
1677 struct drm_device *dev;
1678
1679 dev_priv = container_of(work, drm_i915_private_t,
1680 mm.retire_work.work);
1681 dev = dev_priv->dev;
1682
1683 mutex_lock(&dev->struct_mutex);
1684 i915_gem_retire_requests(dev);
1685 if (!dev_priv->mm.suspended &&
1686 !list_empty(&dev_priv->mm.request_list))
1687 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1688 mutex_unlock(&dev->struct_mutex);
1689 }
1690
1691 /**
1692 * Waits for a sequence number to be signaled, and cleans up the
1693 * request and object lists appropriately for that event.
1694 */
1695 static int
1696 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1697 {
1698 drm_i915_private_t *dev_priv = dev->dev_private;
1699 u32 ier;
1700 int ret = 0;
1701
1702 BUG_ON(seqno == 0);
1703
1704 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1705 ier = I915_READ(IER);
1706 if (!ier) {
1707 DRM_ERROR("something (likely vbetool) disabled "
1708 "interrupts, re-enabling\n");
1709 i915_driver_irq_preinstall(dev);
1710 i915_driver_irq_postinstall(dev);
1711 }
1712
1713 dev_priv->mm.waiting_gem_seqno = seqno;
1714 i915_user_irq_get(dev);
1715 ret = wait_event_interruptible(dev_priv->irq_queue,
1716 i915_seqno_passed(i915_get_gem_seqno(dev),
1717 seqno) ||
1718 dev_priv->mm.wedged);
1719 i915_user_irq_put(dev);
1720 dev_priv->mm.waiting_gem_seqno = 0;
1721 }
1722 if (dev_priv->mm.wedged)
1723 ret = -EIO;
1724
1725 if (ret && ret != -ERESTARTSYS)
1726 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1727 __func__, ret, seqno, i915_get_gem_seqno(dev));
1728
1729 /* Directly dispatch request retiring. While we have the work queue
1730 * to handle this, the waiter on a request often wants an associated
1731 * buffer to have made it to the inactive list, and we would need
1732 * a separate wait queue to handle that.
1733 */
1734 if (ret == 0)
1735 i915_gem_retire_requests(dev);
1736
1737 return ret;
1738 }
1739
1740 static void
1741 i915_gem_flush(struct drm_device *dev,
1742 uint32_t invalidate_domains,
1743 uint32_t flush_domains)
1744 {
1745 drm_i915_private_t *dev_priv = dev->dev_private;
1746 uint32_t cmd;
1747 RING_LOCALS;
1748
1749 #if WATCH_EXEC
1750 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1751 invalidate_domains, flush_domains);
1752 #endif
1753
1754 if (flush_domains & I915_GEM_DOMAIN_CPU)
1755 drm_agp_chipset_flush(dev);
1756
1757 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1758 I915_GEM_DOMAIN_GTT)) {
1759 /*
1760 * read/write caches:
1761 *
1762 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1763 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1764 * also flushed at 2d versus 3d pipeline switches.
1765 *
1766 * read-only caches:
1767 *
1768 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1769 * MI_READ_FLUSH is set, and is always flushed on 965.
1770 *
1771 * I915_GEM_DOMAIN_COMMAND may not exist?
1772 *
1773 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1774 * invalidated when MI_EXE_FLUSH is set.
1775 *
1776 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1777 * invalidated with every MI_FLUSH.
1778 *
1779 * TLBs:
1780 *
1781 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1782 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1783 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1784 * are flushed at any MI_FLUSH.
1785 */
1786
1787 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1788 if ((invalidate_domains|flush_domains) &
1789 I915_GEM_DOMAIN_RENDER)
1790 cmd &= ~MI_NO_WRITE_FLUSH;
1791 if (!IS_I965G(dev)) {
1792 /*
1793 * On the 965, the sampler cache always gets flushed
1794 * and this bit is reserved.
1795 */
1796 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1797 cmd |= MI_READ_FLUSH;
1798 }
1799 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1800 cmd |= MI_EXE_FLUSH;
1801
1802 #if WATCH_EXEC
1803 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1804 #endif
1805 BEGIN_LP_RING(2);
1806 OUT_RING(cmd);
1807 OUT_RING(0); /* noop */
1808 ADVANCE_LP_RING();
1809 }
1810 }
1811
1812 /**
1813 * Ensures that all rendering to the object has completed and the object is
1814 * safe to unbind from the GTT or access from the CPU.
1815 */
1816 static int
1817 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1818 {
1819 struct drm_device *dev = obj->dev;
1820 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1821 int ret;
1822
1823 /* This function only exists to support waiting for existing rendering,
1824 * not for emitting required flushes.
1825 */
1826 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1827
1828 /* If there is rendering queued on the buffer being evicted, wait for
1829 * it.
1830 */
1831 if (obj_priv->active) {
1832 #if WATCH_BUF
1833 DRM_INFO("%s: object %p wait for seqno %08x\n",
1834 __func__, obj, obj_priv->last_rendering_seqno);
1835 #endif
1836 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1837 if (ret != 0)
1838 return ret;
1839 }
1840
1841 return 0;
1842 }
1843
1844 /**
1845 * Unbinds an object from the GTT aperture.
1846 */
1847 int
1848 i915_gem_object_unbind(struct drm_gem_object *obj)
1849 {
1850 struct drm_device *dev = obj->dev;
1851 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1852 loff_t offset;
1853 int ret = 0;
1854
1855 #if WATCH_BUF
1856 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1857 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1858 #endif
1859 if (obj_priv->gtt_space == NULL)
1860 return 0;
1861
1862 if (obj_priv->pin_count != 0) {
1863 DRM_ERROR("Attempting to unbind pinned buffer\n");
1864 return -EINVAL;
1865 }
1866
1867 /* Move the object to the CPU domain to ensure that
1868 * any possible CPU writes while it's not in the GTT
1869 * are flushed when we go to remap it. This will
1870 * also ensure that all pending GPU writes are finished
1871 * before we unbind.
1872 */
1873 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1874 if (ret) {
1875 if (ret != -ERESTARTSYS)
1876 DRM_ERROR("set_domain failed: %d\n", ret);
1877 return ret;
1878 }
1879
1880 if (obj_priv->agp_mem != NULL) {
1881 drm_unbind_agp(obj_priv->agp_mem);
1882 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1883 obj_priv->agp_mem = NULL;
1884 }
1885
1886 BUG_ON(obj_priv->active);
1887
1888 /* blow away mappings if mapped through GTT */
1889 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1890 if (dev->dev_mapping)
1891 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1892
1893 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1894 i915_gem_clear_fence_reg(obj);
1895
1896 i915_gem_object_put_pages(obj);
1897
1898 if (obj_priv->gtt_space) {
1899 atomic_dec(&dev->gtt_count);
1900 atomic_sub(obj->size, &dev->gtt_memory);
1901
1902 drm_mm_put_block(obj_priv->gtt_space);
1903 obj_priv->gtt_space = NULL;
1904 }
1905
1906 /* Remove ourselves from the LRU list if present. */
1907 if (!list_empty(&obj_priv->list))
1908 list_del_init(&obj_priv->list);
1909
1910 return 0;
1911 }
1912
1913 static int
1914 i915_gem_evict_something(struct drm_device *dev)
1915 {
1916 drm_i915_private_t *dev_priv = dev->dev_private;
1917 struct drm_gem_object *obj;
1918 struct drm_i915_gem_object *obj_priv;
1919 int ret = 0;
1920
1921 for (;;) {
1922 /* If there's an inactive buffer available now, grab it
1923 * and be done.
1924 */
1925 if (!list_empty(&dev_priv->mm.inactive_list)) {
1926 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1927 struct drm_i915_gem_object,
1928 list);
1929 obj = obj_priv->obj;
1930 BUG_ON(obj_priv->pin_count != 0);
1931 #if WATCH_LRU
1932 DRM_INFO("%s: evicting %p\n", __func__, obj);
1933 #endif
1934 BUG_ON(obj_priv->active);
1935
1936 /* Wait on the rendering and unbind the buffer. */
1937 ret = i915_gem_object_unbind(obj);
1938 break;
1939 }
1940
1941 /* If we didn't get anything, but the ring is still processing
1942 * things, wait for one of those things to finish and hopefully
1943 * leave us a buffer to evict.
1944 */
1945 if (!list_empty(&dev_priv->mm.request_list)) {
1946 struct drm_i915_gem_request *request;
1947
1948 request = list_first_entry(&dev_priv->mm.request_list,
1949 struct drm_i915_gem_request,
1950 list);
1951
1952 ret = i915_wait_request(dev, request->seqno);
1953 if (ret)
1954 break;
1955
1956 /* if waiting caused an object to become inactive,
1957 * then loop around and wait for it. Otherwise, we
1958 * assume that waiting freed and unbound something,
1959 * so there should now be some space in the GTT
1960 */
1961 if (!list_empty(&dev_priv->mm.inactive_list))
1962 continue;
1963 break;
1964 }
1965
1966 /* If we didn't have anything on the request list but there
1967 * are buffers awaiting a flush, emit one and try again.
1968 * When we wait on it, those buffers waiting for that flush
1969 * will get moved to inactive.
1970 */
1971 if (!list_empty(&dev_priv->mm.flushing_list)) {
1972 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1973 struct drm_i915_gem_object,
1974 list);
1975 obj = obj_priv->obj;
1976
1977 i915_gem_flush(dev,
1978 obj->write_domain,
1979 obj->write_domain);
1980 i915_add_request(dev, obj->write_domain);
1981
1982 obj = NULL;
1983 continue;
1984 }
1985
1986 DRM_ERROR("inactive empty %d request empty %d "
1987 "flushing empty %d\n",
1988 list_empty(&dev_priv->mm.inactive_list),
1989 list_empty(&dev_priv->mm.request_list),
1990 list_empty(&dev_priv->mm.flushing_list));
1991 /* If we didn't do any of the above, there's nothing to be done
1992 * and we just can't fit it in.
1993 */
1994 return -ENOMEM;
1995 }
1996 return ret;
1997 }
1998
1999 static int
2000 i915_gem_evict_everything(struct drm_device *dev)
2001 {
2002 int ret;
2003
2004 for (;;) {
2005 ret = i915_gem_evict_something(dev);
2006 if (ret != 0)
2007 break;
2008 }
2009 if (ret == -ENOMEM)
2010 return 0;
2011 return ret;
2012 }
2013
2014 int
2015 i915_gem_object_get_pages(struct drm_gem_object *obj)
2016 {
2017 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2018 int page_count, i;
2019 struct address_space *mapping;
2020 struct inode *inode;
2021 struct page *page;
2022 int ret;
2023
2024 if (obj_priv->pages_refcount++ != 0)
2025 return 0;
2026
2027 /* Get the list of pages out of our struct file. They'll be pinned
2028 * at this point until we release them.
2029 */
2030 page_count = obj->size / PAGE_SIZE;
2031 BUG_ON(obj_priv->pages != NULL);
2032 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2033 if (obj_priv->pages == NULL) {
2034 DRM_ERROR("Faled to allocate page list\n");
2035 obj_priv->pages_refcount--;
2036 return -ENOMEM;
2037 }
2038
2039 inode = obj->filp->f_path.dentry->d_inode;
2040 mapping = inode->i_mapping;
2041 for (i = 0; i < page_count; i++) {
2042 page = read_mapping_page(mapping, i, NULL);
2043 if (IS_ERR(page)) {
2044 ret = PTR_ERR(page);
2045 DRM_ERROR("read_mapping_page failed: %d\n", ret);
2046 i915_gem_object_put_pages(obj);
2047 return ret;
2048 }
2049 obj_priv->pages[i] = page;
2050 }
2051
2052 if (obj_priv->tiling_mode != I915_TILING_NONE)
2053 i915_gem_object_do_bit_17_swizzle(obj);
2054
2055 return 0;
2056 }
2057
2058 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2059 {
2060 struct drm_gem_object *obj = reg->obj;
2061 struct drm_device *dev = obj->dev;
2062 drm_i915_private_t *dev_priv = dev->dev_private;
2063 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2064 int regnum = obj_priv->fence_reg;
2065 uint64_t val;
2066
2067 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2068 0xfffff000) << 32;
2069 val |= obj_priv->gtt_offset & 0xfffff000;
2070 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2071 if (obj_priv->tiling_mode == I915_TILING_Y)
2072 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2073 val |= I965_FENCE_REG_VALID;
2074
2075 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2076 }
2077
2078 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2079 {
2080 struct drm_gem_object *obj = reg->obj;
2081 struct drm_device *dev = obj->dev;
2082 drm_i915_private_t *dev_priv = dev->dev_private;
2083 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2084 int regnum = obj_priv->fence_reg;
2085 int tile_width;
2086 uint32_t fence_reg, val;
2087 uint32_t pitch_val;
2088
2089 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2090 (obj_priv->gtt_offset & (obj->size - 1))) {
2091 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2092 __func__, obj_priv->gtt_offset, obj->size);
2093 return;
2094 }
2095
2096 if (obj_priv->tiling_mode == I915_TILING_Y &&
2097 HAS_128_BYTE_Y_TILING(dev))
2098 tile_width = 128;
2099 else
2100 tile_width = 512;
2101
2102 /* Note: pitch better be a power of two tile widths */
2103 pitch_val = obj_priv->stride / tile_width;
2104 pitch_val = ffs(pitch_val) - 1;
2105
2106 val = obj_priv->gtt_offset;
2107 if (obj_priv->tiling_mode == I915_TILING_Y)
2108 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2109 val |= I915_FENCE_SIZE_BITS(obj->size);
2110 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2111 val |= I830_FENCE_REG_VALID;
2112
2113 if (regnum < 8)
2114 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2115 else
2116 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2117 I915_WRITE(fence_reg, val);
2118 }
2119
2120 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2121 {
2122 struct drm_gem_object *obj = reg->obj;
2123 struct drm_device *dev = obj->dev;
2124 drm_i915_private_t *dev_priv = dev->dev_private;
2125 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2126 int regnum = obj_priv->fence_reg;
2127 uint32_t val;
2128 uint32_t pitch_val;
2129 uint32_t fence_size_bits;
2130
2131 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2132 (obj_priv->gtt_offset & (obj->size - 1))) {
2133 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2134 __func__, obj_priv->gtt_offset);
2135 return;
2136 }
2137
2138 pitch_val = obj_priv->stride / 128;
2139 pitch_val = ffs(pitch_val) - 1;
2140 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2141
2142 val = obj_priv->gtt_offset;
2143 if (obj_priv->tiling_mode == I915_TILING_Y)
2144 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2145 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2146 WARN_ON(fence_size_bits & ~0x00000f00);
2147 val |= fence_size_bits;
2148 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2149 val |= I830_FENCE_REG_VALID;
2150
2151 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2152
2153 }
2154
2155 /**
2156 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2157 * @obj: object to map through a fence reg
2158 * @write: object is about to be written
2159 *
2160 * When mapping objects through the GTT, userspace wants to be able to write
2161 * to them without having to worry about swizzling if the object is tiled.
2162 *
2163 * This function walks the fence regs looking for a free one for @obj,
2164 * stealing one if it can't find any.
2165 *
2166 * It then sets up the reg based on the object's properties: address, pitch
2167 * and tiling format.
2168 */
2169 static int
2170 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
2171 {
2172 struct drm_device *dev = obj->dev;
2173 struct drm_i915_private *dev_priv = dev->dev_private;
2174 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2175 struct drm_i915_fence_reg *reg = NULL;
2176 struct drm_i915_gem_object *old_obj_priv = NULL;
2177 int i, ret, avail;
2178
2179 switch (obj_priv->tiling_mode) {
2180 case I915_TILING_NONE:
2181 WARN(1, "allocating a fence for non-tiled object?\n");
2182 break;
2183 case I915_TILING_X:
2184 if (!obj_priv->stride)
2185 return -EINVAL;
2186 WARN((obj_priv->stride & (512 - 1)),
2187 "object 0x%08x is X tiled but has non-512B pitch\n",
2188 obj_priv->gtt_offset);
2189 break;
2190 case I915_TILING_Y:
2191 if (!obj_priv->stride)
2192 return -EINVAL;
2193 WARN((obj_priv->stride & (128 - 1)),
2194 "object 0x%08x is Y tiled but has non-128B pitch\n",
2195 obj_priv->gtt_offset);
2196 break;
2197 }
2198
2199 /* First try to find a free reg */
2200 try_again:
2201 avail = 0;
2202 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2203 reg = &dev_priv->fence_regs[i];
2204 if (!reg->obj)
2205 break;
2206
2207 old_obj_priv = reg->obj->driver_private;
2208 if (!old_obj_priv->pin_count)
2209 avail++;
2210 }
2211
2212 /* None available, try to steal one or wait for a user to finish */
2213 if (i == dev_priv->num_fence_regs) {
2214 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2215 loff_t offset;
2216
2217 if (avail == 0)
2218 return -ENOMEM;
2219
2220 for (i = dev_priv->fence_reg_start;
2221 i < dev_priv->num_fence_regs; i++) {
2222 uint32_t this_seqno;
2223
2224 reg = &dev_priv->fence_regs[i];
2225 old_obj_priv = reg->obj->driver_private;
2226
2227 if (old_obj_priv->pin_count)
2228 continue;
2229
2230 /* i915 uses fences for GPU access to tiled buffers */
2231 if (IS_I965G(dev) || !old_obj_priv->active)
2232 break;
2233
2234 /* find the seqno of the first available fence */
2235 this_seqno = old_obj_priv->last_rendering_seqno;
2236 if (this_seqno != 0 &&
2237 reg->obj->write_domain == 0 &&
2238 i915_seqno_passed(seqno, this_seqno))
2239 seqno = this_seqno;
2240 }
2241
2242 /*
2243 * Now things get ugly... we have to wait for one of the
2244 * objects to finish before trying again.
2245 */
2246 if (i == dev_priv->num_fence_regs) {
2247 if (seqno == dev_priv->mm.next_gem_seqno) {
2248 i915_gem_flush(dev,
2249 I915_GEM_GPU_DOMAINS,
2250 I915_GEM_GPU_DOMAINS);
2251 seqno = i915_add_request(dev,
2252 I915_GEM_GPU_DOMAINS);
2253 if (seqno == 0)
2254 return -ENOMEM;
2255 }
2256
2257 ret = i915_wait_request(dev, seqno);
2258 if (ret)
2259 return ret;
2260 goto try_again;
2261 }
2262
2263 BUG_ON(old_obj_priv->active ||
2264 (reg->obj->write_domain & I915_GEM_GPU_DOMAINS));
2265
2266 /*
2267 * Zap this virtual mapping so we can set up a fence again
2268 * for this object next time we need it.
2269 */
2270 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2271 if (dev->dev_mapping)
2272 unmap_mapping_range(dev->dev_mapping, offset,
2273 reg->obj->size, 1);
2274 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2275 }
2276
2277 obj_priv->fence_reg = i;
2278 reg->obj = obj;
2279
2280 if (IS_I965G(dev))
2281 i965_write_fence_reg(reg);
2282 else if (IS_I9XX(dev))
2283 i915_write_fence_reg(reg);
2284 else
2285 i830_write_fence_reg(reg);
2286
2287 return 0;
2288 }
2289
2290 /**
2291 * i915_gem_clear_fence_reg - clear out fence register info
2292 * @obj: object to clear
2293 *
2294 * Zeroes out the fence register itself and clears out the associated
2295 * data structures in dev_priv and obj_priv.
2296 */
2297 static void
2298 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2299 {
2300 struct drm_device *dev = obj->dev;
2301 drm_i915_private_t *dev_priv = dev->dev_private;
2302 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2303
2304 if (IS_I965G(dev))
2305 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2306 else {
2307 uint32_t fence_reg;
2308
2309 if (obj_priv->fence_reg < 8)
2310 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2311 else
2312 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2313 8) * 4;
2314
2315 I915_WRITE(fence_reg, 0);
2316 }
2317
2318 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2319 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2320 }
2321
2322 /**
2323 * Finds free space in the GTT aperture and binds the object there.
2324 */
2325 static int
2326 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2327 {
2328 struct drm_device *dev = obj->dev;
2329 drm_i915_private_t *dev_priv = dev->dev_private;
2330 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2331 struct drm_mm_node *free_space;
2332 int page_count, ret;
2333
2334 if (dev_priv->mm.suspended)
2335 return -EBUSY;
2336 if (alignment == 0)
2337 alignment = i915_gem_get_gtt_alignment(obj);
2338 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2339 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2340 return -EINVAL;
2341 }
2342
2343 search_free:
2344 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2345 obj->size, alignment, 0);
2346 if (free_space != NULL) {
2347 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2348 alignment);
2349 if (obj_priv->gtt_space != NULL) {
2350 obj_priv->gtt_space->private = obj;
2351 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2352 }
2353 }
2354 if (obj_priv->gtt_space == NULL) {
2355 bool lists_empty;
2356
2357 /* If the gtt is empty and we're still having trouble
2358 * fitting our object in, we're out of memory.
2359 */
2360 #if WATCH_LRU
2361 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2362 #endif
2363 spin_lock(&dev_priv->mm.active_list_lock);
2364 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2365 list_empty(&dev_priv->mm.flushing_list) &&
2366 list_empty(&dev_priv->mm.active_list));
2367 spin_unlock(&dev_priv->mm.active_list_lock);
2368 if (lists_empty) {
2369 DRM_ERROR("GTT full, but LRU list empty\n");
2370 return -ENOMEM;
2371 }
2372
2373 ret = i915_gem_evict_something(dev);
2374 if (ret != 0) {
2375 if (ret != -ERESTARTSYS)
2376 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2377 return ret;
2378 }
2379 goto search_free;
2380 }
2381
2382 #if WATCH_BUF
2383 DRM_INFO("Binding object of size %d at 0x%08x\n",
2384 obj->size, obj_priv->gtt_offset);
2385 #endif
2386 ret = i915_gem_object_get_pages(obj);
2387 if (ret) {
2388 drm_mm_put_block(obj_priv->gtt_space);
2389 obj_priv->gtt_space = NULL;
2390 return ret;
2391 }
2392
2393 page_count = obj->size / PAGE_SIZE;
2394 /* Create an AGP memory structure pointing at our pages, and bind it
2395 * into the GTT.
2396 */
2397 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2398 obj_priv->pages,
2399 page_count,
2400 obj_priv->gtt_offset,
2401 obj_priv->agp_type);
2402 if (obj_priv->agp_mem == NULL) {
2403 i915_gem_object_put_pages(obj);
2404 drm_mm_put_block(obj_priv->gtt_space);
2405 obj_priv->gtt_space = NULL;
2406 return -ENOMEM;
2407 }
2408 atomic_inc(&dev->gtt_count);
2409 atomic_add(obj->size, &dev->gtt_memory);
2410
2411 /* Assert that the object is not currently in any GPU domain. As it
2412 * wasn't in the GTT, there shouldn't be any way it could have been in
2413 * a GPU cache
2414 */
2415 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2416 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2417
2418 return 0;
2419 }
2420
2421 void
2422 i915_gem_clflush_object(struct drm_gem_object *obj)
2423 {
2424 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2425
2426 /* If we don't have a page list set up, then we're not pinned
2427 * to GPU, and we can ignore the cache flush because it'll happen
2428 * again at bind time.
2429 */
2430 if (obj_priv->pages == NULL)
2431 return;
2432
2433 /* XXX: The 865 in particular appears to be weird in how it handles
2434 * cache flushing. We haven't figured it out, but the
2435 * clflush+agp_chipset_flush doesn't appear to successfully get the
2436 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2437 */
2438 if (IS_I865G(obj->dev)) {
2439 wbinvd();
2440 return;
2441 }
2442
2443 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2444 }
2445
2446 /** Flushes any GPU write domain for the object if it's dirty. */
2447 static void
2448 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2449 {
2450 struct drm_device *dev = obj->dev;
2451 uint32_t seqno;
2452
2453 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2454 return;
2455
2456 /* Queue the GPU write cache flushing we need. */
2457 i915_gem_flush(dev, 0, obj->write_domain);
2458 seqno = i915_add_request(dev, obj->write_domain);
2459 obj->write_domain = 0;
2460 i915_gem_object_move_to_active(obj, seqno);
2461 }
2462
2463 /** Flushes the GTT write domain for the object if it's dirty. */
2464 static void
2465 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2466 {
2467 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2468 return;
2469
2470 /* No actual flushing is required for the GTT write domain. Writes
2471 * to it immediately go to main memory as far as we know, so there's
2472 * no chipset flush. It also doesn't land in render cache.
2473 */
2474 obj->write_domain = 0;
2475 }
2476
2477 /** Flushes the CPU write domain for the object if it's dirty. */
2478 static void
2479 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2480 {
2481 struct drm_device *dev = obj->dev;
2482
2483 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2484 return;
2485
2486 i915_gem_clflush_object(obj);
2487 drm_agp_chipset_flush(dev);
2488 obj->write_domain = 0;
2489 }
2490
2491 /**
2492 * Moves a single object to the GTT read, and possibly write domain.
2493 *
2494 * This function returns when the move is complete, including waiting on
2495 * flushes to occur.
2496 */
2497 int
2498 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2499 {
2500 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2501 int ret;
2502
2503 /* Not valid to be called on unbound objects. */
2504 if (obj_priv->gtt_space == NULL)
2505 return -EINVAL;
2506
2507 i915_gem_object_flush_gpu_write_domain(obj);
2508 /* Wait on any GPU rendering and flushing to occur. */
2509 ret = i915_gem_object_wait_rendering(obj);
2510 if (ret != 0)
2511 return ret;
2512
2513 /* If we're writing through the GTT domain, then CPU and GPU caches
2514 * will need to be invalidated at next use.
2515 */
2516 if (write)
2517 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2518
2519 i915_gem_object_flush_cpu_write_domain(obj);
2520
2521 /* It should now be out of any other write domains, and we can update
2522 * the domain values for our changes.
2523 */
2524 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2525 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2526 if (write) {
2527 obj->write_domain = I915_GEM_DOMAIN_GTT;
2528 obj_priv->dirty = 1;
2529 }
2530
2531 return 0;
2532 }
2533
2534 /**
2535 * Moves a single object to the CPU read, and possibly write domain.
2536 *
2537 * This function returns when the move is complete, including waiting on
2538 * flushes to occur.
2539 */
2540 static int
2541 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2542 {
2543 int ret;
2544
2545 i915_gem_object_flush_gpu_write_domain(obj);
2546 /* Wait on any GPU rendering and flushing to occur. */
2547 ret = i915_gem_object_wait_rendering(obj);
2548 if (ret != 0)
2549 return ret;
2550
2551 i915_gem_object_flush_gtt_write_domain(obj);
2552
2553 /* If we have a partially-valid cache of the object in the CPU,
2554 * finish invalidating it and free the per-page flags.
2555 */
2556 i915_gem_object_set_to_full_cpu_read_domain(obj);
2557
2558 /* Flush the CPU cache if it's still invalid. */
2559 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2560 i915_gem_clflush_object(obj);
2561
2562 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2563 }
2564
2565 /* It should now be out of any other write domains, and we can update
2566 * the domain values for our changes.
2567 */
2568 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2569
2570 /* If we're writing through the CPU, then the GPU read domains will
2571 * need to be invalidated at next use.
2572 */
2573 if (write) {
2574 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2575 obj->write_domain = I915_GEM_DOMAIN_CPU;
2576 }
2577
2578 return 0;
2579 }
2580
2581 /*
2582 * Set the next domain for the specified object. This
2583 * may not actually perform the necessary flushing/invaliding though,
2584 * as that may want to be batched with other set_domain operations
2585 *
2586 * This is (we hope) the only really tricky part of gem. The goal
2587 * is fairly simple -- track which caches hold bits of the object
2588 * and make sure they remain coherent. A few concrete examples may
2589 * help to explain how it works. For shorthand, we use the notation
2590 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2591 * a pair of read and write domain masks.
2592 *
2593 * Case 1: the batch buffer
2594 *
2595 * 1. Allocated
2596 * 2. Written by CPU
2597 * 3. Mapped to GTT
2598 * 4. Read by GPU
2599 * 5. Unmapped from GTT
2600 * 6. Freed
2601 *
2602 * Let's take these a step at a time
2603 *
2604 * 1. Allocated
2605 * Pages allocated from the kernel may still have
2606 * cache contents, so we set them to (CPU, CPU) always.
2607 * 2. Written by CPU (using pwrite)
2608 * The pwrite function calls set_domain (CPU, CPU) and
2609 * this function does nothing (as nothing changes)
2610 * 3. Mapped by GTT
2611 * This function asserts that the object is not
2612 * currently in any GPU-based read or write domains
2613 * 4. Read by GPU
2614 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2615 * As write_domain is zero, this function adds in the
2616 * current read domains (CPU+COMMAND, 0).
2617 * flush_domains is set to CPU.
2618 * invalidate_domains is set to COMMAND
2619 * clflush is run to get data out of the CPU caches
2620 * then i915_dev_set_domain calls i915_gem_flush to
2621 * emit an MI_FLUSH and drm_agp_chipset_flush
2622 * 5. Unmapped from GTT
2623 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2624 * flush_domains and invalidate_domains end up both zero
2625 * so no flushing/invalidating happens
2626 * 6. Freed
2627 * yay, done
2628 *
2629 * Case 2: The shared render buffer
2630 *
2631 * 1. Allocated
2632 * 2. Mapped to GTT
2633 * 3. Read/written by GPU
2634 * 4. set_domain to (CPU,CPU)
2635 * 5. Read/written by CPU
2636 * 6. Read/written by GPU
2637 *
2638 * 1. Allocated
2639 * Same as last example, (CPU, CPU)
2640 * 2. Mapped to GTT
2641 * Nothing changes (assertions find that it is not in the GPU)
2642 * 3. Read/written by GPU
2643 * execbuffer calls set_domain (RENDER, RENDER)
2644 * flush_domains gets CPU
2645 * invalidate_domains gets GPU
2646 * clflush (obj)
2647 * MI_FLUSH and drm_agp_chipset_flush
2648 * 4. set_domain (CPU, CPU)
2649 * flush_domains gets GPU
2650 * invalidate_domains gets CPU
2651 * wait_rendering (obj) to make sure all drawing is complete.
2652 * This will include an MI_FLUSH to get the data from GPU
2653 * to memory
2654 * clflush (obj) to invalidate the CPU cache
2655 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2656 * 5. Read/written by CPU
2657 * cache lines are loaded and dirtied
2658 * 6. Read written by GPU
2659 * Same as last GPU access
2660 *
2661 * Case 3: The constant buffer
2662 *
2663 * 1. Allocated
2664 * 2. Written by CPU
2665 * 3. Read by GPU
2666 * 4. Updated (written) by CPU again
2667 * 5. Read by GPU
2668 *
2669 * 1. Allocated
2670 * (CPU, CPU)
2671 * 2. Written by CPU
2672 * (CPU, CPU)
2673 * 3. Read by GPU
2674 * (CPU+RENDER, 0)
2675 * flush_domains = CPU
2676 * invalidate_domains = RENDER
2677 * clflush (obj)
2678 * MI_FLUSH
2679 * drm_agp_chipset_flush
2680 * 4. Updated (written) by CPU again
2681 * (CPU, CPU)
2682 * flush_domains = 0 (no previous write domain)
2683 * invalidate_domains = 0 (no new read domains)
2684 * 5. Read by GPU
2685 * (CPU+RENDER, 0)
2686 * flush_domains = CPU
2687 * invalidate_domains = RENDER
2688 * clflush (obj)
2689 * MI_FLUSH
2690 * drm_agp_chipset_flush
2691 */
2692 static void
2693 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2694 {
2695 struct drm_device *dev = obj->dev;
2696 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2697 uint32_t invalidate_domains = 0;
2698 uint32_t flush_domains = 0;
2699
2700 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2701 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2702
2703 #if WATCH_BUF
2704 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2705 __func__, obj,
2706 obj->read_domains, obj->pending_read_domains,
2707 obj->write_domain, obj->pending_write_domain);
2708 #endif
2709 /*
2710 * If the object isn't moving to a new write domain,
2711 * let the object stay in multiple read domains
2712 */
2713 if (obj->pending_write_domain == 0)
2714 obj->pending_read_domains |= obj->read_domains;
2715 else
2716 obj_priv->dirty = 1;
2717
2718 /*
2719 * Flush the current write domain if
2720 * the new read domains don't match. Invalidate
2721 * any read domains which differ from the old
2722 * write domain
2723 */
2724 if (obj->write_domain &&
2725 obj->write_domain != obj->pending_read_domains) {
2726 flush_domains |= obj->write_domain;
2727 invalidate_domains |=
2728 obj->pending_read_domains & ~obj->write_domain;
2729 }
2730 /*
2731 * Invalidate any read caches which may have
2732 * stale data. That is, any new read domains.
2733 */
2734 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2735 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2736 #if WATCH_BUF
2737 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2738 __func__, flush_domains, invalidate_domains);
2739 #endif
2740 i915_gem_clflush_object(obj);
2741 }
2742
2743 /* The actual obj->write_domain will be updated with
2744 * pending_write_domain after we emit the accumulated flush for all
2745 * of our domain changes in execbuffers (which clears objects'
2746 * write_domains). So if we have a current write domain that we
2747 * aren't changing, set pending_write_domain to that.
2748 */
2749 if (flush_domains == 0 && obj->pending_write_domain == 0)
2750 obj->pending_write_domain = obj->write_domain;
2751 obj->read_domains = obj->pending_read_domains;
2752
2753 dev->invalidate_domains |= invalidate_domains;
2754 dev->flush_domains |= flush_domains;
2755 #if WATCH_BUF
2756 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2757 __func__,
2758 obj->read_domains, obj->write_domain,
2759 dev->invalidate_domains, dev->flush_domains);
2760 #endif
2761 }
2762
2763 /**
2764 * Moves the object from a partially CPU read to a full one.
2765 *
2766 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2767 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2768 */
2769 static void
2770 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2771 {
2772 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2773
2774 if (!obj_priv->page_cpu_valid)
2775 return;
2776
2777 /* If we're partially in the CPU read domain, finish moving it in.
2778 */
2779 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2780 int i;
2781
2782 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2783 if (obj_priv->page_cpu_valid[i])
2784 continue;
2785 drm_clflush_pages(obj_priv->pages + i, 1);
2786 }
2787 }
2788
2789 /* Free the page_cpu_valid mappings which are now stale, whether
2790 * or not we've got I915_GEM_DOMAIN_CPU.
2791 */
2792 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2793 DRM_MEM_DRIVER);
2794 obj_priv->page_cpu_valid = NULL;
2795 }
2796
2797 /**
2798 * Set the CPU read domain on a range of the object.
2799 *
2800 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2801 * not entirely valid. The page_cpu_valid member of the object flags which
2802 * pages have been flushed, and will be respected by
2803 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2804 * of the whole object.
2805 *
2806 * This function returns when the move is complete, including waiting on
2807 * flushes to occur.
2808 */
2809 static int
2810 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2811 uint64_t offset, uint64_t size)
2812 {
2813 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2814 int i, ret;
2815
2816 if (offset == 0 && size == obj->size)
2817 return i915_gem_object_set_to_cpu_domain(obj, 0);
2818
2819 i915_gem_object_flush_gpu_write_domain(obj);
2820 /* Wait on any GPU rendering and flushing to occur. */
2821 ret = i915_gem_object_wait_rendering(obj);
2822 if (ret != 0)
2823 return ret;
2824 i915_gem_object_flush_gtt_write_domain(obj);
2825
2826 /* If we're already fully in the CPU read domain, we're done. */
2827 if (obj_priv->page_cpu_valid == NULL &&
2828 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2829 return 0;
2830
2831 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2832 * newly adding I915_GEM_DOMAIN_CPU
2833 */
2834 if (obj_priv->page_cpu_valid == NULL) {
2835 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2836 DRM_MEM_DRIVER);
2837 if (obj_priv->page_cpu_valid == NULL)
2838 return -ENOMEM;
2839 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2840 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2841
2842 /* Flush the cache on any pages that are still invalid from the CPU's
2843 * perspective.
2844 */
2845 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2846 i++) {
2847 if (obj_priv->page_cpu_valid[i])
2848 continue;
2849
2850 drm_clflush_pages(obj_priv->pages + i, 1);
2851
2852 obj_priv->page_cpu_valid[i] = 1;
2853 }
2854
2855 /* It should now be out of any other write domains, and we can update
2856 * the domain values for our changes.
2857 */
2858 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2859
2860 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2861
2862 return 0;
2863 }
2864
2865 /**
2866 * Pin an object to the GTT and evaluate the relocations landing in it.
2867 */
2868 static int
2869 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2870 struct drm_file *file_priv,
2871 struct drm_i915_gem_exec_object *entry,
2872 struct drm_i915_gem_relocation_entry *relocs)
2873 {
2874 struct drm_device *dev = obj->dev;
2875 drm_i915_private_t *dev_priv = dev->dev_private;
2876 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2877 int i, ret;
2878 void __iomem *reloc_page;
2879
2880 /* Choose the GTT offset for our buffer and put it there. */
2881 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2882 if (ret)
2883 return ret;
2884
2885 entry->offset = obj_priv->gtt_offset;
2886
2887 /* Apply the relocations, using the GTT aperture to avoid cache
2888 * flushing requirements.
2889 */
2890 for (i = 0; i < entry->relocation_count; i++) {
2891 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2892 struct drm_gem_object *target_obj;
2893 struct drm_i915_gem_object *target_obj_priv;
2894 uint32_t reloc_val, reloc_offset;
2895 uint32_t __iomem *reloc_entry;
2896
2897 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2898 reloc->target_handle);
2899 if (target_obj == NULL) {
2900 i915_gem_object_unpin(obj);
2901 return -EBADF;
2902 }
2903 target_obj_priv = target_obj->driver_private;
2904
2905 /* The target buffer should have appeared before us in the
2906 * exec_object list, so it should have a GTT space bound by now.
2907 */
2908 if (target_obj_priv->gtt_space == NULL) {
2909 DRM_ERROR("No GTT space found for object %d\n",
2910 reloc->target_handle);
2911 drm_gem_object_unreference(target_obj);
2912 i915_gem_object_unpin(obj);
2913 return -EINVAL;
2914 }
2915
2916 if (reloc->offset > obj->size - 4) {
2917 DRM_ERROR("Relocation beyond object bounds: "
2918 "obj %p target %d offset %d size %d.\n",
2919 obj, reloc->target_handle,
2920 (int) reloc->offset, (int) obj->size);
2921 drm_gem_object_unreference(target_obj);
2922 i915_gem_object_unpin(obj);
2923 return -EINVAL;
2924 }
2925 if (reloc->offset & 3) {
2926 DRM_ERROR("Relocation not 4-byte aligned: "
2927 "obj %p target %d offset %d.\n",
2928 obj, reloc->target_handle,
2929 (int) reloc->offset);
2930 drm_gem_object_unreference(target_obj);
2931 i915_gem_object_unpin(obj);
2932 return -EINVAL;
2933 }
2934
2935 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2936 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2937 DRM_ERROR("reloc with read/write CPU domains: "
2938 "obj %p target %d offset %d "
2939 "read %08x write %08x",
2940 obj, reloc->target_handle,
2941 (int) reloc->offset,
2942 reloc->read_domains,
2943 reloc->write_domain);
2944 drm_gem_object_unreference(target_obj);
2945 i915_gem_object_unpin(obj);
2946 return -EINVAL;
2947 }
2948
2949 if (reloc->write_domain && target_obj->pending_write_domain &&
2950 reloc->write_domain != target_obj->pending_write_domain) {
2951 DRM_ERROR("Write domain conflict: "
2952 "obj %p target %d offset %d "
2953 "new %08x old %08x\n",
2954 obj, reloc->target_handle,
2955 (int) reloc->offset,
2956 reloc->write_domain,
2957 target_obj->pending_write_domain);
2958 drm_gem_object_unreference(target_obj);
2959 i915_gem_object_unpin(obj);
2960 return -EINVAL;
2961 }
2962
2963 #if WATCH_RELOC
2964 DRM_INFO("%s: obj %p offset %08x target %d "
2965 "read %08x write %08x gtt %08x "
2966 "presumed %08x delta %08x\n",
2967 __func__,
2968 obj,
2969 (int) reloc->offset,
2970 (int) reloc->target_handle,
2971 (int) reloc->read_domains,
2972 (int) reloc->write_domain,
2973 (int) target_obj_priv->gtt_offset,
2974 (int) reloc->presumed_offset,
2975 reloc->delta);
2976 #endif
2977
2978 target_obj->pending_read_domains |= reloc->read_domains;
2979 target_obj->pending_write_domain |= reloc->write_domain;
2980
2981 /* If the relocation already has the right value in it, no
2982 * more work needs to be done.
2983 */
2984 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
2985 drm_gem_object_unreference(target_obj);
2986 continue;
2987 }
2988
2989 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2990 if (ret != 0) {
2991 drm_gem_object_unreference(target_obj);
2992 i915_gem_object_unpin(obj);
2993 return -EINVAL;
2994 }
2995
2996 /* Map the page containing the relocation we're going to
2997 * perform.
2998 */
2999 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3000 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3001 (reloc_offset &
3002 ~(PAGE_SIZE - 1)));
3003 reloc_entry = (uint32_t __iomem *)(reloc_page +
3004 (reloc_offset & (PAGE_SIZE - 1)));
3005 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3006
3007 #if WATCH_BUF
3008 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3009 obj, (unsigned int) reloc->offset,
3010 readl(reloc_entry), reloc_val);
3011 #endif
3012 writel(reloc_val, reloc_entry);
3013 io_mapping_unmap_atomic(reloc_page);
3014
3015 /* The updated presumed offset for this entry will be
3016 * copied back out to the user.
3017 */
3018 reloc->presumed_offset = target_obj_priv->gtt_offset;
3019
3020 drm_gem_object_unreference(target_obj);
3021 }
3022
3023 #if WATCH_BUF
3024 if (0)
3025 i915_gem_dump_object(obj, 128, __func__, ~0);
3026 #endif
3027 return 0;
3028 }
3029
3030 /** Dispatch a batchbuffer to the ring
3031 */
3032 static int
3033 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3034 struct drm_i915_gem_execbuffer *exec,
3035 struct drm_clip_rect *cliprects,
3036 uint64_t exec_offset)
3037 {
3038 drm_i915_private_t *dev_priv = dev->dev_private;
3039 int nbox = exec->num_cliprects;
3040 int i = 0, count;
3041 uint32_t exec_start, exec_len;
3042 RING_LOCALS;
3043
3044 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3045 exec_len = (uint32_t) exec->batch_len;
3046
3047 if ((exec_start | exec_len) & 0x7) {
3048 DRM_ERROR("alignment\n");
3049 return -EINVAL;
3050 }
3051
3052 if (!exec_start)
3053 return -EINVAL;
3054
3055 count = nbox ? nbox : 1;
3056
3057 for (i = 0; i < count; i++) {
3058 if (i < nbox) {
3059 int ret = i915_emit_box(dev, cliprects, i,
3060 exec->DR1, exec->DR4);
3061 if (ret)
3062 return ret;
3063 }
3064
3065 if (IS_I830(dev) || IS_845G(dev)) {
3066 BEGIN_LP_RING(4);
3067 OUT_RING(MI_BATCH_BUFFER);
3068 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3069 OUT_RING(exec_start + exec_len - 4);
3070 OUT_RING(0);
3071 ADVANCE_LP_RING();
3072 } else {
3073 BEGIN_LP_RING(2);
3074 if (IS_I965G(dev)) {
3075 OUT_RING(MI_BATCH_BUFFER_START |
3076 (2 << 6) |
3077 MI_BATCH_NON_SECURE_I965);
3078 OUT_RING(exec_start);
3079 } else {
3080 OUT_RING(MI_BATCH_BUFFER_START |
3081 (2 << 6));
3082 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3083 }
3084 ADVANCE_LP_RING();
3085 }
3086 }
3087
3088 /* XXX breadcrumb */
3089 return 0;
3090 }
3091
3092 /* Throttle our rendering by waiting until the ring has completed our requests
3093 * emitted over 20 msec ago.
3094 *
3095 * This should get us reasonable parallelism between CPU and GPU but also
3096 * relatively low latency when blocking on a particular request to finish.
3097 */
3098 static int
3099 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3100 {
3101 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3102 int ret = 0;
3103 uint32_t seqno;
3104
3105 mutex_lock(&dev->struct_mutex);
3106 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
3107 i915_file_priv->mm.last_gem_throttle_seqno =
3108 i915_file_priv->mm.last_gem_seqno;
3109 if (seqno)
3110 ret = i915_wait_request(dev, seqno);
3111 mutex_unlock(&dev->struct_mutex);
3112 return ret;
3113 }
3114
3115 static int
3116 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3117 uint32_t buffer_count,
3118 struct drm_i915_gem_relocation_entry **relocs)
3119 {
3120 uint32_t reloc_count = 0, reloc_index = 0, i;
3121 int ret;
3122
3123 *relocs = NULL;
3124 for (i = 0; i < buffer_count; i++) {
3125 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3126 return -EINVAL;
3127 reloc_count += exec_list[i].relocation_count;
3128 }
3129
3130 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3131 if (*relocs == NULL)
3132 return -ENOMEM;
3133
3134 for (i = 0; i < buffer_count; i++) {
3135 struct drm_i915_gem_relocation_entry __user *user_relocs;
3136
3137 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3138
3139 ret = copy_from_user(&(*relocs)[reloc_index],
3140 user_relocs,
3141 exec_list[i].relocation_count *
3142 sizeof(**relocs));
3143 if (ret != 0) {
3144 drm_free_large(*relocs);
3145 *relocs = NULL;
3146 return -EFAULT;
3147 }
3148
3149 reloc_index += exec_list[i].relocation_count;
3150 }
3151
3152 return 0;
3153 }
3154
3155 static int
3156 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3157 uint32_t buffer_count,
3158 struct drm_i915_gem_relocation_entry *relocs)
3159 {
3160 uint32_t reloc_count = 0, i;
3161 int ret = 0;
3162
3163 for (i = 0; i < buffer_count; i++) {
3164 struct drm_i915_gem_relocation_entry __user *user_relocs;
3165 int unwritten;
3166
3167 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3168
3169 unwritten = copy_to_user(user_relocs,
3170 &relocs[reloc_count],
3171 exec_list[i].relocation_count *
3172 sizeof(*relocs));
3173
3174 if (unwritten) {
3175 ret = -EFAULT;
3176 goto err;
3177 }
3178
3179 reloc_count += exec_list[i].relocation_count;
3180 }
3181
3182 err:
3183 drm_free_large(relocs);
3184
3185 return ret;
3186 }
3187
3188 int
3189 i915_gem_execbuffer(struct drm_device *dev, void *data,
3190 struct drm_file *file_priv)
3191 {
3192 drm_i915_private_t *dev_priv = dev->dev_private;
3193 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3194 struct drm_i915_gem_execbuffer *args = data;
3195 struct drm_i915_gem_exec_object *exec_list = NULL;
3196 struct drm_gem_object **object_list = NULL;
3197 struct drm_gem_object *batch_obj;
3198 struct drm_i915_gem_object *obj_priv;
3199 struct drm_clip_rect *cliprects = NULL;
3200 struct drm_i915_gem_relocation_entry *relocs;
3201 int ret, ret2, i, pinned = 0;
3202 uint64_t exec_offset;
3203 uint32_t seqno, flush_domains, reloc_index;
3204 int pin_tries;
3205
3206 #if WATCH_EXEC
3207 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3208 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3209 #endif
3210
3211 if (args->buffer_count < 1) {
3212 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3213 return -EINVAL;
3214 }
3215 /* Copy in the exec list from userland */
3216 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3217 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3218 if (exec_list == NULL || object_list == NULL) {
3219 DRM_ERROR("Failed to allocate exec or object list "
3220 "for %d buffers\n",
3221 args->buffer_count);
3222 ret = -ENOMEM;
3223 goto pre_mutex_err;
3224 }
3225 ret = copy_from_user(exec_list,
3226 (struct drm_i915_relocation_entry __user *)
3227 (uintptr_t) args->buffers_ptr,
3228 sizeof(*exec_list) * args->buffer_count);
3229 if (ret != 0) {
3230 DRM_ERROR("copy %d exec entries failed %d\n",
3231 args->buffer_count, ret);
3232 goto pre_mutex_err;
3233 }
3234
3235 if (args->num_cliprects != 0) {
3236 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3237 DRM_MEM_DRIVER);
3238 if (cliprects == NULL)
3239 goto pre_mutex_err;
3240
3241 ret = copy_from_user(cliprects,
3242 (struct drm_clip_rect __user *)
3243 (uintptr_t) args->cliprects_ptr,
3244 sizeof(*cliprects) * args->num_cliprects);
3245 if (ret != 0) {
3246 DRM_ERROR("copy %d cliprects failed: %d\n",
3247 args->num_cliprects, ret);
3248 goto pre_mutex_err;
3249 }
3250 }
3251
3252 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3253 &relocs);
3254 if (ret != 0)
3255 goto pre_mutex_err;
3256
3257 mutex_lock(&dev->struct_mutex);
3258
3259 i915_verify_inactive(dev, __FILE__, __LINE__);
3260
3261 if (dev_priv->mm.wedged) {
3262 DRM_ERROR("Execbuf while wedged\n");
3263 mutex_unlock(&dev->struct_mutex);
3264 ret = -EIO;
3265 goto pre_mutex_err;
3266 }
3267
3268 if (dev_priv->mm.suspended) {
3269 DRM_ERROR("Execbuf while VT-switched.\n");
3270 mutex_unlock(&dev->struct_mutex);
3271 ret = -EBUSY;
3272 goto pre_mutex_err;
3273 }
3274
3275 /* Look up object handles */
3276 for (i = 0; i < args->buffer_count; i++) {
3277 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3278 exec_list[i].handle);
3279 if (object_list[i] == NULL) {
3280 DRM_ERROR("Invalid object handle %d at index %d\n",
3281 exec_list[i].handle, i);
3282 ret = -EBADF;
3283 goto err;
3284 }
3285
3286 obj_priv = object_list[i]->driver_private;
3287 if (obj_priv->in_execbuffer) {
3288 DRM_ERROR("Object %p appears more than once in object list\n",
3289 object_list[i]);
3290 ret = -EBADF;
3291 goto err;
3292 }
3293 obj_priv->in_execbuffer = true;
3294 }
3295
3296 /* Pin and relocate */
3297 for (pin_tries = 0; ; pin_tries++) {
3298 ret = 0;
3299 reloc_index = 0;
3300
3301 for (i = 0; i < args->buffer_count; i++) {
3302 object_list[i]->pending_read_domains = 0;
3303 object_list[i]->pending_write_domain = 0;
3304 ret = i915_gem_object_pin_and_relocate(object_list[i],
3305 file_priv,
3306 &exec_list[i],
3307 &relocs[reloc_index]);
3308 if (ret)
3309 break;
3310 pinned = i + 1;
3311 reloc_index += exec_list[i].relocation_count;
3312 }
3313 /* success */
3314 if (ret == 0)
3315 break;
3316
3317 /* error other than GTT full, or we've already tried again */
3318 if (ret != -ENOMEM || pin_tries >= 1) {
3319 if (ret != -ERESTARTSYS)
3320 DRM_ERROR("Failed to pin buffers %d\n", ret);
3321 goto err;
3322 }
3323
3324 /* unpin all of our buffers */
3325 for (i = 0; i < pinned; i++)
3326 i915_gem_object_unpin(object_list[i]);
3327 pinned = 0;
3328
3329 /* evict everyone we can from the aperture */
3330 ret = i915_gem_evict_everything(dev);
3331 if (ret)
3332 goto err;
3333 }
3334
3335 /* Set the pending read domains for the batch buffer to COMMAND */
3336 batch_obj = object_list[args->buffer_count-1];
3337 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3338 batch_obj->pending_write_domain = 0;
3339
3340 i915_verify_inactive(dev, __FILE__, __LINE__);
3341
3342 /* Zero the global flush/invalidate flags. These
3343 * will be modified as new domains are computed
3344 * for each object
3345 */
3346 dev->invalidate_domains = 0;
3347 dev->flush_domains = 0;
3348
3349 for (i = 0; i < args->buffer_count; i++) {
3350 struct drm_gem_object *obj = object_list[i];
3351
3352 /* Compute new gpu domains and update invalidate/flush */
3353 i915_gem_object_set_to_gpu_domain(obj);
3354 }
3355
3356 i915_verify_inactive(dev, __FILE__, __LINE__);
3357
3358 if (dev->invalidate_domains | dev->flush_domains) {
3359 #if WATCH_EXEC
3360 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3361 __func__,
3362 dev->invalidate_domains,
3363 dev->flush_domains);
3364 #endif
3365 i915_gem_flush(dev,
3366 dev->invalidate_domains,
3367 dev->flush_domains);
3368 if (dev->flush_domains)
3369 (void)i915_add_request(dev, dev->flush_domains);
3370 }
3371
3372 for (i = 0; i < args->buffer_count; i++) {
3373 struct drm_gem_object *obj = object_list[i];
3374
3375 obj->write_domain = obj->pending_write_domain;
3376 }
3377
3378 i915_verify_inactive(dev, __FILE__, __LINE__);
3379
3380 #if WATCH_COHERENCY
3381 for (i = 0; i < args->buffer_count; i++) {
3382 i915_gem_object_check_coherency(object_list[i],
3383 exec_list[i].handle);
3384 }
3385 #endif
3386
3387 exec_offset = exec_list[args->buffer_count - 1].offset;
3388
3389 #if WATCH_EXEC
3390 i915_gem_dump_object(batch_obj,
3391 args->batch_len,
3392 __func__,
3393 ~0);
3394 #endif
3395
3396 /* Exec the batchbuffer */
3397 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3398 if (ret) {
3399 DRM_ERROR("dispatch failed %d\n", ret);
3400 goto err;
3401 }
3402
3403 /*
3404 * Ensure that the commands in the batch buffer are
3405 * finished before the interrupt fires
3406 */
3407 flush_domains = i915_retire_commands(dev);
3408
3409 i915_verify_inactive(dev, __FILE__, __LINE__);
3410
3411 /*
3412 * Get a seqno representing the execution of the current buffer,
3413 * which we can wait on. We would like to mitigate these interrupts,
3414 * likely by only creating seqnos occasionally (so that we have
3415 * *some* interrupts representing completion of buffers that we can
3416 * wait on when trying to clear up gtt space).
3417 */
3418 seqno = i915_add_request(dev, flush_domains);
3419 BUG_ON(seqno == 0);
3420 i915_file_priv->mm.last_gem_seqno = seqno;
3421 for (i = 0; i < args->buffer_count; i++) {
3422 struct drm_gem_object *obj = object_list[i];
3423
3424 i915_gem_object_move_to_active(obj, seqno);
3425 #if WATCH_LRU
3426 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3427 #endif
3428 }
3429 #if WATCH_LRU
3430 i915_dump_lru(dev, __func__);
3431 #endif
3432
3433 i915_verify_inactive(dev, __FILE__, __LINE__);
3434
3435 err:
3436 for (i = 0; i < pinned; i++)
3437 i915_gem_object_unpin(object_list[i]);
3438
3439 for (i = 0; i < args->buffer_count; i++) {
3440 if (object_list[i]) {
3441 obj_priv = object_list[i]->driver_private;
3442 obj_priv->in_execbuffer = false;
3443 }
3444 drm_gem_object_unreference(object_list[i]);
3445 }
3446
3447 mutex_unlock(&dev->struct_mutex);
3448
3449 if (!ret) {
3450 /* Copy the new buffer offsets back to the user's exec list. */
3451 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3452 (uintptr_t) args->buffers_ptr,
3453 exec_list,
3454 sizeof(*exec_list) * args->buffer_count);
3455 if (ret) {
3456 ret = -EFAULT;
3457 DRM_ERROR("failed to copy %d exec entries "
3458 "back to user (%d)\n",
3459 args->buffer_count, ret);
3460 }
3461 }
3462
3463 /* Copy the updated relocations out regardless of current error
3464 * state. Failure to update the relocs would mean that the next
3465 * time userland calls execbuf, it would do so with presumed offset
3466 * state that didn't match the actual object state.
3467 */
3468 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3469 relocs);
3470 if (ret2 != 0) {
3471 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3472
3473 if (ret == 0)
3474 ret = ret2;
3475 }
3476
3477 pre_mutex_err:
3478 drm_free_large(object_list);
3479 drm_free_large(exec_list);
3480 drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3481 DRM_MEM_DRIVER);
3482
3483 return ret;
3484 }
3485
3486 int
3487 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3488 {
3489 struct drm_device *dev = obj->dev;
3490 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3491 int ret;
3492
3493 i915_verify_inactive(dev, __FILE__, __LINE__);
3494 if (obj_priv->gtt_space == NULL) {
3495 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3496 if (ret != 0) {
3497 if (ret != -EBUSY && ret != -ERESTARTSYS)
3498 DRM_ERROR("Failure to bind: %d\n", ret);
3499 return ret;
3500 }
3501 }
3502 /*
3503 * Pre-965 chips need a fence register set up in order to
3504 * properly handle tiled surfaces.
3505 */
3506 if (!IS_I965G(dev) &&
3507 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3508 obj_priv->tiling_mode != I915_TILING_NONE) {
3509 ret = i915_gem_object_get_fence_reg(obj, true);
3510 if (ret != 0) {
3511 if (ret != -EBUSY && ret != -ERESTARTSYS)
3512 DRM_ERROR("Failure to install fence: %d\n",
3513 ret);
3514 return ret;
3515 }
3516 }
3517 obj_priv->pin_count++;
3518
3519 /* If the object is not active and not pending a flush,
3520 * remove it from the inactive list
3521 */
3522 if (obj_priv->pin_count == 1) {
3523 atomic_inc(&dev->pin_count);
3524 atomic_add(obj->size, &dev->pin_memory);
3525 if (!obj_priv->active &&
3526 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3527 I915_GEM_DOMAIN_GTT)) == 0 &&
3528 !list_empty(&obj_priv->list))
3529 list_del_init(&obj_priv->list);
3530 }
3531 i915_verify_inactive(dev, __FILE__, __LINE__);
3532
3533 return 0;
3534 }
3535
3536 void
3537 i915_gem_object_unpin(struct drm_gem_object *obj)
3538 {
3539 struct drm_device *dev = obj->dev;
3540 drm_i915_private_t *dev_priv = dev->dev_private;
3541 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3542
3543 i915_verify_inactive(dev, __FILE__, __LINE__);
3544 obj_priv->pin_count--;
3545 BUG_ON(obj_priv->pin_count < 0);
3546 BUG_ON(obj_priv->gtt_space == NULL);
3547
3548 /* If the object is no longer pinned, and is
3549 * neither active nor being flushed, then stick it on
3550 * the inactive list
3551 */
3552 if (obj_priv->pin_count == 0) {
3553 if (!obj_priv->active &&
3554 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3555 I915_GEM_DOMAIN_GTT)) == 0)
3556 list_move_tail(&obj_priv->list,
3557 &dev_priv->mm.inactive_list);
3558 atomic_dec(&dev->pin_count);
3559 atomic_sub(obj->size, &dev->pin_memory);
3560 }
3561 i915_verify_inactive(dev, __FILE__, __LINE__);
3562 }
3563
3564 int
3565 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3566 struct drm_file *file_priv)
3567 {
3568 struct drm_i915_gem_pin *args = data;
3569 struct drm_gem_object *obj;
3570 struct drm_i915_gem_object *obj_priv;
3571 int ret;
3572
3573 mutex_lock(&dev->struct_mutex);
3574
3575 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3576 if (obj == NULL) {
3577 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3578 args->handle);
3579 mutex_unlock(&dev->struct_mutex);
3580 return -EBADF;
3581 }
3582 obj_priv = obj->driver_private;
3583
3584 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3585 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3586 args->handle);
3587 drm_gem_object_unreference(obj);
3588 mutex_unlock(&dev->struct_mutex);
3589 return -EINVAL;
3590 }
3591
3592 obj_priv->user_pin_count++;
3593 obj_priv->pin_filp = file_priv;
3594 if (obj_priv->user_pin_count == 1) {
3595 ret = i915_gem_object_pin(obj, args->alignment);
3596 if (ret != 0) {
3597 drm_gem_object_unreference(obj);
3598 mutex_unlock(&dev->struct_mutex);
3599 return ret;
3600 }
3601 }
3602
3603 /* XXX - flush the CPU caches for pinned objects
3604 * as the X server doesn't manage domains yet
3605 */
3606 i915_gem_object_flush_cpu_write_domain(obj);
3607 args->offset = obj_priv->gtt_offset;
3608 drm_gem_object_unreference(obj);
3609 mutex_unlock(&dev->struct_mutex);
3610
3611 return 0;
3612 }
3613
3614 int
3615 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3616 struct drm_file *file_priv)
3617 {
3618 struct drm_i915_gem_pin *args = data;
3619 struct drm_gem_object *obj;
3620 struct drm_i915_gem_object *obj_priv;
3621
3622 mutex_lock(&dev->struct_mutex);
3623
3624 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3625 if (obj == NULL) {
3626 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3627 args->handle);
3628 mutex_unlock(&dev->struct_mutex);
3629 return -EBADF;
3630 }
3631
3632 obj_priv = obj->driver_private;
3633 if (obj_priv->pin_filp != file_priv) {
3634 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3635 args->handle);
3636 drm_gem_object_unreference(obj);
3637 mutex_unlock(&dev->struct_mutex);
3638 return -EINVAL;
3639 }
3640 obj_priv->user_pin_count--;
3641 if (obj_priv->user_pin_count == 0) {
3642 obj_priv->pin_filp = NULL;
3643 i915_gem_object_unpin(obj);
3644 }
3645
3646 drm_gem_object_unreference(obj);
3647 mutex_unlock(&dev->struct_mutex);
3648 return 0;
3649 }
3650
3651 int
3652 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3653 struct drm_file *file_priv)
3654 {
3655 struct drm_i915_gem_busy *args = data;
3656 struct drm_gem_object *obj;
3657 struct drm_i915_gem_object *obj_priv;
3658
3659 mutex_lock(&dev->struct_mutex);
3660 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3661 if (obj == NULL) {
3662 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3663 args->handle);
3664 mutex_unlock(&dev->struct_mutex);
3665 return -EBADF;
3666 }
3667
3668 /* Update the active list for the hardware's current position.
3669 * Otherwise this only updates on a delayed timer or when irqs are
3670 * actually unmasked, and our working set ends up being larger than
3671 * required.
3672 */
3673 i915_gem_retire_requests(dev);
3674
3675 obj_priv = obj->driver_private;
3676 /* Don't count being on the flushing list against the object being
3677 * done. Otherwise, a buffer left on the flushing list but not getting
3678 * flushed (because nobody's flushing that domain) won't ever return
3679 * unbusy and get reused by libdrm's bo cache. The other expected
3680 * consumer of this interface, OpenGL's occlusion queries, also specs
3681 * that the objects get unbusy "eventually" without any interference.
3682 */
3683 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3684
3685 drm_gem_object_unreference(obj);
3686 mutex_unlock(&dev->struct_mutex);
3687 return 0;
3688 }
3689
3690 int
3691 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3692 struct drm_file *file_priv)
3693 {
3694 return i915_gem_ring_throttle(dev, file_priv);
3695 }
3696
3697 int i915_gem_init_object(struct drm_gem_object *obj)
3698 {
3699 struct drm_i915_gem_object *obj_priv;
3700
3701 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3702 if (obj_priv == NULL)
3703 return -ENOMEM;
3704
3705 /*
3706 * We've just allocated pages from the kernel,
3707 * so they've just been written by the CPU with
3708 * zeros. They'll need to be clflushed before we
3709 * use them with the GPU.
3710 */
3711 obj->write_domain = I915_GEM_DOMAIN_CPU;
3712 obj->read_domains = I915_GEM_DOMAIN_CPU;
3713
3714 obj_priv->agp_type = AGP_USER_MEMORY;
3715
3716 obj->driver_private = obj_priv;
3717 obj_priv->obj = obj;
3718 obj_priv->fence_reg = I915_FENCE_REG_NONE;
3719 INIT_LIST_HEAD(&obj_priv->list);
3720
3721 return 0;
3722 }
3723
3724 void i915_gem_free_object(struct drm_gem_object *obj)
3725 {
3726 struct drm_device *dev = obj->dev;
3727 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3728
3729 while (obj_priv->pin_count > 0)
3730 i915_gem_object_unpin(obj);
3731
3732 if (obj_priv->phys_obj)
3733 i915_gem_detach_phys_object(dev, obj);
3734
3735 i915_gem_object_unbind(obj);
3736
3737 i915_gem_free_mmap_offset(obj);
3738
3739 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3740 kfree(obj_priv->bit_17);
3741 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3742 }
3743
3744 /** Unbinds all objects that are on the given buffer list. */
3745 static int
3746 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3747 {
3748 struct drm_gem_object *obj;
3749 struct drm_i915_gem_object *obj_priv;
3750 int ret;
3751
3752 while (!list_empty(head)) {
3753 obj_priv = list_first_entry(head,
3754 struct drm_i915_gem_object,
3755 list);
3756 obj = obj_priv->obj;
3757
3758 if (obj_priv->pin_count != 0) {
3759 DRM_ERROR("Pinned object in unbind list\n");
3760 mutex_unlock(&dev->struct_mutex);
3761 return -EINVAL;
3762 }
3763
3764 ret = i915_gem_object_unbind(obj);
3765 if (ret != 0) {
3766 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3767 ret);
3768 mutex_unlock(&dev->struct_mutex);
3769 return ret;
3770 }
3771 }
3772
3773
3774 return 0;
3775 }
3776
3777 int
3778 i915_gem_idle(struct drm_device *dev)
3779 {
3780 drm_i915_private_t *dev_priv = dev->dev_private;
3781 uint32_t seqno, cur_seqno, last_seqno;
3782 int stuck, ret;
3783
3784 mutex_lock(&dev->struct_mutex);
3785
3786 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3787 mutex_unlock(&dev->struct_mutex);
3788 return 0;
3789 }
3790
3791 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3792 * We need to replace this with a semaphore, or something.
3793 */
3794 dev_priv->mm.suspended = 1;
3795
3796 /* Cancel the retire work handler, wait for it to finish if running
3797 */
3798 mutex_unlock(&dev->struct_mutex);
3799 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3800 mutex_lock(&dev->struct_mutex);
3801
3802 i915_kernel_lost_context(dev);
3803
3804 /* Flush the GPU along with all non-CPU write domains
3805 */
3806 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3807 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3808 seqno = i915_add_request(dev, ~I915_GEM_DOMAIN_CPU);
3809
3810 if (seqno == 0) {
3811 mutex_unlock(&dev->struct_mutex);
3812 return -ENOMEM;
3813 }
3814
3815 dev_priv->mm.waiting_gem_seqno = seqno;
3816 last_seqno = 0;
3817 stuck = 0;
3818 for (;;) {
3819 cur_seqno = i915_get_gem_seqno(dev);
3820 if (i915_seqno_passed(cur_seqno, seqno))
3821 break;
3822 if (last_seqno == cur_seqno) {
3823 if (stuck++ > 100) {
3824 DRM_ERROR("hardware wedged\n");
3825 dev_priv->mm.wedged = 1;
3826 DRM_WAKEUP(&dev_priv->irq_queue);
3827 break;
3828 }
3829 }
3830 msleep(10);
3831 last_seqno = cur_seqno;
3832 }
3833 dev_priv->mm.waiting_gem_seqno = 0;
3834
3835 i915_gem_retire_requests(dev);
3836
3837 spin_lock(&dev_priv->mm.active_list_lock);
3838 if (!dev_priv->mm.wedged) {
3839 /* Active and flushing should now be empty as we've
3840 * waited for a sequence higher than any pending execbuffer
3841 */
3842 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3843 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3844 /* Request should now be empty as we've also waited
3845 * for the last request in the list
3846 */
3847 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3848 }
3849
3850 /* Empty the active and flushing lists to inactive. If there's
3851 * anything left at this point, it means that we're wedged and
3852 * nothing good's going to happen by leaving them there. So strip
3853 * the GPU domains and just stuff them onto inactive.
3854 */
3855 while (!list_empty(&dev_priv->mm.active_list)) {
3856 struct drm_i915_gem_object *obj_priv;
3857
3858 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3859 struct drm_i915_gem_object,
3860 list);
3861 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3862 i915_gem_object_move_to_inactive(obj_priv->obj);
3863 }
3864 spin_unlock(&dev_priv->mm.active_list_lock);
3865
3866 while (!list_empty(&dev_priv->mm.flushing_list)) {
3867 struct drm_i915_gem_object *obj_priv;
3868
3869 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3870 struct drm_i915_gem_object,
3871 list);
3872 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3873 i915_gem_object_move_to_inactive(obj_priv->obj);
3874 }
3875
3876
3877 /* Move all inactive buffers out of the GTT. */
3878 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3879 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3880 if (ret) {
3881 mutex_unlock(&dev->struct_mutex);
3882 return ret;
3883 }
3884
3885 i915_gem_cleanup_ringbuffer(dev);
3886 mutex_unlock(&dev->struct_mutex);
3887
3888 return 0;
3889 }
3890
3891 static int
3892 i915_gem_init_hws(struct drm_device *dev)
3893 {
3894 drm_i915_private_t *dev_priv = dev->dev_private;
3895 struct drm_gem_object *obj;
3896 struct drm_i915_gem_object *obj_priv;
3897 int ret;
3898
3899 /* If we need a physical address for the status page, it's already
3900 * initialized at driver load time.
3901 */
3902 if (!I915_NEED_GFX_HWS(dev))
3903 return 0;
3904
3905 obj = drm_gem_object_alloc(dev, 4096);
3906 if (obj == NULL) {
3907 DRM_ERROR("Failed to allocate status page\n");
3908 return -ENOMEM;
3909 }
3910 obj_priv = obj->driver_private;
3911 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3912
3913 ret = i915_gem_object_pin(obj, 4096);
3914 if (ret != 0) {
3915 drm_gem_object_unreference(obj);
3916 return ret;
3917 }
3918
3919 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3920
3921 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3922 if (dev_priv->hw_status_page == NULL) {
3923 DRM_ERROR("Failed to map status page.\n");
3924 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3925 i915_gem_object_unpin(obj);
3926 drm_gem_object_unreference(obj);
3927 return -EINVAL;
3928 }
3929 dev_priv->hws_obj = obj;
3930 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3931 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3932 I915_READ(HWS_PGA); /* posting read */
3933 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3934
3935 return 0;
3936 }
3937
3938 static void
3939 i915_gem_cleanup_hws(struct drm_device *dev)
3940 {
3941 drm_i915_private_t *dev_priv = dev->dev_private;
3942 struct drm_gem_object *obj;
3943 struct drm_i915_gem_object *obj_priv;
3944
3945 if (dev_priv->hws_obj == NULL)
3946 return;
3947
3948 obj = dev_priv->hws_obj;
3949 obj_priv = obj->driver_private;
3950
3951 kunmap(obj_priv->pages[0]);
3952 i915_gem_object_unpin(obj);
3953 drm_gem_object_unreference(obj);
3954 dev_priv->hws_obj = NULL;
3955
3956 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3957 dev_priv->hw_status_page = NULL;
3958
3959 /* Write high address into HWS_PGA when disabling. */
3960 I915_WRITE(HWS_PGA, 0x1ffff000);
3961 }
3962
3963 int
3964 i915_gem_init_ringbuffer(struct drm_device *dev)
3965 {
3966 drm_i915_private_t *dev_priv = dev->dev_private;
3967 struct drm_gem_object *obj;
3968 struct drm_i915_gem_object *obj_priv;
3969 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3970 int ret;
3971 u32 head;
3972
3973 ret = i915_gem_init_hws(dev);
3974 if (ret != 0)
3975 return ret;
3976
3977 obj = drm_gem_object_alloc(dev, 128 * 1024);
3978 if (obj == NULL) {
3979 DRM_ERROR("Failed to allocate ringbuffer\n");
3980 i915_gem_cleanup_hws(dev);
3981 return -ENOMEM;
3982 }
3983 obj_priv = obj->driver_private;
3984
3985 ret = i915_gem_object_pin(obj, 4096);
3986 if (ret != 0) {
3987 drm_gem_object_unreference(obj);
3988 i915_gem_cleanup_hws(dev);
3989 return ret;
3990 }
3991
3992 /* Set up the kernel mapping for the ring. */
3993 ring->Size = obj->size;
3994 ring->tail_mask = obj->size - 1;
3995
3996 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
3997 ring->map.size = obj->size;
3998 ring->map.type = 0;
3999 ring->map.flags = 0;
4000 ring->map.mtrr = 0;
4001
4002 drm_core_ioremap_wc(&ring->map, dev);
4003 if (ring->map.handle == NULL) {
4004 DRM_ERROR("Failed to map ringbuffer.\n");
4005 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4006 i915_gem_object_unpin(obj);
4007 drm_gem_object_unreference(obj);
4008 i915_gem_cleanup_hws(dev);
4009 return -EINVAL;
4010 }
4011 ring->ring_obj = obj;
4012 ring->virtual_start = ring->map.handle;
4013
4014 /* Stop the ring if it's running. */
4015 I915_WRITE(PRB0_CTL, 0);
4016 I915_WRITE(PRB0_TAIL, 0);
4017 I915_WRITE(PRB0_HEAD, 0);
4018
4019 /* Initialize the ring. */
4020 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4021 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4022
4023 /* G45 ring initialization fails to reset head to zero */
4024 if (head != 0) {
4025 DRM_ERROR("Ring head not reset to zero "
4026 "ctl %08x head %08x tail %08x start %08x\n",
4027 I915_READ(PRB0_CTL),
4028 I915_READ(PRB0_HEAD),
4029 I915_READ(PRB0_TAIL),
4030 I915_READ(PRB0_START));
4031 I915_WRITE(PRB0_HEAD, 0);
4032
4033 DRM_ERROR("Ring head forced to zero "
4034 "ctl %08x head %08x tail %08x start %08x\n",
4035 I915_READ(PRB0_CTL),
4036 I915_READ(PRB0_HEAD),
4037 I915_READ(PRB0_TAIL),
4038 I915_READ(PRB0_START));
4039 }
4040
4041 I915_WRITE(PRB0_CTL,
4042 ((obj->size - 4096) & RING_NR_PAGES) |
4043 RING_NO_REPORT |
4044 RING_VALID);
4045
4046 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4047
4048 /* If the head is still not zero, the ring is dead */
4049 if (head != 0) {
4050 DRM_ERROR("Ring initialization failed "
4051 "ctl %08x head %08x tail %08x start %08x\n",
4052 I915_READ(PRB0_CTL),
4053 I915_READ(PRB0_HEAD),
4054 I915_READ(PRB0_TAIL),
4055 I915_READ(PRB0_START));
4056 return -EIO;
4057 }
4058
4059 /* Update our cache of the ring state */
4060 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4061 i915_kernel_lost_context(dev);
4062 else {
4063 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4064 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4065 ring->space = ring->head - (ring->tail + 8);
4066 if (ring->space < 0)
4067 ring->space += ring->Size;
4068 }
4069
4070 return 0;
4071 }
4072
4073 void
4074 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4075 {
4076 drm_i915_private_t *dev_priv = dev->dev_private;
4077
4078 if (dev_priv->ring.ring_obj == NULL)
4079 return;
4080
4081 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4082
4083 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4084 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4085 dev_priv->ring.ring_obj = NULL;
4086 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4087
4088 i915_gem_cleanup_hws(dev);
4089 }
4090
4091 int
4092 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4093 struct drm_file *file_priv)
4094 {
4095 drm_i915_private_t *dev_priv = dev->dev_private;
4096 int ret;
4097
4098 if (drm_core_check_feature(dev, DRIVER_MODESET))
4099 return 0;
4100
4101 if (dev_priv->mm.wedged) {
4102 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4103 dev_priv->mm.wedged = 0;
4104 }
4105
4106 mutex_lock(&dev->struct_mutex);
4107 dev_priv->mm.suspended = 0;
4108
4109 ret = i915_gem_init_ringbuffer(dev);
4110 if (ret != 0) {
4111 mutex_unlock(&dev->struct_mutex);
4112 return ret;
4113 }
4114
4115 spin_lock(&dev_priv->mm.active_list_lock);
4116 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4117 spin_unlock(&dev_priv->mm.active_list_lock);
4118
4119 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4120 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4121 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4122 mutex_unlock(&dev->struct_mutex);
4123
4124 drm_irq_install(dev);
4125
4126 return 0;
4127 }
4128
4129 int
4130 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4131 struct drm_file *file_priv)
4132 {
4133 int ret;
4134
4135 if (drm_core_check_feature(dev, DRIVER_MODESET))
4136 return 0;
4137
4138 ret = i915_gem_idle(dev);
4139 drm_irq_uninstall(dev);
4140
4141 return ret;
4142 }
4143
4144 void
4145 i915_gem_lastclose(struct drm_device *dev)
4146 {
4147 int ret;
4148
4149 if (drm_core_check_feature(dev, DRIVER_MODESET))
4150 return;
4151
4152 ret = i915_gem_idle(dev);
4153 if (ret)
4154 DRM_ERROR("failed to idle hardware: %d\n", ret);
4155 }
4156
4157 void
4158 i915_gem_load(struct drm_device *dev)
4159 {
4160 drm_i915_private_t *dev_priv = dev->dev_private;
4161
4162 spin_lock_init(&dev_priv->mm.active_list_lock);
4163 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4164 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4165 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4166 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4167 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4168 i915_gem_retire_work_handler);
4169 dev_priv->mm.next_gem_seqno = 1;
4170
4171 /* Old X drivers will take 0-2 for front, back, depth buffers */
4172 dev_priv->fence_reg_start = 3;
4173
4174 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4175 dev_priv->num_fence_regs = 16;
4176 else
4177 dev_priv->num_fence_regs = 8;
4178
4179 i915_gem_detect_bit_6_swizzle(dev);
4180 }
4181
4182 /*
4183 * Create a physically contiguous memory object for this object
4184 * e.g. for cursor + overlay regs
4185 */
4186 int i915_gem_init_phys_object(struct drm_device *dev,
4187 int id, int size)
4188 {
4189 drm_i915_private_t *dev_priv = dev->dev_private;
4190 struct drm_i915_gem_phys_object *phys_obj;
4191 int ret;
4192
4193 if (dev_priv->mm.phys_objs[id - 1] || !size)
4194 return 0;
4195
4196 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4197 if (!phys_obj)
4198 return -ENOMEM;
4199
4200 phys_obj->id = id;
4201
4202 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4203 if (!phys_obj->handle) {
4204 ret = -ENOMEM;
4205 goto kfree_obj;
4206 }
4207 #ifdef CONFIG_X86
4208 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4209 #endif
4210
4211 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4212
4213 return 0;
4214 kfree_obj:
4215 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4216 return ret;
4217 }
4218
4219 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4220 {
4221 drm_i915_private_t *dev_priv = dev->dev_private;
4222 struct drm_i915_gem_phys_object *phys_obj;
4223
4224 if (!dev_priv->mm.phys_objs[id - 1])
4225 return;
4226
4227 phys_obj = dev_priv->mm.phys_objs[id - 1];
4228 if (phys_obj->cur_obj) {
4229 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4230 }
4231
4232 #ifdef CONFIG_X86
4233 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4234 #endif
4235 drm_pci_free(dev, phys_obj->handle);
4236 kfree(phys_obj);
4237 dev_priv->mm.phys_objs[id - 1] = NULL;
4238 }
4239
4240 void i915_gem_free_all_phys_object(struct drm_device *dev)
4241 {
4242 int i;
4243
4244 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4245 i915_gem_free_phys_object(dev, i);
4246 }
4247
4248 void i915_gem_detach_phys_object(struct drm_device *dev,
4249 struct drm_gem_object *obj)
4250 {
4251 struct drm_i915_gem_object *obj_priv;
4252 int i;
4253 int ret;
4254 int page_count;
4255
4256 obj_priv = obj->driver_private;
4257 if (!obj_priv->phys_obj)
4258 return;
4259
4260 ret = i915_gem_object_get_pages(obj);
4261 if (ret)
4262 goto out;
4263
4264 page_count = obj->size / PAGE_SIZE;
4265
4266 for (i = 0; i < page_count; i++) {
4267 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4268 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4269
4270 memcpy(dst, src, PAGE_SIZE);
4271 kunmap_atomic(dst, KM_USER0);
4272 }
4273 drm_clflush_pages(obj_priv->pages, page_count);
4274 drm_agp_chipset_flush(dev);
4275 out:
4276 obj_priv->phys_obj->cur_obj = NULL;
4277 obj_priv->phys_obj = NULL;
4278 }
4279
4280 int
4281 i915_gem_attach_phys_object(struct drm_device *dev,
4282 struct drm_gem_object *obj, int id)
4283 {
4284 drm_i915_private_t *dev_priv = dev->dev_private;
4285 struct drm_i915_gem_object *obj_priv;
4286 int ret = 0;
4287 int page_count;
4288 int i;
4289
4290 if (id > I915_MAX_PHYS_OBJECT)
4291 return -EINVAL;
4292
4293 obj_priv = obj->driver_private;
4294
4295 if (obj_priv->phys_obj) {
4296 if (obj_priv->phys_obj->id == id)
4297 return 0;
4298 i915_gem_detach_phys_object(dev, obj);
4299 }
4300
4301
4302 /* create a new object */
4303 if (!dev_priv->mm.phys_objs[id - 1]) {
4304 ret = i915_gem_init_phys_object(dev, id,
4305 obj->size);
4306 if (ret) {
4307 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4308 goto out;
4309 }
4310 }
4311
4312 /* bind to the object */
4313 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4314 obj_priv->phys_obj->cur_obj = obj;
4315
4316 ret = i915_gem_object_get_pages(obj);
4317 if (ret) {
4318 DRM_ERROR("failed to get page list\n");
4319 goto out;
4320 }
4321
4322 page_count = obj->size / PAGE_SIZE;
4323
4324 for (i = 0; i < page_count; i++) {
4325 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4326 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4327
4328 memcpy(dst, src, PAGE_SIZE);
4329 kunmap_atomic(src, KM_USER0);
4330 }
4331
4332 return 0;
4333 out:
4334 return ret;
4335 }
4336
4337 static int
4338 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4339 struct drm_i915_gem_pwrite *args,
4340 struct drm_file *file_priv)
4341 {
4342 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4343 void *obj_addr;
4344 int ret;
4345 char __user *user_data;
4346
4347 user_data = (char __user *) (uintptr_t) args->data_ptr;
4348 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4349
4350 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4351 ret = copy_from_user(obj_addr, user_data, args->size);
4352 if (ret)
4353 return -EFAULT;
4354
4355 drm_agp_chipset_flush(dev);
4356 return 0;
4357 }