Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
63 {
64 drm_i915_private_t *dev_priv = dev->dev_private;
65
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
69 return -EINVAL;
70 }
71
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
74
75 dev->gtt_total = (uint32_t) (end - start);
76
77 return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
83 {
84 struct drm_i915_gem_init *args = data;
85 int ret;
86
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 mutex_unlock(&dev->struct_mutex);
90
91 return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
97 {
98 struct drm_i915_gem_get_aperture *args = data;
99
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
102
103 args->aper_size = dev->gtt_total;
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
106
107 return 0;
108 }
109
110
111 /**
112 * Creates a new mm object and returns a handle to it.
113 */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
117 {
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
120 int ret;
121 u32 handle;
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 drm_gem_object_handle_unreference_unlocked(obj);
132
133 if (ret)
134 return ret;
135
136 args->handle = handle;
137
138 return 0;
139 }
140
141 static inline int
142 fast_shmem_read(struct page **pages,
143 loff_t page_base, int page_offset,
144 char __user *data,
145 int length)
146 {
147 char __iomem *vaddr;
148 int unwritten;
149
150 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151 if (vaddr == NULL)
152 return -ENOMEM;
153 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
154 kunmap_atomic(vaddr, KM_USER0);
155
156 if (unwritten)
157 return -EFAULT;
158
159 return 0;
160 }
161
162 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 {
164 drm_i915_private_t *dev_priv = obj->dev->dev_private;
165 struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168 obj_priv->tiling_mode != I915_TILING_NONE;
169 }
170
171 static inline int
172 slow_shmem_copy(struct page *dst_page,
173 int dst_offset,
174 struct page *src_page,
175 int src_offset,
176 int length)
177 {
178 char *dst_vaddr, *src_vaddr;
179
180 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181 if (dst_vaddr == NULL)
182 return -ENOMEM;
183
184 src_vaddr = kmap_atomic(src_page, KM_USER1);
185 if (src_vaddr == NULL) {
186 kunmap_atomic(dst_vaddr, KM_USER0);
187 return -ENOMEM;
188 }
189
190 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192 kunmap_atomic(src_vaddr, KM_USER1);
193 kunmap_atomic(dst_vaddr, KM_USER0);
194
195 return 0;
196 }
197
198 static inline int
199 slow_shmem_bit17_copy(struct page *gpu_page,
200 int gpu_offset,
201 struct page *cpu_page,
202 int cpu_offset,
203 int length,
204 int is_read)
205 {
206 char *gpu_vaddr, *cpu_vaddr;
207
208 /* Use the unswizzled path if this page isn't affected. */
209 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210 if (is_read)
211 return slow_shmem_copy(cpu_page, cpu_offset,
212 gpu_page, gpu_offset, length);
213 else
214 return slow_shmem_copy(gpu_page, gpu_offset,
215 cpu_page, cpu_offset, length);
216 }
217
218 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219 if (gpu_vaddr == NULL)
220 return -ENOMEM;
221
222 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223 if (cpu_vaddr == NULL) {
224 kunmap_atomic(gpu_vaddr, KM_USER0);
225 return -ENOMEM;
226 }
227
228 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229 * XORing with the other bits (A9 for Y, A9 and A10 for X)
230 */
231 while (length > 0) {
232 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233 int this_length = min(cacheline_end - gpu_offset, length);
234 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236 if (is_read) {
237 memcpy(cpu_vaddr + cpu_offset,
238 gpu_vaddr + swizzled_gpu_offset,
239 this_length);
240 } else {
241 memcpy(gpu_vaddr + swizzled_gpu_offset,
242 cpu_vaddr + cpu_offset,
243 this_length);
244 }
245 cpu_offset += this_length;
246 gpu_offset += this_length;
247 length -= this_length;
248 }
249
250 kunmap_atomic(cpu_vaddr, KM_USER1);
251 kunmap_atomic(gpu_vaddr, KM_USER0);
252
253 return 0;
254 }
255
256 /**
257 * This is the fast shmem pread path, which attempts to copy_from_user directly
258 * from the backing pages of the object to the user's address space. On a
259 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260 */
261 static int
262 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263 struct drm_i915_gem_pread *args,
264 struct drm_file *file_priv)
265 {
266 struct drm_i915_gem_object *obj_priv = obj->driver_private;
267 ssize_t remain;
268 loff_t offset, page_base;
269 char __user *user_data;
270 int page_offset, page_length;
271 int ret;
272
273 user_data = (char __user *) (uintptr_t) args->data_ptr;
274 remain = args->size;
275
276 mutex_lock(&dev->struct_mutex);
277
278 ret = i915_gem_object_get_pages(obj, 0);
279 if (ret != 0)
280 goto fail_unlock;
281
282 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283 args->size);
284 if (ret != 0)
285 goto fail_put_pages;
286
287 obj_priv = obj->driver_private;
288 offset = args->offset;
289
290 while (remain > 0) {
291 /* Operation in this page
292 *
293 * page_base = page offset within aperture
294 * page_offset = offset within page
295 * page_length = bytes to copy for this page
296 */
297 page_base = (offset & ~(PAGE_SIZE-1));
298 page_offset = offset & (PAGE_SIZE-1);
299 page_length = remain;
300 if ((page_offset + remain) > PAGE_SIZE)
301 page_length = PAGE_SIZE - page_offset;
302
303 ret = fast_shmem_read(obj_priv->pages,
304 page_base, page_offset,
305 user_data, page_length);
306 if (ret)
307 goto fail_put_pages;
308
309 remain -= page_length;
310 user_data += page_length;
311 offset += page_length;
312 }
313
314 fail_put_pages:
315 i915_gem_object_put_pages(obj);
316 fail_unlock:
317 mutex_unlock(&dev->struct_mutex);
318
319 return ret;
320 }
321
322 static int
323 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
324 {
325 int ret;
326
327 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
328
329 /* If we've insufficient memory to map in the pages, attempt
330 * to make some space by throwing out some old buffers.
331 */
332 if (ret == -ENOMEM) {
333 struct drm_device *dev = obj->dev;
334
335 ret = i915_gem_evict_something(dev, obj->size);
336 if (ret)
337 return ret;
338
339 ret = i915_gem_object_get_pages(obj, 0);
340 }
341
342 return ret;
343 }
344
345 /**
346 * This is the fallback shmem pread path, which allocates temporary storage
347 * in kernel space to copy_to_user into outside of the struct_mutex, so we
348 * can copy out of the object's backing pages while holding the struct mutex
349 * and not take page faults.
350 */
351 static int
352 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
353 struct drm_i915_gem_pread *args,
354 struct drm_file *file_priv)
355 {
356 struct drm_i915_gem_object *obj_priv = obj->driver_private;
357 struct mm_struct *mm = current->mm;
358 struct page **user_pages;
359 ssize_t remain;
360 loff_t offset, pinned_pages, i;
361 loff_t first_data_page, last_data_page, num_pages;
362 int shmem_page_index, shmem_page_offset;
363 int data_page_index, data_page_offset;
364 int page_length;
365 int ret;
366 uint64_t data_ptr = args->data_ptr;
367 int do_bit17_swizzling;
368
369 remain = args->size;
370
371 /* Pin the user pages containing the data. We can't fault while
372 * holding the struct mutex, yet we want to hold it while
373 * dereferencing the user data.
374 */
375 first_data_page = data_ptr / PAGE_SIZE;
376 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
377 num_pages = last_data_page - first_data_page + 1;
378
379 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
380 if (user_pages == NULL)
381 return -ENOMEM;
382
383 down_read(&mm->mmap_sem);
384 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
385 num_pages, 1, 0, user_pages, NULL);
386 up_read(&mm->mmap_sem);
387 if (pinned_pages < num_pages) {
388 ret = -EFAULT;
389 goto fail_put_user_pages;
390 }
391
392 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
393
394 mutex_lock(&dev->struct_mutex);
395
396 ret = i915_gem_object_get_pages_or_evict(obj);
397 if (ret)
398 goto fail_unlock;
399
400 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
401 args->size);
402 if (ret != 0)
403 goto fail_put_pages;
404
405 obj_priv = obj->driver_private;
406 offset = args->offset;
407
408 while (remain > 0) {
409 /* Operation in this page
410 *
411 * shmem_page_index = page number within shmem file
412 * shmem_page_offset = offset within page in shmem file
413 * data_page_index = page number in get_user_pages return
414 * data_page_offset = offset with data_page_index page.
415 * page_length = bytes to copy for this page
416 */
417 shmem_page_index = offset / PAGE_SIZE;
418 shmem_page_offset = offset & ~PAGE_MASK;
419 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
420 data_page_offset = data_ptr & ~PAGE_MASK;
421
422 page_length = remain;
423 if ((shmem_page_offset + page_length) > PAGE_SIZE)
424 page_length = PAGE_SIZE - shmem_page_offset;
425 if ((data_page_offset + page_length) > PAGE_SIZE)
426 page_length = PAGE_SIZE - data_page_offset;
427
428 if (do_bit17_swizzling) {
429 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
430 shmem_page_offset,
431 user_pages[data_page_index],
432 data_page_offset,
433 page_length,
434 1);
435 } else {
436 ret = slow_shmem_copy(user_pages[data_page_index],
437 data_page_offset,
438 obj_priv->pages[shmem_page_index],
439 shmem_page_offset,
440 page_length);
441 }
442 if (ret)
443 goto fail_put_pages;
444
445 remain -= page_length;
446 data_ptr += page_length;
447 offset += page_length;
448 }
449
450 fail_put_pages:
451 i915_gem_object_put_pages(obj);
452 fail_unlock:
453 mutex_unlock(&dev->struct_mutex);
454 fail_put_user_pages:
455 for (i = 0; i < pinned_pages; i++) {
456 SetPageDirty(user_pages[i]);
457 page_cache_release(user_pages[i]);
458 }
459 drm_free_large(user_pages);
460
461 return ret;
462 }
463
464 /**
465 * Reads data from the object referenced by handle.
466 *
467 * On error, the contents of *data are undefined.
468 */
469 int
470 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
471 struct drm_file *file_priv)
472 {
473 struct drm_i915_gem_pread *args = data;
474 struct drm_gem_object *obj;
475 struct drm_i915_gem_object *obj_priv;
476 int ret;
477
478 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
479 if (obj == NULL)
480 return -EBADF;
481 obj_priv = obj->driver_private;
482
483 /* Bounds check source.
484 *
485 * XXX: This could use review for overflow issues...
486 */
487 if (args->offset > obj->size || args->size > obj->size ||
488 args->offset + args->size > obj->size) {
489 drm_gem_object_unreference_unlocked(obj);
490 return -EINVAL;
491 }
492
493 if (i915_gem_object_needs_bit17_swizzle(obj)) {
494 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
495 } else {
496 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
497 if (ret != 0)
498 ret = i915_gem_shmem_pread_slow(dev, obj, args,
499 file_priv);
500 }
501
502 drm_gem_object_unreference_unlocked(obj);
503
504 return ret;
505 }
506
507 /* This is the fast write path which cannot handle
508 * page faults in the source data
509 */
510
511 static inline int
512 fast_user_write(struct io_mapping *mapping,
513 loff_t page_base, int page_offset,
514 char __user *user_data,
515 int length)
516 {
517 char *vaddr_atomic;
518 unsigned long unwritten;
519
520 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
521 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
522 user_data, length);
523 io_mapping_unmap_atomic(vaddr_atomic);
524 if (unwritten)
525 return -EFAULT;
526 return 0;
527 }
528
529 /* Here's the write path which can sleep for
530 * page faults
531 */
532
533 static inline int
534 slow_kernel_write(struct io_mapping *mapping,
535 loff_t gtt_base, int gtt_offset,
536 struct page *user_page, int user_offset,
537 int length)
538 {
539 char *src_vaddr, *dst_vaddr;
540 unsigned long unwritten;
541
542 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
543 src_vaddr = kmap_atomic(user_page, KM_USER1);
544 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
545 src_vaddr + user_offset,
546 length);
547 kunmap_atomic(src_vaddr, KM_USER1);
548 io_mapping_unmap_atomic(dst_vaddr);
549 if (unwritten)
550 return -EFAULT;
551 return 0;
552 }
553
554 static inline int
555 fast_shmem_write(struct page **pages,
556 loff_t page_base, int page_offset,
557 char __user *data,
558 int length)
559 {
560 char __iomem *vaddr;
561 unsigned long unwritten;
562
563 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
564 if (vaddr == NULL)
565 return -ENOMEM;
566 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
567 kunmap_atomic(vaddr, KM_USER0);
568
569 if (unwritten)
570 return -EFAULT;
571 return 0;
572 }
573
574 /**
575 * This is the fast pwrite path, where we copy the data directly from the
576 * user into the GTT, uncached.
577 */
578 static int
579 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
580 struct drm_i915_gem_pwrite *args,
581 struct drm_file *file_priv)
582 {
583 struct drm_i915_gem_object *obj_priv = obj->driver_private;
584 drm_i915_private_t *dev_priv = dev->dev_private;
585 ssize_t remain;
586 loff_t offset, page_base;
587 char __user *user_data;
588 int page_offset, page_length;
589 int ret;
590
591 user_data = (char __user *) (uintptr_t) args->data_ptr;
592 remain = args->size;
593 if (!access_ok(VERIFY_READ, user_data, remain))
594 return -EFAULT;
595
596
597 mutex_lock(&dev->struct_mutex);
598 ret = i915_gem_object_pin(obj, 0);
599 if (ret) {
600 mutex_unlock(&dev->struct_mutex);
601 return ret;
602 }
603 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
604 if (ret)
605 goto fail;
606
607 obj_priv = obj->driver_private;
608 offset = obj_priv->gtt_offset + args->offset;
609
610 while (remain > 0) {
611 /* Operation in this page
612 *
613 * page_base = page offset within aperture
614 * page_offset = offset within page
615 * page_length = bytes to copy for this page
616 */
617 page_base = (offset & ~(PAGE_SIZE-1));
618 page_offset = offset & (PAGE_SIZE-1);
619 page_length = remain;
620 if ((page_offset + remain) > PAGE_SIZE)
621 page_length = PAGE_SIZE - page_offset;
622
623 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
624 page_offset, user_data, page_length);
625
626 /* If we get a fault while copying data, then (presumably) our
627 * source page isn't available. Return the error and we'll
628 * retry in the slow path.
629 */
630 if (ret)
631 goto fail;
632
633 remain -= page_length;
634 user_data += page_length;
635 offset += page_length;
636 }
637
638 fail:
639 i915_gem_object_unpin(obj);
640 mutex_unlock(&dev->struct_mutex);
641
642 return ret;
643 }
644
645 /**
646 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
647 * the memory and maps it using kmap_atomic for copying.
648 *
649 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
650 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
651 */
652 static int
653 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
654 struct drm_i915_gem_pwrite *args,
655 struct drm_file *file_priv)
656 {
657 struct drm_i915_gem_object *obj_priv = obj->driver_private;
658 drm_i915_private_t *dev_priv = dev->dev_private;
659 ssize_t remain;
660 loff_t gtt_page_base, offset;
661 loff_t first_data_page, last_data_page, num_pages;
662 loff_t pinned_pages, i;
663 struct page **user_pages;
664 struct mm_struct *mm = current->mm;
665 int gtt_page_offset, data_page_offset, data_page_index, page_length;
666 int ret;
667 uint64_t data_ptr = args->data_ptr;
668
669 remain = args->size;
670
671 /* Pin the user pages containing the data. We can't fault while
672 * holding the struct mutex, and all of the pwrite implementations
673 * want to hold it while dereferencing the user data.
674 */
675 first_data_page = data_ptr / PAGE_SIZE;
676 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
677 num_pages = last_data_page - first_data_page + 1;
678
679 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
680 if (user_pages == NULL)
681 return -ENOMEM;
682
683 down_read(&mm->mmap_sem);
684 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
685 num_pages, 0, 0, user_pages, NULL);
686 up_read(&mm->mmap_sem);
687 if (pinned_pages < num_pages) {
688 ret = -EFAULT;
689 goto out_unpin_pages;
690 }
691
692 mutex_lock(&dev->struct_mutex);
693 ret = i915_gem_object_pin(obj, 0);
694 if (ret)
695 goto out_unlock;
696
697 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
698 if (ret)
699 goto out_unpin_object;
700
701 obj_priv = obj->driver_private;
702 offset = obj_priv->gtt_offset + args->offset;
703
704 while (remain > 0) {
705 /* Operation in this page
706 *
707 * gtt_page_base = page offset within aperture
708 * gtt_page_offset = offset within page in aperture
709 * data_page_index = page number in get_user_pages return
710 * data_page_offset = offset with data_page_index page.
711 * page_length = bytes to copy for this page
712 */
713 gtt_page_base = offset & PAGE_MASK;
714 gtt_page_offset = offset & ~PAGE_MASK;
715 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
716 data_page_offset = data_ptr & ~PAGE_MASK;
717
718 page_length = remain;
719 if ((gtt_page_offset + page_length) > PAGE_SIZE)
720 page_length = PAGE_SIZE - gtt_page_offset;
721 if ((data_page_offset + page_length) > PAGE_SIZE)
722 page_length = PAGE_SIZE - data_page_offset;
723
724 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
725 gtt_page_base, gtt_page_offset,
726 user_pages[data_page_index],
727 data_page_offset,
728 page_length);
729
730 /* If we get a fault while copying data, then (presumably) our
731 * source page isn't available. Return the error and we'll
732 * retry in the slow path.
733 */
734 if (ret)
735 goto out_unpin_object;
736
737 remain -= page_length;
738 offset += page_length;
739 data_ptr += page_length;
740 }
741
742 out_unpin_object:
743 i915_gem_object_unpin(obj);
744 out_unlock:
745 mutex_unlock(&dev->struct_mutex);
746 out_unpin_pages:
747 for (i = 0; i < pinned_pages; i++)
748 page_cache_release(user_pages[i]);
749 drm_free_large(user_pages);
750
751 return ret;
752 }
753
754 /**
755 * This is the fast shmem pwrite path, which attempts to directly
756 * copy_from_user into the kmapped pages backing the object.
757 */
758 static int
759 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file_priv)
762 {
763 struct drm_i915_gem_object *obj_priv = obj->driver_private;
764 ssize_t remain;
765 loff_t offset, page_base;
766 char __user *user_data;
767 int page_offset, page_length;
768 int ret;
769
770 user_data = (char __user *) (uintptr_t) args->data_ptr;
771 remain = args->size;
772
773 mutex_lock(&dev->struct_mutex);
774
775 ret = i915_gem_object_get_pages(obj, 0);
776 if (ret != 0)
777 goto fail_unlock;
778
779 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
780 if (ret != 0)
781 goto fail_put_pages;
782
783 obj_priv = obj->driver_private;
784 offset = args->offset;
785 obj_priv->dirty = 1;
786
787 while (remain > 0) {
788 /* Operation in this page
789 *
790 * page_base = page offset within aperture
791 * page_offset = offset within page
792 * page_length = bytes to copy for this page
793 */
794 page_base = (offset & ~(PAGE_SIZE-1));
795 page_offset = offset & (PAGE_SIZE-1);
796 page_length = remain;
797 if ((page_offset + remain) > PAGE_SIZE)
798 page_length = PAGE_SIZE - page_offset;
799
800 ret = fast_shmem_write(obj_priv->pages,
801 page_base, page_offset,
802 user_data, page_length);
803 if (ret)
804 goto fail_put_pages;
805
806 remain -= page_length;
807 user_data += page_length;
808 offset += page_length;
809 }
810
811 fail_put_pages:
812 i915_gem_object_put_pages(obj);
813 fail_unlock:
814 mutex_unlock(&dev->struct_mutex);
815
816 return ret;
817 }
818
819 /**
820 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
821 * the memory and maps it using kmap_atomic for copying.
822 *
823 * This avoids taking mmap_sem for faulting on the user's address while the
824 * struct_mutex is held.
825 */
826 static int
827 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
828 struct drm_i915_gem_pwrite *args,
829 struct drm_file *file_priv)
830 {
831 struct drm_i915_gem_object *obj_priv = obj->driver_private;
832 struct mm_struct *mm = current->mm;
833 struct page **user_pages;
834 ssize_t remain;
835 loff_t offset, pinned_pages, i;
836 loff_t first_data_page, last_data_page, num_pages;
837 int shmem_page_index, shmem_page_offset;
838 int data_page_index, data_page_offset;
839 int page_length;
840 int ret;
841 uint64_t data_ptr = args->data_ptr;
842 int do_bit17_swizzling;
843
844 remain = args->size;
845
846 /* Pin the user pages containing the data. We can't fault while
847 * holding the struct mutex, and all of the pwrite implementations
848 * want to hold it while dereferencing the user data.
849 */
850 first_data_page = data_ptr / PAGE_SIZE;
851 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
852 num_pages = last_data_page - first_data_page + 1;
853
854 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
855 if (user_pages == NULL)
856 return -ENOMEM;
857
858 down_read(&mm->mmap_sem);
859 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
860 num_pages, 0, 0, user_pages, NULL);
861 up_read(&mm->mmap_sem);
862 if (pinned_pages < num_pages) {
863 ret = -EFAULT;
864 goto fail_put_user_pages;
865 }
866
867 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
868
869 mutex_lock(&dev->struct_mutex);
870
871 ret = i915_gem_object_get_pages_or_evict(obj);
872 if (ret)
873 goto fail_unlock;
874
875 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
876 if (ret != 0)
877 goto fail_put_pages;
878
879 obj_priv = obj->driver_private;
880 offset = args->offset;
881 obj_priv->dirty = 1;
882
883 while (remain > 0) {
884 /* Operation in this page
885 *
886 * shmem_page_index = page number within shmem file
887 * shmem_page_offset = offset within page in shmem file
888 * data_page_index = page number in get_user_pages return
889 * data_page_offset = offset with data_page_index page.
890 * page_length = bytes to copy for this page
891 */
892 shmem_page_index = offset / PAGE_SIZE;
893 shmem_page_offset = offset & ~PAGE_MASK;
894 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
895 data_page_offset = data_ptr & ~PAGE_MASK;
896
897 page_length = remain;
898 if ((shmem_page_offset + page_length) > PAGE_SIZE)
899 page_length = PAGE_SIZE - shmem_page_offset;
900 if ((data_page_offset + page_length) > PAGE_SIZE)
901 page_length = PAGE_SIZE - data_page_offset;
902
903 if (do_bit17_swizzling) {
904 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
905 shmem_page_offset,
906 user_pages[data_page_index],
907 data_page_offset,
908 page_length,
909 0);
910 } else {
911 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
912 shmem_page_offset,
913 user_pages[data_page_index],
914 data_page_offset,
915 page_length);
916 }
917 if (ret)
918 goto fail_put_pages;
919
920 remain -= page_length;
921 data_ptr += page_length;
922 offset += page_length;
923 }
924
925 fail_put_pages:
926 i915_gem_object_put_pages(obj);
927 fail_unlock:
928 mutex_unlock(&dev->struct_mutex);
929 fail_put_user_pages:
930 for (i = 0; i < pinned_pages; i++)
931 page_cache_release(user_pages[i]);
932 drm_free_large(user_pages);
933
934 return ret;
935 }
936
937 /**
938 * Writes data to the object referenced by handle.
939 *
940 * On error, the contents of the buffer that were to be modified are undefined.
941 */
942 int
943 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
944 struct drm_file *file_priv)
945 {
946 struct drm_i915_gem_pwrite *args = data;
947 struct drm_gem_object *obj;
948 struct drm_i915_gem_object *obj_priv;
949 int ret = 0;
950
951 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
952 if (obj == NULL)
953 return -EBADF;
954 obj_priv = obj->driver_private;
955
956 /* Bounds check destination.
957 *
958 * XXX: This could use review for overflow issues...
959 */
960 if (args->offset > obj->size || args->size > obj->size ||
961 args->offset + args->size > obj->size) {
962 drm_gem_object_unreference_unlocked(obj);
963 return -EINVAL;
964 }
965
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
972 if (obj_priv->phys_obj)
973 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
974 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
975 dev->gtt_total != 0) {
976 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
977 if (ret == -EFAULT) {
978 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
979 file_priv);
980 }
981 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
982 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
983 } else {
984 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
985 if (ret == -EFAULT) {
986 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
987 file_priv);
988 }
989 }
990
991 #if WATCH_PWRITE
992 if (ret)
993 DRM_INFO("pwrite failed %d\n", ret);
994 #endif
995
996 drm_gem_object_unreference_unlocked(obj);
997
998 return ret;
999 }
1000
1001 /**
1002 * Called when user space prepares to use an object with the CPU, either
1003 * through the mmap ioctl's mapping or a GTT mapping.
1004 */
1005 int
1006 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1007 struct drm_file *file_priv)
1008 {
1009 struct drm_i915_private *dev_priv = dev->dev_private;
1010 struct drm_i915_gem_set_domain *args = data;
1011 struct drm_gem_object *obj;
1012 struct drm_i915_gem_object *obj_priv;
1013 uint32_t read_domains = args->read_domains;
1014 uint32_t write_domain = args->write_domain;
1015 int ret;
1016
1017 if (!(dev->driver->driver_features & DRIVER_GEM))
1018 return -ENODEV;
1019
1020 /* Only handle setting domains to types used by the CPU. */
1021 if (write_domain & I915_GEM_GPU_DOMAINS)
1022 return -EINVAL;
1023
1024 if (read_domains & I915_GEM_GPU_DOMAINS)
1025 return -EINVAL;
1026
1027 /* Having something in the write domain implies it's in the read
1028 * domain, and only that read domain. Enforce that in the request.
1029 */
1030 if (write_domain != 0 && read_domains != write_domain)
1031 return -EINVAL;
1032
1033 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1034 if (obj == NULL)
1035 return -EBADF;
1036 obj_priv = obj->driver_private;
1037
1038 mutex_lock(&dev->struct_mutex);
1039
1040 intel_mark_busy(dev, obj);
1041
1042 #if WATCH_BUF
1043 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1044 obj, obj->size, read_domains, write_domain);
1045 #endif
1046 if (read_domains & I915_GEM_DOMAIN_GTT) {
1047 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1048
1049 /* Update the LRU on the fence for the CPU access that's
1050 * about to occur.
1051 */
1052 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053 list_move_tail(&obj_priv->fence_list,
1054 &dev_priv->mm.fence_list);
1055 }
1056
1057 /* Silently promote "you're not bound, there was nothing to do"
1058 * to success, since the client was just asking us to
1059 * make sure everything was done.
1060 */
1061 if (ret == -EINVAL)
1062 ret = 0;
1063 } else {
1064 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1065 }
1066
1067 drm_gem_object_unreference(obj);
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070 }
1071
1072 /**
1073 * Called when user space has done writes to this buffer
1074 */
1075 int
1076 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078 {
1079 struct drm_i915_gem_sw_finish *args = data;
1080 struct drm_gem_object *obj;
1081 struct drm_i915_gem_object *obj_priv;
1082 int ret = 0;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 mutex_lock(&dev->struct_mutex);
1088 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1089 if (obj == NULL) {
1090 mutex_unlock(&dev->struct_mutex);
1091 return -EBADF;
1092 }
1093
1094 #if WATCH_BUF
1095 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1096 __func__, args->handle, obj, obj->size);
1097 #endif
1098 obj_priv = obj->driver_private;
1099
1100 /* Pinned buffers may be scanout, so flush the cache */
1101 if (obj_priv->pin_count)
1102 i915_gem_object_flush_cpu_write_domain(obj);
1103
1104 drm_gem_object_unreference(obj);
1105 mutex_unlock(&dev->struct_mutex);
1106 return ret;
1107 }
1108
1109 /**
1110 * Maps the contents of an object, returning the address it is mapped
1111 * into.
1112 *
1113 * While the mapping holds a reference on the contents of the object, it doesn't
1114 * imply a ref on the object itself.
1115 */
1116 int
1117 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1118 struct drm_file *file_priv)
1119 {
1120 struct drm_i915_gem_mmap *args = data;
1121 struct drm_gem_object *obj;
1122 loff_t offset;
1123 unsigned long addr;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
1128 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1129 if (obj == NULL)
1130 return -EBADF;
1131
1132 offset = args->offset;
1133
1134 down_write(&current->mm->mmap_sem);
1135 addr = do_mmap(obj->filp, 0, args->size,
1136 PROT_READ | PROT_WRITE, MAP_SHARED,
1137 args->offset);
1138 up_write(&current->mm->mmap_sem);
1139 drm_gem_object_unreference_unlocked(obj);
1140 if (IS_ERR((void *)addr))
1141 return addr;
1142
1143 args->addr_ptr = (uint64_t) addr;
1144
1145 return 0;
1146 }
1147
1148 /**
1149 * i915_gem_fault - fault a page into the GTT
1150 * vma: VMA in question
1151 * vmf: fault info
1152 *
1153 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154 * from userspace. The fault handler takes care of binding the object to
1155 * the GTT (if needed), allocating and programming a fence register (again,
1156 * only if needed based on whether the old reg is still valid or the object
1157 * is tiled) and inserting a new PTE into the faulting process.
1158 *
1159 * Note that the faulting process may involve evicting existing objects
1160 * from the GTT and/or fence registers to make room. So performance may
1161 * suffer if the GTT working set is large or there are few fence registers
1162 * left.
1163 */
1164 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165 {
1166 struct drm_gem_object *obj = vma->vm_private_data;
1167 struct drm_device *dev = obj->dev;
1168 struct drm_i915_private *dev_priv = dev->dev_private;
1169 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1170 pgoff_t page_offset;
1171 unsigned long pfn;
1172 int ret = 0;
1173 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1174
1175 /* We don't use vmf->pgoff since that has the fake offset */
1176 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1177 PAGE_SHIFT;
1178
1179 /* Now bind it into the GTT if needed */
1180 mutex_lock(&dev->struct_mutex);
1181 if (!obj_priv->gtt_space) {
1182 ret = i915_gem_object_bind_to_gtt(obj, 0);
1183 if (ret)
1184 goto unlock;
1185
1186 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1187
1188 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1189 if (ret)
1190 goto unlock;
1191 }
1192
1193 /* Need a new fence register? */
1194 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1195 ret = i915_gem_object_get_fence_reg(obj);
1196 if (ret)
1197 goto unlock;
1198 }
1199
1200 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1201 page_offset;
1202
1203 /* Finally, remap it using the new GTT offset */
1204 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1205 unlock:
1206 mutex_unlock(&dev->struct_mutex);
1207
1208 switch (ret) {
1209 case 0:
1210 case -ERESTARTSYS:
1211 return VM_FAULT_NOPAGE;
1212 case -ENOMEM:
1213 case -EAGAIN:
1214 return VM_FAULT_OOM;
1215 default:
1216 return VM_FAULT_SIGBUS;
1217 }
1218 }
1219
1220 /**
1221 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1222 * @obj: obj in question
1223 *
1224 * GEM memory mapping works by handing back to userspace a fake mmap offset
1225 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1226 * up the object based on the offset and sets up the various memory mapping
1227 * structures.
1228 *
1229 * This routine allocates and attaches a fake offset for @obj.
1230 */
1231 static int
1232 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1233 {
1234 struct drm_device *dev = obj->dev;
1235 struct drm_gem_mm *mm = dev->mm_private;
1236 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1237 struct drm_map_list *list;
1238 struct drm_local_map *map;
1239 int ret = 0;
1240
1241 /* Set the object up for mmap'ing */
1242 list = &obj->map_list;
1243 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1244 if (!list->map)
1245 return -ENOMEM;
1246
1247 map = list->map;
1248 map->type = _DRM_GEM;
1249 map->size = obj->size;
1250 map->handle = obj;
1251
1252 /* Get a DRM GEM mmap offset allocated... */
1253 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1254 obj->size / PAGE_SIZE, 0, 0);
1255 if (!list->file_offset_node) {
1256 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1262 obj->size / PAGE_SIZE, 0);
1263 if (!list->file_offset_node) {
1264 ret = -ENOMEM;
1265 goto out_free_list;
1266 }
1267
1268 list->hash.key = list->file_offset_node->start;
1269 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1270 DRM_ERROR("failed to add to map hash\n");
1271 ret = -ENOMEM;
1272 goto out_free_mm;
1273 }
1274
1275 /* By now we should be all set, any drm_mmap request on the offset
1276 * below will get to our mmap & fault handler */
1277 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1278
1279 return 0;
1280
1281 out_free_mm:
1282 drm_mm_put_block(list->file_offset_node);
1283 out_free_list:
1284 kfree(list->map);
1285
1286 return ret;
1287 }
1288
1289 /**
1290 * i915_gem_release_mmap - remove physical page mappings
1291 * @obj: obj in question
1292 *
1293 * Preserve the reservation of the mmapping with the DRM core code, but
1294 * relinquish ownership of the pages back to the system.
1295 *
1296 * It is vital that we remove the page mapping if we have mapped a tiled
1297 * object through the GTT and then lose the fence register due to
1298 * resource pressure. Similarly if the object has been moved out of the
1299 * aperture, than pages mapped into userspace must be revoked. Removing the
1300 * mapping will then trigger a page fault on the next user access, allowing
1301 * fixup by i915_gem_fault().
1302 */
1303 void
1304 i915_gem_release_mmap(struct drm_gem_object *obj)
1305 {
1306 struct drm_device *dev = obj->dev;
1307 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1308
1309 if (dev->dev_mapping)
1310 unmap_mapping_range(dev->dev_mapping,
1311 obj_priv->mmap_offset, obj->size, 1);
1312 }
1313
1314 static void
1315 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1316 {
1317 struct drm_device *dev = obj->dev;
1318 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1319 struct drm_gem_mm *mm = dev->mm_private;
1320 struct drm_map_list *list;
1321
1322 list = &obj->map_list;
1323 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1324
1325 if (list->file_offset_node) {
1326 drm_mm_put_block(list->file_offset_node);
1327 list->file_offset_node = NULL;
1328 }
1329
1330 if (list->map) {
1331 kfree(list->map);
1332 list->map = NULL;
1333 }
1334
1335 obj_priv->mmap_offset = 0;
1336 }
1337
1338 /**
1339 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1340 * @obj: object to check
1341 *
1342 * Return the required GTT alignment for an object, taking into account
1343 * potential fence register mapping if needed.
1344 */
1345 static uint32_t
1346 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1347 {
1348 struct drm_device *dev = obj->dev;
1349 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1350 int start, i;
1351
1352 /*
1353 * Minimum alignment is 4k (GTT page size), but might be greater
1354 * if a fence register is needed for the object.
1355 */
1356 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1357 return 4096;
1358
1359 /*
1360 * Previous chips need to be aligned to the size of the smallest
1361 * fence register that can contain the object.
1362 */
1363 if (IS_I9XX(dev))
1364 start = 1024*1024;
1365 else
1366 start = 512*1024;
1367
1368 for (i = start; i < obj->size; i <<= 1)
1369 ;
1370
1371 return i;
1372 }
1373
1374 /**
1375 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1376 * @dev: DRM device
1377 * @data: GTT mapping ioctl data
1378 * @file_priv: GEM object info
1379 *
1380 * Simply returns the fake offset to userspace so it can mmap it.
1381 * The mmap call will end up in drm_gem_mmap(), which will set things
1382 * up so we can get faults in the handler above.
1383 *
1384 * The fault handler will take care of binding the object into the GTT
1385 * (since it may have been evicted to make room for something), allocating
1386 * a fence register, and mapping the appropriate aperture address into
1387 * userspace.
1388 */
1389 int
1390 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1391 struct drm_file *file_priv)
1392 {
1393 struct drm_i915_gem_mmap_gtt *args = data;
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 struct drm_gem_object *obj;
1396 struct drm_i915_gem_object *obj_priv;
1397 int ret;
1398
1399 if (!(dev->driver->driver_features & DRIVER_GEM))
1400 return -ENODEV;
1401
1402 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1403 if (obj == NULL)
1404 return -EBADF;
1405
1406 mutex_lock(&dev->struct_mutex);
1407
1408 obj_priv = obj->driver_private;
1409
1410 if (obj_priv->madv != I915_MADV_WILLNEED) {
1411 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
1414 return -EINVAL;
1415 }
1416
1417
1418 if (!obj_priv->mmap_offset) {
1419 ret = i915_gem_create_mmap_offset(obj);
1420 if (ret) {
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
1423 return ret;
1424 }
1425 }
1426
1427 args->offset = obj_priv->mmap_offset;
1428
1429 /*
1430 * Pull it into the GTT so that we have a page list (makes the
1431 * initial fault faster and any subsequent flushing possible).
1432 */
1433 if (!obj_priv->agp_mem) {
1434 ret = i915_gem_object_bind_to_gtt(obj, 0);
1435 if (ret) {
1436 drm_gem_object_unreference(obj);
1437 mutex_unlock(&dev->struct_mutex);
1438 return ret;
1439 }
1440 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1441 }
1442
1443 drm_gem_object_unreference(obj);
1444 mutex_unlock(&dev->struct_mutex);
1445
1446 return 0;
1447 }
1448
1449 void
1450 i915_gem_object_put_pages(struct drm_gem_object *obj)
1451 {
1452 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1453 int page_count = obj->size / PAGE_SIZE;
1454 int i;
1455
1456 BUG_ON(obj_priv->pages_refcount == 0);
1457 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1458
1459 if (--obj_priv->pages_refcount != 0)
1460 return;
1461
1462 if (obj_priv->tiling_mode != I915_TILING_NONE)
1463 i915_gem_object_save_bit_17_swizzle(obj);
1464
1465 if (obj_priv->madv == I915_MADV_DONTNEED)
1466 obj_priv->dirty = 0;
1467
1468 for (i = 0; i < page_count; i++) {
1469 if (obj_priv->dirty)
1470 set_page_dirty(obj_priv->pages[i]);
1471
1472 if (obj_priv->madv == I915_MADV_WILLNEED)
1473 mark_page_accessed(obj_priv->pages[i]);
1474
1475 page_cache_release(obj_priv->pages[i]);
1476 }
1477 obj_priv->dirty = 0;
1478
1479 drm_free_large(obj_priv->pages);
1480 obj_priv->pages = NULL;
1481 }
1482
1483 static void
1484 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1485 {
1486 struct drm_device *dev = obj->dev;
1487 drm_i915_private_t *dev_priv = dev->dev_private;
1488 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1489
1490 /* Add a reference if we're newly entering the active list. */
1491 if (!obj_priv->active) {
1492 drm_gem_object_reference(obj);
1493 obj_priv->active = 1;
1494 }
1495 /* Move from whatever list we were on to the tail of execution. */
1496 spin_lock(&dev_priv->mm.active_list_lock);
1497 list_move_tail(&obj_priv->list,
1498 &dev_priv->mm.active_list);
1499 spin_unlock(&dev_priv->mm.active_list_lock);
1500 obj_priv->last_rendering_seqno = seqno;
1501 }
1502
1503 static void
1504 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1505 {
1506 struct drm_device *dev = obj->dev;
1507 drm_i915_private_t *dev_priv = dev->dev_private;
1508 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1509
1510 BUG_ON(!obj_priv->active);
1511 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1512 obj_priv->last_rendering_seqno = 0;
1513 }
1514
1515 /* Immediately discard the backing storage */
1516 static void
1517 i915_gem_object_truncate(struct drm_gem_object *obj)
1518 {
1519 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1520 struct inode *inode;
1521
1522 inode = obj->filp->f_path.dentry->d_inode;
1523 if (inode->i_op->truncate)
1524 inode->i_op->truncate (inode);
1525
1526 obj_priv->madv = __I915_MADV_PURGED;
1527 }
1528
1529 static inline int
1530 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1531 {
1532 return obj_priv->madv == I915_MADV_DONTNEED;
1533 }
1534
1535 static void
1536 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1537 {
1538 struct drm_device *dev = obj->dev;
1539 drm_i915_private_t *dev_priv = dev->dev_private;
1540 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1541
1542 i915_verify_inactive(dev, __FILE__, __LINE__);
1543 if (obj_priv->pin_count != 0)
1544 list_del_init(&obj_priv->list);
1545 else
1546 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1547
1548 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1549
1550 obj_priv->last_rendering_seqno = 0;
1551 if (obj_priv->active) {
1552 obj_priv->active = 0;
1553 drm_gem_object_unreference(obj);
1554 }
1555 i915_verify_inactive(dev, __FILE__, __LINE__);
1556 }
1557
1558 static void
1559 i915_gem_process_flushing_list(struct drm_device *dev,
1560 uint32_t flush_domains, uint32_t seqno)
1561 {
1562 drm_i915_private_t *dev_priv = dev->dev_private;
1563 struct drm_i915_gem_object *obj_priv, *next;
1564
1565 list_for_each_entry_safe(obj_priv, next,
1566 &dev_priv->mm.gpu_write_list,
1567 gpu_write_list) {
1568 struct drm_gem_object *obj = obj_priv->obj;
1569
1570 if ((obj->write_domain & flush_domains) ==
1571 obj->write_domain) {
1572 uint32_t old_write_domain = obj->write_domain;
1573
1574 obj->write_domain = 0;
1575 list_del_init(&obj_priv->gpu_write_list);
1576 i915_gem_object_move_to_active(obj, seqno);
1577
1578 /* update the fence lru list */
1579 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1580 list_move_tail(&obj_priv->fence_list,
1581 &dev_priv->mm.fence_list);
1582
1583 trace_i915_gem_object_change_domain(obj,
1584 obj->read_domains,
1585 old_write_domain);
1586 }
1587 }
1588 }
1589
1590 /**
1591 * Creates a new sequence number, emitting a write of it to the status page
1592 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1593 *
1594 * Must be called with struct_lock held.
1595 *
1596 * Returned sequence numbers are nonzero on success.
1597 */
1598 uint32_t
1599 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1600 uint32_t flush_domains)
1601 {
1602 drm_i915_private_t *dev_priv = dev->dev_private;
1603 struct drm_i915_file_private *i915_file_priv = NULL;
1604 struct drm_i915_gem_request *request;
1605 uint32_t seqno;
1606 int was_empty;
1607 RING_LOCALS;
1608
1609 if (file_priv != NULL)
1610 i915_file_priv = file_priv->driver_priv;
1611
1612 request = kzalloc(sizeof(*request), GFP_KERNEL);
1613 if (request == NULL)
1614 return 0;
1615
1616 /* Grab the seqno we're going to make this request be, and bump the
1617 * next (skipping 0 so it can be the reserved no-seqno value).
1618 */
1619 seqno = dev_priv->mm.next_gem_seqno;
1620 dev_priv->mm.next_gem_seqno++;
1621 if (dev_priv->mm.next_gem_seqno == 0)
1622 dev_priv->mm.next_gem_seqno++;
1623
1624 BEGIN_LP_RING(4);
1625 OUT_RING(MI_STORE_DWORD_INDEX);
1626 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1627 OUT_RING(seqno);
1628
1629 OUT_RING(MI_USER_INTERRUPT);
1630 ADVANCE_LP_RING();
1631
1632 DRM_DEBUG_DRIVER("%d\n", seqno);
1633
1634 request->seqno = seqno;
1635 request->emitted_jiffies = jiffies;
1636 was_empty = list_empty(&dev_priv->mm.request_list);
1637 list_add_tail(&request->list, &dev_priv->mm.request_list);
1638 if (i915_file_priv) {
1639 list_add_tail(&request->client_list,
1640 &i915_file_priv->mm.request_list);
1641 } else {
1642 INIT_LIST_HEAD(&request->client_list);
1643 }
1644
1645 /* Associate any objects on the flushing list matching the write
1646 * domain we're flushing with our flush.
1647 */
1648 if (flush_domains != 0)
1649 i915_gem_process_flushing_list(dev, flush_domains, seqno);
1650
1651 if (!dev_priv->mm.suspended) {
1652 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1653 if (was_empty)
1654 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1655 }
1656 return seqno;
1657 }
1658
1659 /**
1660 * Command execution barrier
1661 *
1662 * Ensures that all commands in the ring are finished
1663 * before signalling the CPU
1664 */
1665 static uint32_t
1666 i915_retire_commands(struct drm_device *dev)
1667 {
1668 drm_i915_private_t *dev_priv = dev->dev_private;
1669 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1670 uint32_t flush_domains = 0;
1671 RING_LOCALS;
1672
1673 /* The sampler always gets flushed on i965 (sigh) */
1674 if (IS_I965G(dev))
1675 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1676 BEGIN_LP_RING(2);
1677 OUT_RING(cmd);
1678 OUT_RING(0); /* noop */
1679 ADVANCE_LP_RING();
1680 return flush_domains;
1681 }
1682
1683 /**
1684 * Moves buffers associated only with the given active seqno from the active
1685 * to inactive list, potentially freeing them.
1686 */
1687 static void
1688 i915_gem_retire_request(struct drm_device *dev,
1689 struct drm_i915_gem_request *request)
1690 {
1691 drm_i915_private_t *dev_priv = dev->dev_private;
1692
1693 trace_i915_gem_request_retire(dev, request->seqno);
1694
1695 /* Move any buffers on the active list that are no longer referenced
1696 * by the ringbuffer to the flushing/inactive lists as appropriate.
1697 */
1698 spin_lock(&dev_priv->mm.active_list_lock);
1699 while (!list_empty(&dev_priv->mm.active_list)) {
1700 struct drm_gem_object *obj;
1701 struct drm_i915_gem_object *obj_priv;
1702
1703 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1704 struct drm_i915_gem_object,
1705 list);
1706 obj = obj_priv->obj;
1707
1708 /* If the seqno being retired doesn't match the oldest in the
1709 * list, then the oldest in the list must still be newer than
1710 * this seqno.
1711 */
1712 if (obj_priv->last_rendering_seqno != request->seqno)
1713 goto out;
1714
1715 #if WATCH_LRU
1716 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1717 __func__, request->seqno, obj);
1718 #endif
1719
1720 if (obj->write_domain != 0)
1721 i915_gem_object_move_to_flushing(obj);
1722 else {
1723 /* Take a reference on the object so it won't be
1724 * freed while the spinlock is held. The list
1725 * protection for this spinlock is safe when breaking
1726 * the lock like this since the next thing we do
1727 * is just get the head of the list again.
1728 */
1729 drm_gem_object_reference(obj);
1730 i915_gem_object_move_to_inactive(obj);
1731 spin_unlock(&dev_priv->mm.active_list_lock);
1732 drm_gem_object_unreference(obj);
1733 spin_lock(&dev_priv->mm.active_list_lock);
1734 }
1735 }
1736 out:
1737 spin_unlock(&dev_priv->mm.active_list_lock);
1738 }
1739
1740 /**
1741 * Returns true if seq1 is later than seq2.
1742 */
1743 bool
1744 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1745 {
1746 return (int32_t)(seq1 - seq2) >= 0;
1747 }
1748
1749 uint32_t
1750 i915_get_gem_seqno(struct drm_device *dev)
1751 {
1752 drm_i915_private_t *dev_priv = dev->dev_private;
1753
1754 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1755 }
1756
1757 /**
1758 * This function clears the request list as sequence numbers are passed.
1759 */
1760 void
1761 i915_gem_retire_requests(struct drm_device *dev)
1762 {
1763 drm_i915_private_t *dev_priv = dev->dev_private;
1764 uint32_t seqno;
1765
1766 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1767 return;
1768
1769 seqno = i915_get_gem_seqno(dev);
1770
1771 while (!list_empty(&dev_priv->mm.request_list)) {
1772 struct drm_i915_gem_request *request;
1773 uint32_t retiring_seqno;
1774
1775 request = list_first_entry(&dev_priv->mm.request_list,
1776 struct drm_i915_gem_request,
1777 list);
1778 retiring_seqno = request->seqno;
1779
1780 if (i915_seqno_passed(seqno, retiring_seqno) ||
1781 atomic_read(&dev_priv->mm.wedged)) {
1782 i915_gem_retire_request(dev, request);
1783
1784 list_del(&request->list);
1785 list_del(&request->client_list);
1786 kfree(request);
1787 } else
1788 break;
1789 }
1790
1791 if (unlikely (dev_priv->trace_irq_seqno &&
1792 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1793 i915_user_irq_put(dev);
1794 dev_priv->trace_irq_seqno = 0;
1795 }
1796 }
1797
1798 void
1799 i915_gem_retire_work_handler(struct work_struct *work)
1800 {
1801 drm_i915_private_t *dev_priv;
1802 struct drm_device *dev;
1803
1804 dev_priv = container_of(work, drm_i915_private_t,
1805 mm.retire_work.work);
1806 dev = dev_priv->dev;
1807
1808 mutex_lock(&dev->struct_mutex);
1809 i915_gem_retire_requests(dev);
1810 if (!dev_priv->mm.suspended &&
1811 !list_empty(&dev_priv->mm.request_list))
1812 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1813 mutex_unlock(&dev->struct_mutex);
1814 }
1815
1816 int
1817 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1818 {
1819 drm_i915_private_t *dev_priv = dev->dev_private;
1820 u32 ier;
1821 int ret = 0;
1822
1823 BUG_ON(seqno == 0);
1824
1825 if (atomic_read(&dev_priv->mm.wedged))
1826 return -EIO;
1827
1828 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1829 if (HAS_PCH_SPLIT(dev))
1830 ier = I915_READ(DEIER) | I915_READ(GTIER);
1831 else
1832 ier = I915_READ(IER);
1833 if (!ier) {
1834 DRM_ERROR("something (likely vbetool) disabled "
1835 "interrupts, re-enabling\n");
1836 i915_driver_irq_preinstall(dev);
1837 i915_driver_irq_postinstall(dev);
1838 }
1839
1840 trace_i915_gem_request_wait_begin(dev, seqno);
1841
1842 dev_priv->mm.waiting_gem_seqno = seqno;
1843 i915_user_irq_get(dev);
1844 if (interruptible)
1845 ret = wait_event_interruptible(dev_priv->irq_queue,
1846 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1847 atomic_read(&dev_priv->mm.wedged));
1848 else
1849 wait_event(dev_priv->irq_queue,
1850 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1851 atomic_read(&dev_priv->mm.wedged));
1852
1853 i915_user_irq_put(dev);
1854 dev_priv->mm.waiting_gem_seqno = 0;
1855
1856 trace_i915_gem_request_wait_end(dev, seqno);
1857 }
1858 if (atomic_read(&dev_priv->mm.wedged))
1859 ret = -EIO;
1860
1861 if (ret && ret != -ERESTARTSYS)
1862 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1863 __func__, ret, seqno, i915_get_gem_seqno(dev));
1864
1865 /* Directly dispatch request retiring. While we have the work queue
1866 * to handle this, the waiter on a request often wants an associated
1867 * buffer to have made it to the inactive list, and we would need
1868 * a separate wait queue to handle that.
1869 */
1870 if (ret == 0)
1871 i915_gem_retire_requests(dev);
1872
1873 return ret;
1874 }
1875
1876 /**
1877 * Waits for a sequence number to be signaled, and cleans up the
1878 * request and object lists appropriately for that event.
1879 */
1880 static int
1881 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1882 {
1883 return i915_do_wait_request(dev, seqno, 1);
1884 }
1885
1886 static void
1887 i915_gem_flush(struct drm_device *dev,
1888 uint32_t invalidate_domains,
1889 uint32_t flush_domains)
1890 {
1891 drm_i915_private_t *dev_priv = dev->dev_private;
1892 uint32_t cmd;
1893 RING_LOCALS;
1894
1895 #if WATCH_EXEC
1896 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1897 invalidate_domains, flush_domains);
1898 #endif
1899 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1900 invalidate_domains, flush_domains);
1901
1902 if (flush_domains & I915_GEM_DOMAIN_CPU)
1903 drm_agp_chipset_flush(dev);
1904
1905 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1906 /*
1907 * read/write caches:
1908 *
1909 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1910 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1911 * also flushed at 2d versus 3d pipeline switches.
1912 *
1913 * read-only caches:
1914 *
1915 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1916 * MI_READ_FLUSH is set, and is always flushed on 965.
1917 *
1918 * I915_GEM_DOMAIN_COMMAND may not exist?
1919 *
1920 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1921 * invalidated when MI_EXE_FLUSH is set.
1922 *
1923 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1924 * invalidated with every MI_FLUSH.
1925 *
1926 * TLBs:
1927 *
1928 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1929 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1930 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1931 * are flushed at any MI_FLUSH.
1932 */
1933
1934 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1935 if ((invalidate_domains|flush_domains) &
1936 I915_GEM_DOMAIN_RENDER)
1937 cmd &= ~MI_NO_WRITE_FLUSH;
1938 if (!IS_I965G(dev)) {
1939 /*
1940 * On the 965, the sampler cache always gets flushed
1941 * and this bit is reserved.
1942 */
1943 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1944 cmd |= MI_READ_FLUSH;
1945 }
1946 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1947 cmd |= MI_EXE_FLUSH;
1948
1949 #if WATCH_EXEC
1950 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1951 #endif
1952 BEGIN_LP_RING(2);
1953 OUT_RING(cmd);
1954 OUT_RING(MI_NOOP);
1955 ADVANCE_LP_RING();
1956 }
1957 }
1958
1959 /**
1960 * Ensures that all rendering to the object has completed and the object is
1961 * safe to unbind from the GTT or access from the CPU.
1962 */
1963 static int
1964 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1965 {
1966 struct drm_device *dev = obj->dev;
1967 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1968 int ret;
1969
1970 /* This function only exists to support waiting for existing rendering,
1971 * not for emitting required flushes.
1972 */
1973 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1974
1975 /* If there is rendering queued on the buffer being evicted, wait for
1976 * it.
1977 */
1978 if (obj_priv->active) {
1979 #if WATCH_BUF
1980 DRM_INFO("%s: object %p wait for seqno %08x\n",
1981 __func__, obj, obj_priv->last_rendering_seqno);
1982 #endif
1983 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1984 if (ret != 0)
1985 return ret;
1986 }
1987
1988 return 0;
1989 }
1990
1991 /**
1992 * Unbinds an object from the GTT aperture.
1993 */
1994 int
1995 i915_gem_object_unbind(struct drm_gem_object *obj)
1996 {
1997 struct drm_device *dev = obj->dev;
1998 drm_i915_private_t *dev_priv = dev->dev_private;
1999 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2000 int ret = 0;
2001
2002 #if WATCH_BUF
2003 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2004 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2005 #endif
2006 if (obj_priv->gtt_space == NULL)
2007 return 0;
2008
2009 if (obj_priv->pin_count != 0) {
2010 DRM_ERROR("Attempting to unbind pinned buffer\n");
2011 return -EINVAL;
2012 }
2013
2014 /* blow away mappings if mapped through GTT */
2015 i915_gem_release_mmap(obj);
2016
2017 /* Move the object to the CPU domain to ensure that
2018 * any possible CPU writes while it's not in the GTT
2019 * are flushed when we go to remap it. This will
2020 * also ensure that all pending GPU writes are finished
2021 * before we unbind.
2022 */
2023 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2024 if (ret) {
2025 if (ret != -ERESTARTSYS)
2026 DRM_ERROR("set_domain failed: %d\n", ret);
2027 return ret;
2028 }
2029
2030 BUG_ON(obj_priv->active);
2031
2032 /* release the fence reg _after_ flushing */
2033 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2034 i915_gem_clear_fence_reg(obj);
2035
2036 if (obj_priv->agp_mem != NULL) {
2037 drm_unbind_agp(obj_priv->agp_mem);
2038 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2039 obj_priv->agp_mem = NULL;
2040 }
2041
2042 i915_gem_object_put_pages(obj);
2043 BUG_ON(obj_priv->pages_refcount);
2044
2045 if (obj_priv->gtt_space) {
2046 atomic_dec(&dev->gtt_count);
2047 atomic_sub(obj->size, &dev->gtt_memory);
2048
2049 drm_mm_put_block(obj_priv->gtt_space);
2050 obj_priv->gtt_space = NULL;
2051 }
2052
2053 /* Remove ourselves from the LRU list if present. */
2054 spin_lock(&dev_priv->mm.active_list_lock);
2055 if (!list_empty(&obj_priv->list))
2056 list_del_init(&obj_priv->list);
2057 spin_unlock(&dev_priv->mm.active_list_lock);
2058
2059 if (i915_gem_object_is_purgeable(obj_priv))
2060 i915_gem_object_truncate(obj);
2061
2062 trace_i915_gem_object_unbind(obj);
2063
2064 return 0;
2065 }
2066
2067 static struct drm_gem_object *
2068 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2069 {
2070 drm_i915_private_t *dev_priv = dev->dev_private;
2071 struct drm_i915_gem_object *obj_priv;
2072 struct drm_gem_object *best = NULL;
2073 struct drm_gem_object *first = NULL;
2074
2075 /* Try to find the smallest clean object */
2076 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2077 struct drm_gem_object *obj = obj_priv->obj;
2078 if (obj->size >= min_size) {
2079 if ((!obj_priv->dirty ||
2080 i915_gem_object_is_purgeable(obj_priv)) &&
2081 (!best || obj->size < best->size)) {
2082 best = obj;
2083 if (best->size == min_size)
2084 return best;
2085 }
2086 if (!first)
2087 first = obj;
2088 }
2089 }
2090
2091 return best ? best : first;
2092 }
2093
2094 static int
2095 i915_gpu_idle(struct drm_device *dev)
2096 {
2097 drm_i915_private_t *dev_priv = dev->dev_private;
2098 bool lists_empty;
2099 uint32_t seqno;
2100
2101 spin_lock(&dev_priv->mm.active_list_lock);
2102 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
2103 list_empty(&dev_priv->mm.active_list);
2104 spin_unlock(&dev_priv->mm.active_list_lock);
2105
2106 if (lists_empty)
2107 return 0;
2108
2109 /* Flush everything onto the inactive list. */
2110 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2111 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2112 if (seqno == 0)
2113 return -ENOMEM;
2114
2115 return i915_wait_request(dev, seqno);
2116 }
2117
2118 static int
2119 i915_gem_evict_everything(struct drm_device *dev)
2120 {
2121 drm_i915_private_t *dev_priv = dev->dev_private;
2122 int ret;
2123 bool lists_empty;
2124
2125 spin_lock(&dev_priv->mm.active_list_lock);
2126 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2127 list_empty(&dev_priv->mm.flushing_list) &&
2128 list_empty(&dev_priv->mm.active_list));
2129 spin_unlock(&dev_priv->mm.active_list_lock);
2130
2131 if (lists_empty)
2132 return -ENOSPC;
2133
2134 /* Flush everything (on to the inactive lists) and evict */
2135 ret = i915_gpu_idle(dev);
2136 if (ret)
2137 return ret;
2138
2139 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2140
2141 ret = i915_gem_evict_from_inactive_list(dev);
2142 if (ret)
2143 return ret;
2144
2145 spin_lock(&dev_priv->mm.active_list_lock);
2146 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2147 list_empty(&dev_priv->mm.flushing_list) &&
2148 list_empty(&dev_priv->mm.active_list));
2149 spin_unlock(&dev_priv->mm.active_list_lock);
2150 BUG_ON(!lists_empty);
2151
2152 return 0;
2153 }
2154
2155 static int
2156 i915_gem_evict_something(struct drm_device *dev, int min_size)
2157 {
2158 drm_i915_private_t *dev_priv = dev->dev_private;
2159 struct drm_gem_object *obj;
2160 int ret;
2161
2162 for (;;) {
2163 i915_gem_retire_requests(dev);
2164
2165 /* If there's an inactive buffer available now, grab it
2166 * and be done.
2167 */
2168 obj = i915_gem_find_inactive_object(dev, min_size);
2169 if (obj) {
2170 struct drm_i915_gem_object *obj_priv;
2171
2172 #if WATCH_LRU
2173 DRM_INFO("%s: evicting %p\n", __func__, obj);
2174 #endif
2175 obj_priv = obj->driver_private;
2176 BUG_ON(obj_priv->pin_count != 0);
2177 BUG_ON(obj_priv->active);
2178
2179 /* Wait on the rendering and unbind the buffer. */
2180 return i915_gem_object_unbind(obj);
2181 }
2182
2183 /* If we didn't get anything, but the ring is still processing
2184 * things, wait for the next to finish and hopefully leave us
2185 * a buffer to evict.
2186 */
2187 if (!list_empty(&dev_priv->mm.request_list)) {
2188 struct drm_i915_gem_request *request;
2189
2190 request = list_first_entry(&dev_priv->mm.request_list,
2191 struct drm_i915_gem_request,
2192 list);
2193
2194 ret = i915_wait_request(dev, request->seqno);
2195 if (ret)
2196 return ret;
2197
2198 continue;
2199 }
2200
2201 /* If we didn't have anything on the request list but there
2202 * are buffers awaiting a flush, emit one and try again.
2203 * When we wait on it, those buffers waiting for that flush
2204 * will get moved to inactive.
2205 */
2206 if (!list_empty(&dev_priv->mm.flushing_list)) {
2207 struct drm_i915_gem_object *obj_priv;
2208
2209 /* Find an object that we can immediately reuse */
2210 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2211 obj = obj_priv->obj;
2212 if (obj->size >= min_size)
2213 break;
2214
2215 obj = NULL;
2216 }
2217
2218 if (obj != NULL) {
2219 uint32_t seqno;
2220
2221 i915_gem_flush(dev,
2222 obj->write_domain,
2223 obj->write_domain);
2224 seqno = i915_add_request(dev, NULL, obj->write_domain);
2225 if (seqno == 0)
2226 return -ENOMEM;
2227 continue;
2228 }
2229 }
2230
2231 /* If we didn't do any of the above, there's no single buffer
2232 * large enough to swap out for the new one, so just evict
2233 * everything and start again. (This should be rare.)
2234 */
2235 if (!list_empty (&dev_priv->mm.inactive_list))
2236 return i915_gem_evict_from_inactive_list(dev);
2237 else
2238 return i915_gem_evict_everything(dev);
2239 }
2240 }
2241
2242 int
2243 i915_gem_object_get_pages(struct drm_gem_object *obj,
2244 gfp_t gfpmask)
2245 {
2246 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2247 int page_count, i;
2248 struct address_space *mapping;
2249 struct inode *inode;
2250 struct page *page;
2251
2252 if (obj_priv->pages_refcount++ != 0)
2253 return 0;
2254
2255 /* Get the list of pages out of our struct file. They'll be pinned
2256 * at this point until we release them.
2257 */
2258 page_count = obj->size / PAGE_SIZE;
2259 BUG_ON(obj_priv->pages != NULL);
2260 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2261 if (obj_priv->pages == NULL) {
2262 obj_priv->pages_refcount--;
2263 return -ENOMEM;
2264 }
2265
2266 inode = obj->filp->f_path.dentry->d_inode;
2267 mapping = inode->i_mapping;
2268 for (i = 0; i < page_count; i++) {
2269 page = read_cache_page_gfp(mapping, i,
2270 mapping_gfp_mask (mapping) |
2271 __GFP_COLD |
2272 gfpmask);
2273 if (IS_ERR(page))
2274 goto err_pages;
2275
2276 obj_priv->pages[i] = page;
2277 }
2278
2279 if (obj_priv->tiling_mode != I915_TILING_NONE)
2280 i915_gem_object_do_bit_17_swizzle(obj);
2281
2282 return 0;
2283
2284 err_pages:
2285 while (i--)
2286 page_cache_release(obj_priv->pages[i]);
2287
2288 drm_free_large(obj_priv->pages);
2289 obj_priv->pages = NULL;
2290 obj_priv->pages_refcount--;
2291 return PTR_ERR(page);
2292 }
2293
2294 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2295 {
2296 struct drm_gem_object *obj = reg->obj;
2297 struct drm_device *dev = obj->dev;
2298 drm_i915_private_t *dev_priv = dev->dev_private;
2299 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2300 int regnum = obj_priv->fence_reg;
2301 uint64_t val;
2302
2303 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2304 0xfffff000) << 32;
2305 val |= obj_priv->gtt_offset & 0xfffff000;
2306 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2307 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2308
2309 if (obj_priv->tiling_mode == I915_TILING_Y)
2310 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2311 val |= I965_FENCE_REG_VALID;
2312
2313 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2314 }
2315
2316 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2317 {
2318 struct drm_gem_object *obj = reg->obj;
2319 struct drm_device *dev = obj->dev;
2320 drm_i915_private_t *dev_priv = dev->dev_private;
2321 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2322 int regnum = obj_priv->fence_reg;
2323 uint64_t val;
2324
2325 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2326 0xfffff000) << 32;
2327 val |= obj_priv->gtt_offset & 0xfffff000;
2328 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2329 if (obj_priv->tiling_mode == I915_TILING_Y)
2330 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2331 val |= I965_FENCE_REG_VALID;
2332
2333 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2334 }
2335
2336 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2337 {
2338 struct drm_gem_object *obj = reg->obj;
2339 struct drm_device *dev = obj->dev;
2340 drm_i915_private_t *dev_priv = dev->dev_private;
2341 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2342 int regnum = obj_priv->fence_reg;
2343 int tile_width;
2344 uint32_t fence_reg, val;
2345 uint32_t pitch_val;
2346
2347 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2348 (obj_priv->gtt_offset & (obj->size - 1))) {
2349 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2350 __func__, obj_priv->gtt_offset, obj->size);
2351 return;
2352 }
2353
2354 if (obj_priv->tiling_mode == I915_TILING_Y &&
2355 HAS_128_BYTE_Y_TILING(dev))
2356 tile_width = 128;
2357 else
2358 tile_width = 512;
2359
2360 /* Note: pitch better be a power of two tile widths */
2361 pitch_val = obj_priv->stride / tile_width;
2362 pitch_val = ffs(pitch_val) - 1;
2363
2364 val = obj_priv->gtt_offset;
2365 if (obj_priv->tiling_mode == I915_TILING_Y)
2366 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2367 val |= I915_FENCE_SIZE_BITS(obj->size);
2368 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2369 val |= I830_FENCE_REG_VALID;
2370
2371 if (regnum < 8)
2372 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2373 else
2374 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2375 I915_WRITE(fence_reg, val);
2376 }
2377
2378 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2379 {
2380 struct drm_gem_object *obj = reg->obj;
2381 struct drm_device *dev = obj->dev;
2382 drm_i915_private_t *dev_priv = dev->dev_private;
2383 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2384 int regnum = obj_priv->fence_reg;
2385 uint32_t val;
2386 uint32_t pitch_val;
2387 uint32_t fence_size_bits;
2388
2389 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2390 (obj_priv->gtt_offset & (obj->size - 1))) {
2391 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2392 __func__, obj_priv->gtt_offset);
2393 return;
2394 }
2395
2396 pitch_val = obj_priv->stride / 128;
2397 pitch_val = ffs(pitch_val) - 1;
2398 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2399
2400 val = obj_priv->gtt_offset;
2401 if (obj_priv->tiling_mode == I915_TILING_Y)
2402 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2403 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2404 WARN_ON(fence_size_bits & ~0x00000f00);
2405 val |= fence_size_bits;
2406 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2407 val |= I830_FENCE_REG_VALID;
2408
2409 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2410 }
2411
2412 static int i915_find_fence_reg(struct drm_device *dev)
2413 {
2414 struct drm_i915_fence_reg *reg = NULL;
2415 struct drm_i915_gem_object *obj_priv = NULL;
2416 struct drm_i915_private *dev_priv = dev->dev_private;
2417 struct drm_gem_object *obj = NULL;
2418 int i, avail, ret;
2419
2420 /* First try to find a free reg */
2421 avail = 0;
2422 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2423 reg = &dev_priv->fence_regs[i];
2424 if (!reg->obj)
2425 return i;
2426
2427 obj_priv = reg->obj->driver_private;
2428 if (!obj_priv->pin_count)
2429 avail++;
2430 }
2431
2432 if (avail == 0)
2433 return -ENOSPC;
2434
2435 /* None available, try to steal one or wait for a user to finish */
2436 i = I915_FENCE_REG_NONE;
2437 list_for_each_entry(obj_priv, &dev_priv->mm.fence_list,
2438 fence_list) {
2439 obj = obj_priv->obj;
2440
2441 if (obj_priv->pin_count)
2442 continue;
2443
2444 /* found one! */
2445 i = obj_priv->fence_reg;
2446 break;
2447 }
2448
2449 BUG_ON(i == I915_FENCE_REG_NONE);
2450
2451 /* We only have a reference on obj from the active list. put_fence_reg
2452 * might drop that one, causing a use-after-free in it. So hold a
2453 * private reference to obj like the other callers of put_fence_reg
2454 * (set_tiling ioctl) do. */
2455 drm_gem_object_reference(obj);
2456 ret = i915_gem_object_put_fence_reg(obj);
2457 drm_gem_object_unreference(obj);
2458 if (ret != 0)
2459 return ret;
2460
2461 return i;
2462 }
2463
2464 /**
2465 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2466 * @obj: object to map through a fence reg
2467 *
2468 * When mapping objects through the GTT, userspace wants to be able to write
2469 * to them without having to worry about swizzling if the object is tiled.
2470 *
2471 * This function walks the fence regs looking for a free one for @obj,
2472 * stealing one if it can't find any.
2473 *
2474 * It then sets up the reg based on the object's properties: address, pitch
2475 * and tiling format.
2476 */
2477 int
2478 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2479 {
2480 struct drm_device *dev = obj->dev;
2481 struct drm_i915_private *dev_priv = dev->dev_private;
2482 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2483 struct drm_i915_fence_reg *reg = NULL;
2484 int ret;
2485
2486 /* Just update our place in the LRU if our fence is getting used. */
2487 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2488 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2489 return 0;
2490 }
2491
2492 switch (obj_priv->tiling_mode) {
2493 case I915_TILING_NONE:
2494 WARN(1, "allocating a fence for non-tiled object?\n");
2495 break;
2496 case I915_TILING_X:
2497 if (!obj_priv->stride)
2498 return -EINVAL;
2499 WARN((obj_priv->stride & (512 - 1)),
2500 "object 0x%08x is X tiled but has non-512B pitch\n",
2501 obj_priv->gtt_offset);
2502 break;
2503 case I915_TILING_Y:
2504 if (!obj_priv->stride)
2505 return -EINVAL;
2506 WARN((obj_priv->stride & (128 - 1)),
2507 "object 0x%08x is Y tiled but has non-128B pitch\n",
2508 obj_priv->gtt_offset);
2509 break;
2510 }
2511
2512 ret = i915_find_fence_reg(dev);
2513 if (ret < 0)
2514 return ret;
2515
2516 obj_priv->fence_reg = ret;
2517 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2518 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2519
2520 reg->obj = obj;
2521
2522 if (IS_GEN6(dev))
2523 sandybridge_write_fence_reg(reg);
2524 else if (IS_I965G(dev))
2525 i965_write_fence_reg(reg);
2526 else if (IS_I9XX(dev))
2527 i915_write_fence_reg(reg);
2528 else
2529 i830_write_fence_reg(reg);
2530
2531 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2532 obj_priv->tiling_mode);
2533
2534 return 0;
2535 }
2536
2537 /**
2538 * i915_gem_clear_fence_reg - clear out fence register info
2539 * @obj: object to clear
2540 *
2541 * Zeroes out the fence register itself and clears out the associated
2542 * data structures in dev_priv and obj_priv.
2543 */
2544 static void
2545 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2546 {
2547 struct drm_device *dev = obj->dev;
2548 drm_i915_private_t *dev_priv = dev->dev_private;
2549 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2550
2551 if (IS_GEN6(dev)) {
2552 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2553 (obj_priv->fence_reg * 8), 0);
2554 } else if (IS_I965G(dev)) {
2555 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2556 } else {
2557 uint32_t fence_reg;
2558
2559 if (obj_priv->fence_reg < 8)
2560 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2561 else
2562 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2563 8) * 4;
2564
2565 I915_WRITE(fence_reg, 0);
2566 }
2567
2568 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2569 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2570 list_del_init(&obj_priv->fence_list);
2571 }
2572
2573 /**
2574 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2575 * to the buffer to finish, and then resets the fence register.
2576 * @obj: tiled object holding a fence register.
2577 *
2578 * Zeroes out the fence register itself and clears out the associated
2579 * data structures in dev_priv and obj_priv.
2580 */
2581 int
2582 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2583 {
2584 struct drm_device *dev = obj->dev;
2585 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2586
2587 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2588 return 0;
2589
2590 /* If we've changed tiling, GTT-mappings of the object
2591 * need to re-fault to ensure that the correct fence register
2592 * setup is in place.
2593 */
2594 i915_gem_release_mmap(obj);
2595
2596 /* On the i915, GPU access to tiled buffers is via a fence,
2597 * therefore we must wait for any outstanding access to complete
2598 * before clearing the fence.
2599 */
2600 if (!IS_I965G(dev)) {
2601 int ret;
2602
2603 i915_gem_object_flush_gpu_write_domain(obj);
2604 ret = i915_gem_object_wait_rendering(obj);
2605 if (ret != 0)
2606 return ret;
2607 }
2608
2609 i915_gem_object_flush_gtt_write_domain(obj);
2610 i915_gem_clear_fence_reg (obj);
2611
2612 return 0;
2613 }
2614
2615 /**
2616 * Finds free space in the GTT aperture and binds the object there.
2617 */
2618 static int
2619 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2620 {
2621 struct drm_device *dev = obj->dev;
2622 drm_i915_private_t *dev_priv = dev->dev_private;
2623 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2624 struct drm_mm_node *free_space;
2625 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2626 int ret;
2627
2628 if (obj_priv->madv != I915_MADV_WILLNEED) {
2629 DRM_ERROR("Attempting to bind a purgeable object\n");
2630 return -EINVAL;
2631 }
2632
2633 if (alignment == 0)
2634 alignment = i915_gem_get_gtt_alignment(obj);
2635 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2636 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2637 return -EINVAL;
2638 }
2639
2640 search_free:
2641 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2642 obj->size, alignment, 0);
2643 if (free_space != NULL) {
2644 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2645 alignment);
2646 if (obj_priv->gtt_space != NULL) {
2647 obj_priv->gtt_space->private = obj;
2648 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2649 }
2650 }
2651 if (obj_priv->gtt_space == NULL) {
2652 /* If the gtt is empty and we're still having trouble
2653 * fitting our object in, we're out of memory.
2654 */
2655 #if WATCH_LRU
2656 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2657 #endif
2658 ret = i915_gem_evict_something(dev, obj->size);
2659 if (ret)
2660 return ret;
2661
2662 goto search_free;
2663 }
2664
2665 #if WATCH_BUF
2666 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2667 obj->size, obj_priv->gtt_offset);
2668 #endif
2669 ret = i915_gem_object_get_pages(obj, gfpmask);
2670 if (ret) {
2671 drm_mm_put_block(obj_priv->gtt_space);
2672 obj_priv->gtt_space = NULL;
2673
2674 if (ret == -ENOMEM) {
2675 /* first try to clear up some space from the GTT */
2676 ret = i915_gem_evict_something(dev, obj->size);
2677 if (ret) {
2678 /* now try to shrink everyone else */
2679 if (gfpmask) {
2680 gfpmask = 0;
2681 goto search_free;
2682 }
2683
2684 return ret;
2685 }
2686
2687 goto search_free;
2688 }
2689
2690 return ret;
2691 }
2692
2693 /* Create an AGP memory structure pointing at our pages, and bind it
2694 * into the GTT.
2695 */
2696 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2697 obj_priv->pages,
2698 obj->size >> PAGE_SHIFT,
2699 obj_priv->gtt_offset,
2700 obj_priv->agp_type);
2701 if (obj_priv->agp_mem == NULL) {
2702 i915_gem_object_put_pages(obj);
2703 drm_mm_put_block(obj_priv->gtt_space);
2704 obj_priv->gtt_space = NULL;
2705
2706 ret = i915_gem_evict_something(dev, obj->size);
2707 if (ret)
2708 return ret;
2709
2710 goto search_free;
2711 }
2712 atomic_inc(&dev->gtt_count);
2713 atomic_add(obj->size, &dev->gtt_memory);
2714
2715 /* Assert that the object is not currently in any GPU domain. As it
2716 * wasn't in the GTT, there shouldn't be any way it could have been in
2717 * a GPU cache
2718 */
2719 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2720 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2721
2722 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2723
2724 return 0;
2725 }
2726
2727 void
2728 i915_gem_clflush_object(struct drm_gem_object *obj)
2729 {
2730 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2731
2732 /* If we don't have a page list set up, then we're not pinned
2733 * to GPU, and we can ignore the cache flush because it'll happen
2734 * again at bind time.
2735 */
2736 if (obj_priv->pages == NULL)
2737 return;
2738
2739 trace_i915_gem_object_clflush(obj);
2740
2741 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2742 }
2743
2744 /** Flushes any GPU write domain for the object if it's dirty. */
2745 static void
2746 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2747 {
2748 struct drm_device *dev = obj->dev;
2749 uint32_t old_write_domain;
2750
2751 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2752 return;
2753
2754 /* Queue the GPU write cache flushing we need. */
2755 old_write_domain = obj->write_domain;
2756 i915_gem_flush(dev, 0, obj->write_domain);
2757 (void) i915_add_request(dev, NULL, obj->write_domain);
2758 BUG_ON(obj->write_domain);
2759
2760 trace_i915_gem_object_change_domain(obj,
2761 obj->read_domains,
2762 old_write_domain);
2763 }
2764
2765 /** Flushes the GTT write domain for the object if it's dirty. */
2766 static void
2767 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2768 {
2769 uint32_t old_write_domain;
2770
2771 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2772 return;
2773
2774 /* No actual flushing is required for the GTT write domain. Writes
2775 * to it immediately go to main memory as far as we know, so there's
2776 * no chipset flush. It also doesn't land in render cache.
2777 */
2778 old_write_domain = obj->write_domain;
2779 obj->write_domain = 0;
2780
2781 trace_i915_gem_object_change_domain(obj,
2782 obj->read_domains,
2783 old_write_domain);
2784 }
2785
2786 /** Flushes the CPU write domain for the object if it's dirty. */
2787 static void
2788 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2789 {
2790 struct drm_device *dev = obj->dev;
2791 uint32_t old_write_domain;
2792
2793 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2794 return;
2795
2796 i915_gem_clflush_object(obj);
2797 drm_agp_chipset_flush(dev);
2798 old_write_domain = obj->write_domain;
2799 obj->write_domain = 0;
2800
2801 trace_i915_gem_object_change_domain(obj,
2802 obj->read_domains,
2803 old_write_domain);
2804 }
2805
2806 void
2807 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2808 {
2809 switch (obj->write_domain) {
2810 case I915_GEM_DOMAIN_GTT:
2811 i915_gem_object_flush_gtt_write_domain(obj);
2812 break;
2813 case I915_GEM_DOMAIN_CPU:
2814 i915_gem_object_flush_cpu_write_domain(obj);
2815 break;
2816 default:
2817 i915_gem_object_flush_gpu_write_domain(obj);
2818 break;
2819 }
2820 }
2821
2822 /**
2823 * Moves a single object to the GTT read, and possibly write domain.
2824 *
2825 * This function returns when the move is complete, including waiting on
2826 * flushes to occur.
2827 */
2828 int
2829 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2830 {
2831 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2832 uint32_t old_write_domain, old_read_domains;
2833 int ret;
2834
2835 /* Not valid to be called on unbound objects. */
2836 if (obj_priv->gtt_space == NULL)
2837 return -EINVAL;
2838
2839 i915_gem_object_flush_gpu_write_domain(obj);
2840 /* Wait on any GPU rendering and flushing to occur. */
2841 ret = i915_gem_object_wait_rendering(obj);
2842 if (ret != 0)
2843 return ret;
2844
2845 old_write_domain = obj->write_domain;
2846 old_read_domains = obj->read_domains;
2847
2848 /* If we're writing through the GTT domain, then CPU and GPU caches
2849 * will need to be invalidated at next use.
2850 */
2851 if (write)
2852 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2853
2854 i915_gem_object_flush_cpu_write_domain(obj);
2855
2856 /* It should now be out of any other write domains, and we can update
2857 * the domain values for our changes.
2858 */
2859 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2860 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2861 if (write) {
2862 obj->write_domain = I915_GEM_DOMAIN_GTT;
2863 obj_priv->dirty = 1;
2864 }
2865
2866 trace_i915_gem_object_change_domain(obj,
2867 old_read_domains,
2868 old_write_domain);
2869
2870 return 0;
2871 }
2872
2873 /*
2874 * Prepare buffer for display plane. Use uninterruptible for possible flush
2875 * wait, as in modesetting process we're not supposed to be interrupted.
2876 */
2877 int
2878 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2879 {
2880 struct drm_device *dev = obj->dev;
2881 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2882 uint32_t old_write_domain, old_read_domains;
2883 int ret;
2884
2885 /* Not valid to be called on unbound objects. */
2886 if (obj_priv->gtt_space == NULL)
2887 return -EINVAL;
2888
2889 i915_gem_object_flush_gpu_write_domain(obj);
2890
2891 /* Wait on any GPU rendering and flushing to occur. */
2892 if (obj_priv->active) {
2893 #if WATCH_BUF
2894 DRM_INFO("%s: object %p wait for seqno %08x\n",
2895 __func__, obj, obj_priv->last_rendering_seqno);
2896 #endif
2897 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2898 if (ret != 0)
2899 return ret;
2900 }
2901
2902 old_write_domain = obj->write_domain;
2903 old_read_domains = obj->read_domains;
2904
2905 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2906
2907 i915_gem_object_flush_cpu_write_domain(obj);
2908
2909 /* It should now be out of any other write domains, and we can update
2910 * the domain values for our changes.
2911 */
2912 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2913 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2914 obj->write_domain = I915_GEM_DOMAIN_GTT;
2915 obj_priv->dirty = 1;
2916
2917 trace_i915_gem_object_change_domain(obj,
2918 old_read_domains,
2919 old_write_domain);
2920
2921 return 0;
2922 }
2923
2924 /**
2925 * Moves a single object to the CPU read, and possibly write domain.
2926 *
2927 * This function returns when the move is complete, including waiting on
2928 * flushes to occur.
2929 */
2930 static int
2931 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2932 {
2933 uint32_t old_write_domain, old_read_domains;
2934 int ret;
2935
2936 i915_gem_object_flush_gpu_write_domain(obj);
2937 /* Wait on any GPU rendering and flushing to occur. */
2938 ret = i915_gem_object_wait_rendering(obj);
2939 if (ret != 0)
2940 return ret;
2941
2942 i915_gem_object_flush_gtt_write_domain(obj);
2943
2944 /* If we have a partially-valid cache of the object in the CPU,
2945 * finish invalidating it and free the per-page flags.
2946 */
2947 i915_gem_object_set_to_full_cpu_read_domain(obj);
2948
2949 old_write_domain = obj->write_domain;
2950 old_read_domains = obj->read_domains;
2951
2952 /* Flush the CPU cache if it's still invalid. */
2953 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2954 i915_gem_clflush_object(obj);
2955
2956 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2957 }
2958
2959 /* It should now be out of any other write domains, and we can update
2960 * the domain values for our changes.
2961 */
2962 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2963
2964 /* If we're writing through the CPU, then the GPU read domains will
2965 * need to be invalidated at next use.
2966 */
2967 if (write) {
2968 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2969 obj->write_domain = I915_GEM_DOMAIN_CPU;
2970 }
2971
2972 trace_i915_gem_object_change_domain(obj,
2973 old_read_domains,
2974 old_write_domain);
2975
2976 return 0;
2977 }
2978
2979 /*
2980 * Set the next domain for the specified object. This
2981 * may not actually perform the necessary flushing/invaliding though,
2982 * as that may want to be batched with other set_domain operations
2983 *
2984 * This is (we hope) the only really tricky part of gem. The goal
2985 * is fairly simple -- track which caches hold bits of the object
2986 * and make sure they remain coherent. A few concrete examples may
2987 * help to explain how it works. For shorthand, we use the notation
2988 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2989 * a pair of read and write domain masks.
2990 *
2991 * Case 1: the batch buffer
2992 *
2993 * 1. Allocated
2994 * 2. Written by CPU
2995 * 3. Mapped to GTT
2996 * 4. Read by GPU
2997 * 5. Unmapped from GTT
2998 * 6. Freed
2999 *
3000 * Let's take these a step at a time
3001 *
3002 * 1. Allocated
3003 * Pages allocated from the kernel may still have
3004 * cache contents, so we set them to (CPU, CPU) always.
3005 * 2. Written by CPU (using pwrite)
3006 * The pwrite function calls set_domain (CPU, CPU) and
3007 * this function does nothing (as nothing changes)
3008 * 3. Mapped by GTT
3009 * This function asserts that the object is not
3010 * currently in any GPU-based read or write domains
3011 * 4. Read by GPU
3012 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3013 * As write_domain is zero, this function adds in the
3014 * current read domains (CPU+COMMAND, 0).
3015 * flush_domains is set to CPU.
3016 * invalidate_domains is set to COMMAND
3017 * clflush is run to get data out of the CPU caches
3018 * then i915_dev_set_domain calls i915_gem_flush to
3019 * emit an MI_FLUSH and drm_agp_chipset_flush
3020 * 5. Unmapped from GTT
3021 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3022 * flush_domains and invalidate_domains end up both zero
3023 * so no flushing/invalidating happens
3024 * 6. Freed
3025 * yay, done
3026 *
3027 * Case 2: The shared render buffer
3028 *
3029 * 1. Allocated
3030 * 2. Mapped to GTT
3031 * 3. Read/written by GPU
3032 * 4. set_domain to (CPU,CPU)
3033 * 5. Read/written by CPU
3034 * 6. Read/written by GPU
3035 *
3036 * 1. Allocated
3037 * Same as last example, (CPU, CPU)
3038 * 2. Mapped to GTT
3039 * Nothing changes (assertions find that it is not in the GPU)
3040 * 3. Read/written by GPU
3041 * execbuffer calls set_domain (RENDER, RENDER)
3042 * flush_domains gets CPU
3043 * invalidate_domains gets GPU
3044 * clflush (obj)
3045 * MI_FLUSH and drm_agp_chipset_flush
3046 * 4. set_domain (CPU, CPU)
3047 * flush_domains gets GPU
3048 * invalidate_domains gets CPU
3049 * wait_rendering (obj) to make sure all drawing is complete.
3050 * This will include an MI_FLUSH to get the data from GPU
3051 * to memory
3052 * clflush (obj) to invalidate the CPU cache
3053 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3054 * 5. Read/written by CPU
3055 * cache lines are loaded and dirtied
3056 * 6. Read written by GPU
3057 * Same as last GPU access
3058 *
3059 * Case 3: The constant buffer
3060 *
3061 * 1. Allocated
3062 * 2. Written by CPU
3063 * 3. Read by GPU
3064 * 4. Updated (written) by CPU again
3065 * 5. Read by GPU
3066 *
3067 * 1. Allocated
3068 * (CPU, CPU)
3069 * 2. Written by CPU
3070 * (CPU, CPU)
3071 * 3. Read by GPU
3072 * (CPU+RENDER, 0)
3073 * flush_domains = CPU
3074 * invalidate_domains = RENDER
3075 * clflush (obj)
3076 * MI_FLUSH
3077 * drm_agp_chipset_flush
3078 * 4. Updated (written) by CPU again
3079 * (CPU, CPU)
3080 * flush_domains = 0 (no previous write domain)
3081 * invalidate_domains = 0 (no new read domains)
3082 * 5. Read by GPU
3083 * (CPU+RENDER, 0)
3084 * flush_domains = CPU
3085 * invalidate_domains = RENDER
3086 * clflush (obj)
3087 * MI_FLUSH
3088 * drm_agp_chipset_flush
3089 */
3090 static void
3091 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3092 {
3093 struct drm_device *dev = obj->dev;
3094 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3095 uint32_t invalidate_domains = 0;
3096 uint32_t flush_domains = 0;
3097 uint32_t old_read_domains;
3098
3099 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3100 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3101
3102 intel_mark_busy(dev, obj);
3103
3104 #if WATCH_BUF
3105 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3106 __func__, obj,
3107 obj->read_domains, obj->pending_read_domains,
3108 obj->write_domain, obj->pending_write_domain);
3109 #endif
3110 /*
3111 * If the object isn't moving to a new write domain,
3112 * let the object stay in multiple read domains
3113 */
3114 if (obj->pending_write_domain == 0)
3115 obj->pending_read_domains |= obj->read_domains;
3116 else
3117 obj_priv->dirty = 1;
3118
3119 /*
3120 * Flush the current write domain if
3121 * the new read domains don't match. Invalidate
3122 * any read domains which differ from the old
3123 * write domain
3124 */
3125 if (obj->write_domain &&
3126 obj->write_domain != obj->pending_read_domains) {
3127 flush_domains |= obj->write_domain;
3128 invalidate_domains |=
3129 obj->pending_read_domains & ~obj->write_domain;
3130 }
3131 /*
3132 * Invalidate any read caches which may have
3133 * stale data. That is, any new read domains.
3134 */
3135 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3136 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3137 #if WATCH_BUF
3138 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3139 __func__, flush_domains, invalidate_domains);
3140 #endif
3141 i915_gem_clflush_object(obj);
3142 }
3143
3144 old_read_domains = obj->read_domains;
3145
3146 /* The actual obj->write_domain will be updated with
3147 * pending_write_domain after we emit the accumulated flush for all
3148 * of our domain changes in execbuffers (which clears objects'
3149 * write_domains). So if we have a current write domain that we
3150 * aren't changing, set pending_write_domain to that.
3151 */
3152 if (flush_domains == 0 && obj->pending_write_domain == 0)
3153 obj->pending_write_domain = obj->write_domain;
3154 obj->read_domains = obj->pending_read_domains;
3155
3156 dev->invalidate_domains |= invalidate_domains;
3157 dev->flush_domains |= flush_domains;
3158 #if WATCH_BUF
3159 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3160 __func__,
3161 obj->read_domains, obj->write_domain,
3162 dev->invalidate_domains, dev->flush_domains);
3163 #endif
3164
3165 trace_i915_gem_object_change_domain(obj,
3166 old_read_domains,
3167 obj->write_domain);
3168 }
3169
3170 /**
3171 * Moves the object from a partially CPU read to a full one.
3172 *
3173 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3174 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3175 */
3176 static void
3177 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3178 {
3179 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3180
3181 if (!obj_priv->page_cpu_valid)
3182 return;
3183
3184 /* If we're partially in the CPU read domain, finish moving it in.
3185 */
3186 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3187 int i;
3188
3189 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3190 if (obj_priv->page_cpu_valid[i])
3191 continue;
3192 drm_clflush_pages(obj_priv->pages + i, 1);
3193 }
3194 }
3195
3196 /* Free the page_cpu_valid mappings which are now stale, whether
3197 * or not we've got I915_GEM_DOMAIN_CPU.
3198 */
3199 kfree(obj_priv->page_cpu_valid);
3200 obj_priv->page_cpu_valid = NULL;
3201 }
3202
3203 /**
3204 * Set the CPU read domain on a range of the object.
3205 *
3206 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3207 * not entirely valid. The page_cpu_valid member of the object flags which
3208 * pages have been flushed, and will be respected by
3209 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3210 * of the whole object.
3211 *
3212 * This function returns when the move is complete, including waiting on
3213 * flushes to occur.
3214 */
3215 static int
3216 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3217 uint64_t offset, uint64_t size)
3218 {
3219 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3220 uint32_t old_read_domains;
3221 int i, ret;
3222
3223 if (offset == 0 && size == obj->size)
3224 return i915_gem_object_set_to_cpu_domain(obj, 0);
3225
3226 i915_gem_object_flush_gpu_write_domain(obj);
3227 /* Wait on any GPU rendering and flushing to occur. */
3228 ret = i915_gem_object_wait_rendering(obj);
3229 if (ret != 0)
3230 return ret;
3231 i915_gem_object_flush_gtt_write_domain(obj);
3232
3233 /* If we're already fully in the CPU read domain, we're done. */
3234 if (obj_priv->page_cpu_valid == NULL &&
3235 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3236 return 0;
3237
3238 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3239 * newly adding I915_GEM_DOMAIN_CPU
3240 */
3241 if (obj_priv->page_cpu_valid == NULL) {
3242 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3243 GFP_KERNEL);
3244 if (obj_priv->page_cpu_valid == NULL)
3245 return -ENOMEM;
3246 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3247 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3248
3249 /* Flush the cache on any pages that are still invalid from the CPU's
3250 * perspective.
3251 */
3252 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3253 i++) {
3254 if (obj_priv->page_cpu_valid[i])
3255 continue;
3256
3257 drm_clflush_pages(obj_priv->pages + i, 1);
3258
3259 obj_priv->page_cpu_valid[i] = 1;
3260 }
3261
3262 /* It should now be out of any other write domains, and we can update
3263 * the domain values for our changes.
3264 */
3265 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3266
3267 old_read_domains = obj->read_domains;
3268 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3269
3270 trace_i915_gem_object_change_domain(obj,
3271 old_read_domains,
3272 obj->write_domain);
3273
3274 return 0;
3275 }
3276
3277 /**
3278 * Pin an object to the GTT and evaluate the relocations landing in it.
3279 */
3280 static int
3281 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3282 struct drm_file *file_priv,
3283 struct drm_i915_gem_exec_object2 *entry,
3284 struct drm_i915_gem_relocation_entry *relocs)
3285 {
3286 struct drm_device *dev = obj->dev;
3287 drm_i915_private_t *dev_priv = dev->dev_private;
3288 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3289 int i, ret;
3290 void __iomem *reloc_page;
3291 bool need_fence;
3292
3293 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3294 obj_priv->tiling_mode != I915_TILING_NONE;
3295
3296 /* Check fence reg constraints and rebind if necessary */
3297 if (need_fence && !i915_gem_object_fence_offset_ok(obj,
3298 obj_priv->tiling_mode))
3299 i915_gem_object_unbind(obj);
3300
3301 /* Choose the GTT offset for our buffer and put it there. */
3302 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3303 if (ret)
3304 return ret;
3305
3306 /*
3307 * Pre-965 chips need a fence register set up in order to
3308 * properly handle blits to/from tiled surfaces.
3309 */
3310 if (need_fence) {
3311 ret = i915_gem_object_get_fence_reg(obj);
3312 if (ret != 0) {
3313 if (ret != -EBUSY && ret != -ERESTARTSYS)
3314 DRM_ERROR("Failure to install fence: %d\n",
3315 ret);
3316 i915_gem_object_unpin(obj);
3317 return ret;
3318 }
3319 }
3320
3321 entry->offset = obj_priv->gtt_offset;
3322
3323 /* Apply the relocations, using the GTT aperture to avoid cache
3324 * flushing requirements.
3325 */
3326 for (i = 0; i < entry->relocation_count; i++) {
3327 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3328 struct drm_gem_object *target_obj;
3329 struct drm_i915_gem_object *target_obj_priv;
3330 uint32_t reloc_val, reloc_offset;
3331 uint32_t __iomem *reloc_entry;
3332
3333 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3334 reloc->target_handle);
3335 if (target_obj == NULL) {
3336 i915_gem_object_unpin(obj);
3337 return -EBADF;
3338 }
3339 target_obj_priv = target_obj->driver_private;
3340
3341 #if WATCH_RELOC
3342 DRM_INFO("%s: obj %p offset %08x target %d "
3343 "read %08x write %08x gtt %08x "
3344 "presumed %08x delta %08x\n",
3345 __func__,
3346 obj,
3347 (int) reloc->offset,
3348 (int) reloc->target_handle,
3349 (int) reloc->read_domains,
3350 (int) reloc->write_domain,
3351 (int) target_obj_priv->gtt_offset,
3352 (int) reloc->presumed_offset,
3353 reloc->delta);
3354 #endif
3355
3356 /* The target buffer should have appeared before us in the
3357 * exec_object list, so it should have a GTT space bound by now.
3358 */
3359 if (target_obj_priv->gtt_space == NULL) {
3360 DRM_ERROR("No GTT space found for object %d\n",
3361 reloc->target_handle);
3362 drm_gem_object_unreference(target_obj);
3363 i915_gem_object_unpin(obj);
3364 return -EINVAL;
3365 }
3366
3367 /* Validate that the target is in a valid r/w GPU domain */
3368 if (reloc->write_domain & (reloc->write_domain - 1)) {
3369 DRM_ERROR("reloc with multiple write domains: "
3370 "obj %p target %d offset %d "
3371 "read %08x write %08x",
3372 obj, reloc->target_handle,
3373 (int) reloc->offset,
3374 reloc->read_domains,
3375 reloc->write_domain);
3376 return -EINVAL;
3377 }
3378 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3379 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3380 DRM_ERROR("reloc with read/write CPU domains: "
3381 "obj %p target %d offset %d "
3382 "read %08x write %08x",
3383 obj, reloc->target_handle,
3384 (int) reloc->offset,
3385 reloc->read_domains,
3386 reloc->write_domain);
3387 drm_gem_object_unreference(target_obj);
3388 i915_gem_object_unpin(obj);
3389 return -EINVAL;
3390 }
3391 if (reloc->write_domain && target_obj->pending_write_domain &&
3392 reloc->write_domain != target_obj->pending_write_domain) {
3393 DRM_ERROR("Write domain conflict: "
3394 "obj %p target %d offset %d "
3395 "new %08x old %08x\n",
3396 obj, reloc->target_handle,
3397 (int) reloc->offset,
3398 reloc->write_domain,
3399 target_obj->pending_write_domain);
3400 drm_gem_object_unreference(target_obj);
3401 i915_gem_object_unpin(obj);
3402 return -EINVAL;
3403 }
3404
3405 target_obj->pending_read_domains |= reloc->read_domains;
3406 target_obj->pending_write_domain |= reloc->write_domain;
3407
3408 /* If the relocation already has the right value in it, no
3409 * more work needs to be done.
3410 */
3411 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3412 drm_gem_object_unreference(target_obj);
3413 continue;
3414 }
3415
3416 /* Check that the relocation address is valid... */
3417 if (reloc->offset > obj->size - 4) {
3418 DRM_ERROR("Relocation beyond object bounds: "
3419 "obj %p target %d offset %d size %d.\n",
3420 obj, reloc->target_handle,
3421 (int) reloc->offset, (int) obj->size);
3422 drm_gem_object_unreference(target_obj);
3423 i915_gem_object_unpin(obj);
3424 return -EINVAL;
3425 }
3426 if (reloc->offset & 3) {
3427 DRM_ERROR("Relocation not 4-byte aligned: "
3428 "obj %p target %d offset %d.\n",
3429 obj, reloc->target_handle,
3430 (int) reloc->offset);
3431 drm_gem_object_unreference(target_obj);
3432 i915_gem_object_unpin(obj);
3433 return -EINVAL;
3434 }
3435
3436 /* and points to somewhere within the target object. */
3437 if (reloc->delta >= target_obj->size) {
3438 DRM_ERROR("Relocation beyond target object bounds: "
3439 "obj %p target %d delta %d size %d.\n",
3440 obj, reloc->target_handle,
3441 (int) reloc->delta, (int) target_obj->size);
3442 drm_gem_object_unreference(target_obj);
3443 i915_gem_object_unpin(obj);
3444 return -EINVAL;
3445 }
3446
3447 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3448 if (ret != 0) {
3449 drm_gem_object_unreference(target_obj);
3450 i915_gem_object_unpin(obj);
3451 return -EINVAL;
3452 }
3453
3454 /* Map the page containing the relocation we're going to
3455 * perform.
3456 */
3457 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3458 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3459 (reloc_offset &
3460 ~(PAGE_SIZE - 1)));
3461 reloc_entry = (uint32_t __iomem *)(reloc_page +
3462 (reloc_offset & (PAGE_SIZE - 1)));
3463 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3464
3465 #if WATCH_BUF
3466 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3467 obj, (unsigned int) reloc->offset,
3468 readl(reloc_entry), reloc_val);
3469 #endif
3470 writel(reloc_val, reloc_entry);
3471 io_mapping_unmap_atomic(reloc_page);
3472
3473 /* The updated presumed offset for this entry will be
3474 * copied back out to the user.
3475 */
3476 reloc->presumed_offset = target_obj_priv->gtt_offset;
3477
3478 drm_gem_object_unreference(target_obj);
3479 }
3480
3481 #if WATCH_BUF
3482 if (0)
3483 i915_gem_dump_object(obj, 128, __func__, ~0);
3484 #endif
3485 return 0;
3486 }
3487
3488 /** Dispatch a batchbuffer to the ring
3489 */
3490 static int
3491 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3492 struct drm_i915_gem_execbuffer2 *exec,
3493 struct drm_clip_rect *cliprects,
3494 uint64_t exec_offset)
3495 {
3496 drm_i915_private_t *dev_priv = dev->dev_private;
3497 int nbox = exec->num_cliprects;
3498 int i = 0, count;
3499 uint32_t exec_start, exec_len;
3500 RING_LOCALS;
3501
3502 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3503 exec_len = (uint32_t) exec->batch_len;
3504
3505 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3506
3507 count = nbox ? nbox : 1;
3508
3509 for (i = 0; i < count; i++) {
3510 if (i < nbox) {
3511 int ret = i915_emit_box(dev, cliprects, i,
3512 exec->DR1, exec->DR4);
3513 if (ret)
3514 return ret;
3515 }
3516
3517 if (IS_I830(dev) || IS_845G(dev)) {
3518 BEGIN_LP_RING(4);
3519 OUT_RING(MI_BATCH_BUFFER);
3520 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3521 OUT_RING(exec_start + exec_len - 4);
3522 OUT_RING(0);
3523 ADVANCE_LP_RING();
3524 } else {
3525 BEGIN_LP_RING(2);
3526 if (IS_I965G(dev)) {
3527 OUT_RING(MI_BATCH_BUFFER_START |
3528 (2 << 6) |
3529 MI_BATCH_NON_SECURE_I965);
3530 OUT_RING(exec_start);
3531 } else {
3532 OUT_RING(MI_BATCH_BUFFER_START |
3533 (2 << 6));
3534 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3535 }
3536 ADVANCE_LP_RING();
3537 }
3538 }
3539
3540 /* XXX breadcrumb */
3541 return 0;
3542 }
3543
3544 /* Throttle our rendering by waiting until the ring has completed our requests
3545 * emitted over 20 msec ago.
3546 *
3547 * Note that if we were to use the current jiffies each time around the loop,
3548 * we wouldn't escape the function with any frames outstanding if the time to
3549 * render a frame was over 20ms.
3550 *
3551 * This should get us reasonable parallelism between CPU and GPU but also
3552 * relatively low latency when blocking on a particular request to finish.
3553 */
3554 static int
3555 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3556 {
3557 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3558 int ret = 0;
3559 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3560
3561 mutex_lock(&dev->struct_mutex);
3562 while (!list_empty(&i915_file_priv->mm.request_list)) {
3563 struct drm_i915_gem_request *request;
3564
3565 request = list_first_entry(&i915_file_priv->mm.request_list,
3566 struct drm_i915_gem_request,
3567 client_list);
3568
3569 if (time_after_eq(request->emitted_jiffies, recent_enough))
3570 break;
3571
3572 ret = i915_wait_request(dev, request->seqno);
3573 if (ret != 0)
3574 break;
3575 }
3576 mutex_unlock(&dev->struct_mutex);
3577
3578 return ret;
3579 }
3580
3581 static int
3582 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3583 uint32_t buffer_count,
3584 struct drm_i915_gem_relocation_entry **relocs)
3585 {
3586 uint32_t reloc_count = 0, reloc_index = 0, i;
3587 int ret;
3588
3589 *relocs = NULL;
3590 for (i = 0; i < buffer_count; i++) {
3591 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3592 return -EINVAL;
3593 reloc_count += exec_list[i].relocation_count;
3594 }
3595
3596 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3597 if (*relocs == NULL) {
3598 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3599 return -ENOMEM;
3600 }
3601
3602 for (i = 0; i < buffer_count; i++) {
3603 struct drm_i915_gem_relocation_entry __user *user_relocs;
3604
3605 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3606
3607 ret = copy_from_user(&(*relocs)[reloc_index],
3608 user_relocs,
3609 exec_list[i].relocation_count *
3610 sizeof(**relocs));
3611 if (ret != 0) {
3612 drm_free_large(*relocs);
3613 *relocs = NULL;
3614 return -EFAULT;
3615 }
3616
3617 reloc_index += exec_list[i].relocation_count;
3618 }
3619
3620 return 0;
3621 }
3622
3623 static int
3624 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3625 uint32_t buffer_count,
3626 struct drm_i915_gem_relocation_entry *relocs)
3627 {
3628 uint32_t reloc_count = 0, i;
3629 int ret = 0;
3630
3631 if (relocs == NULL)
3632 return 0;
3633
3634 for (i = 0; i < buffer_count; i++) {
3635 struct drm_i915_gem_relocation_entry __user *user_relocs;
3636 int unwritten;
3637
3638 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3639
3640 unwritten = copy_to_user(user_relocs,
3641 &relocs[reloc_count],
3642 exec_list[i].relocation_count *
3643 sizeof(*relocs));
3644
3645 if (unwritten) {
3646 ret = -EFAULT;
3647 goto err;
3648 }
3649
3650 reloc_count += exec_list[i].relocation_count;
3651 }
3652
3653 err:
3654 drm_free_large(relocs);
3655
3656 return ret;
3657 }
3658
3659 static int
3660 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3661 uint64_t exec_offset)
3662 {
3663 uint32_t exec_start, exec_len;
3664
3665 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3666 exec_len = (uint32_t) exec->batch_len;
3667
3668 if ((exec_start | exec_len) & 0x7)
3669 return -EINVAL;
3670
3671 if (!exec_start)
3672 return -EINVAL;
3673
3674 return 0;
3675 }
3676
3677 static int
3678 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3679 struct drm_gem_object **object_list,
3680 int count)
3681 {
3682 drm_i915_private_t *dev_priv = dev->dev_private;
3683 struct drm_i915_gem_object *obj_priv;
3684 DEFINE_WAIT(wait);
3685 int i, ret = 0;
3686
3687 for (;;) {
3688 prepare_to_wait(&dev_priv->pending_flip_queue,
3689 &wait, TASK_INTERRUPTIBLE);
3690 for (i = 0; i < count; i++) {
3691 obj_priv = object_list[i]->driver_private;
3692 if (atomic_read(&obj_priv->pending_flip) > 0)
3693 break;
3694 }
3695 if (i == count)
3696 break;
3697
3698 if (!signal_pending(current)) {
3699 mutex_unlock(&dev->struct_mutex);
3700 schedule();
3701 mutex_lock(&dev->struct_mutex);
3702 continue;
3703 }
3704 ret = -ERESTARTSYS;
3705 break;
3706 }
3707 finish_wait(&dev_priv->pending_flip_queue, &wait);
3708
3709 return ret;
3710 }
3711
3712 int
3713 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3714 struct drm_file *file_priv,
3715 struct drm_i915_gem_execbuffer2 *args,
3716 struct drm_i915_gem_exec_object2 *exec_list)
3717 {
3718 drm_i915_private_t *dev_priv = dev->dev_private;
3719 struct drm_gem_object **object_list = NULL;
3720 struct drm_gem_object *batch_obj;
3721 struct drm_i915_gem_object *obj_priv;
3722 struct drm_clip_rect *cliprects = NULL;
3723 struct drm_i915_gem_relocation_entry *relocs = NULL;
3724 int ret = 0, ret2, i, pinned = 0;
3725 uint64_t exec_offset;
3726 uint32_t seqno, flush_domains, reloc_index;
3727 int pin_tries, flips;
3728
3729 #if WATCH_EXEC
3730 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3731 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3732 #endif
3733
3734 if (args->buffer_count < 1) {
3735 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3736 return -EINVAL;
3737 }
3738 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3739 if (object_list == NULL) {
3740 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3741 args->buffer_count);
3742 ret = -ENOMEM;
3743 goto pre_mutex_err;
3744 }
3745
3746 if (args->num_cliprects != 0) {
3747 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3748 GFP_KERNEL);
3749 if (cliprects == NULL) {
3750 ret = -ENOMEM;
3751 goto pre_mutex_err;
3752 }
3753
3754 ret = copy_from_user(cliprects,
3755 (struct drm_clip_rect __user *)
3756 (uintptr_t) args->cliprects_ptr,
3757 sizeof(*cliprects) * args->num_cliprects);
3758 if (ret != 0) {
3759 DRM_ERROR("copy %d cliprects failed: %d\n",
3760 args->num_cliprects, ret);
3761 goto pre_mutex_err;
3762 }
3763 }
3764
3765 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3766 &relocs);
3767 if (ret != 0)
3768 goto pre_mutex_err;
3769
3770 mutex_lock(&dev->struct_mutex);
3771
3772 i915_verify_inactive(dev, __FILE__, __LINE__);
3773
3774 if (atomic_read(&dev_priv->mm.wedged)) {
3775 mutex_unlock(&dev->struct_mutex);
3776 ret = -EIO;
3777 goto pre_mutex_err;
3778 }
3779
3780 if (dev_priv->mm.suspended) {
3781 mutex_unlock(&dev->struct_mutex);
3782 ret = -EBUSY;
3783 goto pre_mutex_err;
3784 }
3785
3786 /* Look up object handles */
3787 flips = 0;
3788 for (i = 0; i < args->buffer_count; i++) {
3789 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3790 exec_list[i].handle);
3791 if (object_list[i] == NULL) {
3792 DRM_ERROR("Invalid object handle %d at index %d\n",
3793 exec_list[i].handle, i);
3794 /* prevent error path from reading uninitialized data */
3795 args->buffer_count = i + 1;
3796 ret = -EBADF;
3797 goto err;
3798 }
3799
3800 obj_priv = object_list[i]->driver_private;
3801 if (obj_priv->in_execbuffer) {
3802 DRM_ERROR("Object %p appears more than once in object list\n",
3803 object_list[i]);
3804 /* prevent error path from reading uninitialized data */
3805 args->buffer_count = i + 1;
3806 ret = -EBADF;
3807 goto err;
3808 }
3809 obj_priv->in_execbuffer = true;
3810 flips += atomic_read(&obj_priv->pending_flip);
3811 }
3812
3813 if (flips > 0) {
3814 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3815 args->buffer_count);
3816 if (ret)
3817 goto err;
3818 }
3819
3820 /* Pin and relocate */
3821 for (pin_tries = 0; ; pin_tries++) {
3822 ret = 0;
3823 reloc_index = 0;
3824
3825 for (i = 0; i < args->buffer_count; i++) {
3826 object_list[i]->pending_read_domains = 0;
3827 object_list[i]->pending_write_domain = 0;
3828 ret = i915_gem_object_pin_and_relocate(object_list[i],
3829 file_priv,
3830 &exec_list[i],
3831 &relocs[reloc_index]);
3832 if (ret)
3833 break;
3834 pinned = i + 1;
3835 reloc_index += exec_list[i].relocation_count;
3836 }
3837 /* success */
3838 if (ret == 0)
3839 break;
3840
3841 /* error other than GTT full, or we've already tried again */
3842 if (ret != -ENOSPC || pin_tries >= 1) {
3843 if (ret != -ERESTARTSYS) {
3844 unsigned long long total_size = 0;
3845 for (i = 0; i < args->buffer_count; i++)
3846 total_size += object_list[i]->size;
3847 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3848 pinned+1, args->buffer_count,
3849 total_size, ret);
3850 DRM_ERROR("%d objects [%d pinned], "
3851 "%d object bytes [%d pinned], "
3852 "%d/%d gtt bytes\n",
3853 atomic_read(&dev->object_count),
3854 atomic_read(&dev->pin_count),
3855 atomic_read(&dev->object_memory),
3856 atomic_read(&dev->pin_memory),
3857 atomic_read(&dev->gtt_memory),
3858 dev->gtt_total);
3859 }
3860 goto err;
3861 }
3862
3863 /* unpin all of our buffers */
3864 for (i = 0; i < pinned; i++)
3865 i915_gem_object_unpin(object_list[i]);
3866 pinned = 0;
3867
3868 /* evict everyone we can from the aperture */
3869 ret = i915_gem_evict_everything(dev);
3870 if (ret && ret != -ENOSPC)
3871 goto err;
3872 }
3873
3874 /* Set the pending read domains for the batch buffer to COMMAND */
3875 batch_obj = object_list[args->buffer_count-1];
3876 if (batch_obj->pending_write_domain) {
3877 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3878 ret = -EINVAL;
3879 goto err;
3880 }
3881 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3882
3883 /* Sanity check the batch buffer, prior to moving objects */
3884 exec_offset = exec_list[args->buffer_count - 1].offset;
3885 ret = i915_gem_check_execbuffer (args, exec_offset);
3886 if (ret != 0) {
3887 DRM_ERROR("execbuf with invalid offset/length\n");
3888 goto err;
3889 }
3890
3891 i915_verify_inactive(dev, __FILE__, __LINE__);
3892
3893 /* Zero the global flush/invalidate flags. These
3894 * will be modified as new domains are computed
3895 * for each object
3896 */
3897 dev->invalidate_domains = 0;
3898 dev->flush_domains = 0;
3899
3900 for (i = 0; i < args->buffer_count; i++) {
3901 struct drm_gem_object *obj = object_list[i];
3902
3903 /* Compute new gpu domains and update invalidate/flush */
3904 i915_gem_object_set_to_gpu_domain(obj);
3905 }
3906
3907 i915_verify_inactive(dev, __FILE__, __LINE__);
3908
3909 if (dev->invalidate_domains | dev->flush_domains) {
3910 #if WATCH_EXEC
3911 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3912 __func__,
3913 dev->invalidate_domains,
3914 dev->flush_domains);
3915 #endif
3916 i915_gem_flush(dev,
3917 dev->invalidate_domains,
3918 dev->flush_domains);
3919 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3920 (void)i915_add_request(dev, file_priv,
3921 dev->flush_domains);
3922 }
3923
3924 for (i = 0; i < args->buffer_count; i++) {
3925 struct drm_gem_object *obj = object_list[i];
3926 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3927 uint32_t old_write_domain = obj->write_domain;
3928
3929 obj->write_domain = obj->pending_write_domain;
3930 if (obj->write_domain)
3931 list_move_tail(&obj_priv->gpu_write_list,
3932 &dev_priv->mm.gpu_write_list);
3933 else
3934 list_del_init(&obj_priv->gpu_write_list);
3935
3936 trace_i915_gem_object_change_domain(obj,
3937 obj->read_domains,
3938 old_write_domain);
3939 }
3940
3941 i915_verify_inactive(dev, __FILE__, __LINE__);
3942
3943 #if WATCH_COHERENCY
3944 for (i = 0; i < args->buffer_count; i++) {
3945 i915_gem_object_check_coherency(object_list[i],
3946 exec_list[i].handle);
3947 }
3948 #endif
3949
3950 #if WATCH_EXEC
3951 i915_gem_dump_object(batch_obj,
3952 args->batch_len,
3953 __func__,
3954 ~0);
3955 #endif
3956
3957 /* Exec the batchbuffer */
3958 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3959 if (ret) {
3960 DRM_ERROR("dispatch failed %d\n", ret);
3961 goto err;
3962 }
3963
3964 /*
3965 * Ensure that the commands in the batch buffer are
3966 * finished before the interrupt fires
3967 */
3968 flush_domains = i915_retire_commands(dev);
3969
3970 i915_verify_inactive(dev, __FILE__, __LINE__);
3971
3972 /*
3973 * Get a seqno representing the execution of the current buffer,
3974 * which we can wait on. We would like to mitigate these interrupts,
3975 * likely by only creating seqnos occasionally (so that we have
3976 * *some* interrupts representing completion of buffers that we can
3977 * wait on when trying to clear up gtt space).
3978 */
3979 seqno = i915_add_request(dev, file_priv, flush_domains);
3980 BUG_ON(seqno == 0);
3981 for (i = 0; i < args->buffer_count; i++) {
3982 struct drm_gem_object *obj = object_list[i];
3983
3984 i915_gem_object_move_to_active(obj, seqno);
3985 #if WATCH_LRU
3986 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3987 #endif
3988 }
3989 #if WATCH_LRU
3990 i915_dump_lru(dev, __func__);
3991 #endif
3992
3993 i915_verify_inactive(dev, __FILE__, __LINE__);
3994
3995 err:
3996 for (i = 0; i < pinned; i++)
3997 i915_gem_object_unpin(object_list[i]);
3998
3999 for (i = 0; i < args->buffer_count; i++) {
4000 if (object_list[i]) {
4001 obj_priv = object_list[i]->driver_private;
4002 obj_priv->in_execbuffer = false;
4003 }
4004 drm_gem_object_unreference(object_list[i]);
4005 }
4006
4007 mutex_unlock(&dev->struct_mutex);
4008
4009 pre_mutex_err:
4010 /* Copy the updated relocations out regardless of current error
4011 * state. Failure to update the relocs would mean that the next
4012 * time userland calls execbuf, it would do so with presumed offset
4013 * state that didn't match the actual object state.
4014 */
4015 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
4016 relocs);
4017 if (ret2 != 0) {
4018 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
4019
4020 if (ret == 0)
4021 ret = ret2;
4022 }
4023
4024 drm_free_large(object_list);
4025 kfree(cliprects);
4026
4027 return ret;
4028 }
4029
4030 /*
4031 * Legacy execbuffer just creates an exec2 list from the original exec object
4032 * list array and passes it to the real function.
4033 */
4034 int
4035 i915_gem_execbuffer(struct drm_device *dev, void *data,
4036 struct drm_file *file_priv)
4037 {
4038 struct drm_i915_gem_execbuffer *args = data;
4039 struct drm_i915_gem_execbuffer2 exec2;
4040 struct drm_i915_gem_exec_object *exec_list = NULL;
4041 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4042 int ret, i;
4043
4044 #if WATCH_EXEC
4045 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4046 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4047 #endif
4048
4049 if (args->buffer_count < 1) {
4050 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4051 return -EINVAL;
4052 }
4053
4054 /* Copy in the exec list from userland */
4055 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4056 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4057 if (exec_list == NULL || exec2_list == NULL) {
4058 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4059 args->buffer_count);
4060 drm_free_large(exec_list);
4061 drm_free_large(exec2_list);
4062 return -ENOMEM;
4063 }
4064 ret = copy_from_user(exec_list,
4065 (struct drm_i915_relocation_entry __user *)
4066 (uintptr_t) args->buffers_ptr,
4067 sizeof(*exec_list) * args->buffer_count);
4068 if (ret != 0) {
4069 DRM_ERROR("copy %d exec entries failed %d\n",
4070 args->buffer_count, ret);
4071 drm_free_large(exec_list);
4072 drm_free_large(exec2_list);
4073 return -EFAULT;
4074 }
4075
4076 for (i = 0; i < args->buffer_count; i++) {
4077 exec2_list[i].handle = exec_list[i].handle;
4078 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4079 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4080 exec2_list[i].alignment = exec_list[i].alignment;
4081 exec2_list[i].offset = exec_list[i].offset;
4082 if (!IS_I965G(dev))
4083 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4084 else
4085 exec2_list[i].flags = 0;
4086 }
4087
4088 exec2.buffers_ptr = args->buffers_ptr;
4089 exec2.buffer_count = args->buffer_count;
4090 exec2.batch_start_offset = args->batch_start_offset;
4091 exec2.batch_len = args->batch_len;
4092 exec2.DR1 = args->DR1;
4093 exec2.DR4 = args->DR4;
4094 exec2.num_cliprects = args->num_cliprects;
4095 exec2.cliprects_ptr = args->cliprects_ptr;
4096 exec2.flags = 0;
4097
4098 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4099 if (!ret) {
4100 /* Copy the new buffer offsets back to the user's exec list. */
4101 for (i = 0; i < args->buffer_count; i++)
4102 exec_list[i].offset = exec2_list[i].offset;
4103 /* ... and back out to userspace */
4104 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4105 (uintptr_t) args->buffers_ptr,
4106 exec_list,
4107 sizeof(*exec_list) * args->buffer_count);
4108 if (ret) {
4109 ret = -EFAULT;
4110 DRM_ERROR("failed to copy %d exec entries "
4111 "back to user (%d)\n",
4112 args->buffer_count, ret);
4113 }
4114 }
4115
4116 drm_free_large(exec_list);
4117 drm_free_large(exec2_list);
4118 return ret;
4119 }
4120
4121 int
4122 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4123 struct drm_file *file_priv)
4124 {
4125 struct drm_i915_gem_execbuffer2 *args = data;
4126 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4127 int ret;
4128
4129 #if WATCH_EXEC
4130 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4131 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4132 #endif
4133
4134 if (args->buffer_count < 1) {
4135 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4136 return -EINVAL;
4137 }
4138
4139 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4140 if (exec2_list == NULL) {
4141 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4142 args->buffer_count);
4143 return -ENOMEM;
4144 }
4145 ret = copy_from_user(exec2_list,
4146 (struct drm_i915_relocation_entry __user *)
4147 (uintptr_t) args->buffers_ptr,
4148 sizeof(*exec2_list) * args->buffer_count);
4149 if (ret != 0) {
4150 DRM_ERROR("copy %d exec entries failed %d\n",
4151 args->buffer_count, ret);
4152 drm_free_large(exec2_list);
4153 return -EFAULT;
4154 }
4155
4156 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4157 if (!ret) {
4158 /* Copy the new buffer offsets back to the user's exec list. */
4159 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4160 (uintptr_t) args->buffers_ptr,
4161 exec2_list,
4162 sizeof(*exec2_list) * args->buffer_count);
4163 if (ret) {
4164 ret = -EFAULT;
4165 DRM_ERROR("failed to copy %d exec entries "
4166 "back to user (%d)\n",
4167 args->buffer_count, ret);
4168 }
4169 }
4170
4171 drm_free_large(exec2_list);
4172 return ret;
4173 }
4174
4175 int
4176 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4177 {
4178 struct drm_device *dev = obj->dev;
4179 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4180 int ret;
4181
4182 i915_verify_inactive(dev, __FILE__, __LINE__);
4183 if (obj_priv->gtt_space == NULL) {
4184 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4185 if (ret)
4186 return ret;
4187 }
4188
4189 obj_priv->pin_count++;
4190
4191 /* If the object is not active and not pending a flush,
4192 * remove it from the inactive list
4193 */
4194 if (obj_priv->pin_count == 1) {
4195 atomic_inc(&dev->pin_count);
4196 atomic_add(obj->size, &dev->pin_memory);
4197 if (!obj_priv->active &&
4198 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4199 !list_empty(&obj_priv->list))
4200 list_del_init(&obj_priv->list);
4201 }
4202 i915_verify_inactive(dev, __FILE__, __LINE__);
4203
4204 return 0;
4205 }
4206
4207 void
4208 i915_gem_object_unpin(struct drm_gem_object *obj)
4209 {
4210 struct drm_device *dev = obj->dev;
4211 drm_i915_private_t *dev_priv = dev->dev_private;
4212 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4213
4214 i915_verify_inactive(dev, __FILE__, __LINE__);
4215 obj_priv->pin_count--;
4216 BUG_ON(obj_priv->pin_count < 0);
4217 BUG_ON(obj_priv->gtt_space == NULL);
4218
4219 /* If the object is no longer pinned, and is
4220 * neither active nor being flushed, then stick it on
4221 * the inactive list
4222 */
4223 if (obj_priv->pin_count == 0) {
4224 if (!obj_priv->active &&
4225 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4226 list_move_tail(&obj_priv->list,
4227 &dev_priv->mm.inactive_list);
4228 atomic_dec(&dev->pin_count);
4229 atomic_sub(obj->size, &dev->pin_memory);
4230 }
4231 i915_verify_inactive(dev, __FILE__, __LINE__);
4232 }
4233
4234 int
4235 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4236 struct drm_file *file_priv)
4237 {
4238 struct drm_i915_gem_pin *args = data;
4239 struct drm_gem_object *obj;
4240 struct drm_i915_gem_object *obj_priv;
4241 int ret;
4242
4243 mutex_lock(&dev->struct_mutex);
4244
4245 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4246 if (obj == NULL) {
4247 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4248 args->handle);
4249 mutex_unlock(&dev->struct_mutex);
4250 return -EBADF;
4251 }
4252 obj_priv = obj->driver_private;
4253
4254 if (obj_priv->madv != I915_MADV_WILLNEED) {
4255 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4256 drm_gem_object_unreference(obj);
4257 mutex_unlock(&dev->struct_mutex);
4258 return -EINVAL;
4259 }
4260
4261 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4262 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4263 args->handle);
4264 drm_gem_object_unreference(obj);
4265 mutex_unlock(&dev->struct_mutex);
4266 return -EINVAL;
4267 }
4268
4269 obj_priv->user_pin_count++;
4270 obj_priv->pin_filp = file_priv;
4271 if (obj_priv->user_pin_count == 1) {
4272 ret = i915_gem_object_pin(obj, args->alignment);
4273 if (ret != 0) {
4274 drm_gem_object_unreference(obj);
4275 mutex_unlock(&dev->struct_mutex);
4276 return ret;
4277 }
4278 }
4279
4280 /* XXX - flush the CPU caches for pinned objects
4281 * as the X server doesn't manage domains yet
4282 */
4283 i915_gem_object_flush_cpu_write_domain(obj);
4284 args->offset = obj_priv->gtt_offset;
4285 drm_gem_object_unreference(obj);
4286 mutex_unlock(&dev->struct_mutex);
4287
4288 return 0;
4289 }
4290
4291 int
4292 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4293 struct drm_file *file_priv)
4294 {
4295 struct drm_i915_gem_pin *args = data;
4296 struct drm_gem_object *obj;
4297 struct drm_i915_gem_object *obj_priv;
4298
4299 mutex_lock(&dev->struct_mutex);
4300
4301 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4302 if (obj == NULL) {
4303 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4304 args->handle);
4305 mutex_unlock(&dev->struct_mutex);
4306 return -EBADF;
4307 }
4308
4309 obj_priv = obj->driver_private;
4310 if (obj_priv->pin_filp != file_priv) {
4311 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4312 args->handle);
4313 drm_gem_object_unreference(obj);
4314 mutex_unlock(&dev->struct_mutex);
4315 return -EINVAL;
4316 }
4317 obj_priv->user_pin_count--;
4318 if (obj_priv->user_pin_count == 0) {
4319 obj_priv->pin_filp = NULL;
4320 i915_gem_object_unpin(obj);
4321 }
4322
4323 drm_gem_object_unreference(obj);
4324 mutex_unlock(&dev->struct_mutex);
4325 return 0;
4326 }
4327
4328 int
4329 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4330 struct drm_file *file_priv)
4331 {
4332 struct drm_i915_gem_busy *args = data;
4333 struct drm_gem_object *obj;
4334 struct drm_i915_gem_object *obj_priv;
4335
4336 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4337 if (obj == NULL) {
4338 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4339 args->handle);
4340 return -EBADF;
4341 }
4342
4343 mutex_lock(&dev->struct_mutex);
4344 /* Update the active list for the hardware's current position.
4345 * Otherwise this only updates on a delayed timer or when irqs are
4346 * actually unmasked, and our working set ends up being larger than
4347 * required.
4348 */
4349 i915_gem_retire_requests(dev);
4350
4351 obj_priv = obj->driver_private;
4352 /* Don't count being on the flushing list against the object being
4353 * done. Otherwise, a buffer left on the flushing list but not getting
4354 * flushed (because nobody's flushing that domain) won't ever return
4355 * unbusy and get reused by libdrm's bo cache. The other expected
4356 * consumer of this interface, OpenGL's occlusion queries, also specs
4357 * that the objects get unbusy "eventually" without any interference.
4358 */
4359 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4360
4361 drm_gem_object_unreference(obj);
4362 mutex_unlock(&dev->struct_mutex);
4363 return 0;
4364 }
4365
4366 int
4367 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4368 struct drm_file *file_priv)
4369 {
4370 return i915_gem_ring_throttle(dev, file_priv);
4371 }
4372
4373 int
4374 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4375 struct drm_file *file_priv)
4376 {
4377 struct drm_i915_gem_madvise *args = data;
4378 struct drm_gem_object *obj;
4379 struct drm_i915_gem_object *obj_priv;
4380
4381 switch (args->madv) {
4382 case I915_MADV_DONTNEED:
4383 case I915_MADV_WILLNEED:
4384 break;
4385 default:
4386 return -EINVAL;
4387 }
4388
4389 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4390 if (obj == NULL) {
4391 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4392 args->handle);
4393 return -EBADF;
4394 }
4395
4396 mutex_lock(&dev->struct_mutex);
4397 obj_priv = obj->driver_private;
4398
4399 if (obj_priv->pin_count) {
4400 drm_gem_object_unreference(obj);
4401 mutex_unlock(&dev->struct_mutex);
4402
4403 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4404 return -EINVAL;
4405 }
4406
4407 if (obj_priv->madv != __I915_MADV_PURGED)
4408 obj_priv->madv = args->madv;
4409
4410 /* if the object is no longer bound, discard its backing storage */
4411 if (i915_gem_object_is_purgeable(obj_priv) &&
4412 obj_priv->gtt_space == NULL)
4413 i915_gem_object_truncate(obj);
4414
4415 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4416
4417 drm_gem_object_unreference(obj);
4418 mutex_unlock(&dev->struct_mutex);
4419
4420 return 0;
4421 }
4422
4423 int i915_gem_init_object(struct drm_gem_object *obj)
4424 {
4425 struct drm_i915_gem_object *obj_priv;
4426
4427 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4428 if (obj_priv == NULL)
4429 return -ENOMEM;
4430
4431 /*
4432 * We've just allocated pages from the kernel,
4433 * so they've just been written by the CPU with
4434 * zeros. They'll need to be clflushed before we
4435 * use them with the GPU.
4436 */
4437 obj->write_domain = I915_GEM_DOMAIN_CPU;
4438 obj->read_domains = I915_GEM_DOMAIN_CPU;
4439
4440 obj_priv->agp_type = AGP_USER_MEMORY;
4441
4442 obj->driver_private = obj_priv;
4443 obj_priv->obj = obj;
4444 obj_priv->fence_reg = I915_FENCE_REG_NONE;
4445 INIT_LIST_HEAD(&obj_priv->list);
4446 INIT_LIST_HEAD(&obj_priv->gpu_write_list);
4447 INIT_LIST_HEAD(&obj_priv->fence_list);
4448 obj_priv->madv = I915_MADV_WILLNEED;
4449
4450 trace_i915_gem_object_create(obj);
4451
4452 return 0;
4453 }
4454
4455 void i915_gem_free_object(struct drm_gem_object *obj)
4456 {
4457 struct drm_device *dev = obj->dev;
4458 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4459
4460 trace_i915_gem_object_destroy(obj);
4461
4462 while (obj_priv->pin_count > 0)
4463 i915_gem_object_unpin(obj);
4464
4465 if (obj_priv->phys_obj)
4466 i915_gem_detach_phys_object(dev, obj);
4467
4468 i915_gem_object_unbind(obj);
4469
4470 if (obj_priv->mmap_offset)
4471 i915_gem_free_mmap_offset(obj);
4472
4473 kfree(obj_priv->page_cpu_valid);
4474 kfree(obj_priv->bit_17);
4475 kfree(obj->driver_private);
4476 }
4477
4478 /** Unbinds all inactive objects. */
4479 static int
4480 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4481 {
4482 drm_i915_private_t *dev_priv = dev->dev_private;
4483
4484 while (!list_empty(&dev_priv->mm.inactive_list)) {
4485 struct drm_gem_object *obj;
4486 int ret;
4487
4488 obj = list_first_entry(&dev_priv->mm.inactive_list,
4489 struct drm_i915_gem_object,
4490 list)->obj;
4491
4492 ret = i915_gem_object_unbind(obj);
4493 if (ret != 0) {
4494 DRM_ERROR("Error unbinding object: %d\n", ret);
4495 return ret;
4496 }
4497 }
4498
4499 return 0;
4500 }
4501
4502 int
4503 i915_gem_idle(struct drm_device *dev)
4504 {
4505 drm_i915_private_t *dev_priv = dev->dev_private;
4506 int ret;
4507
4508 mutex_lock(&dev->struct_mutex);
4509
4510 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4511 mutex_unlock(&dev->struct_mutex);
4512 return 0;
4513 }
4514
4515 ret = i915_gpu_idle(dev);
4516 if (ret) {
4517 mutex_unlock(&dev->struct_mutex);
4518 return ret;
4519 }
4520
4521 /* Under UMS, be paranoid and evict. */
4522 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4523 ret = i915_gem_evict_from_inactive_list(dev);
4524 if (ret) {
4525 mutex_unlock(&dev->struct_mutex);
4526 return ret;
4527 }
4528 }
4529
4530 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4531 * We need to replace this with a semaphore, or something.
4532 * And not confound mm.suspended!
4533 */
4534 dev_priv->mm.suspended = 1;
4535 del_timer(&dev_priv->hangcheck_timer);
4536
4537 i915_kernel_lost_context(dev);
4538 i915_gem_cleanup_ringbuffer(dev);
4539
4540 mutex_unlock(&dev->struct_mutex);
4541
4542 /* Cancel the retire work handler, which should be idle now. */
4543 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4544
4545 return 0;
4546 }
4547
4548 static int
4549 i915_gem_init_hws(struct drm_device *dev)
4550 {
4551 drm_i915_private_t *dev_priv = dev->dev_private;
4552 struct drm_gem_object *obj;
4553 struct drm_i915_gem_object *obj_priv;
4554 int ret;
4555
4556 /* If we need a physical address for the status page, it's already
4557 * initialized at driver load time.
4558 */
4559 if (!I915_NEED_GFX_HWS(dev))
4560 return 0;
4561
4562 obj = drm_gem_object_alloc(dev, 4096);
4563 if (obj == NULL) {
4564 DRM_ERROR("Failed to allocate status page\n");
4565 return -ENOMEM;
4566 }
4567 obj_priv = obj->driver_private;
4568 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4569
4570 ret = i915_gem_object_pin(obj, 4096);
4571 if (ret != 0) {
4572 drm_gem_object_unreference(obj);
4573 return ret;
4574 }
4575
4576 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4577
4578 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4579 if (dev_priv->hw_status_page == NULL) {
4580 DRM_ERROR("Failed to map status page.\n");
4581 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4582 i915_gem_object_unpin(obj);
4583 drm_gem_object_unreference(obj);
4584 return -EINVAL;
4585 }
4586 dev_priv->hws_obj = obj;
4587 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4588 if (IS_GEN6(dev)) {
4589 I915_WRITE(HWS_PGA_GEN6, dev_priv->status_gfx_addr);
4590 I915_READ(HWS_PGA_GEN6); /* posting read */
4591 } else {
4592 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4593 I915_READ(HWS_PGA); /* posting read */
4594 }
4595 DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4596
4597 return 0;
4598 }
4599
4600 static void
4601 i915_gem_cleanup_hws(struct drm_device *dev)
4602 {
4603 drm_i915_private_t *dev_priv = dev->dev_private;
4604 struct drm_gem_object *obj;
4605 struct drm_i915_gem_object *obj_priv;
4606
4607 if (dev_priv->hws_obj == NULL)
4608 return;
4609
4610 obj = dev_priv->hws_obj;
4611 obj_priv = obj->driver_private;
4612
4613 kunmap(obj_priv->pages[0]);
4614 i915_gem_object_unpin(obj);
4615 drm_gem_object_unreference(obj);
4616 dev_priv->hws_obj = NULL;
4617
4618 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4619 dev_priv->hw_status_page = NULL;
4620
4621 /* Write high address into HWS_PGA when disabling. */
4622 I915_WRITE(HWS_PGA, 0x1ffff000);
4623 }
4624
4625 int
4626 i915_gem_init_ringbuffer(struct drm_device *dev)
4627 {
4628 drm_i915_private_t *dev_priv = dev->dev_private;
4629 struct drm_gem_object *obj;
4630 struct drm_i915_gem_object *obj_priv;
4631 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4632 int ret;
4633 u32 head;
4634
4635 ret = i915_gem_init_hws(dev);
4636 if (ret != 0)
4637 return ret;
4638
4639 obj = drm_gem_object_alloc(dev, 128 * 1024);
4640 if (obj == NULL) {
4641 DRM_ERROR("Failed to allocate ringbuffer\n");
4642 i915_gem_cleanup_hws(dev);
4643 return -ENOMEM;
4644 }
4645 obj_priv = obj->driver_private;
4646
4647 ret = i915_gem_object_pin(obj, 4096);
4648 if (ret != 0) {
4649 drm_gem_object_unreference(obj);
4650 i915_gem_cleanup_hws(dev);
4651 return ret;
4652 }
4653
4654 /* Set up the kernel mapping for the ring. */
4655 ring->Size = obj->size;
4656
4657 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4658 ring->map.size = obj->size;
4659 ring->map.type = 0;
4660 ring->map.flags = 0;
4661 ring->map.mtrr = 0;
4662
4663 drm_core_ioremap_wc(&ring->map, dev);
4664 if (ring->map.handle == NULL) {
4665 DRM_ERROR("Failed to map ringbuffer.\n");
4666 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4667 i915_gem_object_unpin(obj);
4668 drm_gem_object_unreference(obj);
4669 i915_gem_cleanup_hws(dev);
4670 return -EINVAL;
4671 }
4672 ring->ring_obj = obj;
4673 ring->virtual_start = ring->map.handle;
4674
4675 /* Stop the ring if it's running. */
4676 I915_WRITE(PRB0_CTL, 0);
4677 I915_WRITE(PRB0_TAIL, 0);
4678 I915_WRITE(PRB0_HEAD, 0);
4679
4680 /* Initialize the ring. */
4681 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4682 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4683
4684 /* G45 ring initialization fails to reset head to zero */
4685 if (head != 0) {
4686 DRM_ERROR("Ring head not reset to zero "
4687 "ctl %08x head %08x tail %08x start %08x\n",
4688 I915_READ(PRB0_CTL),
4689 I915_READ(PRB0_HEAD),
4690 I915_READ(PRB0_TAIL),
4691 I915_READ(PRB0_START));
4692 I915_WRITE(PRB0_HEAD, 0);
4693
4694 DRM_ERROR("Ring head forced to zero "
4695 "ctl %08x head %08x tail %08x start %08x\n",
4696 I915_READ(PRB0_CTL),
4697 I915_READ(PRB0_HEAD),
4698 I915_READ(PRB0_TAIL),
4699 I915_READ(PRB0_START));
4700 }
4701
4702 I915_WRITE(PRB0_CTL,
4703 ((obj->size - 4096) & RING_NR_PAGES) |
4704 RING_NO_REPORT |
4705 RING_VALID);
4706
4707 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4708
4709 /* If the head is still not zero, the ring is dead */
4710 if (head != 0) {
4711 DRM_ERROR("Ring initialization failed "
4712 "ctl %08x head %08x tail %08x start %08x\n",
4713 I915_READ(PRB0_CTL),
4714 I915_READ(PRB0_HEAD),
4715 I915_READ(PRB0_TAIL),
4716 I915_READ(PRB0_START));
4717 return -EIO;
4718 }
4719
4720 /* Update our cache of the ring state */
4721 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4722 i915_kernel_lost_context(dev);
4723 else {
4724 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4725 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4726 ring->space = ring->head - (ring->tail + 8);
4727 if (ring->space < 0)
4728 ring->space += ring->Size;
4729 }
4730
4731 if (IS_I9XX(dev) && !IS_GEN3(dev)) {
4732 I915_WRITE(MI_MODE,
4733 (VS_TIMER_DISPATCH) << 16 | VS_TIMER_DISPATCH);
4734 }
4735
4736 return 0;
4737 }
4738
4739 void
4740 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4741 {
4742 drm_i915_private_t *dev_priv = dev->dev_private;
4743
4744 if (dev_priv->ring.ring_obj == NULL)
4745 return;
4746
4747 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4748
4749 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4750 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4751 dev_priv->ring.ring_obj = NULL;
4752 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4753
4754 i915_gem_cleanup_hws(dev);
4755 }
4756
4757 int
4758 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4759 struct drm_file *file_priv)
4760 {
4761 drm_i915_private_t *dev_priv = dev->dev_private;
4762 int ret;
4763
4764 if (drm_core_check_feature(dev, DRIVER_MODESET))
4765 return 0;
4766
4767 if (atomic_read(&dev_priv->mm.wedged)) {
4768 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4769 atomic_set(&dev_priv->mm.wedged, 0);
4770 }
4771
4772 mutex_lock(&dev->struct_mutex);
4773 dev_priv->mm.suspended = 0;
4774
4775 ret = i915_gem_init_ringbuffer(dev);
4776 if (ret != 0) {
4777 mutex_unlock(&dev->struct_mutex);
4778 return ret;
4779 }
4780
4781 spin_lock(&dev_priv->mm.active_list_lock);
4782 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4783 spin_unlock(&dev_priv->mm.active_list_lock);
4784
4785 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4786 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4787 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4788 mutex_unlock(&dev->struct_mutex);
4789
4790 drm_irq_install(dev);
4791
4792 return 0;
4793 }
4794
4795 int
4796 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4797 struct drm_file *file_priv)
4798 {
4799 if (drm_core_check_feature(dev, DRIVER_MODESET))
4800 return 0;
4801
4802 drm_irq_uninstall(dev);
4803 return i915_gem_idle(dev);
4804 }
4805
4806 void
4807 i915_gem_lastclose(struct drm_device *dev)
4808 {
4809 int ret;
4810
4811 if (drm_core_check_feature(dev, DRIVER_MODESET))
4812 return;
4813
4814 ret = i915_gem_idle(dev);
4815 if (ret)
4816 DRM_ERROR("failed to idle hardware: %d\n", ret);
4817 }
4818
4819 void
4820 i915_gem_load(struct drm_device *dev)
4821 {
4822 int i;
4823 drm_i915_private_t *dev_priv = dev->dev_private;
4824
4825 spin_lock_init(&dev_priv->mm.active_list_lock);
4826 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4827 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4828 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4829 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4830 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4831 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4832 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4833 i915_gem_retire_work_handler);
4834 dev_priv->mm.next_gem_seqno = 1;
4835
4836 spin_lock(&shrink_list_lock);
4837 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4838 spin_unlock(&shrink_list_lock);
4839
4840 /* Old X drivers will take 0-2 for front, back, depth buffers */
4841 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4842 dev_priv->fence_reg_start = 3;
4843
4844 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4845 dev_priv->num_fence_regs = 16;
4846 else
4847 dev_priv->num_fence_regs = 8;
4848
4849 /* Initialize fence registers to zero */
4850 if (IS_I965G(dev)) {
4851 for (i = 0; i < 16; i++)
4852 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4853 } else {
4854 for (i = 0; i < 8; i++)
4855 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4856 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4857 for (i = 0; i < 8; i++)
4858 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4859 }
4860 i915_gem_detect_bit_6_swizzle(dev);
4861 init_waitqueue_head(&dev_priv->pending_flip_queue);
4862 }
4863
4864 /*
4865 * Create a physically contiguous memory object for this object
4866 * e.g. for cursor + overlay regs
4867 */
4868 int i915_gem_init_phys_object(struct drm_device *dev,
4869 int id, int size)
4870 {
4871 drm_i915_private_t *dev_priv = dev->dev_private;
4872 struct drm_i915_gem_phys_object *phys_obj;
4873 int ret;
4874
4875 if (dev_priv->mm.phys_objs[id - 1] || !size)
4876 return 0;
4877
4878 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4879 if (!phys_obj)
4880 return -ENOMEM;
4881
4882 phys_obj->id = id;
4883
4884 phys_obj->handle = drm_pci_alloc(dev, size, 0);
4885 if (!phys_obj->handle) {
4886 ret = -ENOMEM;
4887 goto kfree_obj;
4888 }
4889 #ifdef CONFIG_X86
4890 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4891 #endif
4892
4893 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4894
4895 return 0;
4896 kfree_obj:
4897 kfree(phys_obj);
4898 return ret;
4899 }
4900
4901 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4902 {
4903 drm_i915_private_t *dev_priv = dev->dev_private;
4904 struct drm_i915_gem_phys_object *phys_obj;
4905
4906 if (!dev_priv->mm.phys_objs[id - 1])
4907 return;
4908
4909 phys_obj = dev_priv->mm.phys_objs[id - 1];
4910 if (phys_obj->cur_obj) {
4911 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4912 }
4913
4914 #ifdef CONFIG_X86
4915 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4916 #endif
4917 drm_pci_free(dev, phys_obj->handle);
4918 kfree(phys_obj);
4919 dev_priv->mm.phys_objs[id - 1] = NULL;
4920 }
4921
4922 void i915_gem_free_all_phys_object(struct drm_device *dev)
4923 {
4924 int i;
4925
4926 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4927 i915_gem_free_phys_object(dev, i);
4928 }
4929
4930 void i915_gem_detach_phys_object(struct drm_device *dev,
4931 struct drm_gem_object *obj)
4932 {
4933 struct drm_i915_gem_object *obj_priv;
4934 int i;
4935 int ret;
4936 int page_count;
4937
4938 obj_priv = obj->driver_private;
4939 if (!obj_priv->phys_obj)
4940 return;
4941
4942 ret = i915_gem_object_get_pages(obj, 0);
4943 if (ret)
4944 goto out;
4945
4946 page_count = obj->size / PAGE_SIZE;
4947
4948 for (i = 0; i < page_count; i++) {
4949 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4950 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4951
4952 memcpy(dst, src, PAGE_SIZE);
4953 kunmap_atomic(dst, KM_USER0);
4954 }
4955 drm_clflush_pages(obj_priv->pages, page_count);
4956 drm_agp_chipset_flush(dev);
4957
4958 i915_gem_object_put_pages(obj);
4959 out:
4960 obj_priv->phys_obj->cur_obj = NULL;
4961 obj_priv->phys_obj = NULL;
4962 }
4963
4964 int
4965 i915_gem_attach_phys_object(struct drm_device *dev,
4966 struct drm_gem_object *obj, int id)
4967 {
4968 drm_i915_private_t *dev_priv = dev->dev_private;
4969 struct drm_i915_gem_object *obj_priv;
4970 int ret = 0;
4971 int page_count;
4972 int i;
4973
4974 if (id > I915_MAX_PHYS_OBJECT)
4975 return -EINVAL;
4976
4977 obj_priv = obj->driver_private;
4978
4979 if (obj_priv->phys_obj) {
4980 if (obj_priv->phys_obj->id == id)
4981 return 0;
4982 i915_gem_detach_phys_object(dev, obj);
4983 }
4984
4985
4986 /* create a new object */
4987 if (!dev_priv->mm.phys_objs[id - 1]) {
4988 ret = i915_gem_init_phys_object(dev, id,
4989 obj->size);
4990 if (ret) {
4991 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4992 goto out;
4993 }
4994 }
4995
4996 /* bind to the object */
4997 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4998 obj_priv->phys_obj->cur_obj = obj;
4999
5000 ret = i915_gem_object_get_pages(obj, 0);
5001 if (ret) {
5002 DRM_ERROR("failed to get page list\n");
5003 goto out;
5004 }
5005
5006 page_count = obj->size / PAGE_SIZE;
5007
5008 for (i = 0; i < page_count; i++) {
5009 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
5010 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5011
5012 memcpy(dst, src, PAGE_SIZE);
5013 kunmap_atomic(src, KM_USER0);
5014 }
5015
5016 i915_gem_object_put_pages(obj);
5017
5018 return 0;
5019 out:
5020 return ret;
5021 }
5022
5023 static int
5024 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5025 struct drm_i915_gem_pwrite *args,
5026 struct drm_file *file_priv)
5027 {
5028 struct drm_i915_gem_object *obj_priv = obj->driver_private;
5029 void *obj_addr;
5030 int ret;
5031 char __user *user_data;
5032
5033 user_data = (char __user *) (uintptr_t) args->data_ptr;
5034 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5035
5036 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5037 ret = copy_from_user(obj_addr, user_data, args->size);
5038 if (ret)
5039 return -EFAULT;
5040
5041 drm_agp_chipset_flush(dev);
5042 return 0;
5043 }
5044
5045 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5046 {
5047 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5048
5049 /* Clean up our request list when the client is going away, so that
5050 * later retire_requests won't dereference our soon-to-be-gone
5051 * file_priv.
5052 */
5053 mutex_lock(&dev->struct_mutex);
5054 while (!list_empty(&i915_file_priv->mm.request_list))
5055 list_del_init(i915_file_priv->mm.request_list.next);
5056 mutex_unlock(&dev->struct_mutex);
5057 }
5058
5059 static int
5060 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5061 {
5062 drm_i915_private_t *dev_priv, *next_dev;
5063 struct drm_i915_gem_object *obj_priv, *next_obj;
5064 int cnt = 0;
5065 int would_deadlock = 1;
5066
5067 /* "fast-path" to count number of available objects */
5068 if (nr_to_scan == 0) {
5069 spin_lock(&shrink_list_lock);
5070 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5071 struct drm_device *dev = dev_priv->dev;
5072
5073 if (mutex_trylock(&dev->struct_mutex)) {
5074 list_for_each_entry(obj_priv,
5075 &dev_priv->mm.inactive_list,
5076 list)
5077 cnt++;
5078 mutex_unlock(&dev->struct_mutex);
5079 }
5080 }
5081 spin_unlock(&shrink_list_lock);
5082
5083 return (cnt / 100) * sysctl_vfs_cache_pressure;
5084 }
5085
5086 spin_lock(&shrink_list_lock);
5087
5088 /* first scan for clean buffers */
5089 list_for_each_entry_safe(dev_priv, next_dev,
5090 &shrink_list, mm.shrink_list) {
5091 struct drm_device *dev = dev_priv->dev;
5092
5093 if (! mutex_trylock(&dev->struct_mutex))
5094 continue;
5095
5096 spin_unlock(&shrink_list_lock);
5097
5098 i915_gem_retire_requests(dev);
5099
5100 list_for_each_entry_safe(obj_priv, next_obj,
5101 &dev_priv->mm.inactive_list,
5102 list) {
5103 if (i915_gem_object_is_purgeable(obj_priv)) {
5104 i915_gem_object_unbind(obj_priv->obj);
5105 if (--nr_to_scan <= 0)
5106 break;
5107 }
5108 }
5109
5110 spin_lock(&shrink_list_lock);
5111 mutex_unlock(&dev->struct_mutex);
5112
5113 would_deadlock = 0;
5114
5115 if (nr_to_scan <= 0)
5116 break;
5117 }
5118
5119 /* second pass, evict/count anything still on the inactive list */
5120 list_for_each_entry_safe(dev_priv, next_dev,
5121 &shrink_list, mm.shrink_list) {
5122 struct drm_device *dev = dev_priv->dev;
5123
5124 if (! mutex_trylock(&dev->struct_mutex))
5125 continue;
5126
5127 spin_unlock(&shrink_list_lock);
5128
5129 list_for_each_entry_safe(obj_priv, next_obj,
5130 &dev_priv->mm.inactive_list,
5131 list) {
5132 if (nr_to_scan > 0) {
5133 i915_gem_object_unbind(obj_priv->obj);
5134 nr_to_scan--;
5135 } else
5136 cnt++;
5137 }
5138
5139 spin_lock(&shrink_list_lock);
5140 mutex_unlock(&dev->struct_mutex);
5141
5142 would_deadlock = 0;
5143 }
5144
5145 spin_unlock(&shrink_list_lock);
5146
5147 if (would_deadlock)
5148 return -1;
5149 else if (cnt > 0)
5150 return (cnt / 100) * sysctl_vfs_cache_pressure;
5151 else
5152 return 0;
5153 }
5154
5155 static struct shrinker shrinker = {
5156 .shrink = i915_gem_shrink,
5157 .seeks = DEFAULT_SEEKS,
5158 };
5159
5160 __init void
5161 i915_gem_shrinker_init(void)
5162 {
5163 register_shrinker(&shrinker);
5164 }
5165
5166 __exit void
5167 i915_gem_shrinker_exit(void)
5168 {
5169 unregister_shrinker(&shrinker);
5170 }