Merge branch 'perf-probes-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
63 {
64 drm_i915_private_t *dev_priv = dev->dev_private;
65
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
69 return -EINVAL;
70 }
71
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
74
75 dev->gtt_total = (uint32_t) (end - start);
76
77 return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
83 {
84 struct drm_i915_gem_init *args = data;
85 int ret;
86
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 mutex_unlock(&dev->struct_mutex);
90
91 return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
97 {
98 struct drm_i915_gem_get_aperture *args = data;
99
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
102
103 args->aper_size = dev->gtt_total;
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
106
107 return 0;
108 }
109
110
111 /**
112 * Creates a new mm object and returns a handle to it.
113 */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
117 {
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
120 int ret;
121 u32 handle;
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 drm_gem_object_handle_unreference_unlocked(obj);
132
133 if (ret)
134 return ret;
135
136 args->handle = handle;
137
138 return 0;
139 }
140
141 static inline int
142 fast_shmem_read(struct page **pages,
143 loff_t page_base, int page_offset,
144 char __user *data,
145 int length)
146 {
147 char __iomem *vaddr;
148 int unwritten;
149
150 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151 if (vaddr == NULL)
152 return -ENOMEM;
153 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
154 kunmap_atomic(vaddr, KM_USER0);
155
156 if (unwritten)
157 return -EFAULT;
158
159 return 0;
160 }
161
162 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 {
164 drm_i915_private_t *dev_priv = obj->dev->dev_private;
165 struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168 obj_priv->tiling_mode != I915_TILING_NONE;
169 }
170
171 static inline int
172 slow_shmem_copy(struct page *dst_page,
173 int dst_offset,
174 struct page *src_page,
175 int src_offset,
176 int length)
177 {
178 char *dst_vaddr, *src_vaddr;
179
180 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181 if (dst_vaddr == NULL)
182 return -ENOMEM;
183
184 src_vaddr = kmap_atomic(src_page, KM_USER1);
185 if (src_vaddr == NULL) {
186 kunmap_atomic(dst_vaddr, KM_USER0);
187 return -ENOMEM;
188 }
189
190 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192 kunmap_atomic(src_vaddr, KM_USER1);
193 kunmap_atomic(dst_vaddr, KM_USER0);
194
195 return 0;
196 }
197
198 static inline int
199 slow_shmem_bit17_copy(struct page *gpu_page,
200 int gpu_offset,
201 struct page *cpu_page,
202 int cpu_offset,
203 int length,
204 int is_read)
205 {
206 char *gpu_vaddr, *cpu_vaddr;
207
208 /* Use the unswizzled path if this page isn't affected. */
209 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210 if (is_read)
211 return slow_shmem_copy(cpu_page, cpu_offset,
212 gpu_page, gpu_offset, length);
213 else
214 return slow_shmem_copy(gpu_page, gpu_offset,
215 cpu_page, cpu_offset, length);
216 }
217
218 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219 if (gpu_vaddr == NULL)
220 return -ENOMEM;
221
222 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223 if (cpu_vaddr == NULL) {
224 kunmap_atomic(gpu_vaddr, KM_USER0);
225 return -ENOMEM;
226 }
227
228 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229 * XORing with the other bits (A9 for Y, A9 and A10 for X)
230 */
231 while (length > 0) {
232 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233 int this_length = min(cacheline_end - gpu_offset, length);
234 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236 if (is_read) {
237 memcpy(cpu_vaddr + cpu_offset,
238 gpu_vaddr + swizzled_gpu_offset,
239 this_length);
240 } else {
241 memcpy(gpu_vaddr + swizzled_gpu_offset,
242 cpu_vaddr + cpu_offset,
243 this_length);
244 }
245 cpu_offset += this_length;
246 gpu_offset += this_length;
247 length -= this_length;
248 }
249
250 kunmap_atomic(cpu_vaddr, KM_USER1);
251 kunmap_atomic(gpu_vaddr, KM_USER0);
252
253 return 0;
254 }
255
256 /**
257 * This is the fast shmem pread path, which attempts to copy_from_user directly
258 * from the backing pages of the object to the user's address space. On a
259 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260 */
261 static int
262 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263 struct drm_i915_gem_pread *args,
264 struct drm_file *file_priv)
265 {
266 struct drm_i915_gem_object *obj_priv = obj->driver_private;
267 ssize_t remain;
268 loff_t offset, page_base;
269 char __user *user_data;
270 int page_offset, page_length;
271 int ret;
272
273 user_data = (char __user *) (uintptr_t) args->data_ptr;
274 remain = args->size;
275
276 mutex_lock(&dev->struct_mutex);
277
278 ret = i915_gem_object_get_pages(obj, 0);
279 if (ret != 0)
280 goto fail_unlock;
281
282 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283 args->size);
284 if (ret != 0)
285 goto fail_put_pages;
286
287 obj_priv = obj->driver_private;
288 offset = args->offset;
289
290 while (remain > 0) {
291 /* Operation in this page
292 *
293 * page_base = page offset within aperture
294 * page_offset = offset within page
295 * page_length = bytes to copy for this page
296 */
297 page_base = (offset & ~(PAGE_SIZE-1));
298 page_offset = offset & (PAGE_SIZE-1);
299 page_length = remain;
300 if ((page_offset + remain) > PAGE_SIZE)
301 page_length = PAGE_SIZE - page_offset;
302
303 ret = fast_shmem_read(obj_priv->pages,
304 page_base, page_offset,
305 user_data, page_length);
306 if (ret)
307 goto fail_put_pages;
308
309 remain -= page_length;
310 user_data += page_length;
311 offset += page_length;
312 }
313
314 fail_put_pages:
315 i915_gem_object_put_pages(obj);
316 fail_unlock:
317 mutex_unlock(&dev->struct_mutex);
318
319 return ret;
320 }
321
322 static int
323 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
324 {
325 int ret;
326
327 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
328
329 /* If we've insufficient memory to map in the pages, attempt
330 * to make some space by throwing out some old buffers.
331 */
332 if (ret == -ENOMEM) {
333 struct drm_device *dev = obj->dev;
334
335 ret = i915_gem_evict_something(dev, obj->size);
336 if (ret)
337 return ret;
338
339 ret = i915_gem_object_get_pages(obj, 0);
340 }
341
342 return ret;
343 }
344
345 /**
346 * This is the fallback shmem pread path, which allocates temporary storage
347 * in kernel space to copy_to_user into outside of the struct_mutex, so we
348 * can copy out of the object's backing pages while holding the struct mutex
349 * and not take page faults.
350 */
351 static int
352 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
353 struct drm_i915_gem_pread *args,
354 struct drm_file *file_priv)
355 {
356 struct drm_i915_gem_object *obj_priv = obj->driver_private;
357 struct mm_struct *mm = current->mm;
358 struct page **user_pages;
359 ssize_t remain;
360 loff_t offset, pinned_pages, i;
361 loff_t first_data_page, last_data_page, num_pages;
362 int shmem_page_index, shmem_page_offset;
363 int data_page_index, data_page_offset;
364 int page_length;
365 int ret;
366 uint64_t data_ptr = args->data_ptr;
367 int do_bit17_swizzling;
368
369 remain = args->size;
370
371 /* Pin the user pages containing the data. We can't fault while
372 * holding the struct mutex, yet we want to hold it while
373 * dereferencing the user data.
374 */
375 first_data_page = data_ptr / PAGE_SIZE;
376 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
377 num_pages = last_data_page - first_data_page + 1;
378
379 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
380 if (user_pages == NULL)
381 return -ENOMEM;
382
383 down_read(&mm->mmap_sem);
384 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
385 num_pages, 1, 0, user_pages, NULL);
386 up_read(&mm->mmap_sem);
387 if (pinned_pages < num_pages) {
388 ret = -EFAULT;
389 goto fail_put_user_pages;
390 }
391
392 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
393
394 mutex_lock(&dev->struct_mutex);
395
396 ret = i915_gem_object_get_pages_or_evict(obj);
397 if (ret)
398 goto fail_unlock;
399
400 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
401 args->size);
402 if (ret != 0)
403 goto fail_put_pages;
404
405 obj_priv = obj->driver_private;
406 offset = args->offset;
407
408 while (remain > 0) {
409 /* Operation in this page
410 *
411 * shmem_page_index = page number within shmem file
412 * shmem_page_offset = offset within page in shmem file
413 * data_page_index = page number in get_user_pages return
414 * data_page_offset = offset with data_page_index page.
415 * page_length = bytes to copy for this page
416 */
417 shmem_page_index = offset / PAGE_SIZE;
418 shmem_page_offset = offset & ~PAGE_MASK;
419 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
420 data_page_offset = data_ptr & ~PAGE_MASK;
421
422 page_length = remain;
423 if ((shmem_page_offset + page_length) > PAGE_SIZE)
424 page_length = PAGE_SIZE - shmem_page_offset;
425 if ((data_page_offset + page_length) > PAGE_SIZE)
426 page_length = PAGE_SIZE - data_page_offset;
427
428 if (do_bit17_swizzling) {
429 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
430 shmem_page_offset,
431 user_pages[data_page_index],
432 data_page_offset,
433 page_length,
434 1);
435 } else {
436 ret = slow_shmem_copy(user_pages[data_page_index],
437 data_page_offset,
438 obj_priv->pages[shmem_page_index],
439 shmem_page_offset,
440 page_length);
441 }
442 if (ret)
443 goto fail_put_pages;
444
445 remain -= page_length;
446 data_ptr += page_length;
447 offset += page_length;
448 }
449
450 fail_put_pages:
451 i915_gem_object_put_pages(obj);
452 fail_unlock:
453 mutex_unlock(&dev->struct_mutex);
454 fail_put_user_pages:
455 for (i = 0; i < pinned_pages; i++) {
456 SetPageDirty(user_pages[i]);
457 page_cache_release(user_pages[i]);
458 }
459 drm_free_large(user_pages);
460
461 return ret;
462 }
463
464 /**
465 * Reads data from the object referenced by handle.
466 *
467 * On error, the contents of *data are undefined.
468 */
469 int
470 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
471 struct drm_file *file_priv)
472 {
473 struct drm_i915_gem_pread *args = data;
474 struct drm_gem_object *obj;
475 struct drm_i915_gem_object *obj_priv;
476 int ret;
477
478 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
479 if (obj == NULL)
480 return -EBADF;
481 obj_priv = obj->driver_private;
482
483 /* Bounds check source.
484 *
485 * XXX: This could use review for overflow issues...
486 */
487 if (args->offset > obj->size || args->size > obj->size ||
488 args->offset + args->size > obj->size) {
489 drm_gem_object_unreference_unlocked(obj);
490 return -EINVAL;
491 }
492
493 if (i915_gem_object_needs_bit17_swizzle(obj)) {
494 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
495 } else {
496 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
497 if (ret != 0)
498 ret = i915_gem_shmem_pread_slow(dev, obj, args,
499 file_priv);
500 }
501
502 drm_gem_object_unreference_unlocked(obj);
503
504 return ret;
505 }
506
507 /* This is the fast write path which cannot handle
508 * page faults in the source data
509 */
510
511 static inline int
512 fast_user_write(struct io_mapping *mapping,
513 loff_t page_base, int page_offset,
514 char __user *user_data,
515 int length)
516 {
517 char *vaddr_atomic;
518 unsigned long unwritten;
519
520 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
521 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
522 user_data, length);
523 io_mapping_unmap_atomic(vaddr_atomic);
524 if (unwritten)
525 return -EFAULT;
526 return 0;
527 }
528
529 /* Here's the write path which can sleep for
530 * page faults
531 */
532
533 static inline int
534 slow_kernel_write(struct io_mapping *mapping,
535 loff_t gtt_base, int gtt_offset,
536 struct page *user_page, int user_offset,
537 int length)
538 {
539 char *src_vaddr, *dst_vaddr;
540 unsigned long unwritten;
541
542 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
543 src_vaddr = kmap_atomic(user_page, KM_USER1);
544 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
545 src_vaddr + user_offset,
546 length);
547 kunmap_atomic(src_vaddr, KM_USER1);
548 io_mapping_unmap_atomic(dst_vaddr);
549 if (unwritten)
550 return -EFAULT;
551 return 0;
552 }
553
554 static inline int
555 fast_shmem_write(struct page **pages,
556 loff_t page_base, int page_offset,
557 char __user *data,
558 int length)
559 {
560 char __iomem *vaddr;
561 unsigned long unwritten;
562
563 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
564 if (vaddr == NULL)
565 return -ENOMEM;
566 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
567 kunmap_atomic(vaddr, KM_USER0);
568
569 if (unwritten)
570 return -EFAULT;
571 return 0;
572 }
573
574 /**
575 * This is the fast pwrite path, where we copy the data directly from the
576 * user into the GTT, uncached.
577 */
578 static int
579 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
580 struct drm_i915_gem_pwrite *args,
581 struct drm_file *file_priv)
582 {
583 struct drm_i915_gem_object *obj_priv = obj->driver_private;
584 drm_i915_private_t *dev_priv = dev->dev_private;
585 ssize_t remain;
586 loff_t offset, page_base;
587 char __user *user_data;
588 int page_offset, page_length;
589 int ret;
590
591 user_data = (char __user *) (uintptr_t) args->data_ptr;
592 remain = args->size;
593 if (!access_ok(VERIFY_READ, user_data, remain))
594 return -EFAULT;
595
596
597 mutex_lock(&dev->struct_mutex);
598 ret = i915_gem_object_pin(obj, 0);
599 if (ret) {
600 mutex_unlock(&dev->struct_mutex);
601 return ret;
602 }
603 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
604 if (ret)
605 goto fail;
606
607 obj_priv = obj->driver_private;
608 offset = obj_priv->gtt_offset + args->offset;
609
610 while (remain > 0) {
611 /* Operation in this page
612 *
613 * page_base = page offset within aperture
614 * page_offset = offset within page
615 * page_length = bytes to copy for this page
616 */
617 page_base = (offset & ~(PAGE_SIZE-1));
618 page_offset = offset & (PAGE_SIZE-1);
619 page_length = remain;
620 if ((page_offset + remain) > PAGE_SIZE)
621 page_length = PAGE_SIZE - page_offset;
622
623 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
624 page_offset, user_data, page_length);
625
626 /* If we get a fault while copying data, then (presumably) our
627 * source page isn't available. Return the error and we'll
628 * retry in the slow path.
629 */
630 if (ret)
631 goto fail;
632
633 remain -= page_length;
634 user_data += page_length;
635 offset += page_length;
636 }
637
638 fail:
639 i915_gem_object_unpin(obj);
640 mutex_unlock(&dev->struct_mutex);
641
642 return ret;
643 }
644
645 /**
646 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
647 * the memory and maps it using kmap_atomic for copying.
648 *
649 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
650 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
651 */
652 static int
653 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
654 struct drm_i915_gem_pwrite *args,
655 struct drm_file *file_priv)
656 {
657 struct drm_i915_gem_object *obj_priv = obj->driver_private;
658 drm_i915_private_t *dev_priv = dev->dev_private;
659 ssize_t remain;
660 loff_t gtt_page_base, offset;
661 loff_t first_data_page, last_data_page, num_pages;
662 loff_t pinned_pages, i;
663 struct page **user_pages;
664 struct mm_struct *mm = current->mm;
665 int gtt_page_offset, data_page_offset, data_page_index, page_length;
666 int ret;
667 uint64_t data_ptr = args->data_ptr;
668
669 remain = args->size;
670
671 /* Pin the user pages containing the data. We can't fault while
672 * holding the struct mutex, and all of the pwrite implementations
673 * want to hold it while dereferencing the user data.
674 */
675 first_data_page = data_ptr / PAGE_SIZE;
676 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
677 num_pages = last_data_page - first_data_page + 1;
678
679 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
680 if (user_pages == NULL)
681 return -ENOMEM;
682
683 down_read(&mm->mmap_sem);
684 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
685 num_pages, 0, 0, user_pages, NULL);
686 up_read(&mm->mmap_sem);
687 if (pinned_pages < num_pages) {
688 ret = -EFAULT;
689 goto out_unpin_pages;
690 }
691
692 mutex_lock(&dev->struct_mutex);
693 ret = i915_gem_object_pin(obj, 0);
694 if (ret)
695 goto out_unlock;
696
697 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
698 if (ret)
699 goto out_unpin_object;
700
701 obj_priv = obj->driver_private;
702 offset = obj_priv->gtt_offset + args->offset;
703
704 while (remain > 0) {
705 /* Operation in this page
706 *
707 * gtt_page_base = page offset within aperture
708 * gtt_page_offset = offset within page in aperture
709 * data_page_index = page number in get_user_pages return
710 * data_page_offset = offset with data_page_index page.
711 * page_length = bytes to copy for this page
712 */
713 gtt_page_base = offset & PAGE_MASK;
714 gtt_page_offset = offset & ~PAGE_MASK;
715 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
716 data_page_offset = data_ptr & ~PAGE_MASK;
717
718 page_length = remain;
719 if ((gtt_page_offset + page_length) > PAGE_SIZE)
720 page_length = PAGE_SIZE - gtt_page_offset;
721 if ((data_page_offset + page_length) > PAGE_SIZE)
722 page_length = PAGE_SIZE - data_page_offset;
723
724 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
725 gtt_page_base, gtt_page_offset,
726 user_pages[data_page_index],
727 data_page_offset,
728 page_length);
729
730 /* If we get a fault while copying data, then (presumably) our
731 * source page isn't available. Return the error and we'll
732 * retry in the slow path.
733 */
734 if (ret)
735 goto out_unpin_object;
736
737 remain -= page_length;
738 offset += page_length;
739 data_ptr += page_length;
740 }
741
742 out_unpin_object:
743 i915_gem_object_unpin(obj);
744 out_unlock:
745 mutex_unlock(&dev->struct_mutex);
746 out_unpin_pages:
747 for (i = 0; i < pinned_pages; i++)
748 page_cache_release(user_pages[i]);
749 drm_free_large(user_pages);
750
751 return ret;
752 }
753
754 /**
755 * This is the fast shmem pwrite path, which attempts to directly
756 * copy_from_user into the kmapped pages backing the object.
757 */
758 static int
759 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file_priv)
762 {
763 struct drm_i915_gem_object *obj_priv = obj->driver_private;
764 ssize_t remain;
765 loff_t offset, page_base;
766 char __user *user_data;
767 int page_offset, page_length;
768 int ret;
769
770 user_data = (char __user *) (uintptr_t) args->data_ptr;
771 remain = args->size;
772
773 mutex_lock(&dev->struct_mutex);
774
775 ret = i915_gem_object_get_pages(obj, 0);
776 if (ret != 0)
777 goto fail_unlock;
778
779 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
780 if (ret != 0)
781 goto fail_put_pages;
782
783 obj_priv = obj->driver_private;
784 offset = args->offset;
785 obj_priv->dirty = 1;
786
787 while (remain > 0) {
788 /* Operation in this page
789 *
790 * page_base = page offset within aperture
791 * page_offset = offset within page
792 * page_length = bytes to copy for this page
793 */
794 page_base = (offset & ~(PAGE_SIZE-1));
795 page_offset = offset & (PAGE_SIZE-1);
796 page_length = remain;
797 if ((page_offset + remain) > PAGE_SIZE)
798 page_length = PAGE_SIZE - page_offset;
799
800 ret = fast_shmem_write(obj_priv->pages,
801 page_base, page_offset,
802 user_data, page_length);
803 if (ret)
804 goto fail_put_pages;
805
806 remain -= page_length;
807 user_data += page_length;
808 offset += page_length;
809 }
810
811 fail_put_pages:
812 i915_gem_object_put_pages(obj);
813 fail_unlock:
814 mutex_unlock(&dev->struct_mutex);
815
816 return ret;
817 }
818
819 /**
820 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
821 * the memory and maps it using kmap_atomic for copying.
822 *
823 * This avoids taking mmap_sem for faulting on the user's address while the
824 * struct_mutex is held.
825 */
826 static int
827 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
828 struct drm_i915_gem_pwrite *args,
829 struct drm_file *file_priv)
830 {
831 struct drm_i915_gem_object *obj_priv = obj->driver_private;
832 struct mm_struct *mm = current->mm;
833 struct page **user_pages;
834 ssize_t remain;
835 loff_t offset, pinned_pages, i;
836 loff_t first_data_page, last_data_page, num_pages;
837 int shmem_page_index, shmem_page_offset;
838 int data_page_index, data_page_offset;
839 int page_length;
840 int ret;
841 uint64_t data_ptr = args->data_ptr;
842 int do_bit17_swizzling;
843
844 remain = args->size;
845
846 /* Pin the user pages containing the data. We can't fault while
847 * holding the struct mutex, and all of the pwrite implementations
848 * want to hold it while dereferencing the user data.
849 */
850 first_data_page = data_ptr / PAGE_SIZE;
851 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
852 num_pages = last_data_page - first_data_page + 1;
853
854 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
855 if (user_pages == NULL)
856 return -ENOMEM;
857
858 down_read(&mm->mmap_sem);
859 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
860 num_pages, 0, 0, user_pages, NULL);
861 up_read(&mm->mmap_sem);
862 if (pinned_pages < num_pages) {
863 ret = -EFAULT;
864 goto fail_put_user_pages;
865 }
866
867 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
868
869 mutex_lock(&dev->struct_mutex);
870
871 ret = i915_gem_object_get_pages_or_evict(obj);
872 if (ret)
873 goto fail_unlock;
874
875 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
876 if (ret != 0)
877 goto fail_put_pages;
878
879 obj_priv = obj->driver_private;
880 offset = args->offset;
881 obj_priv->dirty = 1;
882
883 while (remain > 0) {
884 /* Operation in this page
885 *
886 * shmem_page_index = page number within shmem file
887 * shmem_page_offset = offset within page in shmem file
888 * data_page_index = page number in get_user_pages return
889 * data_page_offset = offset with data_page_index page.
890 * page_length = bytes to copy for this page
891 */
892 shmem_page_index = offset / PAGE_SIZE;
893 shmem_page_offset = offset & ~PAGE_MASK;
894 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
895 data_page_offset = data_ptr & ~PAGE_MASK;
896
897 page_length = remain;
898 if ((shmem_page_offset + page_length) > PAGE_SIZE)
899 page_length = PAGE_SIZE - shmem_page_offset;
900 if ((data_page_offset + page_length) > PAGE_SIZE)
901 page_length = PAGE_SIZE - data_page_offset;
902
903 if (do_bit17_swizzling) {
904 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
905 shmem_page_offset,
906 user_pages[data_page_index],
907 data_page_offset,
908 page_length,
909 0);
910 } else {
911 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
912 shmem_page_offset,
913 user_pages[data_page_index],
914 data_page_offset,
915 page_length);
916 }
917 if (ret)
918 goto fail_put_pages;
919
920 remain -= page_length;
921 data_ptr += page_length;
922 offset += page_length;
923 }
924
925 fail_put_pages:
926 i915_gem_object_put_pages(obj);
927 fail_unlock:
928 mutex_unlock(&dev->struct_mutex);
929 fail_put_user_pages:
930 for (i = 0; i < pinned_pages; i++)
931 page_cache_release(user_pages[i]);
932 drm_free_large(user_pages);
933
934 return ret;
935 }
936
937 /**
938 * Writes data to the object referenced by handle.
939 *
940 * On error, the contents of the buffer that were to be modified are undefined.
941 */
942 int
943 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
944 struct drm_file *file_priv)
945 {
946 struct drm_i915_gem_pwrite *args = data;
947 struct drm_gem_object *obj;
948 struct drm_i915_gem_object *obj_priv;
949 int ret = 0;
950
951 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
952 if (obj == NULL)
953 return -EBADF;
954 obj_priv = obj->driver_private;
955
956 /* Bounds check destination.
957 *
958 * XXX: This could use review for overflow issues...
959 */
960 if (args->offset > obj->size || args->size > obj->size ||
961 args->offset + args->size > obj->size) {
962 drm_gem_object_unreference_unlocked(obj);
963 return -EINVAL;
964 }
965
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
972 if (obj_priv->phys_obj)
973 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
974 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
975 dev->gtt_total != 0) {
976 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
977 if (ret == -EFAULT) {
978 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
979 file_priv);
980 }
981 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
982 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
983 } else {
984 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
985 if (ret == -EFAULT) {
986 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
987 file_priv);
988 }
989 }
990
991 #if WATCH_PWRITE
992 if (ret)
993 DRM_INFO("pwrite failed %d\n", ret);
994 #endif
995
996 drm_gem_object_unreference_unlocked(obj);
997
998 return ret;
999 }
1000
1001 /**
1002 * Called when user space prepares to use an object with the CPU, either
1003 * through the mmap ioctl's mapping or a GTT mapping.
1004 */
1005 int
1006 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1007 struct drm_file *file_priv)
1008 {
1009 struct drm_i915_private *dev_priv = dev->dev_private;
1010 struct drm_i915_gem_set_domain *args = data;
1011 struct drm_gem_object *obj;
1012 struct drm_i915_gem_object *obj_priv;
1013 uint32_t read_domains = args->read_domains;
1014 uint32_t write_domain = args->write_domain;
1015 int ret;
1016
1017 if (!(dev->driver->driver_features & DRIVER_GEM))
1018 return -ENODEV;
1019
1020 /* Only handle setting domains to types used by the CPU. */
1021 if (write_domain & I915_GEM_GPU_DOMAINS)
1022 return -EINVAL;
1023
1024 if (read_domains & I915_GEM_GPU_DOMAINS)
1025 return -EINVAL;
1026
1027 /* Having something in the write domain implies it's in the read
1028 * domain, and only that read domain. Enforce that in the request.
1029 */
1030 if (write_domain != 0 && read_domains != write_domain)
1031 return -EINVAL;
1032
1033 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1034 if (obj == NULL)
1035 return -EBADF;
1036 obj_priv = obj->driver_private;
1037
1038 mutex_lock(&dev->struct_mutex);
1039
1040 intel_mark_busy(dev, obj);
1041
1042 #if WATCH_BUF
1043 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1044 obj, obj->size, read_domains, write_domain);
1045 #endif
1046 if (read_domains & I915_GEM_DOMAIN_GTT) {
1047 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1048
1049 /* Update the LRU on the fence for the CPU access that's
1050 * about to occur.
1051 */
1052 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053 list_move_tail(&obj_priv->fence_list,
1054 &dev_priv->mm.fence_list);
1055 }
1056
1057 /* Silently promote "you're not bound, there was nothing to do"
1058 * to success, since the client was just asking us to
1059 * make sure everything was done.
1060 */
1061 if (ret == -EINVAL)
1062 ret = 0;
1063 } else {
1064 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1065 }
1066
1067 drm_gem_object_unreference(obj);
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070 }
1071
1072 /**
1073 * Called when user space has done writes to this buffer
1074 */
1075 int
1076 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078 {
1079 struct drm_i915_gem_sw_finish *args = data;
1080 struct drm_gem_object *obj;
1081 struct drm_i915_gem_object *obj_priv;
1082 int ret = 0;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 mutex_lock(&dev->struct_mutex);
1088 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1089 if (obj == NULL) {
1090 mutex_unlock(&dev->struct_mutex);
1091 return -EBADF;
1092 }
1093
1094 #if WATCH_BUF
1095 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1096 __func__, args->handle, obj, obj->size);
1097 #endif
1098 obj_priv = obj->driver_private;
1099
1100 /* Pinned buffers may be scanout, so flush the cache */
1101 if (obj_priv->pin_count)
1102 i915_gem_object_flush_cpu_write_domain(obj);
1103
1104 drm_gem_object_unreference(obj);
1105 mutex_unlock(&dev->struct_mutex);
1106 return ret;
1107 }
1108
1109 /**
1110 * Maps the contents of an object, returning the address it is mapped
1111 * into.
1112 *
1113 * While the mapping holds a reference on the contents of the object, it doesn't
1114 * imply a ref on the object itself.
1115 */
1116 int
1117 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1118 struct drm_file *file_priv)
1119 {
1120 struct drm_i915_gem_mmap *args = data;
1121 struct drm_gem_object *obj;
1122 loff_t offset;
1123 unsigned long addr;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
1128 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1129 if (obj == NULL)
1130 return -EBADF;
1131
1132 offset = args->offset;
1133
1134 down_write(&current->mm->mmap_sem);
1135 addr = do_mmap(obj->filp, 0, args->size,
1136 PROT_READ | PROT_WRITE, MAP_SHARED,
1137 args->offset);
1138 up_write(&current->mm->mmap_sem);
1139 drm_gem_object_unreference_unlocked(obj);
1140 if (IS_ERR((void *)addr))
1141 return addr;
1142
1143 args->addr_ptr = (uint64_t) addr;
1144
1145 return 0;
1146 }
1147
1148 /**
1149 * i915_gem_fault - fault a page into the GTT
1150 * vma: VMA in question
1151 * vmf: fault info
1152 *
1153 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154 * from userspace. The fault handler takes care of binding the object to
1155 * the GTT (if needed), allocating and programming a fence register (again,
1156 * only if needed based on whether the old reg is still valid or the object
1157 * is tiled) and inserting a new PTE into the faulting process.
1158 *
1159 * Note that the faulting process may involve evicting existing objects
1160 * from the GTT and/or fence registers to make room. So performance may
1161 * suffer if the GTT working set is large or there are few fence registers
1162 * left.
1163 */
1164 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165 {
1166 struct drm_gem_object *obj = vma->vm_private_data;
1167 struct drm_device *dev = obj->dev;
1168 struct drm_i915_private *dev_priv = dev->dev_private;
1169 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1170 pgoff_t page_offset;
1171 unsigned long pfn;
1172 int ret = 0;
1173 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1174
1175 /* We don't use vmf->pgoff since that has the fake offset */
1176 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1177 PAGE_SHIFT;
1178
1179 /* Now bind it into the GTT if needed */
1180 mutex_lock(&dev->struct_mutex);
1181 if (!obj_priv->gtt_space) {
1182 ret = i915_gem_object_bind_to_gtt(obj, 0);
1183 if (ret)
1184 goto unlock;
1185
1186 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1187
1188 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1189 if (ret)
1190 goto unlock;
1191 }
1192
1193 /* Need a new fence register? */
1194 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1195 ret = i915_gem_object_get_fence_reg(obj);
1196 if (ret)
1197 goto unlock;
1198 }
1199
1200 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1201 page_offset;
1202
1203 /* Finally, remap it using the new GTT offset */
1204 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1205 unlock:
1206 mutex_unlock(&dev->struct_mutex);
1207
1208 switch (ret) {
1209 case 0:
1210 case -ERESTARTSYS:
1211 return VM_FAULT_NOPAGE;
1212 case -ENOMEM:
1213 case -EAGAIN:
1214 return VM_FAULT_OOM;
1215 default:
1216 return VM_FAULT_SIGBUS;
1217 }
1218 }
1219
1220 /**
1221 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1222 * @obj: obj in question
1223 *
1224 * GEM memory mapping works by handing back to userspace a fake mmap offset
1225 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1226 * up the object based on the offset and sets up the various memory mapping
1227 * structures.
1228 *
1229 * This routine allocates and attaches a fake offset for @obj.
1230 */
1231 static int
1232 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1233 {
1234 struct drm_device *dev = obj->dev;
1235 struct drm_gem_mm *mm = dev->mm_private;
1236 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1237 struct drm_map_list *list;
1238 struct drm_local_map *map;
1239 int ret = 0;
1240
1241 /* Set the object up for mmap'ing */
1242 list = &obj->map_list;
1243 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1244 if (!list->map)
1245 return -ENOMEM;
1246
1247 map = list->map;
1248 map->type = _DRM_GEM;
1249 map->size = obj->size;
1250 map->handle = obj;
1251
1252 /* Get a DRM GEM mmap offset allocated... */
1253 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1254 obj->size / PAGE_SIZE, 0, 0);
1255 if (!list->file_offset_node) {
1256 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1262 obj->size / PAGE_SIZE, 0);
1263 if (!list->file_offset_node) {
1264 ret = -ENOMEM;
1265 goto out_free_list;
1266 }
1267
1268 list->hash.key = list->file_offset_node->start;
1269 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1270 DRM_ERROR("failed to add to map hash\n");
1271 ret = -ENOMEM;
1272 goto out_free_mm;
1273 }
1274
1275 /* By now we should be all set, any drm_mmap request on the offset
1276 * below will get to our mmap & fault handler */
1277 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1278
1279 return 0;
1280
1281 out_free_mm:
1282 drm_mm_put_block(list->file_offset_node);
1283 out_free_list:
1284 kfree(list->map);
1285
1286 return ret;
1287 }
1288
1289 /**
1290 * i915_gem_release_mmap - remove physical page mappings
1291 * @obj: obj in question
1292 *
1293 * Preserve the reservation of the mmapping with the DRM core code, but
1294 * relinquish ownership of the pages back to the system.
1295 *
1296 * It is vital that we remove the page mapping if we have mapped a tiled
1297 * object through the GTT and then lose the fence register due to
1298 * resource pressure. Similarly if the object has been moved out of the
1299 * aperture, than pages mapped into userspace must be revoked. Removing the
1300 * mapping will then trigger a page fault on the next user access, allowing
1301 * fixup by i915_gem_fault().
1302 */
1303 void
1304 i915_gem_release_mmap(struct drm_gem_object *obj)
1305 {
1306 struct drm_device *dev = obj->dev;
1307 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1308
1309 if (dev->dev_mapping)
1310 unmap_mapping_range(dev->dev_mapping,
1311 obj_priv->mmap_offset, obj->size, 1);
1312 }
1313
1314 static void
1315 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1316 {
1317 struct drm_device *dev = obj->dev;
1318 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1319 struct drm_gem_mm *mm = dev->mm_private;
1320 struct drm_map_list *list;
1321
1322 list = &obj->map_list;
1323 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1324
1325 if (list->file_offset_node) {
1326 drm_mm_put_block(list->file_offset_node);
1327 list->file_offset_node = NULL;
1328 }
1329
1330 if (list->map) {
1331 kfree(list->map);
1332 list->map = NULL;
1333 }
1334
1335 obj_priv->mmap_offset = 0;
1336 }
1337
1338 /**
1339 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1340 * @obj: object to check
1341 *
1342 * Return the required GTT alignment for an object, taking into account
1343 * potential fence register mapping if needed.
1344 */
1345 static uint32_t
1346 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1347 {
1348 struct drm_device *dev = obj->dev;
1349 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1350 int start, i;
1351
1352 /*
1353 * Minimum alignment is 4k (GTT page size), but might be greater
1354 * if a fence register is needed for the object.
1355 */
1356 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1357 return 4096;
1358
1359 /*
1360 * Previous chips need to be aligned to the size of the smallest
1361 * fence register that can contain the object.
1362 */
1363 if (IS_I9XX(dev))
1364 start = 1024*1024;
1365 else
1366 start = 512*1024;
1367
1368 for (i = start; i < obj->size; i <<= 1)
1369 ;
1370
1371 return i;
1372 }
1373
1374 /**
1375 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1376 * @dev: DRM device
1377 * @data: GTT mapping ioctl data
1378 * @file_priv: GEM object info
1379 *
1380 * Simply returns the fake offset to userspace so it can mmap it.
1381 * The mmap call will end up in drm_gem_mmap(), which will set things
1382 * up so we can get faults in the handler above.
1383 *
1384 * The fault handler will take care of binding the object into the GTT
1385 * (since it may have been evicted to make room for something), allocating
1386 * a fence register, and mapping the appropriate aperture address into
1387 * userspace.
1388 */
1389 int
1390 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1391 struct drm_file *file_priv)
1392 {
1393 struct drm_i915_gem_mmap_gtt *args = data;
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 struct drm_gem_object *obj;
1396 struct drm_i915_gem_object *obj_priv;
1397 int ret;
1398
1399 if (!(dev->driver->driver_features & DRIVER_GEM))
1400 return -ENODEV;
1401
1402 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1403 if (obj == NULL)
1404 return -EBADF;
1405
1406 mutex_lock(&dev->struct_mutex);
1407
1408 obj_priv = obj->driver_private;
1409
1410 if (obj_priv->madv != I915_MADV_WILLNEED) {
1411 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
1414 return -EINVAL;
1415 }
1416
1417
1418 if (!obj_priv->mmap_offset) {
1419 ret = i915_gem_create_mmap_offset(obj);
1420 if (ret) {
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
1423 return ret;
1424 }
1425 }
1426
1427 args->offset = obj_priv->mmap_offset;
1428
1429 /*
1430 * Pull it into the GTT so that we have a page list (makes the
1431 * initial fault faster and any subsequent flushing possible).
1432 */
1433 if (!obj_priv->agp_mem) {
1434 ret = i915_gem_object_bind_to_gtt(obj, 0);
1435 if (ret) {
1436 drm_gem_object_unreference(obj);
1437 mutex_unlock(&dev->struct_mutex);
1438 return ret;
1439 }
1440 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1441 }
1442
1443 drm_gem_object_unreference(obj);
1444 mutex_unlock(&dev->struct_mutex);
1445
1446 return 0;
1447 }
1448
1449 void
1450 i915_gem_object_put_pages(struct drm_gem_object *obj)
1451 {
1452 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1453 int page_count = obj->size / PAGE_SIZE;
1454 int i;
1455
1456 BUG_ON(obj_priv->pages_refcount == 0);
1457 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1458
1459 if (--obj_priv->pages_refcount != 0)
1460 return;
1461
1462 if (obj_priv->tiling_mode != I915_TILING_NONE)
1463 i915_gem_object_save_bit_17_swizzle(obj);
1464
1465 if (obj_priv->madv == I915_MADV_DONTNEED)
1466 obj_priv->dirty = 0;
1467
1468 for (i = 0; i < page_count; i++) {
1469 if (obj_priv->pages[i] == NULL)
1470 break;
1471
1472 if (obj_priv->dirty)
1473 set_page_dirty(obj_priv->pages[i]);
1474
1475 if (obj_priv->madv == I915_MADV_WILLNEED)
1476 mark_page_accessed(obj_priv->pages[i]);
1477
1478 page_cache_release(obj_priv->pages[i]);
1479 }
1480 obj_priv->dirty = 0;
1481
1482 drm_free_large(obj_priv->pages);
1483 obj_priv->pages = NULL;
1484 }
1485
1486 static void
1487 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1488 {
1489 struct drm_device *dev = obj->dev;
1490 drm_i915_private_t *dev_priv = dev->dev_private;
1491 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1492
1493 /* Add a reference if we're newly entering the active list. */
1494 if (!obj_priv->active) {
1495 drm_gem_object_reference(obj);
1496 obj_priv->active = 1;
1497 }
1498 /* Move from whatever list we were on to the tail of execution. */
1499 spin_lock(&dev_priv->mm.active_list_lock);
1500 list_move_tail(&obj_priv->list,
1501 &dev_priv->mm.active_list);
1502 spin_unlock(&dev_priv->mm.active_list_lock);
1503 obj_priv->last_rendering_seqno = seqno;
1504 }
1505
1506 static void
1507 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508 {
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512
1513 BUG_ON(!obj_priv->active);
1514 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515 obj_priv->last_rendering_seqno = 0;
1516 }
1517
1518 /* Immediately discard the backing storage */
1519 static void
1520 i915_gem_object_truncate(struct drm_gem_object *obj)
1521 {
1522 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1523 struct inode *inode;
1524
1525 inode = obj->filp->f_path.dentry->d_inode;
1526 if (inode->i_op->truncate)
1527 inode->i_op->truncate (inode);
1528
1529 obj_priv->madv = __I915_MADV_PURGED;
1530 }
1531
1532 static inline int
1533 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1534 {
1535 return obj_priv->madv == I915_MADV_DONTNEED;
1536 }
1537
1538 static void
1539 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1540 {
1541 struct drm_device *dev = obj->dev;
1542 drm_i915_private_t *dev_priv = dev->dev_private;
1543 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1544
1545 i915_verify_inactive(dev, __FILE__, __LINE__);
1546 if (obj_priv->pin_count != 0)
1547 list_del_init(&obj_priv->list);
1548 else
1549 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1550
1551 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1552
1553 obj_priv->last_rendering_seqno = 0;
1554 if (obj_priv->active) {
1555 obj_priv->active = 0;
1556 drm_gem_object_unreference(obj);
1557 }
1558 i915_verify_inactive(dev, __FILE__, __LINE__);
1559 }
1560
1561 static void
1562 i915_gem_process_flushing_list(struct drm_device *dev,
1563 uint32_t flush_domains, uint32_t seqno)
1564 {
1565 drm_i915_private_t *dev_priv = dev->dev_private;
1566 struct drm_i915_gem_object *obj_priv, *next;
1567
1568 list_for_each_entry_safe(obj_priv, next,
1569 &dev_priv->mm.gpu_write_list,
1570 gpu_write_list) {
1571 struct drm_gem_object *obj = obj_priv->obj;
1572
1573 if ((obj->write_domain & flush_domains) ==
1574 obj->write_domain) {
1575 uint32_t old_write_domain = obj->write_domain;
1576
1577 obj->write_domain = 0;
1578 list_del_init(&obj_priv->gpu_write_list);
1579 i915_gem_object_move_to_active(obj, seqno);
1580
1581 /* update the fence lru list */
1582 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1583 list_move_tail(&obj_priv->fence_list,
1584 &dev_priv->mm.fence_list);
1585
1586 trace_i915_gem_object_change_domain(obj,
1587 obj->read_domains,
1588 old_write_domain);
1589 }
1590 }
1591 }
1592
1593 /**
1594 * Creates a new sequence number, emitting a write of it to the status page
1595 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1596 *
1597 * Must be called with struct_lock held.
1598 *
1599 * Returned sequence numbers are nonzero on success.
1600 */
1601 uint32_t
1602 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1603 uint32_t flush_domains)
1604 {
1605 drm_i915_private_t *dev_priv = dev->dev_private;
1606 struct drm_i915_file_private *i915_file_priv = NULL;
1607 struct drm_i915_gem_request *request;
1608 uint32_t seqno;
1609 int was_empty;
1610 RING_LOCALS;
1611
1612 if (file_priv != NULL)
1613 i915_file_priv = file_priv->driver_priv;
1614
1615 request = kzalloc(sizeof(*request), GFP_KERNEL);
1616 if (request == NULL)
1617 return 0;
1618
1619 /* Grab the seqno we're going to make this request be, and bump the
1620 * next (skipping 0 so it can be the reserved no-seqno value).
1621 */
1622 seqno = dev_priv->mm.next_gem_seqno;
1623 dev_priv->mm.next_gem_seqno++;
1624 if (dev_priv->mm.next_gem_seqno == 0)
1625 dev_priv->mm.next_gem_seqno++;
1626
1627 BEGIN_LP_RING(4);
1628 OUT_RING(MI_STORE_DWORD_INDEX);
1629 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1630 OUT_RING(seqno);
1631
1632 OUT_RING(MI_USER_INTERRUPT);
1633 ADVANCE_LP_RING();
1634
1635 DRM_DEBUG_DRIVER("%d\n", seqno);
1636
1637 request->seqno = seqno;
1638 request->emitted_jiffies = jiffies;
1639 was_empty = list_empty(&dev_priv->mm.request_list);
1640 list_add_tail(&request->list, &dev_priv->mm.request_list);
1641 if (i915_file_priv) {
1642 list_add_tail(&request->client_list,
1643 &i915_file_priv->mm.request_list);
1644 } else {
1645 INIT_LIST_HEAD(&request->client_list);
1646 }
1647
1648 /* Associate any objects on the flushing list matching the write
1649 * domain we're flushing with our flush.
1650 */
1651 if (flush_domains != 0)
1652 i915_gem_process_flushing_list(dev, flush_domains, seqno);
1653
1654 if (!dev_priv->mm.suspended) {
1655 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1656 if (was_empty)
1657 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1658 }
1659 return seqno;
1660 }
1661
1662 /**
1663 * Command execution barrier
1664 *
1665 * Ensures that all commands in the ring are finished
1666 * before signalling the CPU
1667 */
1668 static uint32_t
1669 i915_retire_commands(struct drm_device *dev)
1670 {
1671 drm_i915_private_t *dev_priv = dev->dev_private;
1672 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1673 uint32_t flush_domains = 0;
1674 RING_LOCALS;
1675
1676 /* The sampler always gets flushed on i965 (sigh) */
1677 if (IS_I965G(dev))
1678 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1679 BEGIN_LP_RING(2);
1680 OUT_RING(cmd);
1681 OUT_RING(0); /* noop */
1682 ADVANCE_LP_RING();
1683 return flush_domains;
1684 }
1685
1686 /**
1687 * Moves buffers associated only with the given active seqno from the active
1688 * to inactive list, potentially freeing them.
1689 */
1690 static void
1691 i915_gem_retire_request(struct drm_device *dev,
1692 struct drm_i915_gem_request *request)
1693 {
1694 drm_i915_private_t *dev_priv = dev->dev_private;
1695
1696 trace_i915_gem_request_retire(dev, request->seqno);
1697
1698 /* Move any buffers on the active list that are no longer referenced
1699 * by the ringbuffer to the flushing/inactive lists as appropriate.
1700 */
1701 spin_lock(&dev_priv->mm.active_list_lock);
1702 while (!list_empty(&dev_priv->mm.active_list)) {
1703 struct drm_gem_object *obj;
1704 struct drm_i915_gem_object *obj_priv;
1705
1706 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1707 struct drm_i915_gem_object,
1708 list);
1709 obj = obj_priv->obj;
1710
1711 /* If the seqno being retired doesn't match the oldest in the
1712 * list, then the oldest in the list must still be newer than
1713 * this seqno.
1714 */
1715 if (obj_priv->last_rendering_seqno != request->seqno)
1716 goto out;
1717
1718 #if WATCH_LRU
1719 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1720 __func__, request->seqno, obj);
1721 #endif
1722
1723 if (obj->write_domain != 0)
1724 i915_gem_object_move_to_flushing(obj);
1725 else {
1726 /* Take a reference on the object so it won't be
1727 * freed while the spinlock is held. The list
1728 * protection for this spinlock is safe when breaking
1729 * the lock like this since the next thing we do
1730 * is just get the head of the list again.
1731 */
1732 drm_gem_object_reference(obj);
1733 i915_gem_object_move_to_inactive(obj);
1734 spin_unlock(&dev_priv->mm.active_list_lock);
1735 drm_gem_object_unreference(obj);
1736 spin_lock(&dev_priv->mm.active_list_lock);
1737 }
1738 }
1739 out:
1740 spin_unlock(&dev_priv->mm.active_list_lock);
1741 }
1742
1743 /**
1744 * Returns true if seq1 is later than seq2.
1745 */
1746 bool
1747 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1748 {
1749 return (int32_t)(seq1 - seq2) >= 0;
1750 }
1751
1752 uint32_t
1753 i915_get_gem_seqno(struct drm_device *dev)
1754 {
1755 drm_i915_private_t *dev_priv = dev->dev_private;
1756
1757 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1758 }
1759
1760 /**
1761 * This function clears the request list as sequence numbers are passed.
1762 */
1763 void
1764 i915_gem_retire_requests(struct drm_device *dev)
1765 {
1766 drm_i915_private_t *dev_priv = dev->dev_private;
1767 uint32_t seqno;
1768
1769 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1770 return;
1771
1772 seqno = i915_get_gem_seqno(dev);
1773
1774 while (!list_empty(&dev_priv->mm.request_list)) {
1775 struct drm_i915_gem_request *request;
1776 uint32_t retiring_seqno;
1777
1778 request = list_first_entry(&dev_priv->mm.request_list,
1779 struct drm_i915_gem_request,
1780 list);
1781 retiring_seqno = request->seqno;
1782
1783 if (i915_seqno_passed(seqno, retiring_seqno) ||
1784 atomic_read(&dev_priv->mm.wedged)) {
1785 i915_gem_retire_request(dev, request);
1786
1787 list_del(&request->list);
1788 list_del(&request->client_list);
1789 kfree(request);
1790 } else
1791 break;
1792 }
1793
1794 if (unlikely (dev_priv->trace_irq_seqno &&
1795 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1796 i915_user_irq_put(dev);
1797 dev_priv->trace_irq_seqno = 0;
1798 }
1799 }
1800
1801 void
1802 i915_gem_retire_work_handler(struct work_struct *work)
1803 {
1804 drm_i915_private_t *dev_priv;
1805 struct drm_device *dev;
1806
1807 dev_priv = container_of(work, drm_i915_private_t,
1808 mm.retire_work.work);
1809 dev = dev_priv->dev;
1810
1811 mutex_lock(&dev->struct_mutex);
1812 i915_gem_retire_requests(dev);
1813 if (!dev_priv->mm.suspended &&
1814 !list_empty(&dev_priv->mm.request_list))
1815 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1816 mutex_unlock(&dev->struct_mutex);
1817 }
1818
1819 int
1820 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1821 {
1822 drm_i915_private_t *dev_priv = dev->dev_private;
1823 u32 ier;
1824 int ret = 0;
1825
1826 BUG_ON(seqno == 0);
1827
1828 if (atomic_read(&dev_priv->mm.wedged))
1829 return -EIO;
1830
1831 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1832 if (HAS_PCH_SPLIT(dev))
1833 ier = I915_READ(DEIER) | I915_READ(GTIER);
1834 else
1835 ier = I915_READ(IER);
1836 if (!ier) {
1837 DRM_ERROR("something (likely vbetool) disabled "
1838 "interrupts, re-enabling\n");
1839 i915_driver_irq_preinstall(dev);
1840 i915_driver_irq_postinstall(dev);
1841 }
1842
1843 trace_i915_gem_request_wait_begin(dev, seqno);
1844
1845 dev_priv->mm.waiting_gem_seqno = seqno;
1846 i915_user_irq_get(dev);
1847 if (interruptible)
1848 ret = wait_event_interruptible(dev_priv->irq_queue,
1849 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1850 atomic_read(&dev_priv->mm.wedged));
1851 else
1852 wait_event(dev_priv->irq_queue,
1853 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1854 atomic_read(&dev_priv->mm.wedged));
1855
1856 i915_user_irq_put(dev);
1857 dev_priv->mm.waiting_gem_seqno = 0;
1858
1859 trace_i915_gem_request_wait_end(dev, seqno);
1860 }
1861 if (atomic_read(&dev_priv->mm.wedged))
1862 ret = -EIO;
1863
1864 if (ret && ret != -ERESTARTSYS)
1865 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1866 __func__, ret, seqno, i915_get_gem_seqno(dev));
1867
1868 /* Directly dispatch request retiring. While we have the work queue
1869 * to handle this, the waiter on a request often wants an associated
1870 * buffer to have made it to the inactive list, and we would need
1871 * a separate wait queue to handle that.
1872 */
1873 if (ret == 0)
1874 i915_gem_retire_requests(dev);
1875
1876 return ret;
1877 }
1878
1879 /**
1880 * Waits for a sequence number to be signaled, and cleans up the
1881 * request and object lists appropriately for that event.
1882 */
1883 static int
1884 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1885 {
1886 return i915_do_wait_request(dev, seqno, 1);
1887 }
1888
1889 static void
1890 i915_gem_flush(struct drm_device *dev,
1891 uint32_t invalidate_domains,
1892 uint32_t flush_domains)
1893 {
1894 drm_i915_private_t *dev_priv = dev->dev_private;
1895 uint32_t cmd;
1896 RING_LOCALS;
1897
1898 #if WATCH_EXEC
1899 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1900 invalidate_domains, flush_domains);
1901 #endif
1902 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1903 invalidate_domains, flush_domains);
1904
1905 if (flush_domains & I915_GEM_DOMAIN_CPU)
1906 drm_agp_chipset_flush(dev);
1907
1908 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1909 /*
1910 * read/write caches:
1911 *
1912 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1913 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1914 * also flushed at 2d versus 3d pipeline switches.
1915 *
1916 * read-only caches:
1917 *
1918 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1919 * MI_READ_FLUSH is set, and is always flushed on 965.
1920 *
1921 * I915_GEM_DOMAIN_COMMAND may not exist?
1922 *
1923 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1924 * invalidated when MI_EXE_FLUSH is set.
1925 *
1926 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1927 * invalidated with every MI_FLUSH.
1928 *
1929 * TLBs:
1930 *
1931 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1932 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1933 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1934 * are flushed at any MI_FLUSH.
1935 */
1936
1937 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1938 if ((invalidate_domains|flush_domains) &
1939 I915_GEM_DOMAIN_RENDER)
1940 cmd &= ~MI_NO_WRITE_FLUSH;
1941 if (!IS_I965G(dev)) {
1942 /*
1943 * On the 965, the sampler cache always gets flushed
1944 * and this bit is reserved.
1945 */
1946 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1947 cmd |= MI_READ_FLUSH;
1948 }
1949 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1950 cmd |= MI_EXE_FLUSH;
1951
1952 #if WATCH_EXEC
1953 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1954 #endif
1955 BEGIN_LP_RING(2);
1956 OUT_RING(cmd);
1957 OUT_RING(MI_NOOP);
1958 ADVANCE_LP_RING();
1959 }
1960 }
1961
1962 /**
1963 * Ensures that all rendering to the object has completed and the object is
1964 * safe to unbind from the GTT or access from the CPU.
1965 */
1966 static int
1967 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1968 {
1969 struct drm_device *dev = obj->dev;
1970 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1971 int ret;
1972
1973 /* This function only exists to support waiting for existing rendering,
1974 * not for emitting required flushes.
1975 */
1976 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1977
1978 /* If there is rendering queued on the buffer being evicted, wait for
1979 * it.
1980 */
1981 if (obj_priv->active) {
1982 #if WATCH_BUF
1983 DRM_INFO("%s: object %p wait for seqno %08x\n",
1984 __func__, obj, obj_priv->last_rendering_seqno);
1985 #endif
1986 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1987 if (ret != 0)
1988 return ret;
1989 }
1990
1991 return 0;
1992 }
1993
1994 /**
1995 * Unbinds an object from the GTT aperture.
1996 */
1997 int
1998 i915_gem_object_unbind(struct drm_gem_object *obj)
1999 {
2000 struct drm_device *dev = obj->dev;
2001 drm_i915_private_t *dev_priv = dev->dev_private;
2002 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2003 int ret = 0;
2004
2005 #if WATCH_BUF
2006 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2007 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2008 #endif
2009 if (obj_priv->gtt_space == NULL)
2010 return 0;
2011
2012 if (obj_priv->pin_count != 0) {
2013 DRM_ERROR("Attempting to unbind pinned buffer\n");
2014 return -EINVAL;
2015 }
2016
2017 /* blow away mappings if mapped through GTT */
2018 i915_gem_release_mmap(obj);
2019
2020 /* Move the object to the CPU domain to ensure that
2021 * any possible CPU writes while it's not in the GTT
2022 * are flushed when we go to remap it. This will
2023 * also ensure that all pending GPU writes are finished
2024 * before we unbind.
2025 */
2026 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2027 if (ret) {
2028 if (ret != -ERESTARTSYS)
2029 DRM_ERROR("set_domain failed: %d\n", ret);
2030 return ret;
2031 }
2032
2033 BUG_ON(obj_priv->active);
2034
2035 /* release the fence reg _after_ flushing */
2036 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2037 i915_gem_clear_fence_reg(obj);
2038
2039 if (obj_priv->agp_mem != NULL) {
2040 drm_unbind_agp(obj_priv->agp_mem);
2041 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2042 obj_priv->agp_mem = NULL;
2043 }
2044
2045 i915_gem_object_put_pages(obj);
2046 BUG_ON(obj_priv->pages_refcount);
2047
2048 if (obj_priv->gtt_space) {
2049 atomic_dec(&dev->gtt_count);
2050 atomic_sub(obj->size, &dev->gtt_memory);
2051
2052 drm_mm_put_block(obj_priv->gtt_space);
2053 obj_priv->gtt_space = NULL;
2054 }
2055
2056 /* Remove ourselves from the LRU list if present. */
2057 spin_lock(&dev_priv->mm.active_list_lock);
2058 if (!list_empty(&obj_priv->list))
2059 list_del_init(&obj_priv->list);
2060 spin_unlock(&dev_priv->mm.active_list_lock);
2061
2062 if (i915_gem_object_is_purgeable(obj_priv))
2063 i915_gem_object_truncate(obj);
2064
2065 trace_i915_gem_object_unbind(obj);
2066
2067 return 0;
2068 }
2069
2070 static struct drm_gem_object *
2071 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2072 {
2073 drm_i915_private_t *dev_priv = dev->dev_private;
2074 struct drm_i915_gem_object *obj_priv;
2075 struct drm_gem_object *best = NULL;
2076 struct drm_gem_object *first = NULL;
2077
2078 /* Try to find the smallest clean object */
2079 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2080 struct drm_gem_object *obj = obj_priv->obj;
2081 if (obj->size >= min_size) {
2082 if ((!obj_priv->dirty ||
2083 i915_gem_object_is_purgeable(obj_priv)) &&
2084 (!best || obj->size < best->size)) {
2085 best = obj;
2086 if (best->size == min_size)
2087 return best;
2088 }
2089 if (!first)
2090 first = obj;
2091 }
2092 }
2093
2094 return best ? best : first;
2095 }
2096
2097 static int
2098 i915_gpu_idle(struct drm_device *dev)
2099 {
2100 drm_i915_private_t *dev_priv = dev->dev_private;
2101 bool lists_empty;
2102 uint32_t seqno;
2103
2104 spin_lock(&dev_priv->mm.active_list_lock);
2105 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
2106 list_empty(&dev_priv->mm.active_list);
2107 spin_unlock(&dev_priv->mm.active_list_lock);
2108
2109 if (lists_empty)
2110 return 0;
2111
2112 /* Flush everything onto the inactive list. */
2113 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2114 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2115 if (seqno == 0)
2116 return -ENOMEM;
2117
2118 return i915_wait_request(dev, seqno);
2119 }
2120
2121 static int
2122 i915_gem_evict_everything(struct drm_device *dev)
2123 {
2124 drm_i915_private_t *dev_priv = dev->dev_private;
2125 int ret;
2126 bool lists_empty;
2127
2128 spin_lock(&dev_priv->mm.active_list_lock);
2129 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2130 list_empty(&dev_priv->mm.flushing_list) &&
2131 list_empty(&dev_priv->mm.active_list));
2132 spin_unlock(&dev_priv->mm.active_list_lock);
2133
2134 if (lists_empty)
2135 return -ENOSPC;
2136
2137 /* Flush everything (on to the inactive lists) and evict */
2138 ret = i915_gpu_idle(dev);
2139 if (ret)
2140 return ret;
2141
2142 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2143
2144 ret = i915_gem_evict_from_inactive_list(dev);
2145 if (ret)
2146 return ret;
2147
2148 spin_lock(&dev_priv->mm.active_list_lock);
2149 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2150 list_empty(&dev_priv->mm.flushing_list) &&
2151 list_empty(&dev_priv->mm.active_list));
2152 spin_unlock(&dev_priv->mm.active_list_lock);
2153 BUG_ON(!lists_empty);
2154
2155 return 0;
2156 }
2157
2158 static int
2159 i915_gem_evict_something(struct drm_device *dev, int min_size)
2160 {
2161 drm_i915_private_t *dev_priv = dev->dev_private;
2162 struct drm_gem_object *obj;
2163 int ret;
2164
2165 for (;;) {
2166 i915_gem_retire_requests(dev);
2167
2168 /* If there's an inactive buffer available now, grab it
2169 * and be done.
2170 */
2171 obj = i915_gem_find_inactive_object(dev, min_size);
2172 if (obj) {
2173 struct drm_i915_gem_object *obj_priv;
2174
2175 #if WATCH_LRU
2176 DRM_INFO("%s: evicting %p\n", __func__, obj);
2177 #endif
2178 obj_priv = obj->driver_private;
2179 BUG_ON(obj_priv->pin_count != 0);
2180 BUG_ON(obj_priv->active);
2181
2182 /* Wait on the rendering and unbind the buffer. */
2183 return i915_gem_object_unbind(obj);
2184 }
2185
2186 /* If we didn't get anything, but the ring is still processing
2187 * things, wait for the next to finish and hopefully leave us
2188 * a buffer to evict.
2189 */
2190 if (!list_empty(&dev_priv->mm.request_list)) {
2191 struct drm_i915_gem_request *request;
2192
2193 request = list_first_entry(&dev_priv->mm.request_list,
2194 struct drm_i915_gem_request,
2195 list);
2196
2197 ret = i915_wait_request(dev, request->seqno);
2198 if (ret)
2199 return ret;
2200
2201 continue;
2202 }
2203
2204 /* If we didn't have anything on the request list but there
2205 * are buffers awaiting a flush, emit one and try again.
2206 * When we wait on it, those buffers waiting for that flush
2207 * will get moved to inactive.
2208 */
2209 if (!list_empty(&dev_priv->mm.flushing_list)) {
2210 struct drm_i915_gem_object *obj_priv;
2211
2212 /* Find an object that we can immediately reuse */
2213 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2214 obj = obj_priv->obj;
2215 if (obj->size >= min_size)
2216 break;
2217
2218 obj = NULL;
2219 }
2220
2221 if (obj != NULL) {
2222 uint32_t seqno;
2223
2224 i915_gem_flush(dev,
2225 obj->write_domain,
2226 obj->write_domain);
2227 seqno = i915_add_request(dev, NULL, obj->write_domain);
2228 if (seqno == 0)
2229 return -ENOMEM;
2230
2231 ret = i915_wait_request(dev, seqno);
2232 if (ret)
2233 return ret;
2234
2235 continue;
2236 }
2237 }
2238
2239 /* If we didn't do any of the above, there's no single buffer
2240 * large enough to swap out for the new one, so just evict
2241 * everything and start again. (This should be rare.)
2242 */
2243 if (!list_empty (&dev_priv->mm.inactive_list))
2244 return i915_gem_evict_from_inactive_list(dev);
2245 else
2246 return i915_gem_evict_everything(dev);
2247 }
2248 }
2249
2250 int
2251 i915_gem_object_get_pages(struct drm_gem_object *obj,
2252 gfp_t gfpmask)
2253 {
2254 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2255 int page_count, i;
2256 struct address_space *mapping;
2257 struct inode *inode;
2258 struct page *page;
2259 int ret;
2260
2261 if (obj_priv->pages_refcount++ != 0)
2262 return 0;
2263
2264 /* Get the list of pages out of our struct file. They'll be pinned
2265 * at this point until we release them.
2266 */
2267 page_count = obj->size / PAGE_SIZE;
2268 BUG_ON(obj_priv->pages != NULL);
2269 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2270 if (obj_priv->pages == NULL) {
2271 obj_priv->pages_refcount--;
2272 return -ENOMEM;
2273 }
2274
2275 inode = obj->filp->f_path.dentry->d_inode;
2276 mapping = inode->i_mapping;
2277 for (i = 0; i < page_count; i++) {
2278 page = read_cache_page_gfp(mapping, i,
2279 mapping_gfp_mask (mapping) |
2280 __GFP_COLD |
2281 gfpmask);
2282 if (IS_ERR(page)) {
2283 ret = PTR_ERR(page);
2284 i915_gem_object_put_pages(obj);
2285 return ret;
2286 }
2287 obj_priv->pages[i] = page;
2288 }
2289
2290 if (obj_priv->tiling_mode != I915_TILING_NONE)
2291 i915_gem_object_do_bit_17_swizzle(obj);
2292
2293 return 0;
2294 }
2295
2296 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2297 {
2298 struct drm_gem_object *obj = reg->obj;
2299 struct drm_device *dev = obj->dev;
2300 drm_i915_private_t *dev_priv = dev->dev_private;
2301 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2302 int regnum = obj_priv->fence_reg;
2303 uint64_t val;
2304
2305 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2306 0xfffff000) << 32;
2307 val |= obj_priv->gtt_offset & 0xfffff000;
2308 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2309 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2310
2311 if (obj_priv->tiling_mode == I915_TILING_Y)
2312 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2313 val |= I965_FENCE_REG_VALID;
2314
2315 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2316 }
2317
2318 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2319 {
2320 struct drm_gem_object *obj = reg->obj;
2321 struct drm_device *dev = obj->dev;
2322 drm_i915_private_t *dev_priv = dev->dev_private;
2323 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2324 int regnum = obj_priv->fence_reg;
2325 uint64_t val;
2326
2327 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2328 0xfffff000) << 32;
2329 val |= obj_priv->gtt_offset & 0xfffff000;
2330 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2331 if (obj_priv->tiling_mode == I915_TILING_Y)
2332 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2333 val |= I965_FENCE_REG_VALID;
2334
2335 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2336 }
2337
2338 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2339 {
2340 struct drm_gem_object *obj = reg->obj;
2341 struct drm_device *dev = obj->dev;
2342 drm_i915_private_t *dev_priv = dev->dev_private;
2343 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2344 int regnum = obj_priv->fence_reg;
2345 int tile_width;
2346 uint32_t fence_reg, val;
2347 uint32_t pitch_val;
2348
2349 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2350 (obj_priv->gtt_offset & (obj->size - 1))) {
2351 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2352 __func__, obj_priv->gtt_offset, obj->size);
2353 return;
2354 }
2355
2356 if (obj_priv->tiling_mode == I915_TILING_Y &&
2357 HAS_128_BYTE_Y_TILING(dev))
2358 tile_width = 128;
2359 else
2360 tile_width = 512;
2361
2362 /* Note: pitch better be a power of two tile widths */
2363 pitch_val = obj_priv->stride / tile_width;
2364 pitch_val = ffs(pitch_val) - 1;
2365
2366 val = obj_priv->gtt_offset;
2367 if (obj_priv->tiling_mode == I915_TILING_Y)
2368 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2369 val |= I915_FENCE_SIZE_BITS(obj->size);
2370 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2371 val |= I830_FENCE_REG_VALID;
2372
2373 if (regnum < 8)
2374 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2375 else
2376 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2377 I915_WRITE(fence_reg, val);
2378 }
2379
2380 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2381 {
2382 struct drm_gem_object *obj = reg->obj;
2383 struct drm_device *dev = obj->dev;
2384 drm_i915_private_t *dev_priv = dev->dev_private;
2385 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2386 int regnum = obj_priv->fence_reg;
2387 uint32_t val;
2388 uint32_t pitch_val;
2389 uint32_t fence_size_bits;
2390
2391 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2392 (obj_priv->gtt_offset & (obj->size - 1))) {
2393 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2394 __func__, obj_priv->gtt_offset);
2395 return;
2396 }
2397
2398 pitch_val = obj_priv->stride / 128;
2399 pitch_val = ffs(pitch_val) - 1;
2400 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2401
2402 val = obj_priv->gtt_offset;
2403 if (obj_priv->tiling_mode == I915_TILING_Y)
2404 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2405 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2406 WARN_ON(fence_size_bits & ~0x00000f00);
2407 val |= fence_size_bits;
2408 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2409 val |= I830_FENCE_REG_VALID;
2410
2411 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2412 }
2413
2414 static int i915_find_fence_reg(struct drm_device *dev)
2415 {
2416 struct drm_i915_fence_reg *reg = NULL;
2417 struct drm_i915_gem_object *obj_priv = NULL;
2418 struct drm_i915_private *dev_priv = dev->dev_private;
2419 struct drm_gem_object *obj = NULL;
2420 int i, avail, ret;
2421
2422 /* First try to find a free reg */
2423 avail = 0;
2424 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2425 reg = &dev_priv->fence_regs[i];
2426 if (!reg->obj)
2427 return i;
2428
2429 obj_priv = reg->obj->driver_private;
2430 if (!obj_priv->pin_count)
2431 avail++;
2432 }
2433
2434 if (avail == 0)
2435 return -ENOSPC;
2436
2437 /* None available, try to steal one or wait for a user to finish */
2438 i = I915_FENCE_REG_NONE;
2439 list_for_each_entry(obj_priv, &dev_priv->mm.fence_list,
2440 fence_list) {
2441 obj = obj_priv->obj;
2442
2443 if (obj_priv->pin_count)
2444 continue;
2445
2446 /* found one! */
2447 i = obj_priv->fence_reg;
2448 break;
2449 }
2450
2451 BUG_ON(i == I915_FENCE_REG_NONE);
2452
2453 /* We only have a reference on obj from the active list. put_fence_reg
2454 * might drop that one, causing a use-after-free in it. So hold a
2455 * private reference to obj like the other callers of put_fence_reg
2456 * (set_tiling ioctl) do. */
2457 drm_gem_object_reference(obj);
2458 ret = i915_gem_object_put_fence_reg(obj);
2459 drm_gem_object_unreference(obj);
2460 if (ret != 0)
2461 return ret;
2462
2463 return i;
2464 }
2465
2466 /**
2467 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2468 * @obj: object to map through a fence reg
2469 *
2470 * When mapping objects through the GTT, userspace wants to be able to write
2471 * to them without having to worry about swizzling if the object is tiled.
2472 *
2473 * This function walks the fence regs looking for a free one for @obj,
2474 * stealing one if it can't find any.
2475 *
2476 * It then sets up the reg based on the object's properties: address, pitch
2477 * and tiling format.
2478 */
2479 int
2480 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2481 {
2482 struct drm_device *dev = obj->dev;
2483 struct drm_i915_private *dev_priv = dev->dev_private;
2484 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2485 struct drm_i915_fence_reg *reg = NULL;
2486 int ret;
2487
2488 /* Just update our place in the LRU if our fence is getting used. */
2489 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2490 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2491 return 0;
2492 }
2493
2494 switch (obj_priv->tiling_mode) {
2495 case I915_TILING_NONE:
2496 WARN(1, "allocating a fence for non-tiled object?\n");
2497 break;
2498 case I915_TILING_X:
2499 if (!obj_priv->stride)
2500 return -EINVAL;
2501 WARN((obj_priv->stride & (512 - 1)),
2502 "object 0x%08x is X tiled but has non-512B pitch\n",
2503 obj_priv->gtt_offset);
2504 break;
2505 case I915_TILING_Y:
2506 if (!obj_priv->stride)
2507 return -EINVAL;
2508 WARN((obj_priv->stride & (128 - 1)),
2509 "object 0x%08x is Y tiled but has non-128B pitch\n",
2510 obj_priv->gtt_offset);
2511 break;
2512 }
2513
2514 ret = i915_find_fence_reg(dev);
2515 if (ret < 0)
2516 return ret;
2517
2518 obj_priv->fence_reg = ret;
2519 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2520 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2521
2522 reg->obj = obj;
2523
2524 if (IS_GEN6(dev))
2525 sandybridge_write_fence_reg(reg);
2526 else if (IS_I965G(dev))
2527 i965_write_fence_reg(reg);
2528 else if (IS_I9XX(dev))
2529 i915_write_fence_reg(reg);
2530 else
2531 i830_write_fence_reg(reg);
2532
2533 trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2534 obj_priv->tiling_mode);
2535
2536 return 0;
2537 }
2538
2539 /**
2540 * i915_gem_clear_fence_reg - clear out fence register info
2541 * @obj: object to clear
2542 *
2543 * Zeroes out the fence register itself and clears out the associated
2544 * data structures in dev_priv and obj_priv.
2545 */
2546 static void
2547 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2548 {
2549 struct drm_device *dev = obj->dev;
2550 drm_i915_private_t *dev_priv = dev->dev_private;
2551 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2552
2553 if (IS_GEN6(dev)) {
2554 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2555 (obj_priv->fence_reg * 8), 0);
2556 } else if (IS_I965G(dev)) {
2557 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2558 } else {
2559 uint32_t fence_reg;
2560
2561 if (obj_priv->fence_reg < 8)
2562 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2563 else
2564 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2565 8) * 4;
2566
2567 I915_WRITE(fence_reg, 0);
2568 }
2569
2570 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2571 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2572 list_del_init(&obj_priv->fence_list);
2573 }
2574
2575 /**
2576 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2577 * to the buffer to finish, and then resets the fence register.
2578 * @obj: tiled object holding a fence register.
2579 *
2580 * Zeroes out the fence register itself and clears out the associated
2581 * data structures in dev_priv and obj_priv.
2582 */
2583 int
2584 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2585 {
2586 struct drm_device *dev = obj->dev;
2587 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2588
2589 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2590 return 0;
2591
2592 /* If we've changed tiling, GTT-mappings of the object
2593 * need to re-fault to ensure that the correct fence register
2594 * setup is in place.
2595 */
2596 i915_gem_release_mmap(obj);
2597
2598 /* On the i915, GPU access to tiled buffers is via a fence,
2599 * therefore we must wait for any outstanding access to complete
2600 * before clearing the fence.
2601 */
2602 if (!IS_I965G(dev)) {
2603 int ret;
2604
2605 i915_gem_object_flush_gpu_write_domain(obj);
2606 ret = i915_gem_object_wait_rendering(obj);
2607 if (ret != 0)
2608 return ret;
2609 }
2610
2611 i915_gem_object_flush_gtt_write_domain(obj);
2612 i915_gem_clear_fence_reg (obj);
2613
2614 return 0;
2615 }
2616
2617 /**
2618 * Finds free space in the GTT aperture and binds the object there.
2619 */
2620 static int
2621 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2622 {
2623 struct drm_device *dev = obj->dev;
2624 drm_i915_private_t *dev_priv = dev->dev_private;
2625 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2626 struct drm_mm_node *free_space;
2627 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2628 int ret;
2629
2630 if (obj_priv->madv != I915_MADV_WILLNEED) {
2631 DRM_ERROR("Attempting to bind a purgeable object\n");
2632 return -EINVAL;
2633 }
2634
2635 if (alignment == 0)
2636 alignment = i915_gem_get_gtt_alignment(obj);
2637 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2638 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2639 return -EINVAL;
2640 }
2641
2642 search_free:
2643 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2644 obj->size, alignment, 0);
2645 if (free_space != NULL) {
2646 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2647 alignment);
2648 if (obj_priv->gtt_space != NULL) {
2649 obj_priv->gtt_space->private = obj;
2650 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2651 }
2652 }
2653 if (obj_priv->gtt_space == NULL) {
2654 /* If the gtt is empty and we're still having trouble
2655 * fitting our object in, we're out of memory.
2656 */
2657 #if WATCH_LRU
2658 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2659 #endif
2660 ret = i915_gem_evict_something(dev, obj->size);
2661 if (ret)
2662 return ret;
2663
2664 goto search_free;
2665 }
2666
2667 #if WATCH_BUF
2668 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2669 obj->size, obj_priv->gtt_offset);
2670 #endif
2671 ret = i915_gem_object_get_pages(obj, gfpmask);
2672 if (ret) {
2673 drm_mm_put_block(obj_priv->gtt_space);
2674 obj_priv->gtt_space = NULL;
2675
2676 if (ret == -ENOMEM) {
2677 /* first try to clear up some space from the GTT */
2678 ret = i915_gem_evict_something(dev, obj->size);
2679 if (ret) {
2680 /* now try to shrink everyone else */
2681 if (gfpmask) {
2682 gfpmask = 0;
2683 goto search_free;
2684 }
2685
2686 return ret;
2687 }
2688
2689 goto search_free;
2690 }
2691
2692 return ret;
2693 }
2694
2695 /* Create an AGP memory structure pointing at our pages, and bind it
2696 * into the GTT.
2697 */
2698 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2699 obj_priv->pages,
2700 obj->size >> PAGE_SHIFT,
2701 obj_priv->gtt_offset,
2702 obj_priv->agp_type);
2703 if (obj_priv->agp_mem == NULL) {
2704 i915_gem_object_put_pages(obj);
2705 drm_mm_put_block(obj_priv->gtt_space);
2706 obj_priv->gtt_space = NULL;
2707
2708 ret = i915_gem_evict_something(dev, obj->size);
2709 if (ret)
2710 return ret;
2711
2712 goto search_free;
2713 }
2714 atomic_inc(&dev->gtt_count);
2715 atomic_add(obj->size, &dev->gtt_memory);
2716
2717 /* Assert that the object is not currently in any GPU domain. As it
2718 * wasn't in the GTT, there shouldn't be any way it could have been in
2719 * a GPU cache
2720 */
2721 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2722 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2723
2724 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2725
2726 return 0;
2727 }
2728
2729 void
2730 i915_gem_clflush_object(struct drm_gem_object *obj)
2731 {
2732 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2733
2734 /* If we don't have a page list set up, then we're not pinned
2735 * to GPU, and we can ignore the cache flush because it'll happen
2736 * again at bind time.
2737 */
2738 if (obj_priv->pages == NULL)
2739 return;
2740
2741 trace_i915_gem_object_clflush(obj);
2742
2743 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2744 }
2745
2746 /** Flushes any GPU write domain for the object if it's dirty. */
2747 static void
2748 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2749 {
2750 struct drm_device *dev = obj->dev;
2751 uint32_t old_write_domain;
2752
2753 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2754 return;
2755
2756 /* Queue the GPU write cache flushing we need. */
2757 old_write_domain = obj->write_domain;
2758 i915_gem_flush(dev, 0, obj->write_domain);
2759 (void) i915_add_request(dev, NULL, obj->write_domain);
2760 BUG_ON(obj->write_domain);
2761
2762 trace_i915_gem_object_change_domain(obj,
2763 obj->read_domains,
2764 old_write_domain);
2765 }
2766
2767 /** Flushes the GTT write domain for the object if it's dirty. */
2768 static void
2769 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2770 {
2771 uint32_t old_write_domain;
2772
2773 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2774 return;
2775
2776 /* No actual flushing is required for the GTT write domain. Writes
2777 * to it immediately go to main memory as far as we know, so there's
2778 * no chipset flush. It also doesn't land in render cache.
2779 */
2780 old_write_domain = obj->write_domain;
2781 obj->write_domain = 0;
2782
2783 trace_i915_gem_object_change_domain(obj,
2784 obj->read_domains,
2785 old_write_domain);
2786 }
2787
2788 /** Flushes the CPU write domain for the object if it's dirty. */
2789 static void
2790 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2791 {
2792 struct drm_device *dev = obj->dev;
2793 uint32_t old_write_domain;
2794
2795 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2796 return;
2797
2798 i915_gem_clflush_object(obj);
2799 drm_agp_chipset_flush(dev);
2800 old_write_domain = obj->write_domain;
2801 obj->write_domain = 0;
2802
2803 trace_i915_gem_object_change_domain(obj,
2804 obj->read_domains,
2805 old_write_domain);
2806 }
2807
2808 void
2809 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2810 {
2811 switch (obj->write_domain) {
2812 case I915_GEM_DOMAIN_GTT:
2813 i915_gem_object_flush_gtt_write_domain(obj);
2814 break;
2815 case I915_GEM_DOMAIN_CPU:
2816 i915_gem_object_flush_cpu_write_domain(obj);
2817 break;
2818 default:
2819 i915_gem_object_flush_gpu_write_domain(obj);
2820 break;
2821 }
2822 }
2823
2824 /**
2825 * Moves a single object to the GTT read, and possibly write domain.
2826 *
2827 * This function returns when the move is complete, including waiting on
2828 * flushes to occur.
2829 */
2830 int
2831 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2832 {
2833 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2834 uint32_t old_write_domain, old_read_domains;
2835 int ret;
2836
2837 /* Not valid to be called on unbound objects. */
2838 if (obj_priv->gtt_space == NULL)
2839 return -EINVAL;
2840
2841 i915_gem_object_flush_gpu_write_domain(obj);
2842 /* Wait on any GPU rendering and flushing to occur. */
2843 ret = i915_gem_object_wait_rendering(obj);
2844 if (ret != 0)
2845 return ret;
2846
2847 old_write_domain = obj->write_domain;
2848 old_read_domains = obj->read_domains;
2849
2850 /* If we're writing through the GTT domain, then CPU and GPU caches
2851 * will need to be invalidated at next use.
2852 */
2853 if (write)
2854 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2855
2856 i915_gem_object_flush_cpu_write_domain(obj);
2857
2858 /* It should now be out of any other write domains, and we can update
2859 * the domain values for our changes.
2860 */
2861 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2862 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2863 if (write) {
2864 obj->write_domain = I915_GEM_DOMAIN_GTT;
2865 obj_priv->dirty = 1;
2866 }
2867
2868 trace_i915_gem_object_change_domain(obj,
2869 old_read_domains,
2870 old_write_domain);
2871
2872 return 0;
2873 }
2874
2875 /*
2876 * Prepare buffer for display plane. Use uninterruptible for possible flush
2877 * wait, as in modesetting process we're not supposed to be interrupted.
2878 */
2879 int
2880 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2881 {
2882 struct drm_device *dev = obj->dev;
2883 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2884 uint32_t old_write_domain, old_read_domains;
2885 int ret;
2886
2887 /* Not valid to be called on unbound objects. */
2888 if (obj_priv->gtt_space == NULL)
2889 return -EINVAL;
2890
2891 i915_gem_object_flush_gpu_write_domain(obj);
2892
2893 /* Wait on any GPU rendering and flushing to occur. */
2894 if (obj_priv->active) {
2895 #if WATCH_BUF
2896 DRM_INFO("%s: object %p wait for seqno %08x\n",
2897 __func__, obj, obj_priv->last_rendering_seqno);
2898 #endif
2899 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2900 if (ret != 0)
2901 return ret;
2902 }
2903
2904 old_write_domain = obj->write_domain;
2905 old_read_domains = obj->read_domains;
2906
2907 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2908
2909 i915_gem_object_flush_cpu_write_domain(obj);
2910
2911 /* It should now be out of any other write domains, and we can update
2912 * the domain values for our changes.
2913 */
2914 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2915 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2916 obj->write_domain = I915_GEM_DOMAIN_GTT;
2917 obj_priv->dirty = 1;
2918
2919 trace_i915_gem_object_change_domain(obj,
2920 old_read_domains,
2921 old_write_domain);
2922
2923 return 0;
2924 }
2925
2926 /**
2927 * Moves a single object to the CPU read, and possibly write domain.
2928 *
2929 * This function returns when the move is complete, including waiting on
2930 * flushes to occur.
2931 */
2932 static int
2933 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2934 {
2935 uint32_t old_write_domain, old_read_domains;
2936 int ret;
2937
2938 i915_gem_object_flush_gpu_write_domain(obj);
2939 /* Wait on any GPU rendering and flushing to occur. */
2940 ret = i915_gem_object_wait_rendering(obj);
2941 if (ret != 0)
2942 return ret;
2943
2944 i915_gem_object_flush_gtt_write_domain(obj);
2945
2946 /* If we have a partially-valid cache of the object in the CPU,
2947 * finish invalidating it and free the per-page flags.
2948 */
2949 i915_gem_object_set_to_full_cpu_read_domain(obj);
2950
2951 old_write_domain = obj->write_domain;
2952 old_read_domains = obj->read_domains;
2953
2954 /* Flush the CPU cache if it's still invalid. */
2955 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2956 i915_gem_clflush_object(obj);
2957
2958 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2959 }
2960
2961 /* It should now be out of any other write domains, and we can update
2962 * the domain values for our changes.
2963 */
2964 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2965
2966 /* If we're writing through the CPU, then the GPU read domains will
2967 * need to be invalidated at next use.
2968 */
2969 if (write) {
2970 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2971 obj->write_domain = I915_GEM_DOMAIN_CPU;
2972 }
2973
2974 trace_i915_gem_object_change_domain(obj,
2975 old_read_domains,
2976 old_write_domain);
2977
2978 return 0;
2979 }
2980
2981 /*
2982 * Set the next domain for the specified object. This
2983 * may not actually perform the necessary flushing/invaliding though,
2984 * as that may want to be batched with other set_domain operations
2985 *
2986 * This is (we hope) the only really tricky part of gem. The goal
2987 * is fairly simple -- track which caches hold bits of the object
2988 * and make sure they remain coherent. A few concrete examples may
2989 * help to explain how it works. For shorthand, we use the notation
2990 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2991 * a pair of read and write domain masks.
2992 *
2993 * Case 1: the batch buffer
2994 *
2995 * 1. Allocated
2996 * 2. Written by CPU
2997 * 3. Mapped to GTT
2998 * 4. Read by GPU
2999 * 5. Unmapped from GTT
3000 * 6. Freed
3001 *
3002 * Let's take these a step at a time
3003 *
3004 * 1. Allocated
3005 * Pages allocated from the kernel may still have
3006 * cache contents, so we set them to (CPU, CPU) always.
3007 * 2. Written by CPU (using pwrite)
3008 * The pwrite function calls set_domain (CPU, CPU) and
3009 * this function does nothing (as nothing changes)
3010 * 3. Mapped by GTT
3011 * This function asserts that the object is not
3012 * currently in any GPU-based read or write domains
3013 * 4. Read by GPU
3014 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
3015 * As write_domain is zero, this function adds in the
3016 * current read domains (CPU+COMMAND, 0).
3017 * flush_domains is set to CPU.
3018 * invalidate_domains is set to COMMAND
3019 * clflush is run to get data out of the CPU caches
3020 * then i915_dev_set_domain calls i915_gem_flush to
3021 * emit an MI_FLUSH and drm_agp_chipset_flush
3022 * 5. Unmapped from GTT
3023 * i915_gem_object_unbind calls set_domain (CPU, CPU)
3024 * flush_domains and invalidate_domains end up both zero
3025 * so no flushing/invalidating happens
3026 * 6. Freed
3027 * yay, done
3028 *
3029 * Case 2: The shared render buffer
3030 *
3031 * 1. Allocated
3032 * 2. Mapped to GTT
3033 * 3. Read/written by GPU
3034 * 4. set_domain to (CPU,CPU)
3035 * 5. Read/written by CPU
3036 * 6. Read/written by GPU
3037 *
3038 * 1. Allocated
3039 * Same as last example, (CPU, CPU)
3040 * 2. Mapped to GTT
3041 * Nothing changes (assertions find that it is not in the GPU)
3042 * 3. Read/written by GPU
3043 * execbuffer calls set_domain (RENDER, RENDER)
3044 * flush_domains gets CPU
3045 * invalidate_domains gets GPU
3046 * clflush (obj)
3047 * MI_FLUSH and drm_agp_chipset_flush
3048 * 4. set_domain (CPU, CPU)
3049 * flush_domains gets GPU
3050 * invalidate_domains gets CPU
3051 * wait_rendering (obj) to make sure all drawing is complete.
3052 * This will include an MI_FLUSH to get the data from GPU
3053 * to memory
3054 * clflush (obj) to invalidate the CPU cache
3055 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3056 * 5. Read/written by CPU
3057 * cache lines are loaded and dirtied
3058 * 6. Read written by GPU
3059 * Same as last GPU access
3060 *
3061 * Case 3: The constant buffer
3062 *
3063 * 1. Allocated
3064 * 2. Written by CPU
3065 * 3. Read by GPU
3066 * 4. Updated (written) by CPU again
3067 * 5. Read by GPU
3068 *
3069 * 1. Allocated
3070 * (CPU, CPU)
3071 * 2. Written by CPU
3072 * (CPU, CPU)
3073 * 3. Read by GPU
3074 * (CPU+RENDER, 0)
3075 * flush_domains = CPU
3076 * invalidate_domains = RENDER
3077 * clflush (obj)
3078 * MI_FLUSH
3079 * drm_agp_chipset_flush
3080 * 4. Updated (written) by CPU again
3081 * (CPU, CPU)
3082 * flush_domains = 0 (no previous write domain)
3083 * invalidate_domains = 0 (no new read domains)
3084 * 5. Read by GPU
3085 * (CPU+RENDER, 0)
3086 * flush_domains = CPU
3087 * invalidate_domains = RENDER
3088 * clflush (obj)
3089 * MI_FLUSH
3090 * drm_agp_chipset_flush
3091 */
3092 static void
3093 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3094 {
3095 struct drm_device *dev = obj->dev;
3096 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3097 uint32_t invalidate_domains = 0;
3098 uint32_t flush_domains = 0;
3099 uint32_t old_read_domains;
3100
3101 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3102 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3103
3104 intel_mark_busy(dev, obj);
3105
3106 #if WATCH_BUF
3107 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3108 __func__, obj,
3109 obj->read_domains, obj->pending_read_domains,
3110 obj->write_domain, obj->pending_write_domain);
3111 #endif
3112 /*
3113 * If the object isn't moving to a new write domain,
3114 * let the object stay in multiple read domains
3115 */
3116 if (obj->pending_write_domain == 0)
3117 obj->pending_read_domains |= obj->read_domains;
3118 else
3119 obj_priv->dirty = 1;
3120
3121 /*
3122 * Flush the current write domain if
3123 * the new read domains don't match. Invalidate
3124 * any read domains which differ from the old
3125 * write domain
3126 */
3127 if (obj->write_domain &&
3128 obj->write_domain != obj->pending_read_domains) {
3129 flush_domains |= obj->write_domain;
3130 invalidate_domains |=
3131 obj->pending_read_domains & ~obj->write_domain;
3132 }
3133 /*
3134 * Invalidate any read caches which may have
3135 * stale data. That is, any new read domains.
3136 */
3137 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3138 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3139 #if WATCH_BUF
3140 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3141 __func__, flush_domains, invalidate_domains);
3142 #endif
3143 i915_gem_clflush_object(obj);
3144 }
3145
3146 old_read_domains = obj->read_domains;
3147
3148 /* The actual obj->write_domain will be updated with
3149 * pending_write_domain after we emit the accumulated flush for all
3150 * of our domain changes in execbuffers (which clears objects'
3151 * write_domains). So if we have a current write domain that we
3152 * aren't changing, set pending_write_domain to that.
3153 */
3154 if (flush_domains == 0 && obj->pending_write_domain == 0)
3155 obj->pending_write_domain = obj->write_domain;
3156 obj->read_domains = obj->pending_read_domains;
3157
3158 dev->invalidate_domains |= invalidate_domains;
3159 dev->flush_domains |= flush_domains;
3160 #if WATCH_BUF
3161 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3162 __func__,
3163 obj->read_domains, obj->write_domain,
3164 dev->invalidate_domains, dev->flush_domains);
3165 #endif
3166
3167 trace_i915_gem_object_change_domain(obj,
3168 old_read_domains,
3169 obj->write_domain);
3170 }
3171
3172 /**
3173 * Moves the object from a partially CPU read to a full one.
3174 *
3175 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3176 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3177 */
3178 static void
3179 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3180 {
3181 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3182
3183 if (!obj_priv->page_cpu_valid)
3184 return;
3185
3186 /* If we're partially in the CPU read domain, finish moving it in.
3187 */
3188 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3189 int i;
3190
3191 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3192 if (obj_priv->page_cpu_valid[i])
3193 continue;
3194 drm_clflush_pages(obj_priv->pages + i, 1);
3195 }
3196 }
3197
3198 /* Free the page_cpu_valid mappings which are now stale, whether
3199 * or not we've got I915_GEM_DOMAIN_CPU.
3200 */
3201 kfree(obj_priv->page_cpu_valid);
3202 obj_priv->page_cpu_valid = NULL;
3203 }
3204
3205 /**
3206 * Set the CPU read domain on a range of the object.
3207 *
3208 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3209 * not entirely valid. The page_cpu_valid member of the object flags which
3210 * pages have been flushed, and will be respected by
3211 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3212 * of the whole object.
3213 *
3214 * This function returns when the move is complete, including waiting on
3215 * flushes to occur.
3216 */
3217 static int
3218 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3219 uint64_t offset, uint64_t size)
3220 {
3221 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3222 uint32_t old_read_domains;
3223 int i, ret;
3224
3225 if (offset == 0 && size == obj->size)
3226 return i915_gem_object_set_to_cpu_domain(obj, 0);
3227
3228 i915_gem_object_flush_gpu_write_domain(obj);
3229 /* Wait on any GPU rendering and flushing to occur. */
3230 ret = i915_gem_object_wait_rendering(obj);
3231 if (ret != 0)
3232 return ret;
3233 i915_gem_object_flush_gtt_write_domain(obj);
3234
3235 /* If we're already fully in the CPU read domain, we're done. */
3236 if (obj_priv->page_cpu_valid == NULL &&
3237 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3238 return 0;
3239
3240 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3241 * newly adding I915_GEM_DOMAIN_CPU
3242 */
3243 if (obj_priv->page_cpu_valid == NULL) {
3244 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3245 GFP_KERNEL);
3246 if (obj_priv->page_cpu_valid == NULL)
3247 return -ENOMEM;
3248 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3249 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3250
3251 /* Flush the cache on any pages that are still invalid from the CPU's
3252 * perspective.
3253 */
3254 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3255 i++) {
3256 if (obj_priv->page_cpu_valid[i])
3257 continue;
3258
3259 drm_clflush_pages(obj_priv->pages + i, 1);
3260
3261 obj_priv->page_cpu_valid[i] = 1;
3262 }
3263
3264 /* It should now be out of any other write domains, and we can update
3265 * the domain values for our changes.
3266 */
3267 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3268
3269 old_read_domains = obj->read_domains;
3270 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3271
3272 trace_i915_gem_object_change_domain(obj,
3273 old_read_domains,
3274 obj->write_domain);
3275
3276 return 0;
3277 }
3278
3279 /**
3280 * Pin an object to the GTT and evaluate the relocations landing in it.
3281 */
3282 static int
3283 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3284 struct drm_file *file_priv,
3285 struct drm_i915_gem_exec_object2 *entry,
3286 struct drm_i915_gem_relocation_entry *relocs)
3287 {
3288 struct drm_device *dev = obj->dev;
3289 drm_i915_private_t *dev_priv = dev->dev_private;
3290 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3291 int i, ret;
3292 void __iomem *reloc_page;
3293 bool need_fence;
3294
3295 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3296 obj_priv->tiling_mode != I915_TILING_NONE;
3297
3298 /* Check fence reg constraints and rebind if necessary */
3299 if (need_fence && !i915_gem_object_fence_offset_ok(obj,
3300 obj_priv->tiling_mode))
3301 i915_gem_object_unbind(obj);
3302
3303 /* Choose the GTT offset for our buffer and put it there. */
3304 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3305 if (ret)
3306 return ret;
3307
3308 /*
3309 * Pre-965 chips need a fence register set up in order to
3310 * properly handle blits to/from tiled surfaces.
3311 */
3312 if (need_fence) {
3313 ret = i915_gem_object_get_fence_reg(obj);
3314 if (ret != 0) {
3315 if (ret != -EBUSY && ret != -ERESTARTSYS)
3316 DRM_ERROR("Failure to install fence: %d\n",
3317 ret);
3318 i915_gem_object_unpin(obj);
3319 return ret;
3320 }
3321 }
3322
3323 entry->offset = obj_priv->gtt_offset;
3324
3325 /* Apply the relocations, using the GTT aperture to avoid cache
3326 * flushing requirements.
3327 */
3328 for (i = 0; i < entry->relocation_count; i++) {
3329 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3330 struct drm_gem_object *target_obj;
3331 struct drm_i915_gem_object *target_obj_priv;
3332 uint32_t reloc_val, reloc_offset;
3333 uint32_t __iomem *reloc_entry;
3334
3335 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3336 reloc->target_handle);
3337 if (target_obj == NULL) {
3338 i915_gem_object_unpin(obj);
3339 return -EBADF;
3340 }
3341 target_obj_priv = target_obj->driver_private;
3342
3343 #if WATCH_RELOC
3344 DRM_INFO("%s: obj %p offset %08x target %d "
3345 "read %08x write %08x gtt %08x "
3346 "presumed %08x delta %08x\n",
3347 __func__,
3348 obj,
3349 (int) reloc->offset,
3350 (int) reloc->target_handle,
3351 (int) reloc->read_domains,
3352 (int) reloc->write_domain,
3353 (int) target_obj_priv->gtt_offset,
3354 (int) reloc->presumed_offset,
3355 reloc->delta);
3356 #endif
3357
3358 /* The target buffer should have appeared before us in the
3359 * exec_object list, so it should have a GTT space bound by now.
3360 */
3361 if (target_obj_priv->gtt_space == NULL) {
3362 DRM_ERROR("No GTT space found for object %d\n",
3363 reloc->target_handle);
3364 drm_gem_object_unreference(target_obj);
3365 i915_gem_object_unpin(obj);
3366 return -EINVAL;
3367 }
3368
3369 /* Validate that the target is in a valid r/w GPU domain */
3370 if (reloc->write_domain & (reloc->write_domain - 1)) {
3371 DRM_ERROR("reloc with multiple write domains: "
3372 "obj %p target %d offset %d "
3373 "read %08x write %08x",
3374 obj, reloc->target_handle,
3375 (int) reloc->offset,
3376 reloc->read_domains,
3377 reloc->write_domain);
3378 return -EINVAL;
3379 }
3380 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3381 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3382 DRM_ERROR("reloc with read/write CPU domains: "
3383 "obj %p target %d offset %d "
3384 "read %08x write %08x",
3385 obj, reloc->target_handle,
3386 (int) reloc->offset,
3387 reloc->read_domains,
3388 reloc->write_domain);
3389 drm_gem_object_unreference(target_obj);
3390 i915_gem_object_unpin(obj);
3391 return -EINVAL;
3392 }
3393 if (reloc->write_domain && target_obj->pending_write_domain &&
3394 reloc->write_domain != target_obj->pending_write_domain) {
3395 DRM_ERROR("Write domain conflict: "
3396 "obj %p target %d offset %d "
3397 "new %08x old %08x\n",
3398 obj, reloc->target_handle,
3399 (int) reloc->offset,
3400 reloc->write_domain,
3401 target_obj->pending_write_domain);
3402 drm_gem_object_unreference(target_obj);
3403 i915_gem_object_unpin(obj);
3404 return -EINVAL;
3405 }
3406
3407 target_obj->pending_read_domains |= reloc->read_domains;
3408 target_obj->pending_write_domain |= reloc->write_domain;
3409
3410 /* If the relocation already has the right value in it, no
3411 * more work needs to be done.
3412 */
3413 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3414 drm_gem_object_unreference(target_obj);
3415 continue;
3416 }
3417
3418 /* Check that the relocation address is valid... */
3419 if (reloc->offset > obj->size - 4) {
3420 DRM_ERROR("Relocation beyond object bounds: "
3421 "obj %p target %d offset %d size %d.\n",
3422 obj, reloc->target_handle,
3423 (int) reloc->offset, (int) obj->size);
3424 drm_gem_object_unreference(target_obj);
3425 i915_gem_object_unpin(obj);
3426 return -EINVAL;
3427 }
3428 if (reloc->offset & 3) {
3429 DRM_ERROR("Relocation not 4-byte aligned: "
3430 "obj %p target %d offset %d.\n",
3431 obj, reloc->target_handle,
3432 (int) reloc->offset);
3433 drm_gem_object_unreference(target_obj);
3434 i915_gem_object_unpin(obj);
3435 return -EINVAL;
3436 }
3437
3438 /* and points to somewhere within the target object. */
3439 if (reloc->delta >= target_obj->size) {
3440 DRM_ERROR("Relocation beyond target object bounds: "
3441 "obj %p target %d delta %d size %d.\n",
3442 obj, reloc->target_handle,
3443 (int) reloc->delta, (int) target_obj->size);
3444 drm_gem_object_unreference(target_obj);
3445 i915_gem_object_unpin(obj);
3446 return -EINVAL;
3447 }
3448
3449 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3450 if (ret != 0) {
3451 drm_gem_object_unreference(target_obj);
3452 i915_gem_object_unpin(obj);
3453 return -EINVAL;
3454 }
3455
3456 /* Map the page containing the relocation we're going to
3457 * perform.
3458 */
3459 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3460 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3461 (reloc_offset &
3462 ~(PAGE_SIZE - 1)));
3463 reloc_entry = (uint32_t __iomem *)(reloc_page +
3464 (reloc_offset & (PAGE_SIZE - 1)));
3465 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3466
3467 #if WATCH_BUF
3468 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3469 obj, (unsigned int) reloc->offset,
3470 readl(reloc_entry), reloc_val);
3471 #endif
3472 writel(reloc_val, reloc_entry);
3473 io_mapping_unmap_atomic(reloc_page);
3474
3475 /* The updated presumed offset for this entry will be
3476 * copied back out to the user.
3477 */
3478 reloc->presumed_offset = target_obj_priv->gtt_offset;
3479
3480 drm_gem_object_unreference(target_obj);
3481 }
3482
3483 #if WATCH_BUF
3484 if (0)
3485 i915_gem_dump_object(obj, 128, __func__, ~0);
3486 #endif
3487 return 0;
3488 }
3489
3490 /** Dispatch a batchbuffer to the ring
3491 */
3492 static int
3493 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3494 struct drm_i915_gem_execbuffer2 *exec,
3495 struct drm_clip_rect *cliprects,
3496 uint64_t exec_offset)
3497 {
3498 drm_i915_private_t *dev_priv = dev->dev_private;
3499 int nbox = exec->num_cliprects;
3500 int i = 0, count;
3501 uint32_t exec_start, exec_len;
3502 RING_LOCALS;
3503
3504 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3505 exec_len = (uint32_t) exec->batch_len;
3506
3507 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3508
3509 count = nbox ? nbox : 1;
3510
3511 for (i = 0; i < count; i++) {
3512 if (i < nbox) {
3513 int ret = i915_emit_box(dev, cliprects, i,
3514 exec->DR1, exec->DR4);
3515 if (ret)
3516 return ret;
3517 }
3518
3519 if (IS_I830(dev) || IS_845G(dev)) {
3520 BEGIN_LP_RING(4);
3521 OUT_RING(MI_BATCH_BUFFER);
3522 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3523 OUT_RING(exec_start + exec_len - 4);
3524 OUT_RING(0);
3525 ADVANCE_LP_RING();
3526 } else {
3527 BEGIN_LP_RING(2);
3528 if (IS_I965G(dev)) {
3529 OUT_RING(MI_BATCH_BUFFER_START |
3530 (2 << 6) |
3531 MI_BATCH_NON_SECURE_I965);
3532 OUT_RING(exec_start);
3533 } else {
3534 OUT_RING(MI_BATCH_BUFFER_START |
3535 (2 << 6));
3536 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3537 }
3538 ADVANCE_LP_RING();
3539 }
3540 }
3541
3542 /* XXX breadcrumb */
3543 return 0;
3544 }
3545
3546 /* Throttle our rendering by waiting until the ring has completed our requests
3547 * emitted over 20 msec ago.
3548 *
3549 * Note that if we were to use the current jiffies each time around the loop,
3550 * we wouldn't escape the function with any frames outstanding if the time to
3551 * render a frame was over 20ms.
3552 *
3553 * This should get us reasonable parallelism between CPU and GPU but also
3554 * relatively low latency when blocking on a particular request to finish.
3555 */
3556 static int
3557 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3558 {
3559 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3560 int ret = 0;
3561 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3562
3563 mutex_lock(&dev->struct_mutex);
3564 while (!list_empty(&i915_file_priv->mm.request_list)) {
3565 struct drm_i915_gem_request *request;
3566
3567 request = list_first_entry(&i915_file_priv->mm.request_list,
3568 struct drm_i915_gem_request,
3569 client_list);
3570
3571 if (time_after_eq(request->emitted_jiffies, recent_enough))
3572 break;
3573
3574 ret = i915_wait_request(dev, request->seqno);
3575 if (ret != 0)
3576 break;
3577 }
3578 mutex_unlock(&dev->struct_mutex);
3579
3580 return ret;
3581 }
3582
3583 static int
3584 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3585 uint32_t buffer_count,
3586 struct drm_i915_gem_relocation_entry **relocs)
3587 {
3588 uint32_t reloc_count = 0, reloc_index = 0, i;
3589 int ret;
3590
3591 *relocs = NULL;
3592 for (i = 0; i < buffer_count; i++) {
3593 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3594 return -EINVAL;
3595 reloc_count += exec_list[i].relocation_count;
3596 }
3597
3598 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3599 if (*relocs == NULL) {
3600 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3601 return -ENOMEM;
3602 }
3603
3604 for (i = 0; i < buffer_count; i++) {
3605 struct drm_i915_gem_relocation_entry __user *user_relocs;
3606
3607 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3608
3609 ret = copy_from_user(&(*relocs)[reloc_index],
3610 user_relocs,
3611 exec_list[i].relocation_count *
3612 sizeof(**relocs));
3613 if (ret != 0) {
3614 drm_free_large(*relocs);
3615 *relocs = NULL;
3616 return -EFAULT;
3617 }
3618
3619 reloc_index += exec_list[i].relocation_count;
3620 }
3621
3622 return 0;
3623 }
3624
3625 static int
3626 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3627 uint32_t buffer_count,
3628 struct drm_i915_gem_relocation_entry *relocs)
3629 {
3630 uint32_t reloc_count = 0, i;
3631 int ret = 0;
3632
3633 if (relocs == NULL)
3634 return 0;
3635
3636 for (i = 0; i < buffer_count; i++) {
3637 struct drm_i915_gem_relocation_entry __user *user_relocs;
3638 int unwritten;
3639
3640 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3641
3642 unwritten = copy_to_user(user_relocs,
3643 &relocs[reloc_count],
3644 exec_list[i].relocation_count *
3645 sizeof(*relocs));
3646
3647 if (unwritten) {
3648 ret = -EFAULT;
3649 goto err;
3650 }
3651
3652 reloc_count += exec_list[i].relocation_count;
3653 }
3654
3655 err:
3656 drm_free_large(relocs);
3657
3658 return ret;
3659 }
3660
3661 static int
3662 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3663 uint64_t exec_offset)
3664 {
3665 uint32_t exec_start, exec_len;
3666
3667 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3668 exec_len = (uint32_t) exec->batch_len;
3669
3670 if ((exec_start | exec_len) & 0x7)
3671 return -EINVAL;
3672
3673 if (!exec_start)
3674 return -EINVAL;
3675
3676 return 0;
3677 }
3678
3679 static int
3680 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3681 struct drm_gem_object **object_list,
3682 int count)
3683 {
3684 drm_i915_private_t *dev_priv = dev->dev_private;
3685 struct drm_i915_gem_object *obj_priv;
3686 DEFINE_WAIT(wait);
3687 int i, ret = 0;
3688
3689 for (;;) {
3690 prepare_to_wait(&dev_priv->pending_flip_queue,
3691 &wait, TASK_INTERRUPTIBLE);
3692 for (i = 0; i < count; i++) {
3693 obj_priv = object_list[i]->driver_private;
3694 if (atomic_read(&obj_priv->pending_flip) > 0)
3695 break;
3696 }
3697 if (i == count)
3698 break;
3699
3700 if (!signal_pending(current)) {
3701 mutex_unlock(&dev->struct_mutex);
3702 schedule();
3703 mutex_lock(&dev->struct_mutex);
3704 continue;
3705 }
3706 ret = -ERESTARTSYS;
3707 break;
3708 }
3709 finish_wait(&dev_priv->pending_flip_queue, &wait);
3710
3711 return ret;
3712 }
3713
3714 int
3715 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3716 struct drm_file *file_priv,
3717 struct drm_i915_gem_execbuffer2 *args,
3718 struct drm_i915_gem_exec_object2 *exec_list)
3719 {
3720 drm_i915_private_t *dev_priv = dev->dev_private;
3721 struct drm_gem_object **object_list = NULL;
3722 struct drm_gem_object *batch_obj;
3723 struct drm_i915_gem_object *obj_priv;
3724 struct drm_clip_rect *cliprects = NULL;
3725 struct drm_i915_gem_relocation_entry *relocs = NULL;
3726 int ret = 0, ret2, i, pinned = 0;
3727 uint64_t exec_offset;
3728 uint32_t seqno, flush_domains, reloc_index;
3729 int pin_tries, flips;
3730
3731 #if WATCH_EXEC
3732 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3733 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3734 #endif
3735
3736 if (args->buffer_count < 1) {
3737 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3738 return -EINVAL;
3739 }
3740 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3741 if (object_list == NULL) {
3742 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3743 args->buffer_count);
3744 ret = -ENOMEM;
3745 goto pre_mutex_err;
3746 }
3747
3748 if (args->num_cliprects != 0) {
3749 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3750 GFP_KERNEL);
3751 if (cliprects == NULL) {
3752 ret = -ENOMEM;
3753 goto pre_mutex_err;
3754 }
3755
3756 ret = copy_from_user(cliprects,
3757 (struct drm_clip_rect __user *)
3758 (uintptr_t) args->cliprects_ptr,
3759 sizeof(*cliprects) * args->num_cliprects);
3760 if (ret != 0) {
3761 DRM_ERROR("copy %d cliprects failed: %d\n",
3762 args->num_cliprects, ret);
3763 goto pre_mutex_err;
3764 }
3765 }
3766
3767 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3768 &relocs);
3769 if (ret != 0)
3770 goto pre_mutex_err;
3771
3772 mutex_lock(&dev->struct_mutex);
3773
3774 i915_verify_inactive(dev, __FILE__, __LINE__);
3775
3776 if (atomic_read(&dev_priv->mm.wedged)) {
3777 mutex_unlock(&dev->struct_mutex);
3778 ret = -EIO;
3779 goto pre_mutex_err;
3780 }
3781
3782 if (dev_priv->mm.suspended) {
3783 mutex_unlock(&dev->struct_mutex);
3784 ret = -EBUSY;
3785 goto pre_mutex_err;
3786 }
3787
3788 /* Look up object handles */
3789 flips = 0;
3790 for (i = 0; i < args->buffer_count; i++) {
3791 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3792 exec_list[i].handle);
3793 if (object_list[i] == NULL) {
3794 DRM_ERROR("Invalid object handle %d at index %d\n",
3795 exec_list[i].handle, i);
3796 /* prevent error path from reading uninitialized data */
3797 args->buffer_count = i + 1;
3798 ret = -EBADF;
3799 goto err;
3800 }
3801
3802 obj_priv = object_list[i]->driver_private;
3803 if (obj_priv->in_execbuffer) {
3804 DRM_ERROR("Object %p appears more than once in object list\n",
3805 object_list[i]);
3806 /* prevent error path from reading uninitialized data */
3807 args->buffer_count = i + 1;
3808 ret = -EBADF;
3809 goto err;
3810 }
3811 obj_priv->in_execbuffer = true;
3812 flips += atomic_read(&obj_priv->pending_flip);
3813 }
3814
3815 if (flips > 0) {
3816 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3817 args->buffer_count);
3818 if (ret)
3819 goto err;
3820 }
3821
3822 /* Pin and relocate */
3823 for (pin_tries = 0; ; pin_tries++) {
3824 ret = 0;
3825 reloc_index = 0;
3826
3827 for (i = 0; i < args->buffer_count; i++) {
3828 object_list[i]->pending_read_domains = 0;
3829 object_list[i]->pending_write_domain = 0;
3830 ret = i915_gem_object_pin_and_relocate(object_list[i],
3831 file_priv,
3832 &exec_list[i],
3833 &relocs[reloc_index]);
3834 if (ret)
3835 break;
3836 pinned = i + 1;
3837 reloc_index += exec_list[i].relocation_count;
3838 }
3839 /* success */
3840 if (ret == 0)
3841 break;
3842
3843 /* error other than GTT full, or we've already tried again */
3844 if (ret != -ENOSPC || pin_tries >= 1) {
3845 if (ret != -ERESTARTSYS) {
3846 unsigned long long total_size = 0;
3847 for (i = 0; i < args->buffer_count; i++)
3848 total_size += object_list[i]->size;
3849 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3850 pinned+1, args->buffer_count,
3851 total_size, ret);
3852 DRM_ERROR("%d objects [%d pinned], "
3853 "%d object bytes [%d pinned], "
3854 "%d/%d gtt bytes\n",
3855 atomic_read(&dev->object_count),
3856 atomic_read(&dev->pin_count),
3857 atomic_read(&dev->object_memory),
3858 atomic_read(&dev->pin_memory),
3859 atomic_read(&dev->gtt_memory),
3860 dev->gtt_total);
3861 }
3862 goto err;
3863 }
3864
3865 /* unpin all of our buffers */
3866 for (i = 0; i < pinned; i++)
3867 i915_gem_object_unpin(object_list[i]);
3868 pinned = 0;
3869
3870 /* evict everyone we can from the aperture */
3871 ret = i915_gem_evict_everything(dev);
3872 if (ret && ret != -ENOSPC)
3873 goto err;
3874 }
3875
3876 /* Set the pending read domains for the batch buffer to COMMAND */
3877 batch_obj = object_list[args->buffer_count-1];
3878 if (batch_obj->pending_write_domain) {
3879 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3880 ret = -EINVAL;
3881 goto err;
3882 }
3883 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3884
3885 /* Sanity check the batch buffer, prior to moving objects */
3886 exec_offset = exec_list[args->buffer_count - 1].offset;
3887 ret = i915_gem_check_execbuffer (args, exec_offset);
3888 if (ret != 0) {
3889 DRM_ERROR("execbuf with invalid offset/length\n");
3890 goto err;
3891 }
3892
3893 i915_verify_inactive(dev, __FILE__, __LINE__);
3894
3895 /* Zero the global flush/invalidate flags. These
3896 * will be modified as new domains are computed
3897 * for each object
3898 */
3899 dev->invalidate_domains = 0;
3900 dev->flush_domains = 0;
3901
3902 for (i = 0; i < args->buffer_count; i++) {
3903 struct drm_gem_object *obj = object_list[i];
3904
3905 /* Compute new gpu domains and update invalidate/flush */
3906 i915_gem_object_set_to_gpu_domain(obj);
3907 }
3908
3909 i915_verify_inactive(dev, __FILE__, __LINE__);
3910
3911 if (dev->invalidate_domains | dev->flush_domains) {
3912 #if WATCH_EXEC
3913 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3914 __func__,
3915 dev->invalidate_domains,
3916 dev->flush_domains);
3917 #endif
3918 i915_gem_flush(dev,
3919 dev->invalidate_domains,
3920 dev->flush_domains);
3921 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3922 (void)i915_add_request(dev, file_priv,
3923 dev->flush_domains);
3924 }
3925
3926 for (i = 0; i < args->buffer_count; i++) {
3927 struct drm_gem_object *obj = object_list[i];
3928 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3929 uint32_t old_write_domain = obj->write_domain;
3930
3931 obj->write_domain = obj->pending_write_domain;
3932 if (obj->write_domain)
3933 list_move_tail(&obj_priv->gpu_write_list,
3934 &dev_priv->mm.gpu_write_list);
3935 else
3936 list_del_init(&obj_priv->gpu_write_list);
3937
3938 trace_i915_gem_object_change_domain(obj,
3939 obj->read_domains,
3940 old_write_domain);
3941 }
3942
3943 i915_verify_inactive(dev, __FILE__, __LINE__);
3944
3945 #if WATCH_COHERENCY
3946 for (i = 0; i < args->buffer_count; i++) {
3947 i915_gem_object_check_coherency(object_list[i],
3948 exec_list[i].handle);
3949 }
3950 #endif
3951
3952 #if WATCH_EXEC
3953 i915_gem_dump_object(batch_obj,
3954 args->batch_len,
3955 __func__,
3956 ~0);
3957 #endif
3958
3959 /* Exec the batchbuffer */
3960 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3961 if (ret) {
3962 DRM_ERROR("dispatch failed %d\n", ret);
3963 goto err;
3964 }
3965
3966 /*
3967 * Ensure that the commands in the batch buffer are
3968 * finished before the interrupt fires
3969 */
3970 flush_domains = i915_retire_commands(dev);
3971
3972 i915_verify_inactive(dev, __FILE__, __LINE__);
3973
3974 /*
3975 * Get a seqno representing the execution of the current buffer,
3976 * which we can wait on. We would like to mitigate these interrupts,
3977 * likely by only creating seqnos occasionally (so that we have
3978 * *some* interrupts representing completion of buffers that we can
3979 * wait on when trying to clear up gtt space).
3980 */
3981 seqno = i915_add_request(dev, file_priv, flush_domains);
3982 BUG_ON(seqno == 0);
3983 for (i = 0; i < args->buffer_count; i++) {
3984 struct drm_gem_object *obj = object_list[i];
3985
3986 i915_gem_object_move_to_active(obj, seqno);
3987 #if WATCH_LRU
3988 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3989 #endif
3990 }
3991 #if WATCH_LRU
3992 i915_dump_lru(dev, __func__);
3993 #endif
3994
3995 i915_verify_inactive(dev, __FILE__, __LINE__);
3996
3997 err:
3998 for (i = 0; i < pinned; i++)
3999 i915_gem_object_unpin(object_list[i]);
4000
4001 for (i = 0; i < args->buffer_count; i++) {
4002 if (object_list[i]) {
4003 obj_priv = object_list[i]->driver_private;
4004 obj_priv->in_execbuffer = false;
4005 }
4006 drm_gem_object_unreference(object_list[i]);
4007 }
4008
4009 mutex_unlock(&dev->struct_mutex);
4010
4011 pre_mutex_err:
4012 /* Copy the updated relocations out regardless of current error
4013 * state. Failure to update the relocs would mean that the next
4014 * time userland calls execbuf, it would do so with presumed offset
4015 * state that didn't match the actual object state.
4016 */
4017 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
4018 relocs);
4019 if (ret2 != 0) {
4020 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
4021
4022 if (ret == 0)
4023 ret = ret2;
4024 }
4025
4026 drm_free_large(object_list);
4027 kfree(cliprects);
4028
4029 return ret;
4030 }
4031
4032 /*
4033 * Legacy execbuffer just creates an exec2 list from the original exec object
4034 * list array and passes it to the real function.
4035 */
4036 int
4037 i915_gem_execbuffer(struct drm_device *dev, void *data,
4038 struct drm_file *file_priv)
4039 {
4040 struct drm_i915_gem_execbuffer *args = data;
4041 struct drm_i915_gem_execbuffer2 exec2;
4042 struct drm_i915_gem_exec_object *exec_list = NULL;
4043 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4044 int ret, i;
4045
4046 #if WATCH_EXEC
4047 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4048 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4049 #endif
4050
4051 if (args->buffer_count < 1) {
4052 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4053 return -EINVAL;
4054 }
4055
4056 /* Copy in the exec list from userland */
4057 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4058 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4059 if (exec_list == NULL || exec2_list == NULL) {
4060 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4061 args->buffer_count);
4062 drm_free_large(exec_list);
4063 drm_free_large(exec2_list);
4064 return -ENOMEM;
4065 }
4066 ret = copy_from_user(exec_list,
4067 (struct drm_i915_relocation_entry __user *)
4068 (uintptr_t) args->buffers_ptr,
4069 sizeof(*exec_list) * args->buffer_count);
4070 if (ret != 0) {
4071 DRM_ERROR("copy %d exec entries failed %d\n",
4072 args->buffer_count, ret);
4073 drm_free_large(exec_list);
4074 drm_free_large(exec2_list);
4075 return -EFAULT;
4076 }
4077
4078 for (i = 0; i < args->buffer_count; i++) {
4079 exec2_list[i].handle = exec_list[i].handle;
4080 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4081 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4082 exec2_list[i].alignment = exec_list[i].alignment;
4083 exec2_list[i].offset = exec_list[i].offset;
4084 if (!IS_I965G(dev))
4085 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4086 else
4087 exec2_list[i].flags = 0;
4088 }
4089
4090 exec2.buffers_ptr = args->buffers_ptr;
4091 exec2.buffer_count = args->buffer_count;
4092 exec2.batch_start_offset = args->batch_start_offset;
4093 exec2.batch_len = args->batch_len;
4094 exec2.DR1 = args->DR1;
4095 exec2.DR4 = args->DR4;
4096 exec2.num_cliprects = args->num_cliprects;
4097 exec2.cliprects_ptr = args->cliprects_ptr;
4098 exec2.flags = 0;
4099
4100 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4101 if (!ret) {
4102 /* Copy the new buffer offsets back to the user's exec list. */
4103 for (i = 0; i < args->buffer_count; i++)
4104 exec_list[i].offset = exec2_list[i].offset;
4105 /* ... and back out to userspace */
4106 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4107 (uintptr_t) args->buffers_ptr,
4108 exec_list,
4109 sizeof(*exec_list) * args->buffer_count);
4110 if (ret) {
4111 ret = -EFAULT;
4112 DRM_ERROR("failed to copy %d exec entries "
4113 "back to user (%d)\n",
4114 args->buffer_count, ret);
4115 }
4116 }
4117
4118 drm_free_large(exec_list);
4119 drm_free_large(exec2_list);
4120 return ret;
4121 }
4122
4123 int
4124 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4125 struct drm_file *file_priv)
4126 {
4127 struct drm_i915_gem_execbuffer2 *args = data;
4128 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4129 int ret;
4130
4131 #if WATCH_EXEC
4132 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4133 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4134 #endif
4135
4136 if (args->buffer_count < 1) {
4137 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4138 return -EINVAL;
4139 }
4140
4141 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4142 if (exec2_list == NULL) {
4143 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4144 args->buffer_count);
4145 return -ENOMEM;
4146 }
4147 ret = copy_from_user(exec2_list,
4148 (struct drm_i915_relocation_entry __user *)
4149 (uintptr_t) args->buffers_ptr,
4150 sizeof(*exec2_list) * args->buffer_count);
4151 if (ret != 0) {
4152 DRM_ERROR("copy %d exec entries failed %d\n",
4153 args->buffer_count, ret);
4154 drm_free_large(exec2_list);
4155 return -EFAULT;
4156 }
4157
4158 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4159 if (!ret) {
4160 /* Copy the new buffer offsets back to the user's exec list. */
4161 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4162 (uintptr_t) args->buffers_ptr,
4163 exec2_list,
4164 sizeof(*exec2_list) * args->buffer_count);
4165 if (ret) {
4166 ret = -EFAULT;
4167 DRM_ERROR("failed to copy %d exec entries "
4168 "back to user (%d)\n",
4169 args->buffer_count, ret);
4170 }
4171 }
4172
4173 drm_free_large(exec2_list);
4174 return ret;
4175 }
4176
4177 int
4178 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4179 {
4180 struct drm_device *dev = obj->dev;
4181 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4182 int ret;
4183
4184 i915_verify_inactive(dev, __FILE__, __LINE__);
4185 if (obj_priv->gtt_space == NULL) {
4186 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4187 if (ret)
4188 return ret;
4189 }
4190
4191 obj_priv->pin_count++;
4192
4193 /* If the object is not active and not pending a flush,
4194 * remove it from the inactive list
4195 */
4196 if (obj_priv->pin_count == 1) {
4197 atomic_inc(&dev->pin_count);
4198 atomic_add(obj->size, &dev->pin_memory);
4199 if (!obj_priv->active &&
4200 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4201 !list_empty(&obj_priv->list))
4202 list_del_init(&obj_priv->list);
4203 }
4204 i915_verify_inactive(dev, __FILE__, __LINE__);
4205
4206 return 0;
4207 }
4208
4209 void
4210 i915_gem_object_unpin(struct drm_gem_object *obj)
4211 {
4212 struct drm_device *dev = obj->dev;
4213 drm_i915_private_t *dev_priv = dev->dev_private;
4214 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4215
4216 i915_verify_inactive(dev, __FILE__, __LINE__);
4217 obj_priv->pin_count--;
4218 BUG_ON(obj_priv->pin_count < 0);
4219 BUG_ON(obj_priv->gtt_space == NULL);
4220
4221 /* If the object is no longer pinned, and is
4222 * neither active nor being flushed, then stick it on
4223 * the inactive list
4224 */
4225 if (obj_priv->pin_count == 0) {
4226 if (!obj_priv->active &&
4227 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4228 list_move_tail(&obj_priv->list,
4229 &dev_priv->mm.inactive_list);
4230 atomic_dec(&dev->pin_count);
4231 atomic_sub(obj->size, &dev->pin_memory);
4232 }
4233 i915_verify_inactive(dev, __FILE__, __LINE__);
4234 }
4235
4236 int
4237 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4238 struct drm_file *file_priv)
4239 {
4240 struct drm_i915_gem_pin *args = data;
4241 struct drm_gem_object *obj;
4242 struct drm_i915_gem_object *obj_priv;
4243 int ret;
4244
4245 mutex_lock(&dev->struct_mutex);
4246
4247 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4248 if (obj == NULL) {
4249 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4250 args->handle);
4251 mutex_unlock(&dev->struct_mutex);
4252 return -EBADF;
4253 }
4254 obj_priv = obj->driver_private;
4255
4256 if (obj_priv->madv != I915_MADV_WILLNEED) {
4257 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4258 drm_gem_object_unreference(obj);
4259 mutex_unlock(&dev->struct_mutex);
4260 return -EINVAL;
4261 }
4262
4263 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4264 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4265 args->handle);
4266 drm_gem_object_unreference(obj);
4267 mutex_unlock(&dev->struct_mutex);
4268 return -EINVAL;
4269 }
4270
4271 obj_priv->user_pin_count++;
4272 obj_priv->pin_filp = file_priv;
4273 if (obj_priv->user_pin_count == 1) {
4274 ret = i915_gem_object_pin(obj, args->alignment);
4275 if (ret != 0) {
4276 drm_gem_object_unreference(obj);
4277 mutex_unlock(&dev->struct_mutex);
4278 return ret;
4279 }
4280 }
4281
4282 /* XXX - flush the CPU caches for pinned objects
4283 * as the X server doesn't manage domains yet
4284 */
4285 i915_gem_object_flush_cpu_write_domain(obj);
4286 args->offset = obj_priv->gtt_offset;
4287 drm_gem_object_unreference(obj);
4288 mutex_unlock(&dev->struct_mutex);
4289
4290 return 0;
4291 }
4292
4293 int
4294 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4295 struct drm_file *file_priv)
4296 {
4297 struct drm_i915_gem_pin *args = data;
4298 struct drm_gem_object *obj;
4299 struct drm_i915_gem_object *obj_priv;
4300
4301 mutex_lock(&dev->struct_mutex);
4302
4303 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4304 if (obj == NULL) {
4305 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4306 args->handle);
4307 mutex_unlock(&dev->struct_mutex);
4308 return -EBADF;
4309 }
4310
4311 obj_priv = obj->driver_private;
4312 if (obj_priv->pin_filp != file_priv) {
4313 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4314 args->handle);
4315 drm_gem_object_unreference(obj);
4316 mutex_unlock(&dev->struct_mutex);
4317 return -EINVAL;
4318 }
4319 obj_priv->user_pin_count--;
4320 if (obj_priv->user_pin_count == 0) {
4321 obj_priv->pin_filp = NULL;
4322 i915_gem_object_unpin(obj);
4323 }
4324
4325 drm_gem_object_unreference(obj);
4326 mutex_unlock(&dev->struct_mutex);
4327 return 0;
4328 }
4329
4330 int
4331 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4332 struct drm_file *file_priv)
4333 {
4334 struct drm_i915_gem_busy *args = data;
4335 struct drm_gem_object *obj;
4336 struct drm_i915_gem_object *obj_priv;
4337
4338 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4339 if (obj == NULL) {
4340 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4341 args->handle);
4342 return -EBADF;
4343 }
4344
4345 mutex_lock(&dev->struct_mutex);
4346 /* Update the active list for the hardware's current position.
4347 * Otherwise this only updates on a delayed timer or when irqs are
4348 * actually unmasked, and our working set ends up being larger than
4349 * required.
4350 */
4351 i915_gem_retire_requests(dev);
4352
4353 obj_priv = obj->driver_private;
4354 /* Don't count being on the flushing list against the object being
4355 * done. Otherwise, a buffer left on the flushing list but not getting
4356 * flushed (because nobody's flushing that domain) won't ever return
4357 * unbusy and get reused by libdrm's bo cache. The other expected
4358 * consumer of this interface, OpenGL's occlusion queries, also specs
4359 * that the objects get unbusy "eventually" without any interference.
4360 */
4361 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4362
4363 drm_gem_object_unreference(obj);
4364 mutex_unlock(&dev->struct_mutex);
4365 return 0;
4366 }
4367
4368 int
4369 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4370 struct drm_file *file_priv)
4371 {
4372 return i915_gem_ring_throttle(dev, file_priv);
4373 }
4374
4375 int
4376 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4377 struct drm_file *file_priv)
4378 {
4379 struct drm_i915_gem_madvise *args = data;
4380 struct drm_gem_object *obj;
4381 struct drm_i915_gem_object *obj_priv;
4382
4383 switch (args->madv) {
4384 case I915_MADV_DONTNEED:
4385 case I915_MADV_WILLNEED:
4386 break;
4387 default:
4388 return -EINVAL;
4389 }
4390
4391 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4392 if (obj == NULL) {
4393 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4394 args->handle);
4395 return -EBADF;
4396 }
4397
4398 mutex_lock(&dev->struct_mutex);
4399 obj_priv = obj->driver_private;
4400
4401 if (obj_priv->pin_count) {
4402 drm_gem_object_unreference(obj);
4403 mutex_unlock(&dev->struct_mutex);
4404
4405 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4406 return -EINVAL;
4407 }
4408
4409 if (obj_priv->madv != __I915_MADV_PURGED)
4410 obj_priv->madv = args->madv;
4411
4412 /* if the object is no longer bound, discard its backing storage */
4413 if (i915_gem_object_is_purgeable(obj_priv) &&
4414 obj_priv->gtt_space == NULL)
4415 i915_gem_object_truncate(obj);
4416
4417 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4418
4419 drm_gem_object_unreference(obj);
4420 mutex_unlock(&dev->struct_mutex);
4421
4422 return 0;
4423 }
4424
4425 int i915_gem_init_object(struct drm_gem_object *obj)
4426 {
4427 struct drm_i915_gem_object *obj_priv;
4428
4429 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4430 if (obj_priv == NULL)
4431 return -ENOMEM;
4432
4433 /*
4434 * We've just allocated pages from the kernel,
4435 * so they've just been written by the CPU with
4436 * zeros. They'll need to be clflushed before we
4437 * use them with the GPU.
4438 */
4439 obj->write_domain = I915_GEM_DOMAIN_CPU;
4440 obj->read_domains = I915_GEM_DOMAIN_CPU;
4441
4442 obj_priv->agp_type = AGP_USER_MEMORY;
4443
4444 obj->driver_private = obj_priv;
4445 obj_priv->obj = obj;
4446 obj_priv->fence_reg = I915_FENCE_REG_NONE;
4447 INIT_LIST_HEAD(&obj_priv->list);
4448 INIT_LIST_HEAD(&obj_priv->gpu_write_list);
4449 INIT_LIST_HEAD(&obj_priv->fence_list);
4450 obj_priv->madv = I915_MADV_WILLNEED;
4451
4452 trace_i915_gem_object_create(obj);
4453
4454 return 0;
4455 }
4456
4457 void i915_gem_free_object(struct drm_gem_object *obj)
4458 {
4459 struct drm_device *dev = obj->dev;
4460 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4461
4462 trace_i915_gem_object_destroy(obj);
4463
4464 while (obj_priv->pin_count > 0)
4465 i915_gem_object_unpin(obj);
4466
4467 if (obj_priv->phys_obj)
4468 i915_gem_detach_phys_object(dev, obj);
4469
4470 i915_gem_object_unbind(obj);
4471
4472 if (obj_priv->mmap_offset)
4473 i915_gem_free_mmap_offset(obj);
4474
4475 kfree(obj_priv->page_cpu_valid);
4476 kfree(obj_priv->bit_17);
4477 kfree(obj->driver_private);
4478 }
4479
4480 /** Unbinds all inactive objects. */
4481 static int
4482 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4483 {
4484 drm_i915_private_t *dev_priv = dev->dev_private;
4485
4486 while (!list_empty(&dev_priv->mm.inactive_list)) {
4487 struct drm_gem_object *obj;
4488 int ret;
4489
4490 obj = list_first_entry(&dev_priv->mm.inactive_list,
4491 struct drm_i915_gem_object,
4492 list)->obj;
4493
4494 ret = i915_gem_object_unbind(obj);
4495 if (ret != 0) {
4496 DRM_ERROR("Error unbinding object: %d\n", ret);
4497 return ret;
4498 }
4499 }
4500
4501 return 0;
4502 }
4503
4504 int
4505 i915_gem_idle(struct drm_device *dev)
4506 {
4507 drm_i915_private_t *dev_priv = dev->dev_private;
4508 int ret;
4509
4510 mutex_lock(&dev->struct_mutex);
4511
4512 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4513 mutex_unlock(&dev->struct_mutex);
4514 return 0;
4515 }
4516
4517 ret = i915_gpu_idle(dev);
4518 if (ret) {
4519 mutex_unlock(&dev->struct_mutex);
4520 return ret;
4521 }
4522
4523 /* Under UMS, be paranoid and evict. */
4524 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4525 ret = i915_gem_evict_from_inactive_list(dev);
4526 if (ret) {
4527 mutex_unlock(&dev->struct_mutex);
4528 return ret;
4529 }
4530 }
4531
4532 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4533 * We need to replace this with a semaphore, or something.
4534 * And not confound mm.suspended!
4535 */
4536 dev_priv->mm.suspended = 1;
4537 del_timer(&dev_priv->hangcheck_timer);
4538
4539 i915_kernel_lost_context(dev);
4540 i915_gem_cleanup_ringbuffer(dev);
4541
4542 mutex_unlock(&dev->struct_mutex);
4543
4544 /* Cancel the retire work handler, which should be idle now. */
4545 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4546
4547 return 0;
4548 }
4549
4550 static int
4551 i915_gem_init_hws(struct drm_device *dev)
4552 {
4553 drm_i915_private_t *dev_priv = dev->dev_private;
4554 struct drm_gem_object *obj;
4555 struct drm_i915_gem_object *obj_priv;
4556 int ret;
4557
4558 /* If we need a physical address for the status page, it's already
4559 * initialized at driver load time.
4560 */
4561 if (!I915_NEED_GFX_HWS(dev))
4562 return 0;
4563
4564 obj = drm_gem_object_alloc(dev, 4096);
4565 if (obj == NULL) {
4566 DRM_ERROR("Failed to allocate status page\n");
4567 return -ENOMEM;
4568 }
4569 obj_priv = obj->driver_private;
4570 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4571
4572 ret = i915_gem_object_pin(obj, 4096);
4573 if (ret != 0) {
4574 drm_gem_object_unreference(obj);
4575 return ret;
4576 }
4577
4578 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4579
4580 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4581 if (dev_priv->hw_status_page == NULL) {
4582 DRM_ERROR("Failed to map status page.\n");
4583 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4584 i915_gem_object_unpin(obj);
4585 drm_gem_object_unreference(obj);
4586 return -EINVAL;
4587 }
4588 dev_priv->hws_obj = obj;
4589 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4590 if (IS_GEN6(dev)) {
4591 I915_WRITE(HWS_PGA_GEN6, dev_priv->status_gfx_addr);
4592 I915_READ(HWS_PGA_GEN6); /* posting read */
4593 } else {
4594 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4595 I915_READ(HWS_PGA); /* posting read */
4596 }
4597 DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4598
4599 return 0;
4600 }
4601
4602 static void
4603 i915_gem_cleanup_hws(struct drm_device *dev)
4604 {
4605 drm_i915_private_t *dev_priv = dev->dev_private;
4606 struct drm_gem_object *obj;
4607 struct drm_i915_gem_object *obj_priv;
4608
4609 if (dev_priv->hws_obj == NULL)
4610 return;
4611
4612 obj = dev_priv->hws_obj;
4613 obj_priv = obj->driver_private;
4614
4615 kunmap(obj_priv->pages[0]);
4616 i915_gem_object_unpin(obj);
4617 drm_gem_object_unreference(obj);
4618 dev_priv->hws_obj = NULL;
4619
4620 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4621 dev_priv->hw_status_page = NULL;
4622
4623 /* Write high address into HWS_PGA when disabling. */
4624 I915_WRITE(HWS_PGA, 0x1ffff000);
4625 }
4626
4627 int
4628 i915_gem_init_ringbuffer(struct drm_device *dev)
4629 {
4630 drm_i915_private_t *dev_priv = dev->dev_private;
4631 struct drm_gem_object *obj;
4632 struct drm_i915_gem_object *obj_priv;
4633 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4634 int ret;
4635 u32 head;
4636
4637 ret = i915_gem_init_hws(dev);
4638 if (ret != 0)
4639 return ret;
4640
4641 obj = drm_gem_object_alloc(dev, 128 * 1024);
4642 if (obj == NULL) {
4643 DRM_ERROR("Failed to allocate ringbuffer\n");
4644 i915_gem_cleanup_hws(dev);
4645 return -ENOMEM;
4646 }
4647 obj_priv = obj->driver_private;
4648
4649 ret = i915_gem_object_pin(obj, 4096);
4650 if (ret != 0) {
4651 drm_gem_object_unreference(obj);
4652 i915_gem_cleanup_hws(dev);
4653 return ret;
4654 }
4655
4656 /* Set up the kernel mapping for the ring. */
4657 ring->Size = obj->size;
4658
4659 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4660 ring->map.size = obj->size;
4661 ring->map.type = 0;
4662 ring->map.flags = 0;
4663 ring->map.mtrr = 0;
4664
4665 drm_core_ioremap_wc(&ring->map, dev);
4666 if (ring->map.handle == NULL) {
4667 DRM_ERROR("Failed to map ringbuffer.\n");
4668 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4669 i915_gem_object_unpin(obj);
4670 drm_gem_object_unreference(obj);
4671 i915_gem_cleanup_hws(dev);
4672 return -EINVAL;
4673 }
4674 ring->ring_obj = obj;
4675 ring->virtual_start = ring->map.handle;
4676
4677 /* Stop the ring if it's running. */
4678 I915_WRITE(PRB0_CTL, 0);
4679 I915_WRITE(PRB0_TAIL, 0);
4680 I915_WRITE(PRB0_HEAD, 0);
4681
4682 /* Initialize the ring. */
4683 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4684 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4685
4686 /* G45 ring initialization fails to reset head to zero */
4687 if (head != 0) {
4688 DRM_ERROR("Ring head not reset to zero "
4689 "ctl %08x head %08x tail %08x start %08x\n",
4690 I915_READ(PRB0_CTL),
4691 I915_READ(PRB0_HEAD),
4692 I915_READ(PRB0_TAIL),
4693 I915_READ(PRB0_START));
4694 I915_WRITE(PRB0_HEAD, 0);
4695
4696 DRM_ERROR("Ring head forced to zero "
4697 "ctl %08x head %08x tail %08x start %08x\n",
4698 I915_READ(PRB0_CTL),
4699 I915_READ(PRB0_HEAD),
4700 I915_READ(PRB0_TAIL),
4701 I915_READ(PRB0_START));
4702 }
4703
4704 I915_WRITE(PRB0_CTL,
4705 ((obj->size - 4096) & RING_NR_PAGES) |
4706 RING_NO_REPORT |
4707 RING_VALID);
4708
4709 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4710
4711 /* If the head is still not zero, the ring is dead */
4712 if (head != 0) {
4713 DRM_ERROR("Ring initialization failed "
4714 "ctl %08x head %08x tail %08x start %08x\n",
4715 I915_READ(PRB0_CTL),
4716 I915_READ(PRB0_HEAD),
4717 I915_READ(PRB0_TAIL),
4718 I915_READ(PRB0_START));
4719 return -EIO;
4720 }
4721
4722 /* Update our cache of the ring state */
4723 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4724 i915_kernel_lost_context(dev);
4725 else {
4726 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4727 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4728 ring->space = ring->head - (ring->tail + 8);
4729 if (ring->space < 0)
4730 ring->space += ring->Size;
4731 }
4732
4733 return 0;
4734 }
4735
4736 void
4737 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4738 {
4739 drm_i915_private_t *dev_priv = dev->dev_private;
4740
4741 if (dev_priv->ring.ring_obj == NULL)
4742 return;
4743
4744 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4745
4746 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4747 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4748 dev_priv->ring.ring_obj = NULL;
4749 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4750
4751 i915_gem_cleanup_hws(dev);
4752 }
4753
4754 int
4755 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4756 struct drm_file *file_priv)
4757 {
4758 drm_i915_private_t *dev_priv = dev->dev_private;
4759 int ret;
4760
4761 if (drm_core_check_feature(dev, DRIVER_MODESET))
4762 return 0;
4763
4764 if (atomic_read(&dev_priv->mm.wedged)) {
4765 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4766 atomic_set(&dev_priv->mm.wedged, 0);
4767 }
4768
4769 mutex_lock(&dev->struct_mutex);
4770 dev_priv->mm.suspended = 0;
4771
4772 ret = i915_gem_init_ringbuffer(dev);
4773 if (ret != 0) {
4774 mutex_unlock(&dev->struct_mutex);
4775 return ret;
4776 }
4777
4778 spin_lock(&dev_priv->mm.active_list_lock);
4779 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4780 spin_unlock(&dev_priv->mm.active_list_lock);
4781
4782 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4783 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4784 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4785 mutex_unlock(&dev->struct_mutex);
4786
4787 drm_irq_install(dev);
4788
4789 return 0;
4790 }
4791
4792 int
4793 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4794 struct drm_file *file_priv)
4795 {
4796 if (drm_core_check_feature(dev, DRIVER_MODESET))
4797 return 0;
4798
4799 drm_irq_uninstall(dev);
4800 return i915_gem_idle(dev);
4801 }
4802
4803 void
4804 i915_gem_lastclose(struct drm_device *dev)
4805 {
4806 int ret;
4807
4808 if (drm_core_check_feature(dev, DRIVER_MODESET))
4809 return;
4810
4811 ret = i915_gem_idle(dev);
4812 if (ret)
4813 DRM_ERROR("failed to idle hardware: %d\n", ret);
4814 }
4815
4816 void
4817 i915_gem_load(struct drm_device *dev)
4818 {
4819 int i;
4820 drm_i915_private_t *dev_priv = dev->dev_private;
4821
4822 spin_lock_init(&dev_priv->mm.active_list_lock);
4823 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4824 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4825 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4826 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4827 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4828 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4829 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4830 i915_gem_retire_work_handler);
4831 dev_priv->mm.next_gem_seqno = 1;
4832
4833 spin_lock(&shrink_list_lock);
4834 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4835 spin_unlock(&shrink_list_lock);
4836
4837 /* Old X drivers will take 0-2 for front, back, depth buffers */
4838 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4839 dev_priv->fence_reg_start = 3;
4840
4841 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4842 dev_priv->num_fence_regs = 16;
4843 else
4844 dev_priv->num_fence_regs = 8;
4845
4846 /* Initialize fence registers to zero */
4847 if (IS_I965G(dev)) {
4848 for (i = 0; i < 16; i++)
4849 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4850 } else {
4851 for (i = 0; i < 8; i++)
4852 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4853 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4854 for (i = 0; i < 8; i++)
4855 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4856 }
4857 i915_gem_detect_bit_6_swizzle(dev);
4858 init_waitqueue_head(&dev_priv->pending_flip_queue);
4859 }
4860
4861 /*
4862 * Create a physically contiguous memory object for this object
4863 * e.g. for cursor + overlay regs
4864 */
4865 int i915_gem_init_phys_object(struct drm_device *dev,
4866 int id, int size)
4867 {
4868 drm_i915_private_t *dev_priv = dev->dev_private;
4869 struct drm_i915_gem_phys_object *phys_obj;
4870 int ret;
4871
4872 if (dev_priv->mm.phys_objs[id - 1] || !size)
4873 return 0;
4874
4875 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4876 if (!phys_obj)
4877 return -ENOMEM;
4878
4879 phys_obj->id = id;
4880
4881 phys_obj->handle = drm_pci_alloc(dev, size, 0);
4882 if (!phys_obj->handle) {
4883 ret = -ENOMEM;
4884 goto kfree_obj;
4885 }
4886 #ifdef CONFIG_X86
4887 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4888 #endif
4889
4890 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4891
4892 return 0;
4893 kfree_obj:
4894 kfree(phys_obj);
4895 return ret;
4896 }
4897
4898 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4899 {
4900 drm_i915_private_t *dev_priv = dev->dev_private;
4901 struct drm_i915_gem_phys_object *phys_obj;
4902
4903 if (!dev_priv->mm.phys_objs[id - 1])
4904 return;
4905
4906 phys_obj = dev_priv->mm.phys_objs[id - 1];
4907 if (phys_obj->cur_obj) {
4908 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4909 }
4910
4911 #ifdef CONFIG_X86
4912 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4913 #endif
4914 drm_pci_free(dev, phys_obj->handle);
4915 kfree(phys_obj);
4916 dev_priv->mm.phys_objs[id - 1] = NULL;
4917 }
4918
4919 void i915_gem_free_all_phys_object(struct drm_device *dev)
4920 {
4921 int i;
4922
4923 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4924 i915_gem_free_phys_object(dev, i);
4925 }
4926
4927 void i915_gem_detach_phys_object(struct drm_device *dev,
4928 struct drm_gem_object *obj)
4929 {
4930 struct drm_i915_gem_object *obj_priv;
4931 int i;
4932 int ret;
4933 int page_count;
4934
4935 obj_priv = obj->driver_private;
4936 if (!obj_priv->phys_obj)
4937 return;
4938
4939 ret = i915_gem_object_get_pages(obj, 0);
4940 if (ret)
4941 goto out;
4942
4943 page_count = obj->size / PAGE_SIZE;
4944
4945 for (i = 0; i < page_count; i++) {
4946 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4947 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4948
4949 memcpy(dst, src, PAGE_SIZE);
4950 kunmap_atomic(dst, KM_USER0);
4951 }
4952 drm_clflush_pages(obj_priv->pages, page_count);
4953 drm_agp_chipset_flush(dev);
4954
4955 i915_gem_object_put_pages(obj);
4956 out:
4957 obj_priv->phys_obj->cur_obj = NULL;
4958 obj_priv->phys_obj = NULL;
4959 }
4960
4961 int
4962 i915_gem_attach_phys_object(struct drm_device *dev,
4963 struct drm_gem_object *obj, int id)
4964 {
4965 drm_i915_private_t *dev_priv = dev->dev_private;
4966 struct drm_i915_gem_object *obj_priv;
4967 int ret = 0;
4968 int page_count;
4969 int i;
4970
4971 if (id > I915_MAX_PHYS_OBJECT)
4972 return -EINVAL;
4973
4974 obj_priv = obj->driver_private;
4975
4976 if (obj_priv->phys_obj) {
4977 if (obj_priv->phys_obj->id == id)
4978 return 0;
4979 i915_gem_detach_phys_object(dev, obj);
4980 }
4981
4982
4983 /* create a new object */
4984 if (!dev_priv->mm.phys_objs[id - 1]) {
4985 ret = i915_gem_init_phys_object(dev, id,
4986 obj->size);
4987 if (ret) {
4988 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4989 goto out;
4990 }
4991 }
4992
4993 /* bind to the object */
4994 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4995 obj_priv->phys_obj->cur_obj = obj;
4996
4997 ret = i915_gem_object_get_pages(obj, 0);
4998 if (ret) {
4999 DRM_ERROR("failed to get page list\n");
5000 goto out;
5001 }
5002
5003 page_count = obj->size / PAGE_SIZE;
5004
5005 for (i = 0; i < page_count; i++) {
5006 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
5007 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5008
5009 memcpy(dst, src, PAGE_SIZE);
5010 kunmap_atomic(src, KM_USER0);
5011 }
5012
5013 i915_gem_object_put_pages(obj);
5014
5015 return 0;
5016 out:
5017 return ret;
5018 }
5019
5020 static int
5021 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5022 struct drm_i915_gem_pwrite *args,
5023 struct drm_file *file_priv)
5024 {
5025 struct drm_i915_gem_object *obj_priv = obj->driver_private;
5026 void *obj_addr;
5027 int ret;
5028 char __user *user_data;
5029
5030 user_data = (char __user *) (uintptr_t) args->data_ptr;
5031 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5032
5033 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5034 ret = copy_from_user(obj_addr, user_data, args->size);
5035 if (ret)
5036 return -EFAULT;
5037
5038 drm_agp_chipset_flush(dev);
5039 return 0;
5040 }
5041
5042 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5043 {
5044 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5045
5046 /* Clean up our request list when the client is going away, so that
5047 * later retire_requests won't dereference our soon-to-be-gone
5048 * file_priv.
5049 */
5050 mutex_lock(&dev->struct_mutex);
5051 while (!list_empty(&i915_file_priv->mm.request_list))
5052 list_del_init(i915_file_priv->mm.request_list.next);
5053 mutex_unlock(&dev->struct_mutex);
5054 }
5055
5056 static int
5057 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5058 {
5059 drm_i915_private_t *dev_priv, *next_dev;
5060 struct drm_i915_gem_object *obj_priv, *next_obj;
5061 int cnt = 0;
5062 int would_deadlock = 1;
5063
5064 /* "fast-path" to count number of available objects */
5065 if (nr_to_scan == 0) {
5066 spin_lock(&shrink_list_lock);
5067 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5068 struct drm_device *dev = dev_priv->dev;
5069
5070 if (mutex_trylock(&dev->struct_mutex)) {
5071 list_for_each_entry(obj_priv,
5072 &dev_priv->mm.inactive_list,
5073 list)
5074 cnt++;
5075 mutex_unlock(&dev->struct_mutex);
5076 }
5077 }
5078 spin_unlock(&shrink_list_lock);
5079
5080 return (cnt / 100) * sysctl_vfs_cache_pressure;
5081 }
5082
5083 spin_lock(&shrink_list_lock);
5084
5085 /* first scan for clean buffers */
5086 list_for_each_entry_safe(dev_priv, next_dev,
5087 &shrink_list, mm.shrink_list) {
5088 struct drm_device *dev = dev_priv->dev;
5089
5090 if (! mutex_trylock(&dev->struct_mutex))
5091 continue;
5092
5093 spin_unlock(&shrink_list_lock);
5094
5095 i915_gem_retire_requests(dev);
5096
5097 list_for_each_entry_safe(obj_priv, next_obj,
5098 &dev_priv->mm.inactive_list,
5099 list) {
5100 if (i915_gem_object_is_purgeable(obj_priv)) {
5101 i915_gem_object_unbind(obj_priv->obj);
5102 if (--nr_to_scan <= 0)
5103 break;
5104 }
5105 }
5106
5107 spin_lock(&shrink_list_lock);
5108 mutex_unlock(&dev->struct_mutex);
5109
5110 would_deadlock = 0;
5111
5112 if (nr_to_scan <= 0)
5113 break;
5114 }
5115
5116 /* second pass, evict/count anything still on the inactive list */
5117 list_for_each_entry_safe(dev_priv, next_dev,
5118 &shrink_list, mm.shrink_list) {
5119 struct drm_device *dev = dev_priv->dev;
5120
5121 if (! mutex_trylock(&dev->struct_mutex))
5122 continue;
5123
5124 spin_unlock(&shrink_list_lock);
5125
5126 list_for_each_entry_safe(obj_priv, next_obj,
5127 &dev_priv->mm.inactive_list,
5128 list) {
5129 if (nr_to_scan > 0) {
5130 i915_gem_object_unbind(obj_priv->obj);
5131 nr_to_scan--;
5132 } else
5133 cnt++;
5134 }
5135
5136 spin_lock(&shrink_list_lock);
5137 mutex_unlock(&dev->struct_mutex);
5138
5139 would_deadlock = 0;
5140 }
5141
5142 spin_unlock(&shrink_list_lock);
5143
5144 if (would_deadlock)
5145 return -1;
5146 else if (cnt > 0)
5147 return (cnt / 100) * sysctl_vfs_cache_pressure;
5148 else
5149 return 0;
5150 }
5151
5152 static struct shrinker shrinker = {
5153 .shrink = i915_gem_shrink,
5154 .seeks = DEFAULT_SEEKS,
5155 };
5156
5157 __init void
5158 i915_gem_shrinker_init(void)
5159 {
5160 register_shrinker(&shrinker);
5161 }
5162
5163 __exit void
5164 i915_gem_shrinker_exit(void)
5165 {
5166 unregister_shrinker(&shrinker);
5167 }