drm: Remove memory debugging infrastructure.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48 unsigned alignment);
49 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
50 static int i915_gem_evict_something(struct drm_device *dev);
51 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
52 struct drm_i915_gem_pwrite *args,
53 struct drm_file *file_priv);
54
55 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
56 unsigned long end)
57 {
58 drm_i915_private_t *dev_priv = dev->dev_private;
59
60 if (start >= end ||
61 (start & (PAGE_SIZE - 1)) != 0 ||
62 (end & (PAGE_SIZE - 1)) != 0) {
63 return -EINVAL;
64 }
65
66 drm_mm_init(&dev_priv->mm.gtt_space, start,
67 end - start);
68
69 dev->gtt_total = (uint32_t) (end - start);
70
71 return 0;
72 }
73
74 int
75 i915_gem_init_ioctl(struct drm_device *dev, void *data,
76 struct drm_file *file_priv)
77 {
78 struct drm_i915_gem_init *args = data;
79 int ret;
80
81 mutex_lock(&dev->struct_mutex);
82 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
83 mutex_unlock(&dev->struct_mutex);
84
85 return ret;
86 }
87
88 int
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file_priv)
91 {
92 struct drm_i915_gem_get_aperture *args = data;
93
94 if (!(dev->driver->driver_features & DRIVER_GEM))
95 return -ENODEV;
96
97 args->aper_size = dev->gtt_total;
98 args->aper_available_size = (args->aper_size -
99 atomic_read(&dev->pin_memory));
100
101 return 0;
102 }
103
104
105 /**
106 * Creates a new mm object and returns a handle to it.
107 */
108 int
109 i915_gem_create_ioctl(struct drm_device *dev, void *data,
110 struct drm_file *file_priv)
111 {
112 struct drm_i915_gem_create *args = data;
113 struct drm_gem_object *obj;
114 int handle, ret;
115
116 args->size = roundup(args->size, PAGE_SIZE);
117
118 /* Allocate the new object */
119 obj = drm_gem_object_alloc(dev, args->size);
120 if (obj == NULL)
121 return -ENOMEM;
122
123 ret = drm_gem_handle_create(file_priv, obj, &handle);
124 mutex_lock(&dev->struct_mutex);
125 drm_gem_object_handle_unreference(obj);
126 mutex_unlock(&dev->struct_mutex);
127
128 if (ret)
129 return ret;
130
131 args->handle = handle;
132
133 return 0;
134 }
135
136 static inline int
137 fast_shmem_read(struct page **pages,
138 loff_t page_base, int page_offset,
139 char __user *data,
140 int length)
141 {
142 char __iomem *vaddr;
143 int unwritten;
144
145 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
146 if (vaddr == NULL)
147 return -ENOMEM;
148 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
149 kunmap_atomic(vaddr, KM_USER0);
150
151 if (unwritten)
152 return -EFAULT;
153
154 return 0;
155 }
156
157 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
158 {
159 drm_i915_private_t *dev_priv = obj->dev->dev_private;
160 struct drm_i915_gem_object *obj_priv = obj->driver_private;
161
162 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
163 obj_priv->tiling_mode != I915_TILING_NONE;
164 }
165
166 static inline int
167 slow_shmem_copy(struct page *dst_page,
168 int dst_offset,
169 struct page *src_page,
170 int src_offset,
171 int length)
172 {
173 char *dst_vaddr, *src_vaddr;
174
175 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
176 if (dst_vaddr == NULL)
177 return -ENOMEM;
178
179 src_vaddr = kmap_atomic(src_page, KM_USER1);
180 if (src_vaddr == NULL) {
181 kunmap_atomic(dst_vaddr, KM_USER0);
182 return -ENOMEM;
183 }
184
185 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
186
187 kunmap_atomic(src_vaddr, KM_USER1);
188 kunmap_atomic(dst_vaddr, KM_USER0);
189
190 return 0;
191 }
192
193 static inline int
194 slow_shmem_bit17_copy(struct page *gpu_page,
195 int gpu_offset,
196 struct page *cpu_page,
197 int cpu_offset,
198 int length,
199 int is_read)
200 {
201 char *gpu_vaddr, *cpu_vaddr;
202
203 /* Use the unswizzled path if this page isn't affected. */
204 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
205 if (is_read)
206 return slow_shmem_copy(cpu_page, cpu_offset,
207 gpu_page, gpu_offset, length);
208 else
209 return slow_shmem_copy(gpu_page, gpu_offset,
210 cpu_page, cpu_offset, length);
211 }
212
213 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
214 if (gpu_vaddr == NULL)
215 return -ENOMEM;
216
217 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
218 if (cpu_vaddr == NULL) {
219 kunmap_atomic(gpu_vaddr, KM_USER0);
220 return -ENOMEM;
221 }
222
223 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
224 * XORing with the other bits (A9 for Y, A9 and A10 for X)
225 */
226 while (length > 0) {
227 int cacheline_end = ALIGN(gpu_offset + 1, 64);
228 int this_length = min(cacheline_end - gpu_offset, length);
229 int swizzled_gpu_offset = gpu_offset ^ 64;
230
231 if (is_read) {
232 memcpy(cpu_vaddr + cpu_offset,
233 gpu_vaddr + swizzled_gpu_offset,
234 this_length);
235 } else {
236 memcpy(gpu_vaddr + swizzled_gpu_offset,
237 cpu_vaddr + cpu_offset,
238 this_length);
239 }
240 cpu_offset += this_length;
241 gpu_offset += this_length;
242 length -= this_length;
243 }
244
245 kunmap_atomic(cpu_vaddr, KM_USER1);
246 kunmap_atomic(gpu_vaddr, KM_USER0);
247
248 return 0;
249 }
250
251 /**
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 */
256 static int
257 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260 {
261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
267
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
270
271 mutex_lock(&dev->struct_mutex);
272
273 ret = i915_gem_object_get_pages(obj);
274 if (ret != 0)
275 goto fail_unlock;
276
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
281
282 obj_priv = obj->driver_private;
283 offset = args->offset;
284
285 while (remain > 0) {
286 /* Operation in this page
287 *
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
291 */
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
297
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
303
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
307 }
308
309 fail_put_pages:
310 i915_gem_object_put_pages(obj);
311 fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
313
314 return ret;
315 }
316
317 /**
318 * This is the fallback shmem pread path, which allocates temporary storage
319 * in kernel space to copy_to_user into outside of the struct_mutex, so we
320 * can copy out of the object's backing pages while holding the struct mutex
321 * and not take page faults.
322 */
323 static int
324 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
325 struct drm_i915_gem_pread *args,
326 struct drm_file *file_priv)
327 {
328 struct drm_i915_gem_object *obj_priv = obj->driver_private;
329 struct mm_struct *mm = current->mm;
330 struct page **user_pages;
331 ssize_t remain;
332 loff_t offset, pinned_pages, i;
333 loff_t first_data_page, last_data_page, num_pages;
334 int shmem_page_index, shmem_page_offset;
335 int data_page_index, data_page_offset;
336 int page_length;
337 int ret;
338 uint64_t data_ptr = args->data_ptr;
339 int do_bit17_swizzling;
340
341 remain = args->size;
342
343 /* Pin the user pages containing the data. We can't fault while
344 * holding the struct mutex, yet we want to hold it while
345 * dereferencing the user data.
346 */
347 first_data_page = data_ptr / PAGE_SIZE;
348 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
349 num_pages = last_data_page - first_data_page + 1;
350
351 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
352 if (user_pages == NULL)
353 return -ENOMEM;
354
355 down_read(&mm->mmap_sem);
356 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
357 num_pages, 1, 0, user_pages, NULL);
358 up_read(&mm->mmap_sem);
359 if (pinned_pages < num_pages) {
360 ret = -EFAULT;
361 goto fail_put_user_pages;
362 }
363
364 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
365
366 mutex_lock(&dev->struct_mutex);
367
368 ret = i915_gem_object_get_pages(obj);
369 if (ret != 0)
370 goto fail_unlock;
371
372 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
373 args->size);
374 if (ret != 0)
375 goto fail_put_pages;
376
377 obj_priv = obj->driver_private;
378 offset = args->offset;
379
380 while (remain > 0) {
381 /* Operation in this page
382 *
383 * shmem_page_index = page number within shmem file
384 * shmem_page_offset = offset within page in shmem file
385 * data_page_index = page number in get_user_pages return
386 * data_page_offset = offset with data_page_index page.
387 * page_length = bytes to copy for this page
388 */
389 shmem_page_index = offset / PAGE_SIZE;
390 shmem_page_offset = offset & ~PAGE_MASK;
391 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
392 data_page_offset = data_ptr & ~PAGE_MASK;
393
394 page_length = remain;
395 if ((shmem_page_offset + page_length) > PAGE_SIZE)
396 page_length = PAGE_SIZE - shmem_page_offset;
397 if ((data_page_offset + page_length) > PAGE_SIZE)
398 page_length = PAGE_SIZE - data_page_offset;
399
400 if (do_bit17_swizzling) {
401 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
402 shmem_page_offset,
403 user_pages[data_page_index],
404 data_page_offset,
405 page_length,
406 1);
407 } else {
408 ret = slow_shmem_copy(user_pages[data_page_index],
409 data_page_offset,
410 obj_priv->pages[shmem_page_index],
411 shmem_page_offset,
412 page_length);
413 }
414 if (ret)
415 goto fail_put_pages;
416
417 remain -= page_length;
418 data_ptr += page_length;
419 offset += page_length;
420 }
421
422 fail_put_pages:
423 i915_gem_object_put_pages(obj);
424 fail_unlock:
425 mutex_unlock(&dev->struct_mutex);
426 fail_put_user_pages:
427 for (i = 0; i < pinned_pages; i++) {
428 SetPageDirty(user_pages[i]);
429 page_cache_release(user_pages[i]);
430 }
431 drm_free_large(user_pages);
432
433 return ret;
434 }
435
436 /**
437 * Reads data from the object referenced by handle.
438 *
439 * On error, the contents of *data are undefined.
440 */
441 int
442 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
443 struct drm_file *file_priv)
444 {
445 struct drm_i915_gem_pread *args = data;
446 struct drm_gem_object *obj;
447 struct drm_i915_gem_object *obj_priv;
448 int ret;
449
450 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
451 if (obj == NULL)
452 return -EBADF;
453 obj_priv = obj->driver_private;
454
455 /* Bounds check source.
456 *
457 * XXX: This could use review for overflow issues...
458 */
459 if (args->offset > obj->size || args->size > obj->size ||
460 args->offset + args->size > obj->size) {
461 drm_gem_object_unreference(obj);
462 return -EINVAL;
463 }
464
465 if (i915_gem_object_needs_bit17_swizzle(obj)) {
466 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
467 } else {
468 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
469 if (ret != 0)
470 ret = i915_gem_shmem_pread_slow(dev, obj, args,
471 file_priv);
472 }
473
474 drm_gem_object_unreference(obj);
475
476 return ret;
477 }
478
479 /* This is the fast write path which cannot handle
480 * page faults in the source data
481 */
482
483 static inline int
484 fast_user_write(struct io_mapping *mapping,
485 loff_t page_base, int page_offset,
486 char __user *user_data,
487 int length)
488 {
489 char *vaddr_atomic;
490 unsigned long unwritten;
491
492 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
493 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
494 user_data, length);
495 io_mapping_unmap_atomic(vaddr_atomic);
496 if (unwritten)
497 return -EFAULT;
498 return 0;
499 }
500
501 /* Here's the write path which can sleep for
502 * page faults
503 */
504
505 static inline int
506 slow_kernel_write(struct io_mapping *mapping,
507 loff_t gtt_base, int gtt_offset,
508 struct page *user_page, int user_offset,
509 int length)
510 {
511 char *src_vaddr, *dst_vaddr;
512 unsigned long unwritten;
513
514 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
515 src_vaddr = kmap_atomic(user_page, KM_USER1);
516 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
517 src_vaddr + user_offset,
518 length);
519 kunmap_atomic(src_vaddr, KM_USER1);
520 io_mapping_unmap_atomic(dst_vaddr);
521 if (unwritten)
522 return -EFAULT;
523 return 0;
524 }
525
526 static inline int
527 fast_shmem_write(struct page **pages,
528 loff_t page_base, int page_offset,
529 char __user *data,
530 int length)
531 {
532 char __iomem *vaddr;
533 unsigned long unwritten;
534
535 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
536 if (vaddr == NULL)
537 return -ENOMEM;
538 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
539 kunmap_atomic(vaddr, KM_USER0);
540
541 if (unwritten)
542 return -EFAULT;
543 return 0;
544 }
545
546 /**
547 * This is the fast pwrite path, where we copy the data directly from the
548 * user into the GTT, uncached.
549 */
550 static int
551 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
552 struct drm_i915_gem_pwrite *args,
553 struct drm_file *file_priv)
554 {
555 struct drm_i915_gem_object *obj_priv = obj->driver_private;
556 drm_i915_private_t *dev_priv = dev->dev_private;
557 ssize_t remain;
558 loff_t offset, page_base;
559 char __user *user_data;
560 int page_offset, page_length;
561 int ret;
562
563 user_data = (char __user *) (uintptr_t) args->data_ptr;
564 remain = args->size;
565 if (!access_ok(VERIFY_READ, user_data, remain))
566 return -EFAULT;
567
568
569 mutex_lock(&dev->struct_mutex);
570 ret = i915_gem_object_pin(obj, 0);
571 if (ret) {
572 mutex_unlock(&dev->struct_mutex);
573 return ret;
574 }
575 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
576 if (ret)
577 goto fail;
578
579 obj_priv = obj->driver_private;
580 offset = obj_priv->gtt_offset + args->offset;
581
582 while (remain > 0) {
583 /* Operation in this page
584 *
585 * page_base = page offset within aperture
586 * page_offset = offset within page
587 * page_length = bytes to copy for this page
588 */
589 page_base = (offset & ~(PAGE_SIZE-1));
590 page_offset = offset & (PAGE_SIZE-1);
591 page_length = remain;
592 if ((page_offset + remain) > PAGE_SIZE)
593 page_length = PAGE_SIZE - page_offset;
594
595 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
596 page_offset, user_data, page_length);
597
598 /* If we get a fault while copying data, then (presumably) our
599 * source page isn't available. Return the error and we'll
600 * retry in the slow path.
601 */
602 if (ret)
603 goto fail;
604
605 remain -= page_length;
606 user_data += page_length;
607 offset += page_length;
608 }
609
610 fail:
611 i915_gem_object_unpin(obj);
612 mutex_unlock(&dev->struct_mutex);
613
614 return ret;
615 }
616
617 /**
618 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
619 * the memory and maps it using kmap_atomic for copying.
620 *
621 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
622 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
623 */
624 static int
625 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
626 struct drm_i915_gem_pwrite *args,
627 struct drm_file *file_priv)
628 {
629 struct drm_i915_gem_object *obj_priv = obj->driver_private;
630 drm_i915_private_t *dev_priv = dev->dev_private;
631 ssize_t remain;
632 loff_t gtt_page_base, offset;
633 loff_t first_data_page, last_data_page, num_pages;
634 loff_t pinned_pages, i;
635 struct page **user_pages;
636 struct mm_struct *mm = current->mm;
637 int gtt_page_offset, data_page_offset, data_page_index, page_length;
638 int ret;
639 uint64_t data_ptr = args->data_ptr;
640
641 remain = args->size;
642
643 /* Pin the user pages containing the data. We can't fault while
644 * holding the struct mutex, and all of the pwrite implementations
645 * want to hold it while dereferencing the user data.
646 */
647 first_data_page = data_ptr / PAGE_SIZE;
648 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
649 num_pages = last_data_page - first_data_page + 1;
650
651 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
652 if (user_pages == NULL)
653 return -ENOMEM;
654
655 down_read(&mm->mmap_sem);
656 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657 num_pages, 0, 0, user_pages, NULL);
658 up_read(&mm->mmap_sem);
659 if (pinned_pages < num_pages) {
660 ret = -EFAULT;
661 goto out_unpin_pages;
662 }
663
664 mutex_lock(&dev->struct_mutex);
665 ret = i915_gem_object_pin(obj, 0);
666 if (ret)
667 goto out_unlock;
668
669 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
670 if (ret)
671 goto out_unpin_object;
672
673 obj_priv = obj->driver_private;
674 offset = obj_priv->gtt_offset + args->offset;
675
676 while (remain > 0) {
677 /* Operation in this page
678 *
679 * gtt_page_base = page offset within aperture
680 * gtt_page_offset = offset within page in aperture
681 * data_page_index = page number in get_user_pages return
682 * data_page_offset = offset with data_page_index page.
683 * page_length = bytes to copy for this page
684 */
685 gtt_page_base = offset & PAGE_MASK;
686 gtt_page_offset = offset & ~PAGE_MASK;
687 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
688 data_page_offset = data_ptr & ~PAGE_MASK;
689
690 page_length = remain;
691 if ((gtt_page_offset + page_length) > PAGE_SIZE)
692 page_length = PAGE_SIZE - gtt_page_offset;
693 if ((data_page_offset + page_length) > PAGE_SIZE)
694 page_length = PAGE_SIZE - data_page_offset;
695
696 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
697 gtt_page_base, gtt_page_offset,
698 user_pages[data_page_index],
699 data_page_offset,
700 page_length);
701
702 /* If we get a fault while copying data, then (presumably) our
703 * source page isn't available. Return the error and we'll
704 * retry in the slow path.
705 */
706 if (ret)
707 goto out_unpin_object;
708
709 remain -= page_length;
710 offset += page_length;
711 data_ptr += page_length;
712 }
713
714 out_unpin_object:
715 i915_gem_object_unpin(obj);
716 out_unlock:
717 mutex_unlock(&dev->struct_mutex);
718 out_unpin_pages:
719 for (i = 0; i < pinned_pages; i++)
720 page_cache_release(user_pages[i]);
721 drm_free_large(user_pages);
722
723 return ret;
724 }
725
726 /**
727 * This is the fast shmem pwrite path, which attempts to directly
728 * copy_from_user into the kmapped pages backing the object.
729 */
730 static int
731 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
732 struct drm_i915_gem_pwrite *args,
733 struct drm_file *file_priv)
734 {
735 struct drm_i915_gem_object *obj_priv = obj->driver_private;
736 ssize_t remain;
737 loff_t offset, page_base;
738 char __user *user_data;
739 int page_offset, page_length;
740 int ret;
741
742 user_data = (char __user *) (uintptr_t) args->data_ptr;
743 remain = args->size;
744
745 mutex_lock(&dev->struct_mutex);
746
747 ret = i915_gem_object_get_pages(obj);
748 if (ret != 0)
749 goto fail_unlock;
750
751 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
752 if (ret != 0)
753 goto fail_put_pages;
754
755 obj_priv = obj->driver_private;
756 offset = args->offset;
757 obj_priv->dirty = 1;
758
759 while (remain > 0) {
760 /* Operation in this page
761 *
762 * page_base = page offset within aperture
763 * page_offset = offset within page
764 * page_length = bytes to copy for this page
765 */
766 page_base = (offset & ~(PAGE_SIZE-1));
767 page_offset = offset & (PAGE_SIZE-1);
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
771
772 ret = fast_shmem_write(obj_priv->pages,
773 page_base, page_offset,
774 user_data, page_length);
775 if (ret)
776 goto fail_put_pages;
777
778 remain -= page_length;
779 user_data += page_length;
780 offset += page_length;
781 }
782
783 fail_put_pages:
784 i915_gem_object_put_pages(obj);
785 fail_unlock:
786 mutex_unlock(&dev->struct_mutex);
787
788 return ret;
789 }
790
791 /**
792 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
793 * the memory and maps it using kmap_atomic for copying.
794 *
795 * This avoids taking mmap_sem for faulting on the user's address while the
796 * struct_mutex is held.
797 */
798 static int
799 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
800 struct drm_i915_gem_pwrite *args,
801 struct drm_file *file_priv)
802 {
803 struct drm_i915_gem_object *obj_priv = obj->driver_private;
804 struct mm_struct *mm = current->mm;
805 struct page **user_pages;
806 ssize_t remain;
807 loff_t offset, pinned_pages, i;
808 loff_t first_data_page, last_data_page, num_pages;
809 int shmem_page_index, shmem_page_offset;
810 int data_page_index, data_page_offset;
811 int page_length;
812 int ret;
813 uint64_t data_ptr = args->data_ptr;
814 int do_bit17_swizzling;
815
816 remain = args->size;
817
818 /* Pin the user pages containing the data. We can't fault while
819 * holding the struct mutex, and all of the pwrite implementations
820 * want to hold it while dereferencing the user data.
821 */
822 first_data_page = data_ptr / PAGE_SIZE;
823 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
824 num_pages = last_data_page - first_data_page + 1;
825
826 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
827 if (user_pages == NULL)
828 return -ENOMEM;
829
830 down_read(&mm->mmap_sem);
831 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
832 num_pages, 0, 0, user_pages, NULL);
833 up_read(&mm->mmap_sem);
834 if (pinned_pages < num_pages) {
835 ret = -EFAULT;
836 goto fail_put_user_pages;
837 }
838
839 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
840
841 mutex_lock(&dev->struct_mutex);
842
843 ret = i915_gem_object_get_pages(obj);
844 if (ret != 0)
845 goto fail_unlock;
846
847 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
848 if (ret != 0)
849 goto fail_put_pages;
850
851 obj_priv = obj->driver_private;
852 offset = args->offset;
853 obj_priv->dirty = 1;
854
855 while (remain > 0) {
856 /* Operation in this page
857 *
858 * shmem_page_index = page number within shmem file
859 * shmem_page_offset = offset within page in shmem file
860 * data_page_index = page number in get_user_pages return
861 * data_page_offset = offset with data_page_index page.
862 * page_length = bytes to copy for this page
863 */
864 shmem_page_index = offset / PAGE_SIZE;
865 shmem_page_offset = offset & ~PAGE_MASK;
866 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
867 data_page_offset = data_ptr & ~PAGE_MASK;
868
869 page_length = remain;
870 if ((shmem_page_offset + page_length) > PAGE_SIZE)
871 page_length = PAGE_SIZE - shmem_page_offset;
872 if ((data_page_offset + page_length) > PAGE_SIZE)
873 page_length = PAGE_SIZE - data_page_offset;
874
875 if (do_bit17_swizzling) {
876 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
877 shmem_page_offset,
878 user_pages[data_page_index],
879 data_page_offset,
880 page_length,
881 0);
882 } else {
883 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
884 shmem_page_offset,
885 user_pages[data_page_index],
886 data_page_offset,
887 page_length);
888 }
889 if (ret)
890 goto fail_put_pages;
891
892 remain -= page_length;
893 data_ptr += page_length;
894 offset += page_length;
895 }
896
897 fail_put_pages:
898 i915_gem_object_put_pages(obj);
899 fail_unlock:
900 mutex_unlock(&dev->struct_mutex);
901 fail_put_user_pages:
902 for (i = 0; i < pinned_pages; i++)
903 page_cache_release(user_pages[i]);
904 drm_free_large(user_pages);
905
906 return ret;
907 }
908
909 /**
910 * Writes data to the object referenced by handle.
911 *
912 * On error, the contents of the buffer that were to be modified are undefined.
913 */
914 int
915 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
916 struct drm_file *file_priv)
917 {
918 struct drm_i915_gem_pwrite *args = data;
919 struct drm_gem_object *obj;
920 struct drm_i915_gem_object *obj_priv;
921 int ret = 0;
922
923 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
924 if (obj == NULL)
925 return -EBADF;
926 obj_priv = obj->driver_private;
927
928 /* Bounds check destination.
929 *
930 * XXX: This could use review for overflow issues...
931 */
932 if (args->offset > obj->size || args->size > obj->size ||
933 args->offset + args->size > obj->size) {
934 drm_gem_object_unreference(obj);
935 return -EINVAL;
936 }
937
938 /* We can only do the GTT pwrite on untiled buffers, as otherwise
939 * it would end up going through the fenced access, and we'll get
940 * different detiling behavior between reading and writing.
941 * pread/pwrite currently are reading and writing from the CPU
942 * perspective, requiring manual detiling by the client.
943 */
944 if (obj_priv->phys_obj)
945 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
946 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
947 dev->gtt_total != 0) {
948 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
949 if (ret == -EFAULT) {
950 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
951 file_priv);
952 }
953 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
954 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
955 } else {
956 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
957 if (ret == -EFAULT) {
958 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
959 file_priv);
960 }
961 }
962
963 #if WATCH_PWRITE
964 if (ret)
965 DRM_INFO("pwrite failed %d\n", ret);
966 #endif
967
968 drm_gem_object_unreference(obj);
969
970 return ret;
971 }
972
973 /**
974 * Called when user space prepares to use an object with the CPU, either
975 * through the mmap ioctl's mapping or a GTT mapping.
976 */
977 int
978 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file_priv)
980 {
981 struct drm_i915_gem_set_domain *args = data;
982 struct drm_gem_object *obj;
983 uint32_t read_domains = args->read_domains;
984 uint32_t write_domain = args->write_domain;
985 int ret;
986
987 if (!(dev->driver->driver_features & DRIVER_GEM))
988 return -ENODEV;
989
990 /* Only handle setting domains to types used by the CPU. */
991 if (write_domain & I915_GEM_GPU_DOMAINS)
992 return -EINVAL;
993
994 if (read_domains & I915_GEM_GPU_DOMAINS)
995 return -EINVAL;
996
997 /* Having something in the write domain implies it's in the read
998 * domain, and only that read domain. Enforce that in the request.
999 */
1000 if (write_domain != 0 && read_domains != write_domain)
1001 return -EINVAL;
1002
1003 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1004 if (obj == NULL)
1005 return -EBADF;
1006
1007 mutex_lock(&dev->struct_mutex);
1008 #if WATCH_BUF
1009 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
1010 obj, obj->size, read_domains, write_domain);
1011 #endif
1012 if (read_domains & I915_GEM_DOMAIN_GTT) {
1013 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1014
1015 /* Silently promote "you're not bound, there was nothing to do"
1016 * to success, since the client was just asking us to
1017 * make sure everything was done.
1018 */
1019 if (ret == -EINVAL)
1020 ret = 0;
1021 } else {
1022 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1023 }
1024
1025 drm_gem_object_unreference(obj);
1026 mutex_unlock(&dev->struct_mutex);
1027 return ret;
1028 }
1029
1030 /**
1031 * Called when user space has done writes to this buffer
1032 */
1033 int
1034 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1035 struct drm_file *file_priv)
1036 {
1037 struct drm_i915_gem_sw_finish *args = data;
1038 struct drm_gem_object *obj;
1039 struct drm_i915_gem_object *obj_priv;
1040 int ret = 0;
1041
1042 if (!(dev->driver->driver_features & DRIVER_GEM))
1043 return -ENODEV;
1044
1045 mutex_lock(&dev->struct_mutex);
1046 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1047 if (obj == NULL) {
1048 mutex_unlock(&dev->struct_mutex);
1049 return -EBADF;
1050 }
1051
1052 #if WATCH_BUF
1053 DRM_INFO("%s: sw_finish %d (%p %d)\n",
1054 __func__, args->handle, obj, obj->size);
1055 #endif
1056 obj_priv = obj->driver_private;
1057
1058 /* Pinned buffers may be scanout, so flush the cache */
1059 if (obj_priv->pin_count)
1060 i915_gem_object_flush_cpu_write_domain(obj);
1061
1062 drm_gem_object_unreference(obj);
1063 mutex_unlock(&dev->struct_mutex);
1064 return ret;
1065 }
1066
1067 /**
1068 * Maps the contents of an object, returning the address it is mapped
1069 * into.
1070 *
1071 * While the mapping holds a reference on the contents of the object, it doesn't
1072 * imply a ref on the object itself.
1073 */
1074 int
1075 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1076 struct drm_file *file_priv)
1077 {
1078 struct drm_i915_gem_mmap *args = data;
1079 struct drm_gem_object *obj;
1080 loff_t offset;
1081 unsigned long addr;
1082
1083 if (!(dev->driver->driver_features & DRIVER_GEM))
1084 return -ENODEV;
1085
1086 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1087 if (obj == NULL)
1088 return -EBADF;
1089
1090 offset = args->offset;
1091
1092 down_write(&current->mm->mmap_sem);
1093 addr = do_mmap(obj->filp, 0, args->size,
1094 PROT_READ | PROT_WRITE, MAP_SHARED,
1095 args->offset);
1096 up_write(&current->mm->mmap_sem);
1097 mutex_lock(&dev->struct_mutex);
1098 drm_gem_object_unreference(obj);
1099 mutex_unlock(&dev->struct_mutex);
1100 if (IS_ERR((void *)addr))
1101 return addr;
1102
1103 args->addr_ptr = (uint64_t) addr;
1104
1105 return 0;
1106 }
1107
1108 /**
1109 * i915_gem_fault - fault a page into the GTT
1110 * vma: VMA in question
1111 * vmf: fault info
1112 *
1113 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1114 * from userspace. The fault handler takes care of binding the object to
1115 * the GTT (if needed), allocating and programming a fence register (again,
1116 * only if needed based on whether the old reg is still valid or the object
1117 * is tiled) and inserting a new PTE into the faulting process.
1118 *
1119 * Note that the faulting process may involve evicting existing objects
1120 * from the GTT and/or fence registers to make room. So performance may
1121 * suffer if the GTT working set is large or there are few fence registers
1122 * left.
1123 */
1124 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1125 {
1126 struct drm_gem_object *obj = vma->vm_private_data;
1127 struct drm_device *dev = obj->dev;
1128 struct drm_i915_private *dev_priv = dev->dev_private;
1129 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1130 pgoff_t page_offset;
1131 unsigned long pfn;
1132 int ret = 0;
1133 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1134
1135 /* We don't use vmf->pgoff since that has the fake offset */
1136 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1137 PAGE_SHIFT;
1138
1139 /* Now bind it into the GTT if needed */
1140 mutex_lock(&dev->struct_mutex);
1141 if (!obj_priv->gtt_space) {
1142 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1143 if (ret) {
1144 mutex_unlock(&dev->struct_mutex);
1145 return VM_FAULT_SIGBUS;
1146 }
1147
1148 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1149 if (ret) {
1150 mutex_unlock(&dev->struct_mutex);
1151 return VM_FAULT_SIGBUS;
1152 }
1153
1154 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1155 }
1156
1157 /* Need a new fence register? */
1158 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1159 obj_priv->tiling_mode != I915_TILING_NONE) {
1160 ret = i915_gem_object_get_fence_reg(obj);
1161 if (ret) {
1162 mutex_unlock(&dev->struct_mutex);
1163 return VM_FAULT_SIGBUS;
1164 }
1165 }
1166
1167 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1168 page_offset;
1169
1170 /* Finally, remap it using the new GTT offset */
1171 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1172
1173 mutex_unlock(&dev->struct_mutex);
1174
1175 switch (ret) {
1176 case -ENOMEM:
1177 case -EAGAIN:
1178 return VM_FAULT_OOM;
1179 case -EFAULT:
1180 case -EINVAL:
1181 return VM_FAULT_SIGBUS;
1182 default:
1183 return VM_FAULT_NOPAGE;
1184 }
1185 }
1186
1187 /**
1188 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1189 * @obj: obj in question
1190 *
1191 * GEM memory mapping works by handing back to userspace a fake mmap offset
1192 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1193 * up the object based on the offset and sets up the various memory mapping
1194 * structures.
1195 *
1196 * This routine allocates and attaches a fake offset for @obj.
1197 */
1198 static int
1199 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1200 {
1201 struct drm_device *dev = obj->dev;
1202 struct drm_gem_mm *mm = dev->mm_private;
1203 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1204 struct drm_map_list *list;
1205 struct drm_local_map *map;
1206 int ret = 0;
1207
1208 /* Set the object up for mmap'ing */
1209 list = &obj->map_list;
1210 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1211 if (!list->map)
1212 return -ENOMEM;
1213
1214 map = list->map;
1215 map->type = _DRM_GEM;
1216 map->size = obj->size;
1217 map->handle = obj;
1218
1219 /* Get a DRM GEM mmap offset allocated... */
1220 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1221 obj->size / PAGE_SIZE, 0, 0);
1222 if (!list->file_offset_node) {
1223 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1224 ret = -ENOMEM;
1225 goto out_free_list;
1226 }
1227
1228 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1229 obj->size / PAGE_SIZE, 0);
1230 if (!list->file_offset_node) {
1231 ret = -ENOMEM;
1232 goto out_free_list;
1233 }
1234
1235 list->hash.key = list->file_offset_node->start;
1236 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1237 DRM_ERROR("failed to add to map hash\n");
1238 goto out_free_mm;
1239 }
1240
1241 /* By now we should be all set, any drm_mmap request on the offset
1242 * below will get to our mmap & fault handler */
1243 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1244
1245 return 0;
1246
1247 out_free_mm:
1248 drm_mm_put_block(list->file_offset_node);
1249 out_free_list:
1250 kfree(list->map);
1251
1252 return ret;
1253 }
1254
1255 static void
1256 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1257 {
1258 struct drm_device *dev = obj->dev;
1259 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1260 struct drm_gem_mm *mm = dev->mm_private;
1261 struct drm_map_list *list;
1262
1263 list = &obj->map_list;
1264 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1265
1266 if (list->file_offset_node) {
1267 drm_mm_put_block(list->file_offset_node);
1268 list->file_offset_node = NULL;
1269 }
1270
1271 if (list->map) {
1272 kfree(list->map);
1273 list->map = NULL;
1274 }
1275
1276 obj_priv->mmap_offset = 0;
1277 }
1278
1279 /**
1280 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1281 * @obj: object to check
1282 *
1283 * Return the required GTT alignment for an object, taking into account
1284 * potential fence register mapping if needed.
1285 */
1286 static uint32_t
1287 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1288 {
1289 struct drm_device *dev = obj->dev;
1290 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1291 int start, i;
1292
1293 /*
1294 * Minimum alignment is 4k (GTT page size), but might be greater
1295 * if a fence register is needed for the object.
1296 */
1297 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1298 return 4096;
1299
1300 /*
1301 * Previous chips need to be aligned to the size of the smallest
1302 * fence register that can contain the object.
1303 */
1304 if (IS_I9XX(dev))
1305 start = 1024*1024;
1306 else
1307 start = 512*1024;
1308
1309 for (i = start; i < obj->size; i <<= 1)
1310 ;
1311
1312 return i;
1313 }
1314
1315 /**
1316 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1317 * @dev: DRM device
1318 * @data: GTT mapping ioctl data
1319 * @file_priv: GEM object info
1320 *
1321 * Simply returns the fake offset to userspace so it can mmap it.
1322 * The mmap call will end up in drm_gem_mmap(), which will set things
1323 * up so we can get faults in the handler above.
1324 *
1325 * The fault handler will take care of binding the object into the GTT
1326 * (since it may have been evicted to make room for something), allocating
1327 * a fence register, and mapping the appropriate aperture address into
1328 * userspace.
1329 */
1330 int
1331 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1332 struct drm_file *file_priv)
1333 {
1334 struct drm_i915_gem_mmap_gtt *args = data;
1335 struct drm_i915_private *dev_priv = dev->dev_private;
1336 struct drm_gem_object *obj;
1337 struct drm_i915_gem_object *obj_priv;
1338 int ret;
1339
1340 if (!(dev->driver->driver_features & DRIVER_GEM))
1341 return -ENODEV;
1342
1343 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1344 if (obj == NULL)
1345 return -EBADF;
1346
1347 mutex_lock(&dev->struct_mutex);
1348
1349 obj_priv = obj->driver_private;
1350
1351 if (!obj_priv->mmap_offset) {
1352 ret = i915_gem_create_mmap_offset(obj);
1353 if (ret) {
1354 drm_gem_object_unreference(obj);
1355 mutex_unlock(&dev->struct_mutex);
1356 return ret;
1357 }
1358 }
1359
1360 args->offset = obj_priv->mmap_offset;
1361
1362 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1363
1364 /* Make sure the alignment is correct for fence regs etc */
1365 if (obj_priv->agp_mem &&
1366 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1367 drm_gem_object_unreference(obj);
1368 mutex_unlock(&dev->struct_mutex);
1369 return -EINVAL;
1370 }
1371
1372 /*
1373 * Pull it into the GTT so that we have a page list (makes the
1374 * initial fault faster and any subsequent flushing possible).
1375 */
1376 if (!obj_priv->agp_mem) {
1377 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1378 if (ret) {
1379 drm_gem_object_unreference(obj);
1380 mutex_unlock(&dev->struct_mutex);
1381 return ret;
1382 }
1383 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1384 }
1385
1386 drm_gem_object_unreference(obj);
1387 mutex_unlock(&dev->struct_mutex);
1388
1389 return 0;
1390 }
1391
1392 void
1393 i915_gem_object_put_pages(struct drm_gem_object *obj)
1394 {
1395 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1396 int page_count = obj->size / PAGE_SIZE;
1397 int i;
1398
1399 BUG_ON(obj_priv->pages_refcount == 0);
1400
1401 if (--obj_priv->pages_refcount != 0)
1402 return;
1403
1404 if (obj_priv->tiling_mode != I915_TILING_NONE)
1405 i915_gem_object_save_bit_17_swizzle(obj);
1406
1407 for (i = 0; i < page_count; i++)
1408 if (obj_priv->pages[i] != NULL) {
1409 if (obj_priv->dirty)
1410 set_page_dirty(obj_priv->pages[i]);
1411 mark_page_accessed(obj_priv->pages[i]);
1412 page_cache_release(obj_priv->pages[i]);
1413 }
1414 obj_priv->dirty = 0;
1415
1416 drm_free_large(obj_priv->pages);
1417 obj_priv->pages = NULL;
1418 }
1419
1420 static void
1421 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1422 {
1423 struct drm_device *dev = obj->dev;
1424 drm_i915_private_t *dev_priv = dev->dev_private;
1425 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1426
1427 /* Add a reference if we're newly entering the active list. */
1428 if (!obj_priv->active) {
1429 drm_gem_object_reference(obj);
1430 obj_priv->active = 1;
1431 }
1432 /* Move from whatever list we were on to the tail of execution. */
1433 spin_lock(&dev_priv->mm.active_list_lock);
1434 list_move_tail(&obj_priv->list,
1435 &dev_priv->mm.active_list);
1436 spin_unlock(&dev_priv->mm.active_list_lock);
1437 obj_priv->last_rendering_seqno = seqno;
1438 }
1439
1440 static void
1441 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1442 {
1443 struct drm_device *dev = obj->dev;
1444 drm_i915_private_t *dev_priv = dev->dev_private;
1445 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1446
1447 BUG_ON(!obj_priv->active);
1448 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1449 obj_priv->last_rendering_seqno = 0;
1450 }
1451
1452 static void
1453 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1454 {
1455 struct drm_device *dev = obj->dev;
1456 drm_i915_private_t *dev_priv = dev->dev_private;
1457 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1458
1459 i915_verify_inactive(dev, __FILE__, __LINE__);
1460 if (obj_priv->pin_count != 0)
1461 list_del_init(&obj_priv->list);
1462 else
1463 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1464
1465 obj_priv->last_rendering_seqno = 0;
1466 if (obj_priv->active) {
1467 obj_priv->active = 0;
1468 drm_gem_object_unreference(obj);
1469 }
1470 i915_verify_inactive(dev, __FILE__, __LINE__);
1471 }
1472
1473 /**
1474 * Creates a new sequence number, emitting a write of it to the status page
1475 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1476 *
1477 * Must be called with struct_lock held.
1478 *
1479 * Returned sequence numbers are nonzero on success.
1480 */
1481 static uint32_t
1482 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1483 uint32_t flush_domains)
1484 {
1485 drm_i915_private_t *dev_priv = dev->dev_private;
1486 struct drm_i915_file_private *i915_file_priv = NULL;
1487 struct drm_i915_gem_request *request;
1488 uint32_t seqno;
1489 int was_empty;
1490 RING_LOCALS;
1491
1492 if (file_priv != NULL)
1493 i915_file_priv = file_priv->driver_priv;
1494
1495 request = kzalloc(sizeof(*request), GFP_KERNEL);
1496 if (request == NULL)
1497 return 0;
1498
1499 /* Grab the seqno we're going to make this request be, and bump the
1500 * next (skipping 0 so it can be the reserved no-seqno value).
1501 */
1502 seqno = dev_priv->mm.next_gem_seqno;
1503 dev_priv->mm.next_gem_seqno++;
1504 if (dev_priv->mm.next_gem_seqno == 0)
1505 dev_priv->mm.next_gem_seqno++;
1506
1507 BEGIN_LP_RING(4);
1508 OUT_RING(MI_STORE_DWORD_INDEX);
1509 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1510 OUT_RING(seqno);
1511
1512 OUT_RING(MI_USER_INTERRUPT);
1513 ADVANCE_LP_RING();
1514
1515 DRM_DEBUG("%d\n", seqno);
1516
1517 request->seqno = seqno;
1518 request->emitted_jiffies = jiffies;
1519 was_empty = list_empty(&dev_priv->mm.request_list);
1520 list_add_tail(&request->list, &dev_priv->mm.request_list);
1521 if (i915_file_priv) {
1522 list_add_tail(&request->client_list,
1523 &i915_file_priv->mm.request_list);
1524 } else {
1525 INIT_LIST_HEAD(&request->client_list);
1526 }
1527
1528 /* Associate any objects on the flushing list matching the write
1529 * domain we're flushing with our flush.
1530 */
1531 if (flush_domains != 0) {
1532 struct drm_i915_gem_object *obj_priv, *next;
1533
1534 list_for_each_entry_safe(obj_priv, next,
1535 &dev_priv->mm.flushing_list, list) {
1536 struct drm_gem_object *obj = obj_priv->obj;
1537
1538 if ((obj->write_domain & flush_domains) ==
1539 obj->write_domain) {
1540 obj->write_domain = 0;
1541 i915_gem_object_move_to_active(obj, seqno);
1542 }
1543 }
1544
1545 }
1546
1547 if (was_empty && !dev_priv->mm.suspended)
1548 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1549 return seqno;
1550 }
1551
1552 /**
1553 * Command execution barrier
1554 *
1555 * Ensures that all commands in the ring are finished
1556 * before signalling the CPU
1557 */
1558 static uint32_t
1559 i915_retire_commands(struct drm_device *dev)
1560 {
1561 drm_i915_private_t *dev_priv = dev->dev_private;
1562 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1563 uint32_t flush_domains = 0;
1564 RING_LOCALS;
1565
1566 /* The sampler always gets flushed on i965 (sigh) */
1567 if (IS_I965G(dev))
1568 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1569 BEGIN_LP_RING(2);
1570 OUT_RING(cmd);
1571 OUT_RING(0); /* noop */
1572 ADVANCE_LP_RING();
1573 return flush_domains;
1574 }
1575
1576 /**
1577 * Moves buffers associated only with the given active seqno from the active
1578 * to inactive list, potentially freeing them.
1579 */
1580 static void
1581 i915_gem_retire_request(struct drm_device *dev,
1582 struct drm_i915_gem_request *request)
1583 {
1584 drm_i915_private_t *dev_priv = dev->dev_private;
1585
1586 /* Move any buffers on the active list that are no longer referenced
1587 * by the ringbuffer to the flushing/inactive lists as appropriate.
1588 */
1589 spin_lock(&dev_priv->mm.active_list_lock);
1590 while (!list_empty(&dev_priv->mm.active_list)) {
1591 struct drm_gem_object *obj;
1592 struct drm_i915_gem_object *obj_priv;
1593
1594 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1595 struct drm_i915_gem_object,
1596 list);
1597 obj = obj_priv->obj;
1598
1599 /* If the seqno being retired doesn't match the oldest in the
1600 * list, then the oldest in the list must still be newer than
1601 * this seqno.
1602 */
1603 if (obj_priv->last_rendering_seqno != request->seqno)
1604 goto out;
1605
1606 #if WATCH_LRU
1607 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1608 __func__, request->seqno, obj);
1609 #endif
1610
1611 if (obj->write_domain != 0)
1612 i915_gem_object_move_to_flushing(obj);
1613 else {
1614 /* Take a reference on the object so it won't be
1615 * freed while the spinlock is held. The list
1616 * protection for this spinlock is safe when breaking
1617 * the lock like this since the next thing we do
1618 * is just get the head of the list again.
1619 */
1620 drm_gem_object_reference(obj);
1621 i915_gem_object_move_to_inactive(obj);
1622 spin_unlock(&dev_priv->mm.active_list_lock);
1623 drm_gem_object_unreference(obj);
1624 spin_lock(&dev_priv->mm.active_list_lock);
1625 }
1626 }
1627 out:
1628 spin_unlock(&dev_priv->mm.active_list_lock);
1629 }
1630
1631 /**
1632 * Returns true if seq1 is later than seq2.
1633 */
1634 static int
1635 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1636 {
1637 return (int32_t)(seq1 - seq2) >= 0;
1638 }
1639
1640 uint32_t
1641 i915_get_gem_seqno(struct drm_device *dev)
1642 {
1643 drm_i915_private_t *dev_priv = dev->dev_private;
1644
1645 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1646 }
1647
1648 /**
1649 * This function clears the request list as sequence numbers are passed.
1650 */
1651 void
1652 i915_gem_retire_requests(struct drm_device *dev)
1653 {
1654 drm_i915_private_t *dev_priv = dev->dev_private;
1655 uint32_t seqno;
1656
1657 if (!dev_priv->hw_status_page)
1658 return;
1659
1660 seqno = i915_get_gem_seqno(dev);
1661
1662 while (!list_empty(&dev_priv->mm.request_list)) {
1663 struct drm_i915_gem_request *request;
1664 uint32_t retiring_seqno;
1665
1666 request = list_first_entry(&dev_priv->mm.request_list,
1667 struct drm_i915_gem_request,
1668 list);
1669 retiring_seqno = request->seqno;
1670
1671 if (i915_seqno_passed(seqno, retiring_seqno) ||
1672 dev_priv->mm.wedged) {
1673 i915_gem_retire_request(dev, request);
1674
1675 list_del(&request->list);
1676 list_del(&request->client_list);
1677 kfree(request);
1678 } else
1679 break;
1680 }
1681 }
1682
1683 void
1684 i915_gem_retire_work_handler(struct work_struct *work)
1685 {
1686 drm_i915_private_t *dev_priv;
1687 struct drm_device *dev;
1688
1689 dev_priv = container_of(work, drm_i915_private_t,
1690 mm.retire_work.work);
1691 dev = dev_priv->dev;
1692
1693 mutex_lock(&dev->struct_mutex);
1694 i915_gem_retire_requests(dev);
1695 if (!dev_priv->mm.suspended &&
1696 !list_empty(&dev_priv->mm.request_list))
1697 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1698 mutex_unlock(&dev->struct_mutex);
1699 }
1700
1701 /**
1702 * Waits for a sequence number to be signaled, and cleans up the
1703 * request and object lists appropriately for that event.
1704 */
1705 static int
1706 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1707 {
1708 drm_i915_private_t *dev_priv = dev->dev_private;
1709 u32 ier;
1710 int ret = 0;
1711
1712 BUG_ON(seqno == 0);
1713
1714 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1715 if (IS_IGDNG(dev))
1716 ier = I915_READ(DEIER) | I915_READ(GTIER);
1717 else
1718 ier = I915_READ(IER);
1719 if (!ier) {
1720 DRM_ERROR("something (likely vbetool) disabled "
1721 "interrupts, re-enabling\n");
1722 i915_driver_irq_preinstall(dev);
1723 i915_driver_irq_postinstall(dev);
1724 }
1725
1726 dev_priv->mm.waiting_gem_seqno = seqno;
1727 i915_user_irq_get(dev);
1728 ret = wait_event_interruptible(dev_priv->irq_queue,
1729 i915_seqno_passed(i915_get_gem_seqno(dev),
1730 seqno) ||
1731 dev_priv->mm.wedged);
1732 i915_user_irq_put(dev);
1733 dev_priv->mm.waiting_gem_seqno = 0;
1734 }
1735 if (dev_priv->mm.wedged)
1736 ret = -EIO;
1737
1738 if (ret && ret != -ERESTARTSYS)
1739 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1740 __func__, ret, seqno, i915_get_gem_seqno(dev));
1741
1742 /* Directly dispatch request retiring. While we have the work queue
1743 * to handle this, the waiter on a request often wants an associated
1744 * buffer to have made it to the inactive list, and we would need
1745 * a separate wait queue to handle that.
1746 */
1747 if (ret == 0)
1748 i915_gem_retire_requests(dev);
1749
1750 return ret;
1751 }
1752
1753 static void
1754 i915_gem_flush(struct drm_device *dev,
1755 uint32_t invalidate_domains,
1756 uint32_t flush_domains)
1757 {
1758 drm_i915_private_t *dev_priv = dev->dev_private;
1759 uint32_t cmd;
1760 RING_LOCALS;
1761
1762 #if WATCH_EXEC
1763 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1764 invalidate_domains, flush_domains);
1765 #endif
1766
1767 if (flush_domains & I915_GEM_DOMAIN_CPU)
1768 drm_agp_chipset_flush(dev);
1769
1770 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1771 /*
1772 * read/write caches:
1773 *
1774 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1775 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1776 * also flushed at 2d versus 3d pipeline switches.
1777 *
1778 * read-only caches:
1779 *
1780 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1781 * MI_READ_FLUSH is set, and is always flushed on 965.
1782 *
1783 * I915_GEM_DOMAIN_COMMAND may not exist?
1784 *
1785 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1786 * invalidated when MI_EXE_FLUSH is set.
1787 *
1788 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1789 * invalidated with every MI_FLUSH.
1790 *
1791 * TLBs:
1792 *
1793 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1794 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1795 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1796 * are flushed at any MI_FLUSH.
1797 */
1798
1799 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1800 if ((invalidate_domains|flush_domains) &
1801 I915_GEM_DOMAIN_RENDER)
1802 cmd &= ~MI_NO_WRITE_FLUSH;
1803 if (!IS_I965G(dev)) {
1804 /*
1805 * On the 965, the sampler cache always gets flushed
1806 * and this bit is reserved.
1807 */
1808 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1809 cmd |= MI_READ_FLUSH;
1810 }
1811 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1812 cmd |= MI_EXE_FLUSH;
1813
1814 #if WATCH_EXEC
1815 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1816 #endif
1817 BEGIN_LP_RING(2);
1818 OUT_RING(cmd);
1819 OUT_RING(0); /* noop */
1820 ADVANCE_LP_RING();
1821 }
1822 }
1823
1824 /**
1825 * Ensures that all rendering to the object has completed and the object is
1826 * safe to unbind from the GTT or access from the CPU.
1827 */
1828 static int
1829 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1830 {
1831 struct drm_device *dev = obj->dev;
1832 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1833 int ret;
1834
1835 /* This function only exists to support waiting for existing rendering,
1836 * not for emitting required flushes.
1837 */
1838 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1839
1840 /* If there is rendering queued on the buffer being evicted, wait for
1841 * it.
1842 */
1843 if (obj_priv->active) {
1844 #if WATCH_BUF
1845 DRM_INFO("%s: object %p wait for seqno %08x\n",
1846 __func__, obj, obj_priv->last_rendering_seqno);
1847 #endif
1848 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1849 if (ret != 0)
1850 return ret;
1851 }
1852
1853 return 0;
1854 }
1855
1856 /**
1857 * Unbinds an object from the GTT aperture.
1858 */
1859 int
1860 i915_gem_object_unbind(struct drm_gem_object *obj)
1861 {
1862 struct drm_device *dev = obj->dev;
1863 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1864 loff_t offset;
1865 int ret = 0;
1866
1867 #if WATCH_BUF
1868 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1869 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1870 #endif
1871 if (obj_priv->gtt_space == NULL)
1872 return 0;
1873
1874 if (obj_priv->pin_count != 0) {
1875 DRM_ERROR("Attempting to unbind pinned buffer\n");
1876 return -EINVAL;
1877 }
1878
1879 /* Move the object to the CPU domain to ensure that
1880 * any possible CPU writes while it's not in the GTT
1881 * are flushed when we go to remap it. This will
1882 * also ensure that all pending GPU writes are finished
1883 * before we unbind.
1884 */
1885 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1886 if (ret) {
1887 if (ret != -ERESTARTSYS)
1888 DRM_ERROR("set_domain failed: %d\n", ret);
1889 return ret;
1890 }
1891
1892 if (obj_priv->agp_mem != NULL) {
1893 drm_unbind_agp(obj_priv->agp_mem);
1894 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1895 obj_priv->agp_mem = NULL;
1896 }
1897
1898 BUG_ON(obj_priv->active);
1899
1900 /* blow away mappings if mapped through GTT */
1901 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1902 if (dev->dev_mapping)
1903 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1904
1905 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1906 i915_gem_clear_fence_reg(obj);
1907
1908 i915_gem_object_put_pages(obj);
1909
1910 if (obj_priv->gtt_space) {
1911 atomic_dec(&dev->gtt_count);
1912 atomic_sub(obj->size, &dev->gtt_memory);
1913
1914 drm_mm_put_block(obj_priv->gtt_space);
1915 obj_priv->gtt_space = NULL;
1916 }
1917
1918 /* Remove ourselves from the LRU list if present. */
1919 if (!list_empty(&obj_priv->list))
1920 list_del_init(&obj_priv->list);
1921
1922 return 0;
1923 }
1924
1925 static int
1926 i915_gem_evict_something(struct drm_device *dev)
1927 {
1928 drm_i915_private_t *dev_priv = dev->dev_private;
1929 struct drm_gem_object *obj;
1930 struct drm_i915_gem_object *obj_priv;
1931 int ret = 0;
1932
1933 for (;;) {
1934 /* If there's an inactive buffer available now, grab it
1935 * and be done.
1936 */
1937 if (!list_empty(&dev_priv->mm.inactive_list)) {
1938 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1939 struct drm_i915_gem_object,
1940 list);
1941 obj = obj_priv->obj;
1942 BUG_ON(obj_priv->pin_count != 0);
1943 #if WATCH_LRU
1944 DRM_INFO("%s: evicting %p\n", __func__, obj);
1945 #endif
1946 BUG_ON(obj_priv->active);
1947
1948 /* Wait on the rendering and unbind the buffer. */
1949 ret = i915_gem_object_unbind(obj);
1950 break;
1951 }
1952
1953 /* If we didn't get anything, but the ring is still processing
1954 * things, wait for one of those things to finish and hopefully
1955 * leave us a buffer to evict.
1956 */
1957 if (!list_empty(&dev_priv->mm.request_list)) {
1958 struct drm_i915_gem_request *request;
1959
1960 request = list_first_entry(&dev_priv->mm.request_list,
1961 struct drm_i915_gem_request,
1962 list);
1963
1964 ret = i915_wait_request(dev, request->seqno);
1965 if (ret)
1966 break;
1967
1968 /* if waiting caused an object to become inactive,
1969 * then loop around and wait for it. Otherwise, we
1970 * assume that waiting freed and unbound something,
1971 * so there should now be some space in the GTT
1972 */
1973 if (!list_empty(&dev_priv->mm.inactive_list))
1974 continue;
1975 break;
1976 }
1977
1978 /* If we didn't have anything on the request list but there
1979 * are buffers awaiting a flush, emit one and try again.
1980 * When we wait on it, those buffers waiting for that flush
1981 * will get moved to inactive.
1982 */
1983 if (!list_empty(&dev_priv->mm.flushing_list)) {
1984 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1985 struct drm_i915_gem_object,
1986 list);
1987 obj = obj_priv->obj;
1988
1989 i915_gem_flush(dev,
1990 obj->write_domain,
1991 obj->write_domain);
1992 i915_add_request(dev, NULL, obj->write_domain);
1993
1994 obj = NULL;
1995 continue;
1996 }
1997
1998 DRM_ERROR("inactive empty %d request empty %d "
1999 "flushing empty %d\n",
2000 list_empty(&dev_priv->mm.inactive_list),
2001 list_empty(&dev_priv->mm.request_list),
2002 list_empty(&dev_priv->mm.flushing_list));
2003 /* If we didn't do any of the above, there's nothing to be done
2004 * and we just can't fit it in.
2005 */
2006 return -ENOSPC;
2007 }
2008 return ret;
2009 }
2010
2011 static int
2012 i915_gem_evict_everything(struct drm_device *dev)
2013 {
2014 int ret;
2015
2016 for (;;) {
2017 ret = i915_gem_evict_something(dev);
2018 if (ret != 0)
2019 break;
2020 }
2021 if (ret == -ENOSPC)
2022 return 0;
2023 return ret;
2024 }
2025
2026 int
2027 i915_gem_object_get_pages(struct drm_gem_object *obj)
2028 {
2029 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2030 int page_count, i;
2031 struct address_space *mapping;
2032 struct inode *inode;
2033 struct page *page;
2034 int ret;
2035
2036 if (obj_priv->pages_refcount++ != 0)
2037 return 0;
2038
2039 /* Get the list of pages out of our struct file. They'll be pinned
2040 * at this point until we release them.
2041 */
2042 page_count = obj->size / PAGE_SIZE;
2043 BUG_ON(obj_priv->pages != NULL);
2044 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2045 if (obj_priv->pages == NULL) {
2046 DRM_ERROR("Faled to allocate page list\n");
2047 obj_priv->pages_refcount--;
2048 return -ENOMEM;
2049 }
2050
2051 inode = obj->filp->f_path.dentry->d_inode;
2052 mapping = inode->i_mapping;
2053 for (i = 0; i < page_count; i++) {
2054 page = read_mapping_page(mapping, i, NULL);
2055 if (IS_ERR(page)) {
2056 ret = PTR_ERR(page);
2057 DRM_ERROR("read_mapping_page failed: %d\n", ret);
2058 i915_gem_object_put_pages(obj);
2059 return ret;
2060 }
2061 obj_priv->pages[i] = page;
2062 }
2063
2064 if (obj_priv->tiling_mode != I915_TILING_NONE)
2065 i915_gem_object_do_bit_17_swizzle(obj);
2066
2067 return 0;
2068 }
2069
2070 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2071 {
2072 struct drm_gem_object *obj = reg->obj;
2073 struct drm_device *dev = obj->dev;
2074 drm_i915_private_t *dev_priv = dev->dev_private;
2075 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2076 int regnum = obj_priv->fence_reg;
2077 uint64_t val;
2078
2079 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2080 0xfffff000) << 32;
2081 val |= obj_priv->gtt_offset & 0xfffff000;
2082 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2083 if (obj_priv->tiling_mode == I915_TILING_Y)
2084 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2085 val |= I965_FENCE_REG_VALID;
2086
2087 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2088 }
2089
2090 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2091 {
2092 struct drm_gem_object *obj = reg->obj;
2093 struct drm_device *dev = obj->dev;
2094 drm_i915_private_t *dev_priv = dev->dev_private;
2095 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2096 int regnum = obj_priv->fence_reg;
2097 int tile_width;
2098 uint32_t fence_reg, val;
2099 uint32_t pitch_val;
2100
2101 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2102 (obj_priv->gtt_offset & (obj->size - 1))) {
2103 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2104 __func__, obj_priv->gtt_offset, obj->size);
2105 return;
2106 }
2107
2108 if (obj_priv->tiling_mode == I915_TILING_Y &&
2109 HAS_128_BYTE_Y_TILING(dev))
2110 tile_width = 128;
2111 else
2112 tile_width = 512;
2113
2114 /* Note: pitch better be a power of two tile widths */
2115 pitch_val = obj_priv->stride / tile_width;
2116 pitch_val = ffs(pitch_val) - 1;
2117
2118 val = obj_priv->gtt_offset;
2119 if (obj_priv->tiling_mode == I915_TILING_Y)
2120 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2121 val |= I915_FENCE_SIZE_BITS(obj->size);
2122 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2123 val |= I830_FENCE_REG_VALID;
2124
2125 if (regnum < 8)
2126 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2127 else
2128 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2129 I915_WRITE(fence_reg, val);
2130 }
2131
2132 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2133 {
2134 struct drm_gem_object *obj = reg->obj;
2135 struct drm_device *dev = obj->dev;
2136 drm_i915_private_t *dev_priv = dev->dev_private;
2137 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2138 int regnum = obj_priv->fence_reg;
2139 uint32_t val;
2140 uint32_t pitch_val;
2141 uint32_t fence_size_bits;
2142
2143 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2144 (obj_priv->gtt_offset & (obj->size - 1))) {
2145 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2146 __func__, obj_priv->gtt_offset);
2147 return;
2148 }
2149
2150 pitch_val = obj_priv->stride / 128;
2151 pitch_val = ffs(pitch_val) - 1;
2152 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2153
2154 val = obj_priv->gtt_offset;
2155 if (obj_priv->tiling_mode == I915_TILING_Y)
2156 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2157 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2158 WARN_ON(fence_size_bits & ~0x00000f00);
2159 val |= fence_size_bits;
2160 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2161 val |= I830_FENCE_REG_VALID;
2162
2163 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2164 }
2165
2166 /**
2167 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2168 * @obj: object to map through a fence reg
2169 *
2170 * When mapping objects through the GTT, userspace wants to be able to write
2171 * to them without having to worry about swizzling if the object is tiled.
2172 *
2173 * This function walks the fence regs looking for a free one for @obj,
2174 * stealing one if it can't find any.
2175 *
2176 * It then sets up the reg based on the object's properties: address, pitch
2177 * and tiling format.
2178 */
2179 int
2180 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2181 {
2182 struct drm_device *dev = obj->dev;
2183 struct drm_i915_private *dev_priv = dev->dev_private;
2184 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2185 struct drm_i915_fence_reg *reg = NULL;
2186 struct drm_i915_gem_object *old_obj_priv = NULL;
2187 int i, ret, avail;
2188
2189 switch (obj_priv->tiling_mode) {
2190 case I915_TILING_NONE:
2191 WARN(1, "allocating a fence for non-tiled object?\n");
2192 break;
2193 case I915_TILING_X:
2194 if (!obj_priv->stride)
2195 return -EINVAL;
2196 WARN((obj_priv->stride & (512 - 1)),
2197 "object 0x%08x is X tiled but has non-512B pitch\n",
2198 obj_priv->gtt_offset);
2199 break;
2200 case I915_TILING_Y:
2201 if (!obj_priv->stride)
2202 return -EINVAL;
2203 WARN((obj_priv->stride & (128 - 1)),
2204 "object 0x%08x is Y tiled but has non-128B pitch\n",
2205 obj_priv->gtt_offset);
2206 break;
2207 }
2208
2209 /* First try to find a free reg */
2210 try_again:
2211 avail = 0;
2212 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2213 reg = &dev_priv->fence_regs[i];
2214 if (!reg->obj)
2215 break;
2216
2217 old_obj_priv = reg->obj->driver_private;
2218 if (!old_obj_priv->pin_count)
2219 avail++;
2220 }
2221
2222 /* None available, try to steal one or wait for a user to finish */
2223 if (i == dev_priv->num_fence_regs) {
2224 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2225 loff_t offset;
2226
2227 if (avail == 0)
2228 return -ENOSPC;
2229
2230 for (i = dev_priv->fence_reg_start;
2231 i < dev_priv->num_fence_regs; i++) {
2232 uint32_t this_seqno;
2233
2234 reg = &dev_priv->fence_regs[i];
2235 old_obj_priv = reg->obj->driver_private;
2236
2237 if (old_obj_priv->pin_count)
2238 continue;
2239
2240 /* i915 uses fences for GPU access to tiled buffers */
2241 if (IS_I965G(dev) || !old_obj_priv->active)
2242 break;
2243
2244 /* find the seqno of the first available fence */
2245 this_seqno = old_obj_priv->last_rendering_seqno;
2246 if (this_seqno != 0 &&
2247 reg->obj->write_domain == 0 &&
2248 i915_seqno_passed(seqno, this_seqno))
2249 seqno = this_seqno;
2250 }
2251
2252 /*
2253 * Now things get ugly... we have to wait for one of the
2254 * objects to finish before trying again.
2255 */
2256 if (i == dev_priv->num_fence_regs) {
2257 if (seqno == dev_priv->mm.next_gem_seqno) {
2258 i915_gem_flush(dev,
2259 I915_GEM_GPU_DOMAINS,
2260 I915_GEM_GPU_DOMAINS);
2261 seqno = i915_add_request(dev, NULL,
2262 I915_GEM_GPU_DOMAINS);
2263 if (seqno == 0)
2264 return -ENOMEM;
2265 }
2266
2267 ret = i915_wait_request(dev, seqno);
2268 if (ret)
2269 return ret;
2270 goto try_again;
2271 }
2272
2273 /*
2274 * Zap this virtual mapping so we can set up a fence again
2275 * for this object next time we need it.
2276 */
2277 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2278 if (dev->dev_mapping)
2279 unmap_mapping_range(dev->dev_mapping, offset,
2280 reg->obj->size, 1);
2281 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2282 }
2283
2284 obj_priv->fence_reg = i;
2285 reg->obj = obj;
2286
2287 if (IS_I965G(dev))
2288 i965_write_fence_reg(reg);
2289 else if (IS_I9XX(dev))
2290 i915_write_fence_reg(reg);
2291 else
2292 i830_write_fence_reg(reg);
2293
2294 return 0;
2295 }
2296
2297 /**
2298 * i915_gem_clear_fence_reg - clear out fence register info
2299 * @obj: object to clear
2300 *
2301 * Zeroes out the fence register itself and clears out the associated
2302 * data structures in dev_priv and obj_priv.
2303 */
2304 static void
2305 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2306 {
2307 struct drm_device *dev = obj->dev;
2308 drm_i915_private_t *dev_priv = dev->dev_private;
2309 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2310
2311 if (IS_I965G(dev))
2312 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2313 else {
2314 uint32_t fence_reg;
2315
2316 if (obj_priv->fence_reg < 8)
2317 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2318 else
2319 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2320 8) * 4;
2321
2322 I915_WRITE(fence_reg, 0);
2323 }
2324
2325 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2326 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2327 }
2328
2329 /**
2330 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2331 * to the buffer to finish, and then resets the fence register.
2332 * @obj: tiled object holding a fence register.
2333 *
2334 * Zeroes out the fence register itself and clears out the associated
2335 * data structures in dev_priv and obj_priv.
2336 */
2337 int
2338 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2339 {
2340 struct drm_device *dev = obj->dev;
2341 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2342
2343 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2344 return 0;
2345
2346 /* On the i915, GPU access to tiled buffers is via a fence,
2347 * therefore we must wait for any outstanding access to complete
2348 * before clearing the fence.
2349 */
2350 if (!IS_I965G(dev)) {
2351 int ret;
2352
2353 i915_gem_object_flush_gpu_write_domain(obj);
2354 i915_gem_object_flush_gtt_write_domain(obj);
2355 ret = i915_gem_object_wait_rendering(obj);
2356 if (ret != 0)
2357 return ret;
2358 }
2359
2360 i915_gem_clear_fence_reg (obj);
2361
2362 return 0;
2363 }
2364
2365 /**
2366 * Finds free space in the GTT aperture and binds the object there.
2367 */
2368 static int
2369 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2370 {
2371 struct drm_device *dev = obj->dev;
2372 drm_i915_private_t *dev_priv = dev->dev_private;
2373 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2374 struct drm_mm_node *free_space;
2375 int page_count, ret;
2376
2377 if (dev_priv->mm.suspended)
2378 return -EBUSY;
2379 if (alignment == 0)
2380 alignment = i915_gem_get_gtt_alignment(obj);
2381 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2382 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2383 return -EINVAL;
2384 }
2385
2386 search_free:
2387 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2388 obj->size, alignment, 0);
2389 if (free_space != NULL) {
2390 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2391 alignment);
2392 if (obj_priv->gtt_space != NULL) {
2393 obj_priv->gtt_space->private = obj;
2394 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2395 }
2396 }
2397 if (obj_priv->gtt_space == NULL) {
2398 bool lists_empty;
2399
2400 /* If the gtt is empty and we're still having trouble
2401 * fitting our object in, we're out of memory.
2402 */
2403 #if WATCH_LRU
2404 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2405 #endif
2406 spin_lock(&dev_priv->mm.active_list_lock);
2407 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2408 list_empty(&dev_priv->mm.flushing_list) &&
2409 list_empty(&dev_priv->mm.active_list));
2410 spin_unlock(&dev_priv->mm.active_list_lock);
2411 if (lists_empty) {
2412 DRM_ERROR("GTT full, but LRU list empty\n");
2413 return -ENOSPC;
2414 }
2415
2416 ret = i915_gem_evict_something(dev);
2417 if (ret != 0) {
2418 if (ret != -ERESTARTSYS)
2419 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2420 return ret;
2421 }
2422 goto search_free;
2423 }
2424
2425 #if WATCH_BUF
2426 DRM_INFO("Binding object of size %d at 0x%08x\n",
2427 obj->size, obj_priv->gtt_offset);
2428 #endif
2429 ret = i915_gem_object_get_pages(obj);
2430 if (ret) {
2431 drm_mm_put_block(obj_priv->gtt_space);
2432 obj_priv->gtt_space = NULL;
2433 return ret;
2434 }
2435
2436 page_count = obj->size / PAGE_SIZE;
2437 /* Create an AGP memory structure pointing at our pages, and bind it
2438 * into the GTT.
2439 */
2440 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2441 obj_priv->pages,
2442 page_count,
2443 obj_priv->gtt_offset,
2444 obj_priv->agp_type);
2445 if (obj_priv->agp_mem == NULL) {
2446 i915_gem_object_put_pages(obj);
2447 drm_mm_put_block(obj_priv->gtt_space);
2448 obj_priv->gtt_space = NULL;
2449 return -ENOMEM;
2450 }
2451 atomic_inc(&dev->gtt_count);
2452 atomic_add(obj->size, &dev->gtt_memory);
2453
2454 /* Assert that the object is not currently in any GPU domain. As it
2455 * wasn't in the GTT, there shouldn't be any way it could have been in
2456 * a GPU cache
2457 */
2458 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2459 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2460
2461 return 0;
2462 }
2463
2464 void
2465 i915_gem_clflush_object(struct drm_gem_object *obj)
2466 {
2467 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2468
2469 /* If we don't have a page list set up, then we're not pinned
2470 * to GPU, and we can ignore the cache flush because it'll happen
2471 * again at bind time.
2472 */
2473 if (obj_priv->pages == NULL)
2474 return;
2475
2476 /* XXX: The 865 in particular appears to be weird in how it handles
2477 * cache flushing. We haven't figured it out, but the
2478 * clflush+agp_chipset_flush doesn't appear to successfully get the
2479 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2480 */
2481 if (IS_I865G(obj->dev)) {
2482 wbinvd();
2483 return;
2484 }
2485
2486 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2487 }
2488
2489 /** Flushes any GPU write domain for the object if it's dirty. */
2490 static void
2491 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2492 {
2493 struct drm_device *dev = obj->dev;
2494 uint32_t seqno;
2495
2496 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2497 return;
2498
2499 /* Queue the GPU write cache flushing we need. */
2500 i915_gem_flush(dev, 0, obj->write_domain);
2501 seqno = i915_add_request(dev, NULL, obj->write_domain);
2502 obj->write_domain = 0;
2503 i915_gem_object_move_to_active(obj, seqno);
2504 }
2505
2506 /** Flushes the GTT write domain for the object if it's dirty. */
2507 static void
2508 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2509 {
2510 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2511 return;
2512
2513 /* No actual flushing is required for the GTT write domain. Writes
2514 * to it immediately go to main memory as far as we know, so there's
2515 * no chipset flush. It also doesn't land in render cache.
2516 */
2517 obj->write_domain = 0;
2518 }
2519
2520 /** Flushes the CPU write domain for the object if it's dirty. */
2521 static void
2522 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2523 {
2524 struct drm_device *dev = obj->dev;
2525
2526 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2527 return;
2528
2529 i915_gem_clflush_object(obj);
2530 drm_agp_chipset_flush(dev);
2531 obj->write_domain = 0;
2532 }
2533
2534 /**
2535 * Moves a single object to the GTT read, and possibly write domain.
2536 *
2537 * This function returns when the move is complete, including waiting on
2538 * flushes to occur.
2539 */
2540 int
2541 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2542 {
2543 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2544 int ret;
2545
2546 /* Not valid to be called on unbound objects. */
2547 if (obj_priv->gtt_space == NULL)
2548 return -EINVAL;
2549
2550 i915_gem_object_flush_gpu_write_domain(obj);
2551 /* Wait on any GPU rendering and flushing to occur. */
2552 ret = i915_gem_object_wait_rendering(obj);
2553 if (ret != 0)
2554 return ret;
2555
2556 /* If we're writing through the GTT domain, then CPU and GPU caches
2557 * will need to be invalidated at next use.
2558 */
2559 if (write)
2560 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2561
2562 i915_gem_object_flush_cpu_write_domain(obj);
2563
2564 /* It should now be out of any other write domains, and we can update
2565 * the domain values for our changes.
2566 */
2567 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2568 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2569 if (write) {
2570 obj->write_domain = I915_GEM_DOMAIN_GTT;
2571 obj_priv->dirty = 1;
2572 }
2573
2574 return 0;
2575 }
2576
2577 /**
2578 * Moves a single object to the CPU read, and possibly write domain.
2579 *
2580 * This function returns when the move is complete, including waiting on
2581 * flushes to occur.
2582 */
2583 static int
2584 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2585 {
2586 int ret;
2587
2588 i915_gem_object_flush_gpu_write_domain(obj);
2589 /* Wait on any GPU rendering and flushing to occur. */
2590 ret = i915_gem_object_wait_rendering(obj);
2591 if (ret != 0)
2592 return ret;
2593
2594 i915_gem_object_flush_gtt_write_domain(obj);
2595
2596 /* If we have a partially-valid cache of the object in the CPU,
2597 * finish invalidating it and free the per-page flags.
2598 */
2599 i915_gem_object_set_to_full_cpu_read_domain(obj);
2600
2601 /* Flush the CPU cache if it's still invalid. */
2602 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2603 i915_gem_clflush_object(obj);
2604
2605 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2606 }
2607
2608 /* It should now be out of any other write domains, and we can update
2609 * the domain values for our changes.
2610 */
2611 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2612
2613 /* If we're writing through the CPU, then the GPU read domains will
2614 * need to be invalidated at next use.
2615 */
2616 if (write) {
2617 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2618 obj->write_domain = I915_GEM_DOMAIN_CPU;
2619 }
2620
2621 return 0;
2622 }
2623
2624 /*
2625 * Set the next domain for the specified object. This
2626 * may not actually perform the necessary flushing/invaliding though,
2627 * as that may want to be batched with other set_domain operations
2628 *
2629 * This is (we hope) the only really tricky part of gem. The goal
2630 * is fairly simple -- track which caches hold bits of the object
2631 * and make sure they remain coherent. A few concrete examples may
2632 * help to explain how it works. For shorthand, we use the notation
2633 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2634 * a pair of read and write domain masks.
2635 *
2636 * Case 1: the batch buffer
2637 *
2638 * 1. Allocated
2639 * 2. Written by CPU
2640 * 3. Mapped to GTT
2641 * 4. Read by GPU
2642 * 5. Unmapped from GTT
2643 * 6. Freed
2644 *
2645 * Let's take these a step at a time
2646 *
2647 * 1. Allocated
2648 * Pages allocated from the kernel may still have
2649 * cache contents, so we set them to (CPU, CPU) always.
2650 * 2. Written by CPU (using pwrite)
2651 * The pwrite function calls set_domain (CPU, CPU) and
2652 * this function does nothing (as nothing changes)
2653 * 3. Mapped by GTT
2654 * This function asserts that the object is not
2655 * currently in any GPU-based read or write domains
2656 * 4. Read by GPU
2657 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2658 * As write_domain is zero, this function adds in the
2659 * current read domains (CPU+COMMAND, 0).
2660 * flush_domains is set to CPU.
2661 * invalidate_domains is set to COMMAND
2662 * clflush is run to get data out of the CPU caches
2663 * then i915_dev_set_domain calls i915_gem_flush to
2664 * emit an MI_FLUSH and drm_agp_chipset_flush
2665 * 5. Unmapped from GTT
2666 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2667 * flush_domains and invalidate_domains end up both zero
2668 * so no flushing/invalidating happens
2669 * 6. Freed
2670 * yay, done
2671 *
2672 * Case 2: The shared render buffer
2673 *
2674 * 1. Allocated
2675 * 2. Mapped to GTT
2676 * 3. Read/written by GPU
2677 * 4. set_domain to (CPU,CPU)
2678 * 5. Read/written by CPU
2679 * 6. Read/written by GPU
2680 *
2681 * 1. Allocated
2682 * Same as last example, (CPU, CPU)
2683 * 2. Mapped to GTT
2684 * Nothing changes (assertions find that it is not in the GPU)
2685 * 3. Read/written by GPU
2686 * execbuffer calls set_domain (RENDER, RENDER)
2687 * flush_domains gets CPU
2688 * invalidate_domains gets GPU
2689 * clflush (obj)
2690 * MI_FLUSH and drm_agp_chipset_flush
2691 * 4. set_domain (CPU, CPU)
2692 * flush_domains gets GPU
2693 * invalidate_domains gets CPU
2694 * wait_rendering (obj) to make sure all drawing is complete.
2695 * This will include an MI_FLUSH to get the data from GPU
2696 * to memory
2697 * clflush (obj) to invalidate the CPU cache
2698 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2699 * 5. Read/written by CPU
2700 * cache lines are loaded and dirtied
2701 * 6. Read written by GPU
2702 * Same as last GPU access
2703 *
2704 * Case 3: The constant buffer
2705 *
2706 * 1. Allocated
2707 * 2. Written by CPU
2708 * 3. Read by GPU
2709 * 4. Updated (written) by CPU again
2710 * 5. Read by GPU
2711 *
2712 * 1. Allocated
2713 * (CPU, CPU)
2714 * 2. Written by CPU
2715 * (CPU, CPU)
2716 * 3. Read by GPU
2717 * (CPU+RENDER, 0)
2718 * flush_domains = CPU
2719 * invalidate_domains = RENDER
2720 * clflush (obj)
2721 * MI_FLUSH
2722 * drm_agp_chipset_flush
2723 * 4. Updated (written) by CPU again
2724 * (CPU, CPU)
2725 * flush_domains = 0 (no previous write domain)
2726 * invalidate_domains = 0 (no new read domains)
2727 * 5. Read by GPU
2728 * (CPU+RENDER, 0)
2729 * flush_domains = CPU
2730 * invalidate_domains = RENDER
2731 * clflush (obj)
2732 * MI_FLUSH
2733 * drm_agp_chipset_flush
2734 */
2735 static void
2736 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2737 {
2738 struct drm_device *dev = obj->dev;
2739 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2740 uint32_t invalidate_domains = 0;
2741 uint32_t flush_domains = 0;
2742
2743 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2744 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2745
2746 #if WATCH_BUF
2747 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2748 __func__, obj,
2749 obj->read_domains, obj->pending_read_domains,
2750 obj->write_domain, obj->pending_write_domain);
2751 #endif
2752 /*
2753 * If the object isn't moving to a new write domain,
2754 * let the object stay in multiple read domains
2755 */
2756 if (obj->pending_write_domain == 0)
2757 obj->pending_read_domains |= obj->read_domains;
2758 else
2759 obj_priv->dirty = 1;
2760
2761 /*
2762 * Flush the current write domain if
2763 * the new read domains don't match. Invalidate
2764 * any read domains which differ from the old
2765 * write domain
2766 */
2767 if (obj->write_domain &&
2768 obj->write_domain != obj->pending_read_domains) {
2769 flush_domains |= obj->write_domain;
2770 invalidate_domains |=
2771 obj->pending_read_domains & ~obj->write_domain;
2772 }
2773 /*
2774 * Invalidate any read caches which may have
2775 * stale data. That is, any new read domains.
2776 */
2777 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2778 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2779 #if WATCH_BUF
2780 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2781 __func__, flush_domains, invalidate_domains);
2782 #endif
2783 i915_gem_clflush_object(obj);
2784 }
2785
2786 /* The actual obj->write_domain will be updated with
2787 * pending_write_domain after we emit the accumulated flush for all
2788 * of our domain changes in execbuffers (which clears objects'
2789 * write_domains). So if we have a current write domain that we
2790 * aren't changing, set pending_write_domain to that.
2791 */
2792 if (flush_domains == 0 && obj->pending_write_domain == 0)
2793 obj->pending_write_domain = obj->write_domain;
2794 obj->read_domains = obj->pending_read_domains;
2795
2796 dev->invalidate_domains |= invalidate_domains;
2797 dev->flush_domains |= flush_domains;
2798 #if WATCH_BUF
2799 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2800 __func__,
2801 obj->read_domains, obj->write_domain,
2802 dev->invalidate_domains, dev->flush_domains);
2803 #endif
2804 }
2805
2806 /**
2807 * Moves the object from a partially CPU read to a full one.
2808 *
2809 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2810 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2811 */
2812 static void
2813 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2814 {
2815 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2816
2817 if (!obj_priv->page_cpu_valid)
2818 return;
2819
2820 /* If we're partially in the CPU read domain, finish moving it in.
2821 */
2822 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2823 int i;
2824
2825 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2826 if (obj_priv->page_cpu_valid[i])
2827 continue;
2828 drm_clflush_pages(obj_priv->pages + i, 1);
2829 }
2830 }
2831
2832 /* Free the page_cpu_valid mappings which are now stale, whether
2833 * or not we've got I915_GEM_DOMAIN_CPU.
2834 */
2835 kfree(obj_priv->page_cpu_valid);
2836 obj_priv->page_cpu_valid = NULL;
2837 }
2838
2839 /**
2840 * Set the CPU read domain on a range of the object.
2841 *
2842 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2843 * not entirely valid. The page_cpu_valid member of the object flags which
2844 * pages have been flushed, and will be respected by
2845 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2846 * of the whole object.
2847 *
2848 * This function returns when the move is complete, including waiting on
2849 * flushes to occur.
2850 */
2851 static int
2852 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2853 uint64_t offset, uint64_t size)
2854 {
2855 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2856 int i, ret;
2857
2858 if (offset == 0 && size == obj->size)
2859 return i915_gem_object_set_to_cpu_domain(obj, 0);
2860
2861 i915_gem_object_flush_gpu_write_domain(obj);
2862 /* Wait on any GPU rendering and flushing to occur. */
2863 ret = i915_gem_object_wait_rendering(obj);
2864 if (ret != 0)
2865 return ret;
2866 i915_gem_object_flush_gtt_write_domain(obj);
2867
2868 /* If we're already fully in the CPU read domain, we're done. */
2869 if (obj_priv->page_cpu_valid == NULL &&
2870 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2871 return 0;
2872
2873 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2874 * newly adding I915_GEM_DOMAIN_CPU
2875 */
2876 if (obj_priv->page_cpu_valid == NULL) {
2877 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2878 GFP_KERNEL);
2879 if (obj_priv->page_cpu_valid == NULL)
2880 return -ENOMEM;
2881 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2882 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2883
2884 /* Flush the cache on any pages that are still invalid from the CPU's
2885 * perspective.
2886 */
2887 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2888 i++) {
2889 if (obj_priv->page_cpu_valid[i])
2890 continue;
2891
2892 drm_clflush_pages(obj_priv->pages + i, 1);
2893
2894 obj_priv->page_cpu_valid[i] = 1;
2895 }
2896
2897 /* It should now be out of any other write domains, and we can update
2898 * the domain values for our changes.
2899 */
2900 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2901
2902 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2903
2904 return 0;
2905 }
2906
2907 /**
2908 * Pin an object to the GTT and evaluate the relocations landing in it.
2909 */
2910 static int
2911 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2912 struct drm_file *file_priv,
2913 struct drm_i915_gem_exec_object *entry,
2914 struct drm_i915_gem_relocation_entry *relocs)
2915 {
2916 struct drm_device *dev = obj->dev;
2917 drm_i915_private_t *dev_priv = dev->dev_private;
2918 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2919 int i, ret;
2920 void __iomem *reloc_page;
2921
2922 /* Choose the GTT offset for our buffer and put it there. */
2923 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2924 if (ret)
2925 return ret;
2926
2927 entry->offset = obj_priv->gtt_offset;
2928
2929 /* Apply the relocations, using the GTT aperture to avoid cache
2930 * flushing requirements.
2931 */
2932 for (i = 0; i < entry->relocation_count; i++) {
2933 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2934 struct drm_gem_object *target_obj;
2935 struct drm_i915_gem_object *target_obj_priv;
2936 uint32_t reloc_val, reloc_offset;
2937 uint32_t __iomem *reloc_entry;
2938
2939 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2940 reloc->target_handle);
2941 if (target_obj == NULL) {
2942 i915_gem_object_unpin(obj);
2943 return -EBADF;
2944 }
2945 target_obj_priv = target_obj->driver_private;
2946
2947 /* The target buffer should have appeared before us in the
2948 * exec_object list, so it should have a GTT space bound by now.
2949 */
2950 if (target_obj_priv->gtt_space == NULL) {
2951 DRM_ERROR("No GTT space found for object %d\n",
2952 reloc->target_handle);
2953 drm_gem_object_unreference(target_obj);
2954 i915_gem_object_unpin(obj);
2955 return -EINVAL;
2956 }
2957
2958 if (reloc->offset > obj->size - 4) {
2959 DRM_ERROR("Relocation beyond object bounds: "
2960 "obj %p target %d offset %d size %d.\n",
2961 obj, reloc->target_handle,
2962 (int) reloc->offset, (int) obj->size);
2963 drm_gem_object_unreference(target_obj);
2964 i915_gem_object_unpin(obj);
2965 return -EINVAL;
2966 }
2967 if (reloc->offset & 3) {
2968 DRM_ERROR("Relocation not 4-byte aligned: "
2969 "obj %p target %d offset %d.\n",
2970 obj, reloc->target_handle,
2971 (int) reloc->offset);
2972 drm_gem_object_unreference(target_obj);
2973 i915_gem_object_unpin(obj);
2974 return -EINVAL;
2975 }
2976
2977 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2978 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2979 DRM_ERROR("reloc with read/write CPU domains: "
2980 "obj %p target %d offset %d "
2981 "read %08x write %08x",
2982 obj, reloc->target_handle,
2983 (int) reloc->offset,
2984 reloc->read_domains,
2985 reloc->write_domain);
2986 drm_gem_object_unreference(target_obj);
2987 i915_gem_object_unpin(obj);
2988 return -EINVAL;
2989 }
2990
2991 if (reloc->write_domain && target_obj->pending_write_domain &&
2992 reloc->write_domain != target_obj->pending_write_domain) {
2993 DRM_ERROR("Write domain conflict: "
2994 "obj %p target %d offset %d "
2995 "new %08x old %08x\n",
2996 obj, reloc->target_handle,
2997 (int) reloc->offset,
2998 reloc->write_domain,
2999 target_obj->pending_write_domain);
3000 drm_gem_object_unreference(target_obj);
3001 i915_gem_object_unpin(obj);
3002 return -EINVAL;
3003 }
3004
3005 #if WATCH_RELOC
3006 DRM_INFO("%s: obj %p offset %08x target %d "
3007 "read %08x write %08x gtt %08x "
3008 "presumed %08x delta %08x\n",
3009 __func__,
3010 obj,
3011 (int) reloc->offset,
3012 (int) reloc->target_handle,
3013 (int) reloc->read_domains,
3014 (int) reloc->write_domain,
3015 (int) target_obj_priv->gtt_offset,
3016 (int) reloc->presumed_offset,
3017 reloc->delta);
3018 #endif
3019
3020 target_obj->pending_read_domains |= reloc->read_domains;
3021 target_obj->pending_write_domain |= reloc->write_domain;
3022
3023 /* If the relocation already has the right value in it, no
3024 * more work needs to be done.
3025 */
3026 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3027 drm_gem_object_unreference(target_obj);
3028 continue;
3029 }
3030
3031 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3032 if (ret != 0) {
3033 drm_gem_object_unreference(target_obj);
3034 i915_gem_object_unpin(obj);
3035 return -EINVAL;
3036 }
3037
3038 /* Map the page containing the relocation we're going to
3039 * perform.
3040 */
3041 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3042 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3043 (reloc_offset &
3044 ~(PAGE_SIZE - 1)));
3045 reloc_entry = (uint32_t __iomem *)(reloc_page +
3046 (reloc_offset & (PAGE_SIZE - 1)));
3047 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3048
3049 #if WATCH_BUF
3050 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3051 obj, (unsigned int) reloc->offset,
3052 readl(reloc_entry), reloc_val);
3053 #endif
3054 writel(reloc_val, reloc_entry);
3055 io_mapping_unmap_atomic(reloc_page);
3056
3057 /* The updated presumed offset for this entry will be
3058 * copied back out to the user.
3059 */
3060 reloc->presumed_offset = target_obj_priv->gtt_offset;
3061
3062 drm_gem_object_unreference(target_obj);
3063 }
3064
3065 #if WATCH_BUF
3066 if (0)
3067 i915_gem_dump_object(obj, 128, __func__, ~0);
3068 #endif
3069 return 0;
3070 }
3071
3072 /** Dispatch a batchbuffer to the ring
3073 */
3074 static int
3075 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3076 struct drm_i915_gem_execbuffer *exec,
3077 struct drm_clip_rect *cliprects,
3078 uint64_t exec_offset)
3079 {
3080 drm_i915_private_t *dev_priv = dev->dev_private;
3081 int nbox = exec->num_cliprects;
3082 int i = 0, count;
3083 uint32_t exec_start, exec_len;
3084 RING_LOCALS;
3085
3086 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3087 exec_len = (uint32_t) exec->batch_len;
3088
3089 count = nbox ? nbox : 1;
3090
3091 for (i = 0; i < count; i++) {
3092 if (i < nbox) {
3093 int ret = i915_emit_box(dev, cliprects, i,
3094 exec->DR1, exec->DR4);
3095 if (ret)
3096 return ret;
3097 }
3098
3099 if (IS_I830(dev) || IS_845G(dev)) {
3100 BEGIN_LP_RING(4);
3101 OUT_RING(MI_BATCH_BUFFER);
3102 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3103 OUT_RING(exec_start + exec_len - 4);
3104 OUT_RING(0);
3105 ADVANCE_LP_RING();
3106 } else {
3107 BEGIN_LP_RING(2);
3108 if (IS_I965G(dev)) {
3109 OUT_RING(MI_BATCH_BUFFER_START |
3110 (2 << 6) |
3111 MI_BATCH_NON_SECURE_I965);
3112 OUT_RING(exec_start);
3113 } else {
3114 OUT_RING(MI_BATCH_BUFFER_START |
3115 (2 << 6));
3116 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3117 }
3118 ADVANCE_LP_RING();
3119 }
3120 }
3121
3122 /* XXX breadcrumb */
3123 return 0;
3124 }
3125
3126 /* Throttle our rendering by waiting until the ring has completed our requests
3127 * emitted over 20 msec ago.
3128 *
3129 * Note that if we were to use the current jiffies each time around the loop,
3130 * we wouldn't escape the function with any frames outstanding if the time to
3131 * render a frame was over 20ms.
3132 *
3133 * This should get us reasonable parallelism between CPU and GPU but also
3134 * relatively low latency when blocking on a particular request to finish.
3135 */
3136 static int
3137 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3138 {
3139 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3140 int ret = 0;
3141 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3142
3143 mutex_lock(&dev->struct_mutex);
3144 while (!list_empty(&i915_file_priv->mm.request_list)) {
3145 struct drm_i915_gem_request *request;
3146
3147 request = list_first_entry(&i915_file_priv->mm.request_list,
3148 struct drm_i915_gem_request,
3149 client_list);
3150
3151 if (time_after_eq(request->emitted_jiffies, recent_enough))
3152 break;
3153
3154 ret = i915_wait_request(dev, request->seqno);
3155 if (ret != 0)
3156 break;
3157 }
3158 mutex_unlock(&dev->struct_mutex);
3159
3160 return ret;
3161 }
3162
3163 static int
3164 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3165 uint32_t buffer_count,
3166 struct drm_i915_gem_relocation_entry **relocs)
3167 {
3168 uint32_t reloc_count = 0, reloc_index = 0, i;
3169 int ret;
3170
3171 *relocs = NULL;
3172 for (i = 0; i < buffer_count; i++) {
3173 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3174 return -EINVAL;
3175 reloc_count += exec_list[i].relocation_count;
3176 }
3177
3178 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3179 if (*relocs == NULL)
3180 return -ENOMEM;
3181
3182 for (i = 0; i < buffer_count; i++) {
3183 struct drm_i915_gem_relocation_entry __user *user_relocs;
3184
3185 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3186
3187 ret = copy_from_user(&(*relocs)[reloc_index],
3188 user_relocs,
3189 exec_list[i].relocation_count *
3190 sizeof(**relocs));
3191 if (ret != 0) {
3192 drm_free_large(*relocs);
3193 *relocs = NULL;
3194 return -EFAULT;
3195 }
3196
3197 reloc_index += exec_list[i].relocation_count;
3198 }
3199
3200 return 0;
3201 }
3202
3203 static int
3204 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3205 uint32_t buffer_count,
3206 struct drm_i915_gem_relocation_entry *relocs)
3207 {
3208 uint32_t reloc_count = 0, i;
3209 int ret = 0;
3210
3211 for (i = 0; i < buffer_count; i++) {
3212 struct drm_i915_gem_relocation_entry __user *user_relocs;
3213 int unwritten;
3214
3215 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3216
3217 unwritten = copy_to_user(user_relocs,
3218 &relocs[reloc_count],
3219 exec_list[i].relocation_count *
3220 sizeof(*relocs));
3221
3222 if (unwritten) {
3223 ret = -EFAULT;
3224 goto err;
3225 }
3226
3227 reloc_count += exec_list[i].relocation_count;
3228 }
3229
3230 err:
3231 drm_free_large(relocs);
3232
3233 return ret;
3234 }
3235
3236 static int
3237 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3238 uint64_t exec_offset)
3239 {
3240 uint32_t exec_start, exec_len;
3241
3242 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3243 exec_len = (uint32_t) exec->batch_len;
3244
3245 if ((exec_start | exec_len) & 0x7)
3246 return -EINVAL;
3247
3248 if (!exec_start)
3249 return -EINVAL;
3250
3251 return 0;
3252 }
3253
3254 int
3255 i915_gem_execbuffer(struct drm_device *dev, void *data,
3256 struct drm_file *file_priv)
3257 {
3258 drm_i915_private_t *dev_priv = dev->dev_private;
3259 struct drm_i915_gem_execbuffer *args = data;
3260 struct drm_i915_gem_exec_object *exec_list = NULL;
3261 struct drm_gem_object **object_list = NULL;
3262 struct drm_gem_object *batch_obj;
3263 struct drm_i915_gem_object *obj_priv;
3264 struct drm_clip_rect *cliprects = NULL;
3265 struct drm_i915_gem_relocation_entry *relocs;
3266 int ret, ret2, i, pinned = 0;
3267 uint64_t exec_offset;
3268 uint32_t seqno, flush_domains, reloc_index;
3269 int pin_tries;
3270
3271 #if WATCH_EXEC
3272 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3273 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3274 #endif
3275
3276 if (args->buffer_count < 1) {
3277 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3278 return -EINVAL;
3279 }
3280 /* Copy in the exec list from userland */
3281 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3282 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3283 if (exec_list == NULL || object_list == NULL) {
3284 DRM_ERROR("Failed to allocate exec or object list "
3285 "for %d buffers\n",
3286 args->buffer_count);
3287 ret = -ENOMEM;
3288 goto pre_mutex_err;
3289 }
3290 ret = copy_from_user(exec_list,
3291 (struct drm_i915_relocation_entry __user *)
3292 (uintptr_t) args->buffers_ptr,
3293 sizeof(*exec_list) * args->buffer_count);
3294 if (ret != 0) {
3295 DRM_ERROR("copy %d exec entries failed %d\n",
3296 args->buffer_count, ret);
3297 goto pre_mutex_err;
3298 }
3299
3300 if (args->num_cliprects != 0) {
3301 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3302 GFP_KERNEL);
3303 if (cliprects == NULL)
3304 goto pre_mutex_err;
3305
3306 ret = copy_from_user(cliprects,
3307 (struct drm_clip_rect __user *)
3308 (uintptr_t) args->cliprects_ptr,
3309 sizeof(*cliprects) * args->num_cliprects);
3310 if (ret != 0) {
3311 DRM_ERROR("copy %d cliprects failed: %d\n",
3312 args->num_cliprects, ret);
3313 goto pre_mutex_err;
3314 }
3315 }
3316
3317 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3318 &relocs);
3319 if (ret != 0)
3320 goto pre_mutex_err;
3321
3322 mutex_lock(&dev->struct_mutex);
3323
3324 i915_verify_inactive(dev, __FILE__, __LINE__);
3325
3326 if (dev_priv->mm.wedged) {
3327 DRM_ERROR("Execbuf while wedged\n");
3328 mutex_unlock(&dev->struct_mutex);
3329 ret = -EIO;
3330 goto pre_mutex_err;
3331 }
3332
3333 if (dev_priv->mm.suspended) {
3334 DRM_ERROR("Execbuf while VT-switched.\n");
3335 mutex_unlock(&dev->struct_mutex);
3336 ret = -EBUSY;
3337 goto pre_mutex_err;
3338 }
3339
3340 /* Look up object handles */
3341 for (i = 0; i < args->buffer_count; i++) {
3342 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3343 exec_list[i].handle);
3344 if (object_list[i] == NULL) {
3345 DRM_ERROR("Invalid object handle %d at index %d\n",
3346 exec_list[i].handle, i);
3347 ret = -EBADF;
3348 goto err;
3349 }
3350
3351 obj_priv = object_list[i]->driver_private;
3352 if (obj_priv->in_execbuffer) {
3353 DRM_ERROR("Object %p appears more than once in object list\n",
3354 object_list[i]);
3355 ret = -EBADF;
3356 goto err;
3357 }
3358 obj_priv->in_execbuffer = true;
3359 }
3360
3361 /* Pin and relocate */
3362 for (pin_tries = 0; ; pin_tries++) {
3363 ret = 0;
3364 reloc_index = 0;
3365
3366 for (i = 0; i < args->buffer_count; i++) {
3367 object_list[i]->pending_read_domains = 0;
3368 object_list[i]->pending_write_domain = 0;
3369 ret = i915_gem_object_pin_and_relocate(object_list[i],
3370 file_priv,
3371 &exec_list[i],
3372 &relocs[reloc_index]);
3373 if (ret)
3374 break;
3375 pinned = i + 1;
3376 reloc_index += exec_list[i].relocation_count;
3377 }
3378 /* success */
3379 if (ret == 0)
3380 break;
3381
3382 /* error other than GTT full, or we've already tried again */
3383 if (ret != -ENOSPC || pin_tries >= 1) {
3384 if (ret != -ERESTARTSYS)
3385 DRM_ERROR("Failed to pin buffers %d\n", ret);
3386 goto err;
3387 }
3388
3389 /* unpin all of our buffers */
3390 for (i = 0; i < pinned; i++)
3391 i915_gem_object_unpin(object_list[i]);
3392 pinned = 0;
3393
3394 /* evict everyone we can from the aperture */
3395 ret = i915_gem_evict_everything(dev);
3396 if (ret)
3397 goto err;
3398 }
3399
3400 /* Set the pending read domains for the batch buffer to COMMAND */
3401 batch_obj = object_list[args->buffer_count-1];
3402 if (batch_obj->pending_write_domain) {
3403 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3404 ret = -EINVAL;
3405 goto err;
3406 }
3407 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3408
3409 /* Sanity check the batch buffer, prior to moving objects */
3410 exec_offset = exec_list[args->buffer_count - 1].offset;
3411 ret = i915_gem_check_execbuffer (args, exec_offset);
3412 if (ret != 0) {
3413 DRM_ERROR("execbuf with invalid offset/length\n");
3414 goto err;
3415 }
3416
3417 i915_verify_inactive(dev, __FILE__, __LINE__);
3418
3419 /* Zero the global flush/invalidate flags. These
3420 * will be modified as new domains are computed
3421 * for each object
3422 */
3423 dev->invalidate_domains = 0;
3424 dev->flush_domains = 0;
3425
3426 for (i = 0; i < args->buffer_count; i++) {
3427 struct drm_gem_object *obj = object_list[i];
3428
3429 /* Compute new gpu domains and update invalidate/flush */
3430 i915_gem_object_set_to_gpu_domain(obj);
3431 }
3432
3433 i915_verify_inactive(dev, __FILE__, __LINE__);
3434
3435 if (dev->invalidate_domains | dev->flush_domains) {
3436 #if WATCH_EXEC
3437 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3438 __func__,
3439 dev->invalidate_domains,
3440 dev->flush_domains);
3441 #endif
3442 i915_gem_flush(dev,
3443 dev->invalidate_domains,
3444 dev->flush_domains);
3445 if (dev->flush_domains)
3446 (void)i915_add_request(dev, file_priv,
3447 dev->flush_domains);
3448 }
3449
3450 for (i = 0; i < args->buffer_count; i++) {
3451 struct drm_gem_object *obj = object_list[i];
3452
3453 obj->write_domain = obj->pending_write_domain;
3454 }
3455
3456 i915_verify_inactive(dev, __FILE__, __LINE__);
3457
3458 #if WATCH_COHERENCY
3459 for (i = 0; i < args->buffer_count; i++) {
3460 i915_gem_object_check_coherency(object_list[i],
3461 exec_list[i].handle);
3462 }
3463 #endif
3464
3465 #if WATCH_EXEC
3466 i915_gem_dump_object(batch_obj,
3467 args->batch_len,
3468 __func__,
3469 ~0);
3470 #endif
3471
3472 /* Exec the batchbuffer */
3473 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3474 if (ret) {
3475 DRM_ERROR("dispatch failed %d\n", ret);
3476 goto err;
3477 }
3478
3479 /*
3480 * Ensure that the commands in the batch buffer are
3481 * finished before the interrupt fires
3482 */
3483 flush_domains = i915_retire_commands(dev);
3484
3485 i915_verify_inactive(dev, __FILE__, __LINE__);
3486
3487 /*
3488 * Get a seqno representing the execution of the current buffer,
3489 * which we can wait on. We would like to mitigate these interrupts,
3490 * likely by only creating seqnos occasionally (so that we have
3491 * *some* interrupts representing completion of buffers that we can
3492 * wait on when trying to clear up gtt space).
3493 */
3494 seqno = i915_add_request(dev, file_priv, flush_domains);
3495 BUG_ON(seqno == 0);
3496 for (i = 0; i < args->buffer_count; i++) {
3497 struct drm_gem_object *obj = object_list[i];
3498
3499 i915_gem_object_move_to_active(obj, seqno);
3500 #if WATCH_LRU
3501 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3502 #endif
3503 }
3504 #if WATCH_LRU
3505 i915_dump_lru(dev, __func__);
3506 #endif
3507
3508 i915_verify_inactive(dev, __FILE__, __LINE__);
3509
3510 err:
3511 for (i = 0; i < pinned; i++)
3512 i915_gem_object_unpin(object_list[i]);
3513
3514 for (i = 0; i < args->buffer_count; i++) {
3515 if (object_list[i]) {
3516 obj_priv = object_list[i]->driver_private;
3517 obj_priv->in_execbuffer = false;
3518 }
3519 drm_gem_object_unreference(object_list[i]);
3520 }
3521
3522 mutex_unlock(&dev->struct_mutex);
3523
3524 if (!ret) {
3525 /* Copy the new buffer offsets back to the user's exec list. */
3526 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3527 (uintptr_t) args->buffers_ptr,
3528 exec_list,
3529 sizeof(*exec_list) * args->buffer_count);
3530 if (ret) {
3531 ret = -EFAULT;
3532 DRM_ERROR("failed to copy %d exec entries "
3533 "back to user (%d)\n",
3534 args->buffer_count, ret);
3535 }
3536 }
3537
3538 /* Copy the updated relocations out regardless of current error
3539 * state. Failure to update the relocs would mean that the next
3540 * time userland calls execbuf, it would do so with presumed offset
3541 * state that didn't match the actual object state.
3542 */
3543 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3544 relocs);
3545 if (ret2 != 0) {
3546 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3547
3548 if (ret == 0)
3549 ret = ret2;
3550 }
3551
3552 pre_mutex_err:
3553 drm_free_large(object_list);
3554 drm_free_large(exec_list);
3555 kfree(cliprects);
3556
3557 return ret;
3558 }
3559
3560 int
3561 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3562 {
3563 struct drm_device *dev = obj->dev;
3564 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3565 int ret;
3566
3567 i915_verify_inactive(dev, __FILE__, __LINE__);
3568 if (obj_priv->gtt_space == NULL) {
3569 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3570 if (ret != 0) {
3571 if (ret != -EBUSY && ret != -ERESTARTSYS)
3572 DRM_ERROR("Failure to bind: %d\n", ret);
3573 return ret;
3574 }
3575 }
3576 /*
3577 * Pre-965 chips need a fence register set up in order to
3578 * properly handle tiled surfaces.
3579 */
3580 if (!IS_I965G(dev) &&
3581 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3582 obj_priv->tiling_mode != I915_TILING_NONE) {
3583 ret = i915_gem_object_get_fence_reg(obj);
3584 if (ret != 0) {
3585 if (ret != -EBUSY && ret != -ERESTARTSYS)
3586 DRM_ERROR("Failure to install fence: %d\n",
3587 ret);
3588 return ret;
3589 }
3590 }
3591 obj_priv->pin_count++;
3592
3593 /* If the object is not active and not pending a flush,
3594 * remove it from the inactive list
3595 */
3596 if (obj_priv->pin_count == 1) {
3597 atomic_inc(&dev->pin_count);
3598 atomic_add(obj->size, &dev->pin_memory);
3599 if (!obj_priv->active &&
3600 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3601 !list_empty(&obj_priv->list))
3602 list_del_init(&obj_priv->list);
3603 }
3604 i915_verify_inactive(dev, __FILE__, __LINE__);
3605
3606 return 0;
3607 }
3608
3609 void
3610 i915_gem_object_unpin(struct drm_gem_object *obj)
3611 {
3612 struct drm_device *dev = obj->dev;
3613 drm_i915_private_t *dev_priv = dev->dev_private;
3614 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3615
3616 i915_verify_inactive(dev, __FILE__, __LINE__);
3617 obj_priv->pin_count--;
3618 BUG_ON(obj_priv->pin_count < 0);
3619 BUG_ON(obj_priv->gtt_space == NULL);
3620
3621 /* If the object is no longer pinned, and is
3622 * neither active nor being flushed, then stick it on
3623 * the inactive list
3624 */
3625 if (obj_priv->pin_count == 0) {
3626 if (!obj_priv->active &&
3627 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3628 list_move_tail(&obj_priv->list,
3629 &dev_priv->mm.inactive_list);
3630 atomic_dec(&dev->pin_count);
3631 atomic_sub(obj->size, &dev->pin_memory);
3632 }
3633 i915_verify_inactive(dev, __FILE__, __LINE__);
3634 }
3635
3636 int
3637 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3638 struct drm_file *file_priv)
3639 {
3640 struct drm_i915_gem_pin *args = data;
3641 struct drm_gem_object *obj;
3642 struct drm_i915_gem_object *obj_priv;
3643 int ret;
3644
3645 mutex_lock(&dev->struct_mutex);
3646
3647 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3648 if (obj == NULL) {
3649 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3650 args->handle);
3651 mutex_unlock(&dev->struct_mutex);
3652 return -EBADF;
3653 }
3654 obj_priv = obj->driver_private;
3655
3656 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3657 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3658 args->handle);
3659 drm_gem_object_unreference(obj);
3660 mutex_unlock(&dev->struct_mutex);
3661 return -EINVAL;
3662 }
3663
3664 obj_priv->user_pin_count++;
3665 obj_priv->pin_filp = file_priv;
3666 if (obj_priv->user_pin_count == 1) {
3667 ret = i915_gem_object_pin(obj, args->alignment);
3668 if (ret != 0) {
3669 drm_gem_object_unreference(obj);
3670 mutex_unlock(&dev->struct_mutex);
3671 return ret;
3672 }
3673 }
3674
3675 /* XXX - flush the CPU caches for pinned objects
3676 * as the X server doesn't manage domains yet
3677 */
3678 i915_gem_object_flush_cpu_write_domain(obj);
3679 args->offset = obj_priv->gtt_offset;
3680 drm_gem_object_unreference(obj);
3681 mutex_unlock(&dev->struct_mutex);
3682
3683 return 0;
3684 }
3685
3686 int
3687 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3688 struct drm_file *file_priv)
3689 {
3690 struct drm_i915_gem_pin *args = data;
3691 struct drm_gem_object *obj;
3692 struct drm_i915_gem_object *obj_priv;
3693
3694 mutex_lock(&dev->struct_mutex);
3695
3696 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3697 if (obj == NULL) {
3698 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3699 args->handle);
3700 mutex_unlock(&dev->struct_mutex);
3701 return -EBADF;
3702 }
3703
3704 obj_priv = obj->driver_private;
3705 if (obj_priv->pin_filp != file_priv) {
3706 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3707 args->handle);
3708 drm_gem_object_unreference(obj);
3709 mutex_unlock(&dev->struct_mutex);
3710 return -EINVAL;
3711 }
3712 obj_priv->user_pin_count--;
3713 if (obj_priv->user_pin_count == 0) {
3714 obj_priv->pin_filp = NULL;
3715 i915_gem_object_unpin(obj);
3716 }
3717
3718 drm_gem_object_unreference(obj);
3719 mutex_unlock(&dev->struct_mutex);
3720 return 0;
3721 }
3722
3723 int
3724 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3725 struct drm_file *file_priv)
3726 {
3727 struct drm_i915_gem_busy *args = data;
3728 struct drm_gem_object *obj;
3729 struct drm_i915_gem_object *obj_priv;
3730
3731 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3732 if (obj == NULL) {
3733 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3734 args->handle);
3735 return -EBADF;
3736 }
3737
3738 mutex_lock(&dev->struct_mutex);
3739 /* Update the active list for the hardware's current position.
3740 * Otherwise this only updates on a delayed timer or when irqs are
3741 * actually unmasked, and our working set ends up being larger than
3742 * required.
3743 */
3744 i915_gem_retire_requests(dev);
3745
3746 obj_priv = obj->driver_private;
3747 /* Don't count being on the flushing list against the object being
3748 * done. Otherwise, a buffer left on the flushing list but not getting
3749 * flushed (because nobody's flushing that domain) won't ever return
3750 * unbusy and get reused by libdrm's bo cache. The other expected
3751 * consumer of this interface, OpenGL's occlusion queries, also specs
3752 * that the objects get unbusy "eventually" without any interference.
3753 */
3754 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3755
3756 drm_gem_object_unreference(obj);
3757 mutex_unlock(&dev->struct_mutex);
3758 return 0;
3759 }
3760
3761 int
3762 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3763 struct drm_file *file_priv)
3764 {
3765 return i915_gem_ring_throttle(dev, file_priv);
3766 }
3767
3768 int i915_gem_init_object(struct drm_gem_object *obj)
3769 {
3770 struct drm_i915_gem_object *obj_priv;
3771
3772 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3773 if (obj_priv == NULL)
3774 return -ENOMEM;
3775
3776 /*
3777 * We've just allocated pages from the kernel,
3778 * so they've just been written by the CPU with
3779 * zeros. They'll need to be clflushed before we
3780 * use them with the GPU.
3781 */
3782 obj->write_domain = I915_GEM_DOMAIN_CPU;
3783 obj->read_domains = I915_GEM_DOMAIN_CPU;
3784
3785 obj_priv->agp_type = AGP_USER_MEMORY;
3786
3787 obj->driver_private = obj_priv;
3788 obj_priv->obj = obj;
3789 obj_priv->fence_reg = I915_FENCE_REG_NONE;
3790 INIT_LIST_HEAD(&obj_priv->list);
3791
3792 return 0;
3793 }
3794
3795 void i915_gem_free_object(struct drm_gem_object *obj)
3796 {
3797 struct drm_device *dev = obj->dev;
3798 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3799
3800 while (obj_priv->pin_count > 0)
3801 i915_gem_object_unpin(obj);
3802
3803 if (obj_priv->phys_obj)
3804 i915_gem_detach_phys_object(dev, obj);
3805
3806 i915_gem_object_unbind(obj);
3807
3808 i915_gem_free_mmap_offset(obj);
3809
3810 kfree(obj_priv->page_cpu_valid);
3811 kfree(obj_priv->bit_17);
3812 kfree(obj->driver_private);
3813 }
3814
3815 /** Unbinds all objects that are on the given buffer list. */
3816 static int
3817 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3818 {
3819 struct drm_gem_object *obj;
3820 struct drm_i915_gem_object *obj_priv;
3821 int ret;
3822
3823 while (!list_empty(head)) {
3824 obj_priv = list_first_entry(head,
3825 struct drm_i915_gem_object,
3826 list);
3827 obj = obj_priv->obj;
3828
3829 if (obj_priv->pin_count != 0) {
3830 DRM_ERROR("Pinned object in unbind list\n");
3831 mutex_unlock(&dev->struct_mutex);
3832 return -EINVAL;
3833 }
3834
3835 ret = i915_gem_object_unbind(obj);
3836 if (ret != 0) {
3837 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3838 ret);
3839 mutex_unlock(&dev->struct_mutex);
3840 return ret;
3841 }
3842 }
3843
3844
3845 return 0;
3846 }
3847
3848 int
3849 i915_gem_idle(struct drm_device *dev)
3850 {
3851 drm_i915_private_t *dev_priv = dev->dev_private;
3852 uint32_t seqno, cur_seqno, last_seqno;
3853 int stuck, ret;
3854
3855 mutex_lock(&dev->struct_mutex);
3856
3857 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3858 mutex_unlock(&dev->struct_mutex);
3859 return 0;
3860 }
3861
3862 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3863 * We need to replace this with a semaphore, or something.
3864 */
3865 dev_priv->mm.suspended = 1;
3866
3867 /* Cancel the retire work handler, wait for it to finish if running
3868 */
3869 mutex_unlock(&dev->struct_mutex);
3870 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3871 mutex_lock(&dev->struct_mutex);
3872
3873 i915_kernel_lost_context(dev);
3874
3875 /* Flush the GPU along with all non-CPU write domains
3876 */
3877 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3878 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3879
3880 if (seqno == 0) {
3881 mutex_unlock(&dev->struct_mutex);
3882 return -ENOMEM;
3883 }
3884
3885 dev_priv->mm.waiting_gem_seqno = seqno;
3886 last_seqno = 0;
3887 stuck = 0;
3888 for (;;) {
3889 cur_seqno = i915_get_gem_seqno(dev);
3890 if (i915_seqno_passed(cur_seqno, seqno))
3891 break;
3892 if (last_seqno == cur_seqno) {
3893 if (stuck++ > 100) {
3894 DRM_ERROR("hardware wedged\n");
3895 dev_priv->mm.wedged = 1;
3896 DRM_WAKEUP(&dev_priv->irq_queue);
3897 break;
3898 }
3899 }
3900 msleep(10);
3901 last_seqno = cur_seqno;
3902 }
3903 dev_priv->mm.waiting_gem_seqno = 0;
3904
3905 i915_gem_retire_requests(dev);
3906
3907 spin_lock(&dev_priv->mm.active_list_lock);
3908 if (!dev_priv->mm.wedged) {
3909 /* Active and flushing should now be empty as we've
3910 * waited for a sequence higher than any pending execbuffer
3911 */
3912 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3913 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3914 /* Request should now be empty as we've also waited
3915 * for the last request in the list
3916 */
3917 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3918 }
3919
3920 /* Empty the active and flushing lists to inactive. If there's
3921 * anything left at this point, it means that we're wedged and
3922 * nothing good's going to happen by leaving them there. So strip
3923 * the GPU domains and just stuff them onto inactive.
3924 */
3925 while (!list_empty(&dev_priv->mm.active_list)) {
3926 struct drm_i915_gem_object *obj_priv;
3927
3928 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3929 struct drm_i915_gem_object,
3930 list);
3931 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3932 i915_gem_object_move_to_inactive(obj_priv->obj);
3933 }
3934 spin_unlock(&dev_priv->mm.active_list_lock);
3935
3936 while (!list_empty(&dev_priv->mm.flushing_list)) {
3937 struct drm_i915_gem_object *obj_priv;
3938
3939 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3940 struct drm_i915_gem_object,
3941 list);
3942 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3943 i915_gem_object_move_to_inactive(obj_priv->obj);
3944 }
3945
3946
3947 /* Move all inactive buffers out of the GTT. */
3948 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3949 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3950 if (ret) {
3951 mutex_unlock(&dev->struct_mutex);
3952 return ret;
3953 }
3954
3955 i915_gem_cleanup_ringbuffer(dev);
3956 mutex_unlock(&dev->struct_mutex);
3957
3958 return 0;
3959 }
3960
3961 static int
3962 i915_gem_init_hws(struct drm_device *dev)
3963 {
3964 drm_i915_private_t *dev_priv = dev->dev_private;
3965 struct drm_gem_object *obj;
3966 struct drm_i915_gem_object *obj_priv;
3967 int ret;
3968
3969 /* If we need a physical address for the status page, it's already
3970 * initialized at driver load time.
3971 */
3972 if (!I915_NEED_GFX_HWS(dev))
3973 return 0;
3974
3975 obj = drm_gem_object_alloc(dev, 4096);
3976 if (obj == NULL) {
3977 DRM_ERROR("Failed to allocate status page\n");
3978 return -ENOMEM;
3979 }
3980 obj_priv = obj->driver_private;
3981 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3982
3983 ret = i915_gem_object_pin(obj, 4096);
3984 if (ret != 0) {
3985 drm_gem_object_unreference(obj);
3986 return ret;
3987 }
3988
3989 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3990
3991 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3992 if (dev_priv->hw_status_page == NULL) {
3993 DRM_ERROR("Failed to map status page.\n");
3994 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3995 i915_gem_object_unpin(obj);
3996 drm_gem_object_unreference(obj);
3997 return -EINVAL;
3998 }
3999 dev_priv->hws_obj = obj;
4000 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4001 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4002 I915_READ(HWS_PGA); /* posting read */
4003 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4004
4005 return 0;
4006 }
4007
4008 static void
4009 i915_gem_cleanup_hws(struct drm_device *dev)
4010 {
4011 drm_i915_private_t *dev_priv = dev->dev_private;
4012 struct drm_gem_object *obj;
4013 struct drm_i915_gem_object *obj_priv;
4014
4015 if (dev_priv->hws_obj == NULL)
4016 return;
4017
4018 obj = dev_priv->hws_obj;
4019 obj_priv = obj->driver_private;
4020
4021 kunmap(obj_priv->pages[0]);
4022 i915_gem_object_unpin(obj);
4023 drm_gem_object_unreference(obj);
4024 dev_priv->hws_obj = NULL;
4025
4026 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4027 dev_priv->hw_status_page = NULL;
4028
4029 /* Write high address into HWS_PGA when disabling. */
4030 I915_WRITE(HWS_PGA, 0x1ffff000);
4031 }
4032
4033 int
4034 i915_gem_init_ringbuffer(struct drm_device *dev)
4035 {
4036 drm_i915_private_t *dev_priv = dev->dev_private;
4037 struct drm_gem_object *obj;
4038 struct drm_i915_gem_object *obj_priv;
4039 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4040 int ret;
4041 u32 head;
4042
4043 ret = i915_gem_init_hws(dev);
4044 if (ret != 0)
4045 return ret;
4046
4047 obj = drm_gem_object_alloc(dev, 128 * 1024);
4048 if (obj == NULL) {
4049 DRM_ERROR("Failed to allocate ringbuffer\n");
4050 i915_gem_cleanup_hws(dev);
4051 return -ENOMEM;
4052 }
4053 obj_priv = obj->driver_private;
4054
4055 ret = i915_gem_object_pin(obj, 4096);
4056 if (ret != 0) {
4057 drm_gem_object_unreference(obj);
4058 i915_gem_cleanup_hws(dev);
4059 return ret;
4060 }
4061
4062 /* Set up the kernel mapping for the ring. */
4063 ring->Size = obj->size;
4064 ring->tail_mask = obj->size - 1;
4065
4066 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4067 ring->map.size = obj->size;
4068 ring->map.type = 0;
4069 ring->map.flags = 0;
4070 ring->map.mtrr = 0;
4071
4072 drm_core_ioremap_wc(&ring->map, dev);
4073 if (ring->map.handle == NULL) {
4074 DRM_ERROR("Failed to map ringbuffer.\n");
4075 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4076 i915_gem_object_unpin(obj);
4077 drm_gem_object_unreference(obj);
4078 i915_gem_cleanup_hws(dev);
4079 return -EINVAL;
4080 }
4081 ring->ring_obj = obj;
4082 ring->virtual_start = ring->map.handle;
4083
4084 /* Stop the ring if it's running. */
4085 I915_WRITE(PRB0_CTL, 0);
4086 I915_WRITE(PRB0_TAIL, 0);
4087 I915_WRITE(PRB0_HEAD, 0);
4088
4089 /* Initialize the ring. */
4090 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4091 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4092
4093 /* G45 ring initialization fails to reset head to zero */
4094 if (head != 0) {
4095 DRM_ERROR("Ring head not reset to zero "
4096 "ctl %08x head %08x tail %08x start %08x\n",
4097 I915_READ(PRB0_CTL),
4098 I915_READ(PRB0_HEAD),
4099 I915_READ(PRB0_TAIL),
4100 I915_READ(PRB0_START));
4101 I915_WRITE(PRB0_HEAD, 0);
4102
4103 DRM_ERROR("Ring head forced to zero "
4104 "ctl %08x head %08x tail %08x start %08x\n",
4105 I915_READ(PRB0_CTL),
4106 I915_READ(PRB0_HEAD),
4107 I915_READ(PRB0_TAIL),
4108 I915_READ(PRB0_START));
4109 }
4110
4111 I915_WRITE(PRB0_CTL,
4112 ((obj->size - 4096) & RING_NR_PAGES) |
4113 RING_NO_REPORT |
4114 RING_VALID);
4115
4116 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4117
4118 /* If the head is still not zero, the ring is dead */
4119 if (head != 0) {
4120 DRM_ERROR("Ring initialization failed "
4121 "ctl %08x head %08x tail %08x start %08x\n",
4122 I915_READ(PRB0_CTL),
4123 I915_READ(PRB0_HEAD),
4124 I915_READ(PRB0_TAIL),
4125 I915_READ(PRB0_START));
4126 return -EIO;
4127 }
4128
4129 /* Update our cache of the ring state */
4130 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4131 i915_kernel_lost_context(dev);
4132 else {
4133 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4134 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4135 ring->space = ring->head - (ring->tail + 8);
4136 if (ring->space < 0)
4137 ring->space += ring->Size;
4138 }
4139
4140 return 0;
4141 }
4142
4143 void
4144 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4145 {
4146 drm_i915_private_t *dev_priv = dev->dev_private;
4147
4148 if (dev_priv->ring.ring_obj == NULL)
4149 return;
4150
4151 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4152
4153 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4154 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4155 dev_priv->ring.ring_obj = NULL;
4156 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4157
4158 i915_gem_cleanup_hws(dev);
4159 }
4160
4161 int
4162 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4163 struct drm_file *file_priv)
4164 {
4165 drm_i915_private_t *dev_priv = dev->dev_private;
4166 int ret;
4167
4168 if (drm_core_check_feature(dev, DRIVER_MODESET))
4169 return 0;
4170
4171 if (dev_priv->mm.wedged) {
4172 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4173 dev_priv->mm.wedged = 0;
4174 }
4175
4176 mutex_lock(&dev->struct_mutex);
4177 dev_priv->mm.suspended = 0;
4178
4179 ret = i915_gem_init_ringbuffer(dev);
4180 if (ret != 0) {
4181 mutex_unlock(&dev->struct_mutex);
4182 return ret;
4183 }
4184
4185 spin_lock(&dev_priv->mm.active_list_lock);
4186 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4187 spin_unlock(&dev_priv->mm.active_list_lock);
4188
4189 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4190 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4191 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4192 mutex_unlock(&dev->struct_mutex);
4193
4194 drm_irq_install(dev);
4195
4196 return 0;
4197 }
4198
4199 int
4200 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4201 struct drm_file *file_priv)
4202 {
4203 int ret;
4204
4205 if (drm_core_check_feature(dev, DRIVER_MODESET))
4206 return 0;
4207
4208 ret = i915_gem_idle(dev);
4209 drm_irq_uninstall(dev);
4210
4211 return ret;
4212 }
4213
4214 void
4215 i915_gem_lastclose(struct drm_device *dev)
4216 {
4217 int ret;
4218
4219 if (drm_core_check_feature(dev, DRIVER_MODESET))
4220 return;
4221
4222 ret = i915_gem_idle(dev);
4223 if (ret)
4224 DRM_ERROR("failed to idle hardware: %d\n", ret);
4225 }
4226
4227 void
4228 i915_gem_load(struct drm_device *dev)
4229 {
4230 drm_i915_private_t *dev_priv = dev->dev_private;
4231
4232 spin_lock_init(&dev_priv->mm.active_list_lock);
4233 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4234 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4235 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4236 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4237 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4238 i915_gem_retire_work_handler);
4239 dev_priv->mm.next_gem_seqno = 1;
4240
4241 /* Old X drivers will take 0-2 for front, back, depth buffers */
4242 dev_priv->fence_reg_start = 3;
4243
4244 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4245 dev_priv->num_fence_regs = 16;
4246 else
4247 dev_priv->num_fence_regs = 8;
4248
4249 i915_gem_detect_bit_6_swizzle(dev);
4250 }
4251
4252 /*
4253 * Create a physically contiguous memory object for this object
4254 * e.g. for cursor + overlay regs
4255 */
4256 int i915_gem_init_phys_object(struct drm_device *dev,
4257 int id, int size)
4258 {
4259 drm_i915_private_t *dev_priv = dev->dev_private;
4260 struct drm_i915_gem_phys_object *phys_obj;
4261 int ret;
4262
4263 if (dev_priv->mm.phys_objs[id - 1] || !size)
4264 return 0;
4265
4266 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4267 if (!phys_obj)
4268 return -ENOMEM;
4269
4270 phys_obj->id = id;
4271
4272 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4273 if (!phys_obj->handle) {
4274 ret = -ENOMEM;
4275 goto kfree_obj;
4276 }
4277 #ifdef CONFIG_X86
4278 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4279 #endif
4280
4281 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4282
4283 return 0;
4284 kfree_obj:
4285 kfree(phys_obj);
4286 return ret;
4287 }
4288
4289 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4290 {
4291 drm_i915_private_t *dev_priv = dev->dev_private;
4292 struct drm_i915_gem_phys_object *phys_obj;
4293
4294 if (!dev_priv->mm.phys_objs[id - 1])
4295 return;
4296
4297 phys_obj = dev_priv->mm.phys_objs[id - 1];
4298 if (phys_obj->cur_obj) {
4299 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4300 }
4301
4302 #ifdef CONFIG_X86
4303 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4304 #endif
4305 drm_pci_free(dev, phys_obj->handle);
4306 kfree(phys_obj);
4307 dev_priv->mm.phys_objs[id - 1] = NULL;
4308 }
4309
4310 void i915_gem_free_all_phys_object(struct drm_device *dev)
4311 {
4312 int i;
4313
4314 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4315 i915_gem_free_phys_object(dev, i);
4316 }
4317
4318 void i915_gem_detach_phys_object(struct drm_device *dev,
4319 struct drm_gem_object *obj)
4320 {
4321 struct drm_i915_gem_object *obj_priv;
4322 int i;
4323 int ret;
4324 int page_count;
4325
4326 obj_priv = obj->driver_private;
4327 if (!obj_priv->phys_obj)
4328 return;
4329
4330 ret = i915_gem_object_get_pages(obj);
4331 if (ret)
4332 goto out;
4333
4334 page_count = obj->size / PAGE_SIZE;
4335
4336 for (i = 0; i < page_count; i++) {
4337 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4338 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4339
4340 memcpy(dst, src, PAGE_SIZE);
4341 kunmap_atomic(dst, KM_USER0);
4342 }
4343 drm_clflush_pages(obj_priv->pages, page_count);
4344 drm_agp_chipset_flush(dev);
4345
4346 i915_gem_object_put_pages(obj);
4347 out:
4348 obj_priv->phys_obj->cur_obj = NULL;
4349 obj_priv->phys_obj = NULL;
4350 }
4351
4352 int
4353 i915_gem_attach_phys_object(struct drm_device *dev,
4354 struct drm_gem_object *obj, int id)
4355 {
4356 drm_i915_private_t *dev_priv = dev->dev_private;
4357 struct drm_i915_gem_object *obj_priv;
4358 int ret = 0;
4359 int page_count;
4360 int i;
4361
4362 if (id > I915_MAX_PHYS_OBJECT)
4363 return -EINVAL;
4364
4365 obj_priv = obj->driver_private;
4366
4367 if (obj_priv->phys_obj) {
4368 if (obj_priv->phys_obj->id == id)
4369 return 0;
4370 i915_gem_detach_phys_object(dev, obj);
4371 }
4372
4373
4374 /* create a new object */
4375 if (!dev_priv->mm.phys_objs[id - 1]) {
4376 ret = i915_gem_init_phys_object(dev, id,
4377 obj->size);
4378 if (ret) {
4379 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4380 goto out;
4381 }
4382 }
4383
4384 /* bind to the object */
4385 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4386 obj_priv->phys_obj->cur_obj = obj;
4387
4388 ret = i915_gem_object_get_pages(obj);
4389 if (ret) {
4390 DRM_ERROR("failed to get page list\n");
4391 goto out;
4392 }
4393
4394 page_count = obj->size / PAGE_SIZE;
4395
4396 for (i = 0; i < page_count; i++) {
4397 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4398 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4399
4400 memcpy(dst, src, PAGE_SIZE);
4401 kunmap_atomic(src, KM_USER0);
4402 }
4403
4404 i915_gem_object_put_pages(obj);
4405
4406 return 0;
4407 out:
4408 return ret;
4409 }
4410
4411 static int
4412 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4413 struct drm_i915_gem_pwrite *args,
4414 struct drm_file *file_priv)
4415 {
4416 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4417 void *obj_addr;
4418 int ret;
4419 char __user *user_data;
4420
4421 user_data = (char __user *) (uintptr_t) args->data_ptr;
4422 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4423
4424 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4425 ret = copy_from_user(obj_addr, user_data, args->size);
4426 if (ret)
4427 return -EFAULT;
4428
4429 drm_agp_chipset_flush(dev);
4430 return 0;
4431 }
4432
4433 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4434 {
4435 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4436
4437 /* Clean up our request list when the client is going away, so that
4438 * later retire_requests won't dereference our soon-to-be-gone
4439 * file_priv.
4440 */
4441 mutex_lock(&dev->struct_mutex);
4442 while (!list_empty(&i915_file_priv->mm.request_list))
4443 list_del_init(i915_file_priv->mm.request_list.next);
4444 mutex_unlock(&dev->struct_mutex);
4445 }