UAPI: (Scripted) Convert #include "..." to #include <path/...> in drivers/gpu/
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
59
60 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
61 {
62 if (obj->tiling_mode)
63 i915_gem_release_mmap(obj);
64
65 /* As we do not have an associated fence register, we will force
66 * a tiling change if we ever need to acquire one.
67 */
68 obj->fence_dirty = false;
69 obj->fence_reg = I915_FENCE_REG_NONE;
70 }
71
72 /* some bookkeeping */
73 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75 {
76 dev_priv->mm.object_count++;
77 dev_priv->mm.object_memory += size;
78 }
79
80 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
81 size_t size)
82 {
83 dev_priv->mm.object_count--;
84 dev_priv->mm.object_memory -= size;
85 }
86
87 static int
88 i915_gem_wait_for_error(struct drm_device *dev)
89 {
90 struct drm_i915_private *dev_priv = dev->dev_private;
91 struct completion *x = &dev_priv->error_completion;
92 unsigned long flags;
93 int ret;
94
95 if (!atomic_read(&dev_priv->mm.wedged))
96 return 0;
97
98 /*
99 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
100 * userspace. If it takes that long something really bad is going on and
101 * we should simply try to bail out and fail as gracefully as possible.
102 */
103 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
104 if (ret == 0) {
105 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
106 return -EIO;
107 } else if (ret < 0) {
108 return ret;
109 }
110
111 if (atomic_read(&dev_priv->mm.wedged)) {
112 /* GPU is hung, bump the completion count to account for
113 * the token we just consumed so that we never hit zero and
114 * end up waiting upon a subsequent completion event that
115 * will never happen.
116 */
117 spin_lock_irqsave(&x->wait.lock, flags);
118 x->done++;
119 spin_unlock_irqrestore(&x->wait.lock, flags);
120 }
121 return 0;
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 int ret;
127
128 ret = i915_gem_wait_for_error(dev);
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
136 WARN_ON(i915_verify_lists(dev));
137 return 0;
138 }
139
140 static inline bool
141 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
142 {
143 return !obj->active;
144 }
145
146 int
147 i915_gem_init_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_gem_init *args = data;
151
152 if (drm_core_check_feature(dev, DRIVER_MODESET))
153 return -ENODEV;
154
155 if (args->gtt_start >= args->gtt_end ||
156 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
157 return -EINVAL;
158
159 /* GEM with user mode setting was never supported on ilk and later. */
160 if (INTEL_INFO(dev)->gen >= 5)
161 return -ENODEV;
162
163 mutex_lock(&dev->struct_mutex);
164 i915_gem_init_global_gtt(dev, args->gtt_start,
165 args->gtt_end, args->gtt_end);
166 mutex_unlock(&dev->struct_mutex);
167
168 return 0;
169 }
170
171 int
172 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
173 struct drm_file *file)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 struct drm_i915_gem_get_aperture *args = data;
177 struct drm_i915_gem_object *obj;
178 size_t pinned;
179
180 pinned = 0;
181 mutex_lock(&dev->struct_mutex);
182 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
183 if (obj->pin_count)
184 pinned += obj->gtt_space->size;
185 mutex_unlock(&dev->struct_mutex);
186
187 args->aper_size = dev_priv->mm.gtt_total;
188 args->aper_available_size = args->aper_size - pinned;
189
190 return 0;
191 }
192
193 static int
194 i915_gem_create(struct drm_file *file,
195 struct drm_device *dev,
196 uint64_t size,
197 uint32_t *handle_p)
198 {
199 struct drm_i915_gem_object *obj;
200 int ret;
201 u32 handle;
202
203 size = roundup(size, PAGE_SIZE);
204 if (size == 0)
205 return -EINVAL;
206
207 /* Allocate the new object */
208 obj = i915_gem_alloc_object(dev, size);
209 if (obj == NULL)
210 return -ENOMEM;
211
212 ret = drm_gem_handle_create(file, &obj->base, &handle);
213 if (ret) {
214 drm_gem_object_release(&obj->base);
215 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
216 kfree(obj);
217 return ret;
218 }
219
220 /* drop reference from allocate - handle holds it now */
221 drm_gem_object_unreference(&obj->base);
222 trace_i915_gem_object_create(obj);
223
224 *handle_p = handle;
225 return 0;
226 }
227
228 int
229 i915_gem_dumb_create(struct drm_file *file,
230 struct drm_device *dev,
231 struct drm_mode_create_dumb *args)
232 {
233 /* have to work out size/pitch and return them */
234 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
235 args->size = args->pitch * args->height;
236 return i915_gem_create(file, dev,
237 args->size, &args->handle);
238 }
239
240 int i915_gem_dumb_destroy(struct drm_file *file,
241 struct drm_device *dev,
242 uint32_t handle)
243 {
244 return drm_gem_handle_delete(file, handle);
245 }
246
247 /**
248 * Creates a new mm object and returns a handle to it.
249 */
250 int
251 i915_gem_create_ioctl(struct drm_device *dev, void *data,
252 struct drm_file *file)
253 {
254 struct drm_i915_gem_create *args = data;
255
256 return i915_gem_create(file, dev,
257 args->size, &args->handle);
258 }
259
260 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
261 {
262 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
263
264 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
265 obj->tiling_mode != I915_TILING_NONE;
266 }
267
268 static inline int
269 __copy_to_user_swizzled(char __user *cpu_vaddr,
270 const char *gpu_vaddr, int gpu_offset,
271 int length)
272 {
273 int ret, cpu_offset = 0;
274
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 ret = __copy_to_user(cpu_vaddr + cpu_offset,
281 gpu_vaddr + swizzled_gpu_offset,
282 this_length);
283 if (ret)
284 return ret + length;
285
286 cpu_offset += this_length;
287 gpu_offset += this_length;
288 length -= this_length;
289 }
290
291 return 0;
292 }
293
294 static inline int
295 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
296 const char __user *cpu_vaddr,
297 int length)
298 {
299 int ret, cpu_offset = 0;
300
301 while (length > 0) {
302 int cacheline_end = ALIGN(gpu_offset + 1, 64);
303 int this_length = min(cacheline_end - gpu_offset, length);
304 int swizzled_gpu_offset = gpu_offset ^ 64;
305
306 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
307 cpu_vaddr + cpu_offset,
308 this_length);
309 if (ret)
310 return ret + length;
311
312 cpu_offset += this_length;
313 gpu_offset += this_length;
314 length -= this_length;
315 }
316
317 return 0;
318 }
319
320 /* Per-page copy function for the shmem pread fastpath.
321 * Flushes invalid cachelines before reading the target if
322 * needs_clflush is set. */
323 static int
324 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
325 char __user *user_data,
326 bool page_do_bit17_swizzling, bool needs_clflush)
327 {
328 char *vaddr;
329 int ret;
330
331 if (unlikely(page_do_bit17_swizzling))
332 return -EINVAL;
333
334 vaddr = kmap_atomic(page);
335 if (needs_clflush)
336 drm_clflush_virt_range(vaddr + shmem_page_offset,
337 page_length);
338 ret = __copy_to_user_inatomic(user_data,
339 vaddr + shmem_page_offset,
340 page_length);
341 kunmap_atomic(vaddr);
342
343 return ret;
344 }
345
346 static void
347 shmem_clflush_swizzled_range(char *addr, unsigned long length,
348 bool swizzled)
349 {
350 if (unlikely(swizzled)) {
351 unsigned long start = (unsigned long) addr;
352 unsigned long end = (unsigned long) addr + length;
353
354 /* For swizzling simply ensure that we always flush both
355 * channels. Lame, but simple and it works. Swizzled
356 * pwrite/pread is far from a hotpath - current userspace
357 * doesn't use it at all. */
358 start = round_down(start, 128);
359 end = round_up(end, 128);
360
361 drm_clflush_virt_range((void *)start, end - start);
362 } else {
363 drm_clflush_virt_range(addr, length);
364 }
365
366 }
367
368 /* Only difference to the fast-path function is that this can handle bit17
369 * and uses non-atomic copy and kmap functions. */
370 static int
371 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
372 char __user *user_data,
373 bool page_do_bit17_swizzling, bool needs_clflush)
374 {
375 char *vaddr;
376 int ret;
377
378 vaddr = kmap(page);
379 if (needs_clflush)
380 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
381 page_length,
382 page_do_bit17_swizzling);
383
384 if (page_do_bit17_swizzling)
385 ret = __copy_to_user_swizzled(user_data,
386 vaddr, shmem_page_offset,
387 page_length);
388 else
389 ret = __copy_to_user(user_data,
390 vaddr + shmem_page_offset,
391 page_length);
392 kunmap(page);
393
394 return ret;
395 }
396
397 static int
398 i915_gem_shmem_pread(struct drm_device *dev,
399 struct drm_i915_gem_object *obj,
400 struct drm_i915_gem_pread *args,
401 struct drm_file *file)
402 {
403 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
404 char __user *user_data;
405 ssize_t remain;
406 loff_t offset;
407 int shmem_page_offset, page_length, ret = 0;
408 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409 int hit_slowpath = 0;
410 int prefaulted = 0;
411 int needs_clflush = 0;
412 int release_page;
413
414 user_data = (char __user *) (uintptr_t) args->data_ptr;
415 remain = args->size;
416
417 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
418
419 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
420 /* If we're not in the cpu read domain, set ourself into the gtt
421 * read domain and manually flush cachelines (if required). This
422 * optimizes for the case when the gpu will dirty the data
423 * anyway again before the next pread happens. */
424 if (obj->cache_level == I915_CACHE_NONE)
425 needs_clflush = 1;
426 ret = i915_gem_object_set_to_gtt_domain(obj, false);
427 if (ret)
428 return ret;
429 }
430
431 offset = args->offset;
432
433 while (remain > 0) {
434 struct page *page;
435
436 /* Operation in this page
437 *
438 * shmem_page_offset = offset within page in shmem file
439 * page_length = bytes to copy for this page
440 */
441 shmem_page_offset = offset_in_page(offset);
442 page_length = remain;
443 if ((shmem_page_offset + page_length) > PAGE_SIZE)
444 page_length = PAGE_SIZE - shmem_page_offset;
445
446 if (obj->pages) {
447 page = obj->pages[offset >> PAGE_SHIFT];
448 release_page = 0;
449 } else {
450 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
451 if (IS_ERR(page)) {
452 ret = PTR_ERR(page);
453 goto out;
454 }
455 release_page = 1;
456 }
457
458 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
459 (page_to_phys(page) & (1 << 17)) != 0;
460
461 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
462 user_data, page_do_bit17_swizzling,
463 needs_clflush);
464 if (ret == 0)
465 goto next_page;
466
467 hit_slowpath = 1;
468 page_cache_get(page);
469 mutex_unlock(&dev->struct_mutex);
470
471 if (!prefaulted) {
472 ret = fault_in_multipages_writeable(user_data, remain);
473 /* Userspace is tricking us, but we've already clobbered
474 * its pages with the prefault and promised to write the
475 * data up to the first fault. Hence ignore any errors
476 * and just continue. */
477 (void)ret;
478 prefaulted = 1;
479 }
480
481 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
482 user_data, page_do_bit17_swizzling,
483 needs_clflush);
484
485 mutex_lock(&dev->struct_mutex);
486 page_cache_release(page);
487 next_page:
488 mark_page_accessed(page);
489 if (release_page)
490 page_cache_release(page);
491
492 if (ret) {
493 ret = -EFAULT;
494 goto out;
495 }
496
497 remain -= page_length;
498 user_data += page_length;
499 offset += page_length;
500 }
501
502 out:
503 if (hit_slowpath) {
504 /* Fixup: Kill any reinstated backing storage pages */
505 if (obj->madv == __I915_MADV_PURGED)
506 i915_gem_object_truncate(obj);
507 }
508
509 return ret;
510 }
511
512 /**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520 {
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 (char __user *)(uintptr_t)args->data_ptr,
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578 {
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601 {
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_object_pin(obj, 0, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = (char __user *) (uintptr_t) args->data_ptr;
621 remain = args->size;
622
623 offset = obj->gtt_offset + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653 out_unpin:
654 i915_gem_object_unpin(obj);
655 out:
656 return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669 {
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699 {
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730 {
731 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
732 ssize_t remain;
733 loff_t offset;
734 char __user *user_data;
735 int shmem_page_offset, page_length, ret = 0;
736 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
737 int hit_slowpath = 0;
738 int needs_clflush_after = 0;
739 int needs_clflush_before = 0;
740 int release_page;
741
742 user_data = (char __user *) (uintptr_t) args->data_ptr;
743 remain = args->size;
744
745 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
746
747 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
748 /* If we're not in the cpu write domain, set ourself into the gtt
749 * write domain and manually flush cachelines (if required). This
750 * optimizes for the case when the gpu will use the data
751 * right away and we therefore have to clflush anyway. */
752 if (obj->cache_level == I915_CACHE_NONE)
753 needs_clflush_after = 1;
754 ret = i915_gem_object_set_to_gtt_domain(obj, true);
755 if (ret)
756 return ret;
757 }
758 /* Same trick applies for invalidate partially written cachelines before
759 * writing. */
760 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761 && obj->cache_level == I915_CACHE_NONE)
762 needs_clflush_before = 1;
763
764 offset = args->offset;
765 obj->dirty = 1;
766
767 while (remain > 0) {
768 struct page *page;
769 int partial_cacheline_write;
770
771 /* Operation in this page
772 *
773 * shmem_page_offset = offset within page in shmem file
774 * page_length = bytes to copy for this page
775 */
776 shmem_page_offset = offset_in_page(offset);
777
778 page_length = remain;
779 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780 page_length = PAGE_SIZE - shmem_page_offset;
781
782 /* If we don't overwrite a cacheline completely we need to be
783 * careful to have up-to-date data by first clflushing. Don't
784 * overcomplicate things and flush the entire patch. */
785 partial_cacheline_write = needs_clflush_before &&
786 ((shmem_page_offset | page_length)
787 & (boot_cpu_data.x86_clflush_size - 1));
788
789 if (obj->pages) {
790 page = obj->pages[offset >> PAGE_SHIFT];
791 release_page = 0;
792 } else {
793 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
794 if (IS_ERR(page)) {
795 ret = PTR_ERR(page);
796 goto out;
797 }
798 release_page = 1;
799 }
800
801 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
802 (page_to_phys(page) & (1 << 17)) != 0;
803
804 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
805 user_data, page_do_bit17_swizzling,
806 partial_cacheline_write,
807 needs_clflush_after);
808 if (ret == 0)
809 goto next_page;
810
811 hit_slowpath = 1;
812 page_cache_get(page);
813 mutex_unlock(&dev->struct_mutex);
814
815 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 partial_cacheline_write,
818 needs_clflush_after);
819
820 mutex_lock(&dev->struct_mutex);
821 page_cache_release(page);
822 next_page:
823 set_page_dirty(page);
824 mark_page_accessed(page);
825 if (release_page)
826 page_cache_release(page);
827
828 if (ret) {
829 ret = -EFAULT;
830 goto out;
831 }
832
833 remain -= page_length;
834 user_data += page_length;
835 offset += page_length;
836 }
837
838 out:
839 if (hit_slowpath) {
840 /* Fixup: Kill any reinstated backing storage pages */
841 if (obj->madv == __I915_MADV_PURGED)
842 i915_gem_object_truncate(obj);
843 /* and flush dirty cachelines in case the object isn't in the cpu write
844 * domain anymore. */
845 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
846 i915_gem_clflush_object(obj);
847 intel_gtt_chipset_flush();
848 }
849 }
850
851 if (needs_clflush_after)
852 intel_gtt_chipset_flush();
853
854 return ret;
855 }
856
857 /**
858 * Writes data to the object referenced by handle.
859 *
860 * On error, the contents of the buffer that were to be modified are undefined.
861 */
862 int
863 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
864 struct drm_file *file)
865 {
866 struct drm_i915_gem_pwrite *args = data;
867 struct drm_i915_gem_object *obj;
868 int ret;
869
870 if (args->size == 0)
871 return 0;
872
873 if (!access_ok(VERIFY_READ,
874 (char __user *)(uintptr_t)args->data_ptr,
875 args->size))
876 return -EFAULT;
877
878 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
879 args->size);
880 if (ret)
881 return -EFAULT;
882
883 ret = i915_mutex_lock_interruptible(dev);
884 if (ret)
885 return ret;
886
887 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
888 if (&obj->base == NULL) {
889 ret = -ENOENT;
890 goto unlock;
891 }
892
893 /* Bounds check destination. */
894 if (args->offset > obj->base.size ||
895 args->size > obj->base.size - args->offset) {
896 ret = -EINVAL;
897 goto out;
898 }
899
900 /* prime objects have no backing filp to GEM pread/pwrite
901 * pages from.
902 */
903 if (!obj->base.filp) {
904 ret = -EINVAL;
905 goto out;
906 }
907
908 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
909
910 ret = -EFAULT;
911 /* We can only do the GTT pwrite on untiled buffers, as otherwise
912 * it would end up going through the fenced access, and we'll get
913 * different detiling behavior between reading and writing.
914 * pread/pwrite currently are reading and writing from the CPU
915 * perspective, requiring manual detiling by the client.
916 */
917 if (obj->phys_obj) {
918 ret = i915_gem_phys_pwrite(dev, obj, args, file);
919 goto out;
920 }
921
922 if (obj->gtt_space &&
923 obj->cache_level == I915_CACHE_NONE &&
924 obj->tiling_mode == I915_TILING_NONE &&
925 obj->map_and_fenceable &&
926 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
927 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
928 /* Note that the gtt paths might fail with non-page-backed user
929 * pointers (e.g. gtt mappings when moving data between
930 * textures). Fallback to the shmem path in that case. */
931 }
932
933 if (ret == -EFAULT)
934 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
935
936 out:
937 drm_gem_object_unreference(&obj->base);
938 unlock:
939 mutex_unlock(&dev->struct_mutex);
940 return ret;
941 }
942
943 /**
944 * Called when user space prepares to use an object with the CPU, either
945 * through the mmap ioctl's mapping or a GTT mapping.
946 */
947 int
948 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
949 struct drm_file *file)
950 {
951 struct drm_i915_gem_set_domain *args = data;
952 struct drm_i915_gem_object *obj;
953 uint32_t read_domains = args->read_domains;
954 uint32_t write_domain = args->write_domain;
955 int ret;
956
957 /* Only handle setting domains to types used by the CPU. */
958 if (write_domain & I915_GEM_GPU_DOMAINS)
959 return -EINVAL;
960
961 if (read_domains & I915_GEM_GPU_DOMAINS)
962 return -EINVAL;
963
964 /* Having something in the write domain implies it's in the read
965 * domain, and only that read domain. Enforce that in the request.
966 */
967 if (write_domain != 0 && read_domains != write_domain)
968 return -EINVAL;
969
970 ret = i915_mutex_lock_interruptible(dev);
971 if (ret)
972 return ret;
973
974 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
975 if (&obj->base == NULL) {
976 ret = -ENOENT;
977 goto unlock;
978 }
979
980 if (read_domains & I915_GEM_DOMAIN_GTT) {
981 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
982
983 /* Silently promote "you're not bound, there was nothing to do"
984 * to success, since the client was just asking us to
985 * make sure everything was done.
986 */
987 if (ret == -EINVAL)
988 ret = 0;
989 } else {
990 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
991 }
992
993 drm_gem_object_unreference(&obj->base);
994 unlock:
995 mutex_unlock(&dev->struct_mutex);
996 return ret;
997 }
998
999 /**
1000 * Called when user space has done writes to this buffer
1001 */
1002 int
1003 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1004 struct drm_file *file)
1005 {
1006 struct drm_i915_gem_sw_finish *args = data;
1007 struct drm_i915_gem_object *obj;
1008 int ret = 0;
1009
1010 ret = i915_mutex_lock_interruptible(dev);
1011 if (ret)
1012 return ret;
1013
1014 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1015 if (&obj->base == NULL) {
1016 ret = -ENOENT;
1017 goto unlock;
1018 }
1019
1020 /* Pinned buffers may be scanout, so flush the cache */
1021 if (obj->pin_count)
1022 i915_gem_object_flush_cpu_write_domain(obj);
1023
1024 drm_gem_object_unreference(&obj->base);
1025 unlock:
1026 mutex_unlock(&dev->struct_mutex);
1027 return ret;
1028 }
1029
1030 /**
1031 * Maps the contents of an object, returning the address it is mapped
1032 * into.
1033 *
1034 * While the mapping holds a reference on the contents of the object, it doesn't
1035 * imply a ref on the object itself.
1036 */
1037 int
1038 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1039 struct drm_file *file)
1040 {
1041 struct drm_i915_gem_mmap *args = data;
1042 struct drm_gem_object *obj;
1043 unsigned long addr;
1044
1045 obj = drm_gem_object_lookup(dev, file, args->handle);
1046 if (obj == NULL)
1047 return -ENOENT;
1048
1049 /* prime objects have no backing filp to GEM mmap
1050 * pages from.
1051 */
1052 if (!obj->filp) {
1053 drm_gem_object_unreference_unlocked(obj);
1054 return -EINVAL;
1055 }
1056
1057 addr = vm_mmap(obj->filp, 0, args->size,
1058 PROT_READ | PROT_WRITE, MAP_SHARED,
1059 args->offset);
1060 drm_gem_object_unreference_unlocked(obj);
1061 if (IS_ERR((void *)addr))
1062 return addr;
1063
1064 args->addr_ptr = (uint64_t) addr;
1065
1066 return 0;
1067 }
1068
1069 /**
1070 * i915_gem_fault - fault a page into the GTT
1071 * vma: VMA in question
1072 * vmf: fault info
1073 *
1074 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1075 * from userspace. The fault handler takes care of binding the object to
1076 * the GTT (if needed), allocating and programming a fence register (again,
1077 * only if needed based on whether the old reg is still valid or the object
1078 * is tiled) and inserting a new PTE into the faulting process.
1079 *
1080 * Note that the faulting process may involve evicting existing objects
1081 * from the GTT and/or fence registers to make room. So performance may
1082 * suffer if the GTT working set is large or there are few fence registers
1083 * left.
1084 */
1085 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1086 {
1087 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1088 struct drm_device *dev = obj->base.dev;
1089 drm_i915_private_t *dev_priv = dev->dev_private;
1090 pgoff_t page_offset;
1091 unsigned long pfn;
1092 int ret = 0;
1093 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1094
1095 /* We don't use vmf->pgoff since that has the fake offset */
1096 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1097 PAGE_SHIFT;
1098
1099 ret = i915_mutex_lock_interruptible(dev);
1100 if (ret)
1101 goto out;
1102
1103 trace_i915_gem_object_fault(obj, page_offset, true, write);
1104
1105 /* Now bind it into the GTT if needed */
1106 if (!obj->map_and_fenceable) {
1107 ret = i915_gem_object_unbind(obj);
1108 if (ret)
1109 goto unlock;
1110 }
1111 if (!obj->gtt_space) {
1112 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1113 if (ret)
1114 goto unlock;
1115
1116 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1117 if (ret)
1118 goto unlock;
1119 }
1120
1121 if (!obj->has_global_gtt_mapping)
1122 i915_gem_gtt_bind_object(obj, obj->cache_level);
1123
1124 ret = i915_gem_object_get_fence(obj);
1125 if (ret)
1126 goto unlock;
1127
1128 if (i915_gem_object_is_inactive(obj))
1129 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1130
1131 obj->fault_mappable = true;
1132
1133 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1134 page_offset;
1135
1136 /* Finally, remap it using the new GTT offset */
1137 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1138 unlock:
1139 mutex_unlock(&dev->struct_mutex);
1140 out:
1141 switch (ret) {
1142 case -EIO:
1143 /* If this -EIO is due to a gpu hang, give the reset code a
1144 * chance to clean up the mess. Otherwise return the proper
1145 * SIGBUS. */
1146 if (!atomic_read(&dev_priv->mm.wedged))
1147 return VM_FAULT_SIGBUS;
1148 case -EAGAIN:
1149 /* Give the error handler a chance to run and move the
1150 * objects off the GPU active list. Next time we service the
1151 * fault, we should be able to transition the page into the
1152 * GTT without touching the GPU (and so avoid further
1153 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1154 * with coherency, just lost writes.
1155 */
1156 set_need_resched();
1157 case 0:
1158 case -ERESTARTSYS:
1159 case -EINTR:
1160 return VM_FAULT_NOPAGE;
1161 case -ENOMEM:
1162 return VM_FAULT_OOM;
1163 default:
1164 return VM_FAULT_SIGBUS;
1165 }
1166 }
1167
1168 /**
1169 * i915_gem_release_mmap - remove physical page mappings
1170 * @obj: obj in question
1171 *
1172 * Preserve the reservation of the mmapping with the DRM core code, but
1173 * relinquish ownership of the pages back to the system.
1174 *
1175 * It is vital that we remove the page mapping if we have mapped a tiled
1176 * object through the GTT and then lose the fence register due to
1177 * resource pressure. Similarly if the object has been moved out of the
1178 * aperture, than pages mapped into userspace must be revoked. Removing the
1179 * mapping will then trigger a page fault on the next user access, allowing
1180 * fixup by i915_gem_fault().
1181 */
1182 void
1183 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1184 {
1185 if (!obj->fault_mappable)
1186 return;
1187
1188 if (obj->base.dev->dev_mapping)
1189 unmap_mapping_range(obj->base.dev->dev_mapping,
1190 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1191 obj->base.size, 1);
1192
1193 obj->fault_mappable = false;
1194 }
1195
1196 static uint32_t
1197 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1198 {
1199 uint32_t gtt_size;
1200
1201 if (INTEL_INFO(dev)->gen >= 4 ||
1202 tiling_mode == I915_TILING_NONE)
1203 return size;
1204
1205 /* Previous chips need a power-of-two fence region when tiling */
1206 if (INTEL_INFO(dev)->gen == 3)
1207 gtt_size = 1024*1024;
1208 else
1209 gtt_size = 512*1024;
1210
1211 while (gtt_size < size)
1212 gtt_size <<= 1;
1213
1214 return gtt_size;
1215 }
1216
1217 /**
1218 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1219 * @obj: object to check
1220 *
1221 * Return the required GTT alignment for an object, taking into account
1222 * potential fence register mapping.
1223 */
1224 static uint32_t
1225 i915_gem_get_gtt_alignment(struct drm_device *dev,
1226 uint32_t size,
1227 int tiling_mode)
1228 {
1229 /*
1230 * Minimum alignment is 4k (GTT page size), but might be greater
1231 * if a fence register is needed for the object.
1232 */
1233 if (INTEL_INFO(dev)->gen >= 4 ||
1234 tiling_mode == I915_TILING_NONE)
1235 return 4096;
1236
1237 /*
1238 * Previous chips need to be aligned to the size of the smallest
1239 * fence register that can contain the object.
1240 */
1241 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1242 }
1243
1244 /**
1245 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1246 * unfenced object
1247 * @dev: the device
1248 * @size: size of the object
1249 * @tiling_mode: tiling mode of the object
1250 *
1251 * Return the required GTT alignment for an object, only taking into account
1252 * unfenced tiled surface requirements.
1253 */
1254 uint32_t
1255 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1256 uint32_t size,
1257 int tiling_mode)
1258 {
1259 /*
1260 * Minimum alignment is 4k (GTT page size) for sane hw.
1261 */
1262 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1263 tiling_mode == I915_TILING_NONE)
1264 return 4096;
1265
1266 /* Previous hardware however needs to be aligned to a power-of-two
1267 * tile height. The simplest method for determining this is to reuse
1268 * the power-of-tile object size.
1269 */
1270 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1271 }
1272
1273 int
1274 i915_gem_mmap_gtt(struct drm_file *file,
1275 struct drm_device *dev,
1276 uint32_t handle,
1277 uint64_t *offset)
1278 {
1279 struct drm_i915_private *dev_priv = dev->dev_private;
1280 struct drm_i915_gem_object *obj;
1281 int ret;
1282
1283 ret = i915_mutex_lock_interruptible(dev);
1284 if (ret)
1285 return ret;
1286
1287 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1288 if (&obj->base == NULL) {
1289 ret = -ENOENT;
1290 goto unlock;
1291 }
1292
1293 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1294 ret = -E2BIG;
1295 goto out;
1296 }
1297
1298 if (obj->madv != I915_MADV_WILLNEED) {
1299 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1300 ret = -EINVAL;
1301 goto out;
1302 }
1303
1304 if (!obj->base.map_list.map) {
1305 ret = drm_gem_create_mmap_offset(&obj->base);
1306 if (ret)
1307 goto out;
1308 }
1309
1310 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1311
1312 out:
1313 drm_gem_object_unreference(&obj->base);
1314 unlock:
1315 mutex_unlock(&dev->struct_mutex);
1316 return ret;
1317 }
1318
1319 /**
1320 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1321 * @dev: DRM device
1322 * @data: GTT mapping ioctl data
1323 * @file: GEM object info
1324 *
1325 * Simply returns the fake offset to userspace so it can mmap it.
1326 * The mmap call will end up in drm_gem_mmap(), which will set things
1327 * up so we can get faults in the handler above.
1328 *
1329 * The fault handler will take care of binding the object into the GTT
1330 * (since it may have been evicted to make room for something), allocating
1331 * a fence register, and mapping the appropriate aperture address into
1332 * userspace.
1333 */
1334 int
1335 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1336 struct drm_file *file)
1337 {
1338 struct drm_i915_gem_mmap_gtt *args = data;
1339
1340 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1341 }
1342
1343 int
1344 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1345 gfp_t gfpmask)
1346 {
1347 int page_count, i;
1348 struct address_space *mapping;
1349 struct inode *inode;
1350 struct page *page;
1351
1352 if (obj->pages || obj->sg_table)
1353 return 0;
1354
1355 /* Get the list of pages out of our struct file. They'll be pinned
1356 * at this point until we release them.
1357 */
1358 page_count = obj->base.size / PAGE_SIZE;
1359 BUG_ON(obj->pages != NULL);
1360 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1361 if (obj->pages == NULL)
1362 return -ENOMEM;
1363
1364 inode = obj->base.filp->f_path.dentry->d_inode;
1365 mapping = inode->i_mapping;
1366 gfpmask |= mapping_gfp_mask(mapping);
1367
1368 for (i = 0; i < page_count; i++) {
1369 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1370 if (IS_ERR(page))
1371 goto err_pages;
1372
1373 obj->pages[i] = page;
1374 }
1375
1376 if (i915_gem_object_needs_bit17_swizzle(obj))
1377 i915_gem_object_do_bit_17_swizzle(obj);
1378
1379 return 0;
1380
1381 err_pages:
1382 while (i--)
1383 page_cache_release(obj->pages[i]);
1384
1385 drm_free_large(obj->pages);
1386 obj->pages = NULL;
1387 return PTR_ERR(page);
1388 }
1389
1390 static void
1391 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1392 {
1393 int page_count = obj->base.size / PAGE_SIZE;
1394 int i;
1395
1396 if (!obj->pages)
1397 return;
1398
1399 BUG_ON(obj->madv == __I915_MADV_PURGED);
1400
1401 if (i915_gem_object_needs_bit17_swizzle(obj))
1402 i915_gem_object_save_bit_17_swizzle(obj);
1403
1404 if (obj->madv == I915_MADV_DONTNEED)
1405 obj->dirty = 0;
1406
1407 for (i = 0; i < page_count; i++) {
1408 if (obj->dirty)
1409 set_page_dirty(obj->pages[i]);
1410
1411 if (obj->madv == I915_MADV_WILLNEED)
1412 mark_page_accessed(obj->pages[i]);
1413
1414 page_cache_release(obj->pages[i]);
1415 }
1416 obj->dirty = 0;
1417
1418 drm_free_large(obj->pages);
1419 obj->pages = NULL;
1420 }
1421
1422 void
1423 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1424 struct intel_ring_buffer *ring,
1425 u32 seqno)
1426 {
1427 struct drm_device *dev = obj->base.dev;
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429
1430 BUG_ON(ring == NULL);
1431 obj->ring = ring;
1432
1433 /* Add a reference if we're newly entering the active list. */
1434 if (!obj->active) {
1435 drm_gem_object_reference(&obj->base);
1436 obj->active = 1;
1437 }
1438
1439 /* Move from whatever list we were on to the tail of execution. */
1440 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1441 list_move_tail(&obj->ring_list, &ring->active_list);
1442
1443 obj->last_rendering_seqno = seqno;
1444
1445 if (obj->fenced_gpu_access) {
1446 obj->last_fenced_seqno = seqno;
1447
1448 /* Bump MRU to take account of the delayed flush */
1449 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1450 struct drm_i915_fence_reg *reg;
1451
1452 reg = &dev_priv->fence_regs[obj->fence_reg];
1453 list_move_tail(&reg->lru_list,
1454 &dev_priv->mm.fence_list);
1455 }
1456 }
1457 }
1458
1459 static void
1460 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1461 {
1462 list_del_init(&obj->ring_list);
1463 obj->last_rendering_seqno = 0;
1464 obj->last_fenced_seqno = 0;
1465 }
1466
1467 static void
1468 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1469 {
1470 struct drm_device *dev = obj->base.dev;
1471 drm_i915_private_t *dev_priv = dev->dev_private;
1472
1473 BUG_ON(!obj->active);
1474 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1475
1476 i915_gem_object_move_off_active(obj);
1477 }
1478
1479 static void
1480 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1481 {
1482 struct drm_device *dev = obj->base.dev;
1483 struct drm_i915_private *dev_priv = dev->dev_private;
1484
1485 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1486
1487 BUG_ON(!list_empty(&obj->gpu_write_list));
1488 BUG_ON(!obj->active);
1489 obj->ring = NULL;
1490
1491 i915_gem_object_move_off_active(obj);
1492 obj->fenced_gpu_access = false;
1493
1494 obj->active = 0;
1495 obj->pending_gpu_write = false;
1496 drm_gem_object_unreference(&obj->base);
1497
1498 WARN_ON(i915_verify_lists(dev));
1499 }
1500
1501 /* Immediately discard the backing storage */
1502 static void
1503 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1504 {
1505 struct inode *inode;
1506
1507 /* Our goal here is to return as much of the memory as
1508 * is possible back to the system as we are called from OOM.
1509 * To do this we must instruct the shmfs to drop all of its
1510 * backing pages, *now*.
1511 */
1512 inode = obj->base.filp->f_path.dentry->d_inode;
1513 shmem_truncate_range(inode, 0, (loff_t)-1);
1514
1515 if (obj->base.map_list.map)
1516 drm_gem_free_mmap_offset(&obj->base);
1517
1518 obj->madv = __I915_MADV_PURGED;
1519 }
1520
1521 static inline int
1522 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1523 {
1524 return obj->madv == I915_MADV_DONTNEED;
1525 }
1526
1527 static void
1528 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1529 uint32_t flush_domains)
1530 {
1531 struct drm_i915_gem_object *obj, *next;
1532
1533 list_for_each_entry_safe(obj, next,
1534 &ring->gpu_write_list,
1535 gpu_write_list) {
1536 if (obj->base.write_domain & flush_domains) {
1537 uint32_t old_write_domain = obj->base.write_domain;
1538
1539 obj->base.write_domain = 0;
1540 list_del_init(&obj->gpu_write_list);
1541 i915_gem_object_move_to_active(obj, ring,
1542 i915_gem_next_request_seqno(ring));
1543
1544 trace_i915_gem_object_change_domain(obj,
1545 obj->base.read_domains,
1546 old_write_domain);
1547 }
1548 }
1549 }
1550
1551 static u32
1552 i915_gem_get_seqno(struct drm_device *dev)
1553 {
1554 drm_i915_private_t *dev_priv = dev->dev_private;
1555 u32 seqno = dev_priv->next_seqno;
1556
1557 /* reserve 0 for non-seqno */
1558 if (++dev_priv->next_seqno == 0)
1559 dev_priv->next_seqno = 1;
1560
1561 return seqno;
1562 }
1563
1564 u32
1565 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1566 {
1567 if (ring->outstanding_lazy_request == 0)
1568 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1569
1570 return ring->outstanding_lazy_request;
1571 }
1572
1573 int
1574 i915_add_request(struct intel_ring_buffer *ring,
1575 struct drm_file *file,
1576 struct drm_i915_gem_request *request)
1577 {
1578 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1579 uint32_t seqno;
1580 u32 request_ring_position;
1581 int was_empty;
1582 int ret;
1583
1584 /*
1585 * Emit any outstanding flushes - execbuf can fail to emit the flush
1586 * after having emitted the batchbuffer command. Hence we need to fix
1587 * things up similar to emitting the lazy request. The difference here
1588 * is that the flush _must_ happen before the next request, no matter
1589 * what.
1590 */
1591 if (ring->gpu_caches_dirty) {
1592 ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
1593 if (ret)
1594 return ret;
1595
1596 ring->gpu_caches_dirty = false;
1597 }
1598
1599 BUG_ON(request == NULL);
1600 seqno = i915_gem_next_request_seqno(ring);
1601
1602 /* Record the position of the start of the request so that
1603 * should we detect the updated seqno part-way through the
1604 * GPU processing the request, we never over-estimate the
1605 * position of the head.
1606 */
1607 request_ring_position = intel_ring_get_tail(ring);
1608
1609 ret = ring->add_request(ring, &seqno);
1610 if (ret)
1611 return ret;
1612
1613 trace_i915_gem_request_add(ring, seqno);
1614
1615 request->seqno = seqno;
1616 request->ring = ring;
1617 request->tail = request_ring_position;
1618 request->emitted_jiffies = jiffies;
1619 was_empty = list_empty(&ring->request_list);
1620 list_add_tail(&request->list, &ring->request_list);
1621
1622 if (file) {
1623 struct drm_i915_file_private *file_priv = file->driver_priv;
1624
1625 spin_lock(&file_priv->mm.lock);
1626 request->file_priv = file_priv;
1627 list_add_tail(&request->client_list,
1628 &file_priv->mm.request_list);
1629 spin_unlock(&file_priv->mm.lock);
1630 }
1631
1632 ring->outstanding_lazy_request = 0;
1633
1634 if (!dev_priv->mm.suspended) {
1635 if (i915_enable_hangcheck) {
1636 mod_timer(&dev_priv->hangcheck_timer,
1637 jiffies +
1638 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1639 }
1640 if (was_empty)
1641 queue_delayed_work(dev_priv->wq,
1642 &dev_priv->mm.retire_work, HZ);
1643 }
1644
1645 WARN_ON(!list_empty(&ring->gpu_write_list));
1646
1647 return 0;
1648 }
1649
1650 static inline void
1651 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1652 {
1653 struct drm_i915_file_private *file_priv = request->file_priv;
1654
1655 if (!file_priv)
1656 return;
1657
1658 spin_lock(&file_priv->mm.lock);
1659 if (request->file_priv) {
1660 list_del(&request->client_list);
1661 request->file_priv = NULL;
1662 }
1663 spin_unlock(&file_priv->mm.lock);
1664 }
1665
1666 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1667 struct intel_ring_buffer *ring)
1668 {
1669 while (!list_empty(&ring->request_list)) {
1670 struct drm_i915_gem_request *request;
1671
1672 request = list_first_entry(&ring->request_list,
1673 struct drm_i915_gem_request,
1674 list);
1675
1676 list_del(&request->list);
1677 i915_gem_request_remove_from_client(request);
1678 kfree(request);
1679 }
1680
1681 while (!list_empty(&ring->active_list)) {
1682 struct drm_i915_gem_object *obj;
1683
1684 obj = list_first_entry(&ring->active_list,
1685 struct drm_i915_gem_object,
1686 ring_list);
1687
1688 obj->base.write_domain = 0;
1689 list_del_init(&obj->gpu_write_list);
1690 i915_gem_object_move_to_inactive(obj);
1691 }
1692 }
1693
1694 static void i915_gem_reset_fences(struct drm_device *dev)
1695 {
1696 struct drm_i915_private *dev_priv = dev->dev_private;
1697 int i;
1698
1699 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1700 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1701
1702 i915_gem_write_fence(dev, i, NULL);
1703
1704 if (reg->obj)
1705 i915_gem_object_fence_lost(reg->obj);
1706
1707 reg->pin_count = 0;
1708 reg->obj = NULL;
1709 INIT_LIST_HEAD(&reg->lru_list);
1710 }
1711
1712 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1713 }
1714
1715 void i915_gem_reset(struct drm_device *dev)
1716 {
1717 struct drm_i915_private *dev_priv = dev->dev_private;
1718 struct drm_i915_gem_object *obj;
1719 struct intel_ring_buffer *ring;
1720 int i;
1721
1722 for_each_ring(ring, dev_priv, i)
1723 i915_gem_reset_ring_lists(dev_priv, ring);
1724
1725 /* Remove anything from the flushing lists. The GPU cache is likely
1726 * to be lost on reset along with the data, so simply move the
1727 * lost bo to the inactive list.
1728 */
1729 while (!list_empty(&dev_priv->mm.flushing_list)) {
1730 obj = list_first_entry(&dev_priv->mm.flushing_list,
1731 struct drm_i915_gem_object,
1732 mm_list);
1733
1734 obj->base.write_domain = 0;
1735 list_del_init(&obj->gpu_write_list);
1736 i915_gem_object_move_to_inactive(obj);
1737 }
1738
1739 /* Move everything out of the GPU domains to ensure we do any
1740 * necessary invalidation upon reuse.
1741 */
1742 list_for_each_entry(obj,
1743 &dev_priv->mm.inactive_list,
1744 mm_list)
1745 {
1746 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1747 }
1748
1749 /* The fence registers are invalidated so clear them out */
1750 i915_gem_reset_fences(dev);
1751 }
1752
1753 /**
1754 * This function clears the request list as sequence numbers are passed.
1755 */
1756 void
1757 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1758 {
1759 uint32_t seqno;
1760 int i;
1761
1762 if (list_empty(&ring->request_list))
1763 return;
1764
1765 WARN_ON(i915_verify_lists(ring->dev));
1766
1767 seqno = ring->get_seqno(ring);
1768
1769 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1770 if (seqno >= ring->sync_seqno[i])
1771 ring->sync_seqno[i] = 0;
1772
1773 while (!list_empty(&ring->request_list)) {
1774 struct drm_i915_gem_request *request;
1775
1776 request = list_first_entry(&ring->request_list,
1777 struct drm_i915_gem_request,
1778 list);
1779
1780 if (!i915_seqno_passed(seqno, request->seqno))
1781 break;
1782
1783 trace_i915_gem_request_retire(ring, request->seqno);
1784 /* We know the GPU must have read the request to have
1785 * sent us the seqno + interrupt, so use the position
1786 * of tail of the request to update the last known position
1787 * of the GPU head.
1788 */
1789 ring->last_retired_head = request->tail;
1790
1791 list_del(&request->list);
1792 i915_gem_request_remove_from_client(request);
1793 kfree(request);
1794 }
1795
1796 /* Move any buffers on the active list that are no longer referenced
1797 * by the ringbuffer to the flushing/inactive lists as appropriate.
1798 */
1799 while (!list_empty(&ring->active_list)) {
1800 struct drm_i915_gem_object *obj;
1801
1802 obj = list_first_entry(&ring->active_list,
1803 struct drm_i915_gem_object,
1804 ring_list);
1805
1806 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1807 break;
1808
1809 if (obj->base.write_domain != 0)
1810 i915_gem_object_move_to_flushing(obj);
1811 else
1812 i915_gem_object_move_to_inactive(obj);
1813 }
1814
1815 if (unlikely(ring->trace_irq_seqno &&
1816 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1817 ring->irq_put(ring);
1818 ring->trace_irq_seqno = 0;
1819 }
1820
1821 WARN_ON(i915_verify_lists(ring->dev));
1822 }
1823
1824 void
1825 i915_gem_retire_requests(struct drm_device *dev)
1826 {
1827 drm_i915_private_t *dev_priv = dev->dev_private;
1828 struct intel_ring_buffer *ring;
1829 int i;
1830
1831 for_each_ring(ring, dev_priv, i)
1832 i915_gem_retire_requests_ring(ring);
1833 }
1834
1835 static void
1836 i915_gem_retire_work_handler(struct work_struct *work)
1837 {
1838 drm_i915_private_t *dev_priv;
1839 struct drm_device *dev;
1840 struct intel_ring_buffer *ring;
1841 bool idle;
1842 int i;
1843
1844 dev_priv = container_of(work, drm_i915_private_t,
1845 mm.retire_work.work);
1846 dev = dev_priv->dev;
1847
1848 /* Come back later if the device is busy... */
1849 if (!mutex_trylock(&dev->struct_mutex)) {
1850 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1851 return;
1852 }
1853
1854 i915_gem_retire_requests(dev);
1855
1856 /* Send a periodic flush down the ring so we don't hold onto GEM
1857 * objects indefinitely.
1858 */
1859 idle = true;
1860 for_each_ring(ring, dev_priv, i) {
1861 if (ring->gpu_caches_dirty) {
1862 struct drm_i915_gem_request *request;
1863
1864 request = kzalloc(sizeof(*request), GFP_KERNEL);
1865 if (request == NULL ||
1866 i915_add_request(ring, NULL, request))
1867 kfree(request);
1868 }
1869
1870 idle &= list_empty(&ring->request_list);
1871 }
1872
1873 if (!dev_priv->mm.suspended && !idle)
1874 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1875
1876 mutex_unlock(&dev->struct_mutex);
1877 }
1878
1879 int
1880 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
1881 bool interruptible)
1882 {
1883 if (atomic_read(&dev_priv->mm.wedged)) {
1884 struct completion *x = &dev_priv->error_completion;
1885 bool recovery_complete;
1886 unsigned long flags;
1887
1888 /* Give the error handler a chance to run. */
1889 spin_lock_irqsave(&x->wait.lock, flags);
1890 recovery_complete = x->done > 0;
1891 spin_unlock_irqrestore(&x->wait.lock, flags);
1892
1893 /* Non-interruptible callers can't handle -EAGAIN, hence return
1894 * -EIO unconditionally for these. */
1895 if (!interruptible)
1896 return -EIO;
1897
1898 /* Recovery complete, but still wedged means reset failure. */
1899 if (recovery_complete)
1900 return -EIO;
1901
1902 return -EAGAIN;
1903 }
1904
1905 return 0;
1906 }
1907
1908 /*
1909 * Compare seqno against outstanding lazy request. Emit a request if they are
1910 * equal.
1911 */
1912 static int
1913 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1914 {
1915 int ret = 0;
1916
1917 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1918
1919 if (seqno == ring->outstanding_lazy_request) {
1920 struct drm_i915_gem_request *request;
1921
1922 request = kzalloc(sizeof(*request), GFP_KERNEL);
1923 if (request == NULL)
1924 return -ENOMEM;
1925
1926 ret = i915_add_request(ring, NULL, request);
1927 if (ret) {
1928 kfree(request);
1929 return ret;
1930 }
1931
1932 BUG_ON(seqno != request->seqno);
1933 }
1934
1935 return ret;
1936 }
1937
1938 /**
1939 * __wait_seqno - wait until execution of seqno has finished
1940 * @ring: the ring expected to report seqno
1941 * @seqno: duh!
1942 * @interruptible: do an interruptible wait (normally yes)
1943 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1944 *
1945 * Returns 0 if the seqno was found within the alloted time. Else returns the
1946 * errno with remaining time filled in timeout argument.
1947 */
1948 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1949 bool interruptible, struct timespec *timeout)
1950 {
1951 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1952 struct timespec before, now, wait_time={1,0};
1953 unsigned long timeout_jiffies;
1954 long end;
1955 bool wait_forever = true;
1956 int ret;
1957
1958 if (i915_seqno_passed(ring->get_seqno(ring), seqno))
1959 return 0;
1960
1961 trace_i915_gem_request_wait_begin(ring, seqno);
1962
1963 if (timeout != NULL) {
1964 wait_time = *timeout;
1965 wait_forever = false;
1966 }
1967
1968 timeout_jiffies = timespec_to_jiffies(&wait_time);
1969
1970 if (WARN_ON(!ring->irq_get(ring)))
1971 return -ENODEV;
1972
1973 /* Record current time in case interrupted by signal, or wedged * */
1974 getrawmonotonic(&before);
1975
1976 #define EXIT_COND \
1977 (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
1978 atomic_read(&dev_priv->mm.wedged))
1979 do {
1980 if (interruptible)
1981 end = wait_event_interruptible_timeout(ring->irq_queue,
1982 EXIT_COND,
1983 timeout_jiffies);
1984 else
1985 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1986 timeout_jiffies);
1987
1988 ret = i915_gem_check_wedge(dev_priv, interruptible);
1989 if (ret)
1990 end = ret;
1991 } while (end == 0 && wait_forever);
1992
1993 getrawmonotonic(&now);
1994
1995 ring->irq_put(ring);
1996 trace_i915_gem_request_wait_end(ring, seqno);
1997 #undef EXIT_COND
1998
1999 if (timeout) {
2000 struct timespec sleep_time = timespec_sub(now, before);
2001 *timeout = timespec_sub(*timeout, sleep_time);
2002 }
2003
2004 switch (end) {
2005 case -EIO:
2006 case -EAGAIN: /* Wedged */
2007 case -ERESTARTSYS: /* Signal */
2008 return (int)end;
2009 case 0: /* Timeout */
2010 if (timeout)
2011 set_normalized_timespec(timeout, 0, 0);
2012 return -ETIME;
2013 default: /* Completed */
2014 WARN_ON(end < 0); /* We're not aware of other errors */
2015 return 0;
2016 }
2017 }
2018
2019 /**
2020 * Waits for a sequence number to be signaled, and cleans up the
2021 * request and object lists appropriately for that event.
2022 */
2023 int
2024 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
2025 {
2026 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2027 int ret = 0;
2028
2029 BUG_ON(seqno == 0);
2030
2031 ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
2032 if (ret)
2033 return ret;
2034
2035 ret = i915_gem_check_olr(ring, seqno);
2036 if (ret)
2037 return ret;
2038
2039 ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
2040
2041 return ret;
2042 }
2043
2044 /**
2045 * Ensures that all rendering to the object has completed and the object is
2046 * safe to unbind from the GTT or access from the CPU.
2047 */
2048 int
2049 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2050 {
2051 int ret;
2052
2053 /* This function only exists to support waiting for existing rendering,
2054 * not for emitting required flushes.
2055 */
2056 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2057
2058 /* If there is rendering queued on the buffer being evicted, wait for
2059 * it.
2060 */
2061 if (obj->active) {
2062 ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
2063 if (ret)
2064 return ret;
2065 i915_gem_retire_requests_ring(obj->ring);
2066 }
2067
2068 return 0;
2069 }
2070
2071 /**
2072 * Ensures that an object will eventually get non-busy by flushing any required
2073 * write domains, emitting any outstanding lazy request and retiring and
2074 * completed requests.
2075 */
2076 static int
2077 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2078 {
2079 int ret;
2080
2081 if (obj->active) {
2082 ret = i915_gem_object_flush_gpu_write_domain(obj);
2083 if (ret)
2084 return ret;
2085
2086 ret = i915_gem_check_olr(obj->ring,
2087 obj->last_rendering_seqno);
2088 if (ret)
2089 return ret;
2090 i915_gem_retire_requests_ring(obj->ring);
2091 }
2092
2093 return 0;
2094 }
2095
2096 /**
2097 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2098 * @DRM_IOCTL_ARGS: standard ioctl arguments
2099 *
2100 * Returns 0 if successful, else an error is returned with the remaining time in
2101 * the timeout parameter.
2102 * -ETIME: object is still busy after timeout
2103 * -ERESTARTSYS: signal interrupted the wait
2104 * -ENONENT: object doesn't exist
2105 * Also possible, but rare:
2106 * -EAGAIN: GPU wedged
2107 * -ENOMEM: damn
2108 * -ENODEV: Internal IRQ fail
2109 * -E?: The add request failed
2110 *
2111 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2112 * non-zero timeout parameter the wait ioctl will wait for the given number of
2113 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2114 * without holding struct_mutex the object may become re-busied before this
2115 * function completes. A similar but shorter * race condition exists in the busy
2116 * ioctl
2117 */
2118 int
2119 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2120 {
2121 struct drm_i915_gem_wait *args = data;
2122 struct drm_i915_gem_object *obj;
2123 struct intel_ring_buffer *ring = NULL;
2124 struct timespec timeout_stack, *timeout = NULL;
2125 u32 seqno = 0;
2126 int ret = 0;
2127
2128 if (args->timeout_ns >= 0) {
2129 timeout_stack = ns_to_timespec(args->timeout_ns);
2130 timeout = &timeout_stack;
2131 }
2132
2133 ret = i915_mutex_lock_interruptible(dev);
2134 if (ret)
2135 return ret;
2136
2137 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2138 if (&obj->base == NULL) {
2139 mutex_unlock(&dev->struct_mutex);
2140 return -ENOENT;
2141 }
2142
2143 /* Need to make sure the object gets inactive eventually. */
2144 ret = i915_gem_object_flush_active(obj);
2145 if (ret)
2146 goto out;
2147
2148 if (obj->active) {
2149 seqno = obj->last_rendering_seqno;
2150 ring = obj->ring;
2151 }
2152
2153 if (seqno == 0)
2154 goto out;
2155
2156 /* Do this after OLR check to make sure we make forward progress polling
2157 * on this IOCTL with a 0 timeout (like busy ioctl)
2158 */
2159 if (!args->timeout_ns) {
2160 ret = -ETIME;
2161 goto out;
2162 }
2163
2164 drm_gem_object_unreference(&obj->base);
2165 mutex_unlock(&dev->struct_mutex);
2166
2167 ret = __wait_seqno(ring, seqno, true, timeout);
2168 if (timeout) {
2169 WARN_ON(!timespec_valid(timeout));
2170 args->timeout_ns = timespec_to_ns(timeout);
2171 }
2172 return ret;
2173
2174 out:
2175 drm_gem_object_unreference(&obj->base);
2176 mutex_unlock(&dev->struct_mutex);
2177 return ret;
2178 }
2179
2180 /**
2181 * i915_gem_object_sync - sync an object to a ring.
2182 *
2183 * @obj: object which may be in use on another ring.
2184 * @to: ring we wish to use the object on. May be NULL.
2185 *
2186 * This code is meant to abstract object synchronization with the GPU.
2187 * Calling with NULL implies synchronizing the object with the CPU
2188 * rather than a particular GPU ring.
2189 *
2190 * Returns 0 if successful, else propagates up the lower layer error.
2191 */
2192 int
2193 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2194 struct intel_ring_buffer *to)
2195 {
2196 struct intel_ring_buffer *from = obj->ring;
2197 u32 seqno;
2198 int ret, idx;
2199
2200 if (from == NULL || to == from)
2201 return 0;
2202
2203 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2204 return i915_gem_object_wait_rendering(obj);
2205
2206 idx = intel_ring_sync_index(from, to);
2207
2208 seqno = obj->last_rendering_seqno;
2209 if (seqno <= from->sync_seqno[idx])
2210 return 0;
2211
2212 ret = i915_gem_check_olr(obj->ring, seqno);
2213 if (ret)
2214 return ret;
2215
2216 ret = to->sync_to(to, from, seqno);
2217 if (!ret)
2218 from->sync_seqno[idx] = seqno;
2219
2220 return ret;
2221 }
2222
2223 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2224 {
2225 u32 old_write_domain, old_read_domains;
2226
2227 /* Act a barrier for all accesses through the GTT */
2228 mb();
2229
2230 /* Force a pagefault for domain tracking on next user access */
2231 i915_gem_release_mmap(obj);
2232
2233 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2234 return;
2235
2236 old_read_domains = obj->base.read_domains;
2237 old_write_domain = obj->base.write_domain;
2238
2239 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2240 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2241
2242 trace_i915_gem_object_change_domain(obj,
2243 old_read_domains,
2244 old_write_domain);
2245 }
2246
2247 /**
2248 * Unbinds an object from the GTT aperture.
2249 */
2250 int
2251 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2252 {
2253 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2254 int ret = 0;
2255
2256 if (obj->gtt_space == NULL)
2257 return 0;
2258
2259 if (obj->pin_count)
2260 return -EBUSY;
2261
2262 ret = i915_gem_object_finish_gpu(obj);
2263 if (ret)
2264 return ret;
2265 /* Continue on if we fail due to EIO, the GPU is hung so we
2266 * should be safe and we need to cleanup or else we might
2267 * cause memory corruption through use-after-free.
2268 */
2269
2270 i915_gem_object_finish_gtt(obj);
2271
2272 /* Move the object to the CPU domain to ensure that
2273 * any possible CPU writes while it's not in the GTT
2274 * are flushed when we go to remap it.
2275 */
2276 if (ret == 0)
2277 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2278 if (ret == -ERESTARTSYS)
2279 return ret;
2280 if (ret) {
2281 /* In the event of a disaster, abandon all caches and
2282 * hope for the best.
2283 */
2284 i915_gem_clflush_object(obj);
2285 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2286 }
2287
2288 /* release the fence reg _after_ flushing */
2289 ret = i915_gem_object_put_fence(obj);
2290 if (ret)
2291 return ret;
2292
2293 trace_i915_gem_object_unbind(obj);
2294
2295 if (obj->has_global_gtt_mapping)
2296 i915_gem_gtt_unbind_object(obj);
2297 if (obj->has_aliasing_ppgtt_mapping) {
2298 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2299 obj->has_aliasing_ppgtt_mapping = 0;
2300 }
2301 i915_gem_gtt_finish_object(obj);
2302
2303 i915_gem_object_put_pages_gtt(obj);
2304
2305 list_del_init(&obj->gtt_list);
2306 list_del_init(&obj->mm_list);
2307 /* Avoid an unnecessary call to unbind on rebind. */
2308 obj->map_and_fenceable = true;
2309
2310 drm_mm_put_block(obj->gtt_space);
2311 obj->gtt_space = NULL;
2312 obj->gtt_offset = 0;
2313
2314 if (i915_gem_object_is_purgeable(obj))
2315 i915_gem_object_truncate(obj);
2316
2317 return ret;
2318 }
2319
2320 int
2321 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2322 uint32_t invalidate_domains,
2323 uint32_t flush_domains)
2324 {
2325 int ret;
2326
2327 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2328 return 0;
2329
2330 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2331
2332 ret = ring->flush(ring, invalidate_domains, flush_domains);
2333 if (ret)
2334 return ret;
2335
2336 if (flush_domains & I915_GEM_GPU_DOMAINS)
2337 i915_gem_process_flushing_list(ring, flush_domains);
2338
2339 return 0;
2340 }
2341
2342 static int i915_ring_idle(struct intel_ring_buffer *ring)
2343 {
2344 int ret;
2345
2346 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2347 return 0;
2348
2349 if (!list_empty(&ring->gpu_write_list)) {
2350 ret = i915_gem_flush_ring(ring,
2351 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2352 if (ret)
2353 return ret;
2354 }
2355
2356 return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
2357 }
2358
2359 int i915_gpu_idle(struct drm_device *dev)
2360 {
2361 drm_i915_private_t *dev_priv = dev->dev_private;
2362 struct intel_ring_buffer *ring;
2363 int ret, i;
2364
2365 /* Flush everything onto the inactive list. */
2366 for_each_ring(ring, dev_priv, i) {
2367 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2368 if (ret)
2369 return ret;
2370
2371 ret = i915_ring_idle(ring);
2372 if (ret)
2373 return ret;
2374
2375 /* Is the device fubar? */
2376 if (WARN_ON(!list_empty(&ring->gpu_write_list)))
2377 return -EBUSY;
2378 }
2379
2380 return 0;
2381 }
2382
2383 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2384 struct drm_i915_gem_object *obj)
2385 {
2386 drm_i915_private_t *dev_priv = dev->dev_private;
2387 uint64_t val;
2388
2389 if (obj) {
2390 u32 size = obj->gtt_space->size;
2391
2392 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2393 0xfffff000) << 32;
2394 val |= obj->gtt_offset & 0xfffff000;
2395 val |= (uint64_t)((obj->stride / 128) - 1) <<
2396 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2397
2398 if (obj->tiling_mode == I915_TILING_Y)
2399 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2400 val |= I965_FENCE_REG_VALID;
2401 } else
2402 val = 0;
2403
2404 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2405 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2406 }
2407
2408 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2409 struct drm_i915_gem_object *obj)
2410 {
2411 drm_i915_private_t *dev_priv = dev->dev_private;
2412 uint64_t val;
2413
2414 if (obj) {
2415 u32 size = obj->gtt_space->size;
2416
2417 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2418 0xfffff000) << 32;
2419 val |= obj->gtt_offset & 0xfffff000;
2420 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2421 if (obj->tiling_mode == I915_TILING_Y)
2422 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2423 val |= I965_FENCE_REG_VALID;
2424 } else
2425 val = 0;
2426
2427 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2428 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2429 }
2430
2431 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2432 struct drm_i915_gem_object *obj)
2433 {
2434 drm_i915_private_t *dev_priv = dev->dev_private;
2435 u32 val;
2436
2437 if (obj) {
2438 u32 size = obj->gtt_space->size;
2439 int pitch_val;
2440 int tile_width;
2441
2442 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2443 (size & -size) != size ||
2444 (obj->gtt_offset & (size - 1)),
2445 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2446 obj->gtt_offset, obj->map_and_fenceable, size);
2447
2448 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2449 tile_width = 128;
2450 else
2451 tile_width = 512;
2452
2453 /* Note: pitch better be a power of two tile widths */
2454 pitch_val = obj->stride / tile_width;
2455 pitch_val = ffs(pitch_val) - 1;
2456
2457 val = obj->gtt_offset;
2458 if (obj->tiling_mode == I915_TILING_Y)
2459 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2460 val |= I915_FENCE_SIZE_BITS(size);
2461 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2462 val |= I830_FENCE_REG_VALID;
2463 } else
2464 val = 0;
2465
2466 if (reg < 8)
2467 reg = FENCE_REG_830_0 + reg * 4;
2468 else
2469 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2470
2471 I915_WRITE(reg, val);
2472 POSTING_READ(reg);
2473 }
2474
2475 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2476 struct drm_i915_gem_object *obj)
2477 {
2478 drm_i915_private_t *dev_priv = dev->dev_private;
2479 uint32_t val;
2480
2481 if (obj) {
2482 u32 size = obj->gtt_space->size;
2483 uint32_t pitch_val;
2484
2485 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2486 (size & -size) != size ||
2487 (obj->gtt_offset & (size - 1)),
2488 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2489 obj->gtt_offset, size);
2490
2491 pitch_val = obj->stride / 128;
2492 pitch_val = ffs(pitch_val) - 1;
2493
2494 val = obj->gtt_offset;
2495 if (obj->tiling_mode == I915_TILING_Y)
2496 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2497 val |= I830_FENCE_SIZE_BITS(size);
2498 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2499 val |= I830_FENCE_REG_VALID;
2500 } else
2501 val = 0;
2502
2503 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2504 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2505 }
2506
2507 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2508 struct drm_i915_gem_object *obj)
2509 {
2510 switch (INTEL_INFO(dev)->gen) {
2511 case 7:
2512 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2513 case 5:
2514 case 4: i965_write_fence_reg(dev, reg, obj); break;
2515 case 3: i915_write_fence_reg(dev, reg, obj); break;
2516 case 2: i830_write_fence_reg(dev, reg, obj); break;
2517 default: break;
2518 }
2519 }
2520
2521 static inline int fence_number(struct drm_i915_private *dev_priv,
2522 struct drm_i915_fence_reg *fence)
2523 {
2524 return fence - dev_priv->fence_regs;
2525 }
2526
2527 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2528 struct drm_i915_fence_reg *fence,
2529 bool enable)
2530 {
2531 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2532 int reg = fence_number(dev_priv, fence);
2533
2534 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2535
2536 if (enable) {
2537 obj->fence_reg = reg;
2538 fence->obj = obj;
2539 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2540 } else {
2541 obj->fence_reg = I915_FENCE_REG_NONE;
2542 fence->obj = NULL;
2543 list_del_init(&fence->lru_list);
2544 }
2545 }
2546
2547 static int
2548 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2549 {
2550 int ret;
2551
2552 if (obj->fenced_gpu_access) {
2553 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2554 ret = i915_gem_flush_ring(obj->ring,
2555 0, obj->base.write_domain);
2556 if (ret)
2557 return ret;
2558 }
2559
2560 obj->fenced_gpu_access = false;
2561 }
2562
2563 if (obj->last_fenced_seqno) {
2564 ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2565 if (ret)
2566 return ret;
2567
2568 obj->last_fenced_seqno = 0;
2569 }
2570
2571 /* Ensure that all CPU reads are completed before installing a fence
2572 * and all writes before removing the fence.
2573 */
2574 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2575 mb();
2576
2577 return 0;
2578 }
2579
2580 int
2581 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2582 {
2583 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2584 int ret;
2585
2586 ret = i915_gem_object_flush_fence(obj);
2587 if (ret)
2588 return ret;
2589
2590 if (obj->fence_reg == I915_FENCE_REG_NONE)
2591 return 0;
2592
2593 i915_gem_object_update_fence(obj,
2594 &dev_priv->fence_regs[obj->fence_reg],
2595 false);
2596 i915_gem_object_fence_lost(obj);
2597
2598 return 0;
2599 }
2600
2601 static struct drm_i915_fence_reg *
2602 i915_find_fence_reg(struct drm_device *dev)
2603 {
2604 struct drm_i915_private *dev_priv = dev->dev_private;
2605 struct drm_i915_fence_reg *reg, *avail;
2606 int i;
2607
2608 /* First try to find a free reg */
2609 avail = NULL;
2610 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2611 reg = &dev_priv->fence_regs[i];
2612 if (!reg->obj)
2613 return reg;
2614
2615 if (!reg->pin_count)
2616 avail = reg;
2617 }
2618
2619 if (avail == NULL)
2620 return NULL;
2621
2622 /* None available, try to steal one or wait for a user to finish */
2623 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2624 if (reg->pin_count)
2625 continue;
2626
2627 return reg;
2628 }
2629
2630 return NULL;
2631 }
2632
2633 /**
2634 * i915_gem_object_get_fence - set up fencing for an object
2635 * @obj: object to map through a fence reg
2636 *
2637 * When mapping objects through the GTT, userspace wants to be able to write
2638 * to them without having to worry about swizzling if the object is tiled.
2639 * This function walks the fence regs looking for a free one for @obj,
2640 * stealing one if it can't find any.
2641 *
2642 * It then sets up the reg based on the object's properties: address, pitch
2643 * and tiling format.
2644 *
2645 * For an untiled surface, this removes any existing fence.
2646 */
2647 int
2648 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2649 {
2650 struct drm_device *dev = obj->base.dev;
2651 struct drm_i915_private *dev_priv = dev->dev_private;
2652 bool enable = obj->tiling_mode != I915_TILING_NONE;
2653 struct drm_i915_fence_reg *reg;
2654 int ret;
2655
2656 /* Have we updated the tiling parameters upon the object and so
2657 * will need to serialise the write to the associated fence register?
2658 */
2659 if (obj->fence_dirty) {
2660 ret = i915_gem_object_flush_fence(obj);
2661 if (ret)
2662 return ret;
2663 }
2664
2665 /* Just update our place in the LRU if our fence is getting reused. */
2666 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2667 reg = &dev_priv->fence_regs[obj->fence_reg];
2668 if (!obj->fence_dirty) {
2669 list_move_tail(&reg->lru_list,
2670 &dev_priv->mm.fence_list);
2671 return 0;
2672 }
2673 } else if (enable) {
2674 reg = i915_find_fence_reg(dev);
2675 if (reg == NULL)
2676 return -EDEADLK;
2677
2678 if (reg->obj) {
2679 struct drm_i915_gem_object *old = reg->obj;
2680
2681 ret = i915_gem_object_flush_fence(old);
2682 if (ret)
2683 return ret;
2684
2685 i915_gem_object_fence_lost(old);
2686 }
2687 } else
2688 return 0;
2689
2690 i915_gem_object_update_fence(obj, reg, enable);
2691 obj->fence_dirty = false;
2692
2693 return 0;
2694 }
2695
2696 /**
2697 * Finds free space in the GTT aperture and binds the object there.
2698 */
2699 static int
2700 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2701 unsigned alignment,
2702 bool map_and_fenceable)
2703 {
2704 struct drm_device *dev = obj->base.dev;
2705 drm_i915_private_t *dev_priv = dev->dev_private;
2706 struct drm_mm_node *free_space;
2707 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2708 u32 size, fence_size, fence_alignment, unfenced_alignment;
2709 bool mappable, fenceable;
2710 int ret;
2711
2712 if (obj->madv != I915_MADV_WILLNEED) {
2713 DRM_ERROR("Attempting to bind a purgeable object\n");
2714 return -EINVAL;
2715 }
2716
2717 fence_size = i915_gem_get_gtt_size(dev,
2718 obj->base.size,
2719 obj->tiling_mode);
2720 fence_alignment = i915_gem_get_gtt_alignment(dev,
2721 obj->base.size,
2722 obj->tiling_mode);
2723 unfenced_alignment =
2724 i915_gem_get_unfenced_gtt_alignment(dev,
2725 obj->base.size,
2726 obj->tiling_mode);
2727
2728 if (alignment == 0)
2729 alignment = map_and_fenceable ? fence_alignment :
2730 unfenced_alignment;
2731 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2732 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2733 return -EINVAL;
2734 }
2735
2736 size = map_and_fenceable ? fence_size : obj->base.size;
2737
2738 /* If the object is bigger than the entire aperture, reject it early
2739 * before evicting everything in a vain attempt to find space.
2740 */
2741 if (obj->base.size >
2742 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2743 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2744 return -E2BIG;
2745 }
2746
2747 search_free:
2748 if (map_and_fenceable)
2749 free_space =
2750 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2751 size, alignment,
2752 0, dev_priv->mm.gtt_mappable_end,
2753 0);
2754 else
2755 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2756 size, alignment, 0);
2757
2758 if (free_space != NULL) {
2759 if (map_and_fenceable)
2760 obj->gtt_space =
2761 drm_mm_get_block_range_generic(free_space,
2762 size, alignment, 0,
2763 0, dev_priv->mm.gtt_mappable_end,
2764 0);
2765 else
2766 obj->gtt_space =
2767 drm_mm_get_block(free_space, size, alignment);
2768 }
2769 if (obj->gtt_space == NULL) {
2770 /* If the gtt is empty and we're still having trouble
2771 * fitting our object in, we're out of memory.
2772 */
2773 ret = i915_gem_evict_something(dev, size, alignment,
2774 map_and_fenceable);
2775 if (ret)
2776 return ret;
2777
2778 goto search_free;
2779 }
2780
2781 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2782 if (ret) {
2783 drm_mm_put_block(obj->gtt_space);
2784 obj->gtt_space = NULL;
2785
2786 if (ret == -ENOMEM) {
2787 /* first try to reclaim some memory by clearing the GTT */
2788 ret = i915_gem_evict_everything(dev, false);
2789 if (ret) {
2790 /* now try to shrink everyone else */
2791 if (gfpmask) {
2792 gfpmask = 0;
2793 goto search_free;
2794 }
2795
2796 return -ENOMEM;
2797 }
2798
2799 goto search_free;
2800 }
2801
2802 return ret;
2803 }
2804
2805 ret = i915_gem_gtt_prepare_object(obj);
2806 if (ret) {
2807 i915_gem_object_put_pages_gtt(obj);
2808 drm_mm_put_block(obj->gtt_space);
2809 obj->gtt_space = NULL;
2810
2811 if (i915_gem_evict_everything(dev, false))
2812 return ret;
2813
2814 goto search_free;
2815 }
2816
2817 if (!dev_priv->mm.aliasing_ppgtt)
2818 i915_gem_gtt_bind_object(obj, obj->cache_level);
2819
2820 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2821 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2822
2823 /* Assert that the object is not currently in any GPU domain. As it
2824 * wasn't in the GTT, there shouldn't be any way it could have been in
2825 * a GPU cache
2826 */
2827 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2828 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2829
2830 obj->gtt_offset = obj->gtt_space->start;
2831
2832 fenceable =
2833 obj->gtt_space->size == fence_size &&
2834 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2835
2836 mappable =
2837 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2838
2839 obj->map_and_fenceable = mappable && fenceable;
2840
2841 trace_i915_gem_object_bind(obj, map_and_fenceable);
2842 return 0;
2843 }
2844
2845 void
2846 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2847 {
2848 /* If we don't have a page list set up, then we're not pinned
2849 * to GPU, and we can ignore the cache flush because it'll happen
2850 * again at bind time.
2851 */
2852 if (obj->pages == NULL)
2853 return;
2854
2855 /* If the GPU is snooping the contents of the CPU cache,
2856 * we do not need to manually clear the CPU cache lines. However,
2857 * the caches are only snooped when the render cache is
2858 * flushed/invalidated. As we always have to emit invalidations
2859 * and flushes when moving into and out of the RENDER domain, correct
2860 * snooping behaviour occurs naturally as the result of our domain
2861 * tracking.
2862 */
2863 if (obj->cache_level != I915_CACHE_NONE)
2864 return;
2865
2866 trace_i915_gem_object_clflush(obj);
2867
2868 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2869 }
2870
2871 /** Flushes any GPU write domain for the object if it's dirty. */
2872 static int
2873 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2874 {
2875 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2876 return 0;
2877
2878 /* Queue the GPU write cache flushing we need. */
2879 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2880 }
2881
2882 /** Flushes the GTT write domain for the object if it's dirty. */
2883 static void
2884 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2885 {
2886 uint32_t old_write_domain;
2887
2888 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2889 return;
2890
2891 /* No actual flushing is required for the GTT write domain. Writes
2892 * to it immediately go to main memory as far as we know, so there's
2893 * no chipset flush. It also doesn't land in render cache.
2894 *
2895 * However, we do have to enforce the order so that all writes through
2896 * the GTT land before any writes to the device, such as updates to
2897 * the GATT itself.
2898 */
2899 wmb();
2900
2901 old_write_domain = obj->base.write_domain;
2902 obj->base.write_domain = 0;
2903
2904 trace_i915_gem_object_change_domain(obj,
2905 obj->base.read_domains,
2906 old_write_domain);
2907 }
2908
2909 /** Flushes the CPU write domain for the object if it's dirty. */
2910 static void
2911 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2912 {
2913 uint32_t old_write_domain;
2914
2915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2916 return;
2917
2918 i915_gem_clflush_object(obj);
2919 intel_gtt_chipset_flush();
2920 old_write_domain = obj->base.write_domain;
2921 obj->base.write_domain = 0;
2922
2923 trace_i915_gem_object_change_domain(obj,
2924 obj->base.read_domains,
2925 old_write_domain);
2926 }
2927
2928 /**
2929 * Moves a single object to the GTT read, and possibly write domain.
2930 *
2931 * This function returns when the move is complete, including waiting on
2932 * flushes to occur.
2933 */
2934 int
2935 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2936 {
2937 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2938 uint32_t old_write_domain, old_read_domains;
2939 int ret;
2940
2941 /* Not valid to be called on unbound objects. */
2942 if (obj->gtt_space == NULL)
2943 return -EINVAL;
2944
2945 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2946 return 0;
2947
2948 ret = i915_gem_object_flush_gpu_write_domain(obj);
2949 if (ret)
2950 return ret;
2951
2952 if (obj->pending_gpu_write || write) {
2953 ret = i915_gem_object_wait_rendering(obj);
2954 if (ret)
2955 return ret;
2956 }
2957
2958 i915_gem_object_flush_cpu_write_domain(obj);
2959
2960 old_write_domain = obj->base.write_domain;
2961 old_read_domains = obj->base.read_domains;
2962
2963 /* It should now be out of any other write domains, and we can update
2964 * the domain values for our changes.
2965 */
2966 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2967 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2968 if (write) {
2969 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2970 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2971 obj->dirty = 1;
2972 }
2973
2974 trace_i915_gem_object_change_domain(obj,
2975 old_read_domains,
2976 old_write_domain);
2977
2978 /* And bump the LRU for this access */
2979 if (i915_gem_object_is_inactive(obj))
2980 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2981
2982 return 0;
2983 }
2984
2985 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2986 enum i915_cache_level cache_level)
2987 {
2988 struct drm_device *dev = obj->base.dev;
2989 drm_i915_private_t *dev_priv = dev->dev_private;
2990 int ret;
2991
2992 if (obj->cache_level == cache_level)
2993 return 0;
2994
2995 if (obj->pin_count) {
2996 DRM_DEBUG("can not change the cache level of pinned objects\n");
2997 return -EBUSY;
2998 }
2999
3000 if (obj->gtt_space) {
3001 ret = i915_gem_object_finish_gpu(obj);
3002 if (ret)
3003 return ret;
3004
3005 i915_gem_object_finish_gtt(obj);
3006
3007 /* Before SandyBridge, you could not use tiling or fence
3008 * registers with snooped memory, so relinquish any fences
3009 * currently pointing to our region in the aperture.
3010 */
3011 if (INTEL_INFO(obj->base.dev)->gen < 6) {
3012 ret = i915_gem_object_put_fence(obj);
3013 if (ret)
3014 return ret;
3015 }
3016
3017 if (obj->has_global_gtt_mapping)
3018 i915_gem_gtt_bind_object(obj, cache_level);
3019 if (obj->has_aliasing_ppgtt_mapping)
3020 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3021 obj, cache_level);
3022 }
3023
3024 if (cache_level == I915_CACHE_NONE) {
3025 u32 old_read_domains, old_write_domain;
3026
3027 /* If we're coming from LLC cached, then we haven't
3028 * actually been tracking whether the data is in the
3029 * CPU cache or not, since we only allow one bit set
3030 * in obj->write_domain and have been skipping the clflushes.
3031 * Just set it to the CPU cache for now.
3032 */
3033 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3034 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3035
3036 old_read_domains = obj->base.read_domains;
3037 old_write_domain = obj->base.write_domain;
3038
3039 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3040 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3041
3042 trace_i915_gem_object_change_domain(obj,
3043 old_read_domains,
3044 old_write_domain);
3045 }
3046
3047 obj->cache_level = cache_level;
3048 return 0;
3049 }
3050
3051 /*
3052 * Prepare buffer for display plane (scanout, cursors, etc).
3053 * Can be called from an uninterruptible phase (modesetting) and allows
3054 * any flushes to be pipelined (for pageflips).
3055 */
3056 int
3057 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3058 u32 alignment,
3059 struct intel_ring_buffer *pipelined)
3060 {
3061 u32 old_read_domains, old_write_domain;
3062 int ret;
3063
3064 ret = i915_gem_object_flush_gpu_write_domain(obj);
3065 if (ret)
3066 return ret;
3067
3068 if (pipelined != obj->ring) {
3069 ret = i915_gem_object_sync(obj, pipelined);
3070 if (ret)
3071 return ret;
3072 }
3073
3074 /* The display engine is not coherent with the LLC cache on gen6. As
3075 * a result, we make sure that the pinning that is about to occur is
3076 * done with uncached PTEs. This is lowest common denominator for all
3077 * chipsets.
3078 *
3079 * However for gen6+, we could do better by using the GFDT bit instead
3080 * of uncaching, which would allow us to flush all the LLC-cached data
3081 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3082 */
3083 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3084 if (ret)
3085 return ret;
3086
3087 /* As the user may map the buffer once pinned in the display plane
3088 * (e.g. libkms for the bootup splash), we have to ensure that we
3089 * always use map_and_fenceable for all scanout buffers.
3090 */
3091 ret = i915_gem_object_pin(obj, alignment, true);
3092 if (ret)
3093 return ret;
3094
3095 i915_gem_object_flush_cpu_write_domain(obj);
3096
3097 old_write_domain = obj->base.write_domain;
3098 old_read_domains = obj->base.read_domains;
3099
3100 /* It should now be out of any other write domains, and we can update
3101 * the domain values for our changes.
3102 */
3103 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3104 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3105
3106 trace_i915_gem_object_change_domain(obj,
3107 old_read_domains,
3108 old_write_domain);
3109
3110 return 0;
3111 }
3112
3113 int
3114 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3115 {
3116 int ret;
3117
3118 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3119 return 0;
3120
3121 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3122 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3123 if (ret)
3124 return ret;
3125 }
3126
3127 ret = i915_gem_object_wait_rendering(obj);
3128 if (ret)
3129 return ret;
3130
3131 /* Ensure that we invalidate the GPU's caches and TLBs. */
3132 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3133 return 0;
3134 }
3135
3136 /**
3137 * Moves a single object to the CPU read, and possibly write domain.
3138 *
3139 * This function returns when the move is complete, including waiting on
3140 * flushes to occur.
3141 */
3142 int
3143 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3144 {
3145 uint32_t old_write_domain, old_read_domains;
3146 int ret;
3147
3148 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3149 return 0;
3150
3151 ret = i915_gem_object_flush_gpu_write_domain(obj);
3152 if (ret)
3153 return ret;
3154
3155 if (write || obj->pending_gpu_write) {
3156 ret = i915_gem_object_wait_rendering(obj);
3157 if (ret)
3158 return ret;
3159 }
3160
3161 i915_gem_object_flush_gtt_write_domain(obj);
3162
3163 old_write_domain = obj->base.write_domain;
3164 old_read_domains = obj->base.read_domains;
3165
3166 /* Flush the CPU cache if it's still invalid. */
3167 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3168 i915_gem_clflush_object(obj);
3169
3170 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3171 }
3172
3173 /* It should now be out of any other write domains, and we can update
3174 * the domain values for our changes.
3175 */
3176 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3177
3178 /* If we're writing through the CPU, then the GPU read domains will
3179 * need to be invalidated at next use.
3180 */
3181 if (write) {
3182 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3183 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3184 }
3185
3186 trace_i915_gem_object_change_domain(obj,
3187 old_read_domains,
3188 old_write_domain);
3189
3190 return 0;
3191 }
3192
3193 /* Throttle our rendering by waiting until the ring has completed our requests
3194 * emitted over 20 msec ago.
3195 *
3196 * Note that if we were to use the current jiffies each time around the loop,
3197 * we wouldn't escape the function with any frames outstanding if the time to
3198 * render a frame was over 20ms.
3199 *
3200 * This should get us reasonable parallelism between CPU and GPU but also
3201 * relatively low latency when blocking on a particular request to finish.
3202 */
3203 static int
3204 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3205 {
3206 struct drm_i915_private *dev_priv = dev->dev_private;
3207 struct drm_i915_file_private *file_priv = file->driver_priv;
3208 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3209 struct drm_i915_gem_request *request;
3210 struct intel_ring_buffer *ring = NULL;
3211 u32 seqno = 0;
3212 int ret;
3213
3214 if (atomic_read(&dev_priv->mm.wedged))
3215 return -EIO;
3216
3217 spin_lock(&file_priv->mm.lock);
3218 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3219 if (time_after_eq(request->emitted_jiffies, recent_enough))
3220 break;
3221
3222 ring = request->ring;
3223 seqno = request->seqno;
3224 }
3225 spin_unlock(&file_priv->mm.lock);
3226
3227 if (seqno == 0)
3228 return 0;
3229
3230 ret = __wait_seqno(ring, seqno, true, NULL);
3231 if (ret == 0)
3232 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3233
3234 return ret;
3235 }
3236
3237 int
3238 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3239 uint32_t alignment,
3240 bool map_and_fenceable)
3241 {
3242 int ret;
3243
3244 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3245 return -EBUSY;
3246
3247 if (obj->gtt_space != NULL) {
3248 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3249 (map_and_fenceable && !obj->map_and_fenceable)) {
3250 WARN(obj->pin_count,
3251 "bo is already pinned with incorrect alignment:"
3252 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3253 " obj->map_and_fenceable=%d\n",
3254 obj->gtt_offset, alignment,
3255 map_and_fenceable,
3256 obj->map_and_fenceable);
3257 ret = i915_gem_object_unbind(obj);
3258 if (ret)
3259 return ret;
3260 }
3261 }
3262
3263 if (obj->gtt_space == NULL) {
3264 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3265 map_and_fenceable);
3266 if (ret)
3267 return ret;
3268 }
3269
3270 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3271 i915_gem_gtt_bind_object(obj, obj->cache_level);
3272
3273 obj->pin_count++;
3274 obj->pin_mappable |= map_and_fenceable;
3275
3276 return 0;
3277 }
3278
3279 void
3280 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3281 {
3282 BUG_ON(obj->pin_count == 0);
3283 BUG_ON(obj->gtt_space == NULL);
3284
3285 if (--obj->pin_count == 0)
3286 obj->pin_mappable = false;
3287 }
3288
3289 int
3290 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3291 struct drm_file *file)
3292 {
3293 struct drm_i915_gem_pin *args = data;
3294 struct drm_i915_gem_object *obj;
3295 int ret;
3296
3297 ret = i915_mutex_lock_interruptible(dev);
3298 if (ret)
3299 return ret;
3300
3301 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3302 if (&obj->base == NULL) {
3303 ret = -ENOENT;
3304 goto unlock;
3305 }
3306
3307 if (obj->madv != I915_MADV_WILLNEED) {
3308 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3309 ret = -EINVAL;
3310 goto out;
3311 }
3312
3313 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3314 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3315 args->handle);
3316 ret = -EINVAL;
3317 goto out;
3318 }
3319
3320 obj->user_pin_count++;
3321 obj->pin_filp = file;
3322 if (obj->user_pin_count == 1) {
3323 ret = i915_gem_object_pin(obj, args->alignment, true);
3324 if (ret)
3325 goto out;
3326 }
3327
3328 /* XXX - flush the CPU caches for pinned objects
3329 * as the X server doesn't manage domains yet
3330 */
3331 i915_gem_object_flush_cpu_write_domain(obj);
3332 args->offset = obj->gtt_offset;
3333 out:
3334 drm_gem_object_unreference(&obj->base);
3335 unlock:
3336 mutex_unlock(&dev->struct_mutex);
3337 return ret;
3338 }
3339
3340 int
3341 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3342 struct drm_file *file)
3343 {
3344 struct drm_i915_gem_pin *args = data;
3345 struct drm_i915_gem_object *obj;
3346 int ret;
3347
3348 ret = i915_mutex_lock_interruptible(dev);
3349 if (ret)
3350 return ret;
3351
3352 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3353 if (&obj->base == NULL) {
3354 ret = -ENOENT;
3355 goto unlock;
3356 }
3357
3358 if (obj->pin_filp != file) {
3359 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3360 args->handle);
3361 ret = -EINVAL;
3362 goto out;
3363 }
3364 obj->user_pin_count--;
3365 if (obj->user_pin_count == 0) {
3366 obj->pin_filp = NULL;
3367 i915_gem_object_unpin(obj);
3368 }
3369
3370 out:
3371 drm_gem_object_unreference(&obj->base);
3372 unlock:
3373 mutex_unlock(&dev->struct_mutex);
3374 return ret;
3375 }
3376
3377 int
3378 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3379 struct drm_file *file)
3380 {
3381 struct drm_i915_gem_busy *args = data;
3382 struct drm_i915_gem_object *obj;
3383 int ret;
3384
3385 ret = i915_mutex_lock_interruptible(dev);
3386 if (ret)
3387 return ret;
3388
3389 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3390 if (&obj->base == NULL) {
3391 ret = -ENOENT;
3392 goto unlock;
3393 }
3394
3395 /* Count all active objects as busy, even if they are currently not used
3396 * by the gpu. Users of this interface expect objects to eventually
3397 * become non-busy without any further actions, therefore emit any
3398 * necessary flushes here.
3399 */
3400 ret = i915_gem_object_flush_active(obj);
3401
3402 args->busy = obj->active;
3403
3404 drm_gem_object_unreference(&obj->base);
3405 unlock:
3406 mutex_unlock(&dev->struct_mutex);
3407 return ret;
3408 }
3409
3410 int
3411 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3412 struct drm_file *file_priv)
3413 {
3414 return i915_gem_ring_throttle(dev, file_priv);
3415 }
3416
3417 int
3418 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3419 struct drm_file *file_priv)
3420 {
3421 struct drm_i915_gem_madvise *args = data;
3422 struct drm_i915_gem_object *obj;
3423 int ret;
3424
3425 switch (args->madv) {
3426 case I915_MADV_DONTNEED:
3427 case I915_MADV_WILLNEED:
3428 break;
3429 default:
3430 return -EINVAL;
3431 }
3432
3433 ret = i915_mutex_lock_interruptible(dev);
3434 if (ret)
3435 return ret;
3436
3437 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3438 if (&obj->base == NULL) {
3439 ret = -ENOENT;
3440 goto unlock;
3441 }
3442
3443 if (obj->pin_count) {
3444 ret = -EINVAL;
3445 goto out;
3446 }
3447
3448 if (obj->madv != __I915_MADV_PURGED)
3449 obj->madv = args->madv;
3450
3451 /* if the object is no longer bound, discard its backing storage */
3452 if (i915_gem_object_is_purgeable(obj) &&
3453 obj->gtt_space == NULL)
3454 i915_gem_object_truncate(obj);
3455
3456 args->retained = obj->madv != __I915_MADV_PURGED;
3457
3458 out:
3459 drm_gem_object_unreference(&obj->base);
3460 unlock:
3461 mutex_unlock(&dev->struct_mutex);
3462 return ret;
3463 }
3464
3465 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3466 size_t size)
3467 {
3468 struct drm_i915_private *dev_priv = dev->dev_private;
3469 struct drm_i915_gem_object *obj;
3470 struct address_space *mapping;
3471 u32 mask;
3472
3473 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3474 if (obj == NULL)
3475 return NULL;
3476
3477 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3478 kfree(obj);
3479 return NULL;
3480 }
3481
3482 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3483 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3484 /* 965gm cannot relocate objects above 4GiB. */
3485 mask &= ~__GFP_HIGHMEM;
3486 mask |= __GFP_DMA32;
3487 }
3488
3489 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3490 mapping_set_gfp_mask(mapping, mask);
3491
3492 i915_gem_info_add_obj(dev_priv, size);
3493
3494 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3495 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3496
3497 if (HAS_LLC(dev)) {
3498 /* On some devices, we can have the GPU use the LLC (the CPU
3499 * cache) for about a 10% performance improvement
3500 * compared to uncached. Graphics requests other than
3501 * display scanout are coherent with the CPU in
3502 * accessing this cache. This means in this mode we
3503 * don't need to clflush on the CPU side, and on the
3504 * GPU side we only need to flush internal caches to
3505 * get data visible to the CPU.
3506 *
3507 * However, we maintain the display planes as UC, and so
3508 * need to rebind when first used as such.
3509 */
3510 obj->cache_level = I915_CACHE_LLC;
3511 } else
3512 obj->cache_level = I915_CACHE_NONE;
3513
3514 obj->base.driver_private = NULL;
3515 obj->fence_reg = I915_FENCE_REG_NONE;
3516 INIT_LIST_HEAD(&obj->mm_list);
3517 INIT_LIST_HEAD(&obj->gtt_list);
3518 INIT_LIST_HEAD(&obj->ring_list);
3519 INIT_LIST_HEAD(&obj->exec_list);
3520 INIT_LIST_HEAD(&obj->gpu_write_list);
3521 obj->madv = I915_MADV_WILLNEED;
3522 /* Avoid an unnecessary call to unbind on the first bind. */
3523 obj->map_and_fenceable = true;
3524
3525 return obj;
3526 }
3527
3528 int i915_gem_init_object(struct drm_gem_object *obj)
3529 {
3530 BUG();
3531
3532 return 0;
3533 }
3534
3535 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3536 {
3537 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3538 struct drm_device *dev = obj->base.dev;
3539 drm_i915_private_t *dev_priv = dev->dev_private;
3540
3541 trace_i915_gem_object_destroy(obj);
3542
3543 if (gem_obj->import_attach)
3544 drm_prime_gem_destroy(gem_obj, obj->sg_table);
3545
3546 if (obj->phys_obj)
3547 i915_gem_detach_phys_object(dev, obj);
3548
3549 obj->pin_count = 0;
3550 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3551 bool was_interruptible;
3552
3553 was_interruptible = dev_priv->mm.interruptible;
3554 dev_priv->mm.interruptible = false;
3555
3556 WARN_ON(i915_gem_object_unbind(obj));
3557
3558 dev_priv->mm.interruptible = was_interruptible;
3559 }
3560
3561 if (obj->base.map_list.map)
3562 drm_gem_free_mmap_offset(&obj->base);
3563
3564 drm_gem_object_release(&obj->base);
3565 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3566
3567 kfree(obj->bit_17);
3568 kfree(obj);
3569 }
3570
3571 int
3572 i915_gem_idle(struct drm_device *dev)
3573 {
3574 drm_i915_private_t *dev_priv = dev->dev_private;
3575 int ret;
3576
3577 mutex_lock(&dev->struct_mutex);
3578
3579 if (dev_priv->mm.suspended) {
3580 mutex_unlock(&dev->struct_mutex);
3581 return 0;
3582 }
3583
3584 ret = i915_gpu_idle(dev);
3585 if (ret) {
3586 mutex_unlock(&dev->struct_mutex);
3587 return ret;
3588 }
3589 i915_gem_retire_requests(dev);
3590
3591 /* Under UMS, be paranoid and evict. */
3592 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3593 i915_gem_evict_everything(dev, false);
3594
3595 i915_gem_reset_fences(dev);
3596
3597 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3598 * We need to replace this with a semaphore, or something.
3599 * And not confound mm.suspended!
3600 */
3601 dev_priv->mm.suspended = 1;
3602 del_timer_sync(&dev_priv->hangcheck_timer);
3603
3604 i915_kernel_lost_context(dev);
3605 i915_gem_cleanup_ringbuffer(dev);
3606
3607 mutex_unlock(&dev->struct_mutex);
3608
3609 /* Cancel the retire work handler, which should be idle now. */
3610 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3611
3612 return 0;
3613 }
3614
3615 void i915_gem_l3_remap(struct drm_device *dev)
3616 {
3617 drm_i915_private_t *dev_priv = dev->dev_private;
3618 u32 misccpctl;
3619 int i;
3620
3621 if (!IS_IVYBRIDGE(dev))
3622 return;
3623
3624 if (!dev_priv->mm.l3_remap_info)
3625 return;
3626
3627 misccpctl = I915_READ(GEN7_MISCCPCTL);
3628 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3629 POSTING_READ(GEN7_MISCCPCTL);
3630
3631 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3632 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3633 if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
3634 DRM_DEBUG("0x%x was already programmed to %x\n",
3635 GEN7_L3LOG_BASE + i, remap);
3636 if (remap && !dev_priv->mm.l3_remap_info[i/4])
3637 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3638 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
3639 }
3640
3641 /* Make sure all the writes land before disabling dop clock gating */
3642 POSTING_READ(GEN7_L3LOG_BASE);
3643
3644 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3645 }
3646
3647 void i915_gem_init_swizzling(struct drm_device *dev)
3648 {
3649 drm_i915_private_t *dev_priv = dev->dev_private;
3650
3651 if (INTEL_INFO(dev)->gen < 5 ||
3652 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3653 return;
3654
3655 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3656 DISP_TILE_SURFACE_SWIZZLING);
3657
3658 if (IS_GEN5(dev))
3659 return;
3660
3661 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3662 if (IS_GEN6(dev))
3663 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3664 else
3665 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3666 }
3667
3668 void i915_gem_init_ppgtt(struct drm_device *dev)
3669 {
3670 drm_i915_private_t *dev_priv = dev->dev_private;
3671 uint32_t pd_offset;
3672 struct intel_ring_buffer *ring;
3673 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3674 uint32_t __iomem *pd_addr;
3675 uint32_t pd_entry;
3676 int i;
3677
3678 if (!dev_priv->mm.aliasing_ppgtt)
3679 return;
3680
3681
3682 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3683 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3684 dma_addr_t pt_addr;
3685
3686 if (dev_priv->mm.gtt->needs_dmar)
3687 pt_addr = ppgtt->pt_dma_addr[i];
3688 else
3689 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3690
3691 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3692 pd_entry |= GEN6_PDE_VALID;
3693
3694 writel(pd_entry, pd_addr + i);
3695 }
3696 readl(pd_addr);
3697
3698 pd_offset = ppgtt->pd_offset;
3699 pd_offset /= 64; /* in cachelines, */
3700 pd_offset <<= 16;
3701
3702 if (INTEL_INFO(dev)->gen == 6) {
3703 uint32_t ecochk, gab_ctl, ecobits;
3704
3705 ecobits = I915_READ(GAC_ECO_BITS);
3706 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3707
3708 gab_ctl = I915_READ(GAB_CTL);
3709 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3710
3711 ecochk = I915_READ(GAM_ECOCHK);
3712 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3713 ECOCHK_PPGTT_CACHE64B);
3714 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3715 } else if (INTEL_INFO(dev)->gen >= 7) {
3716 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3717 /* GFX_MODE is per-ring on gen7+ */
3718 }
3719
3720 for_each_ring(ring, dev_priv, i) {
3721 if (INTEL_INFO(dev)->gen >= 7)
3722 I915_WRITE(RING_MODE_GEN7(ring),
3723 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
3724
3725 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3726 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3727 }
3728 }
3729
3730 static bool
3731 intel_enable_blt(struct drm_device *dev)
3732 {
3733 if (!HAS_BLT(dev))
3734 return false;
3735
3736 /* The blitter was dysfunctional on early prototypes */
3737 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3738 DRM_INFO("BLT not supported on this pre-production hardware;"
3739 " graphics performance will be degraded.\n");
3740 return false;
3741 }
3742
3743 return true;
3744 }
3745
3746 int
3747 i915_gem_init_hw(struct drm_device *dev)
3748 {
3749 drm_i915_private_t *dev_priv = dev->dev_private;
3750 int ret;
3751
3752 if (!intel_enable_gtt())
3753 return -EIO;
3754
3755 i915_gem_l3_remap(dev);
3756
3757 i915_gem_init_swizzling(dev);
3758
3759 ret = intel_init_render_ring_buffer(dev);
3760 if (ret)
3761 return ret;
3762
3763 if (HAS_BSD(dev)) {
3764 ret = intel_init_bsd_ring_buffer(dev);
3765 if (ret)
3766 goto cleanup_render_ring;
3767 }
3768
3769 if (intel_enable_blt(dev)) {
3770 ret = intel_init_blt_ring_buffer(dev);
3771 if (ret)
3772 goto cleanup_bsd_ring;
3773 }
3774
3775 dev_priv->next_seqno = 1;
3776
3777 /*
3778 * XXX: There was some w/a described somewhere suggesting loading
3779 * contexts before PPGTT.
3780 */
3781 i915_gem_context_init(dev);
3782 i915_gem_init_ppgtt(dev);
3783
3784 return 0;
3785
3786 cleanup_bsd_ring:
3787 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3788 cleanup_render_ring:
3789 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3790 return ret;
3791 }
3792
3793 static bool
3794 intel_enable_ppgtt(struct drm_device *dev)
3795 {
3796 if (i915_enable_ppgtt >= 0)
3797 return i915_enable_ppgtt;
3798
3799 #ifdef CONFIG_INTEL_IOMMU
3800 /* Disable ppgtt on SNB if VT-d is on. */
3801 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3802 return false;
3803 #endif
3804
3805 return true;
3806 }
3807
3808 int i915_gem_init(struct drm_device *dev)
3809 {
3810 struct drm_i915_private *dev_priv = dev->dev_private;
3811 unsigned long gtt_size, mappable_size;
3812 int ret;
3813
3814 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
3815 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
3816
3817 mutex_lock(&dev->struct_mutex);
3818 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
3819 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
3820 * aperture accordingly when using aliasing ppgtt. */
3821 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
3822
3823 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
3824
3825 ret = i915_gem_init_aliasing_ppgtt(dev);
3826 if (ret) {
3827 mutex_unlock(&dev->struct_mutex);
3828 return ret;
3829 }
3830 } else {
3831 /* Let GEM Manage all of the aperture.
3832 *
3833 * However, leave one page at the end still bound to the scratch
3834 * page. There are a number of places where the hardware
3835 * apparently prefetches past the end of the object, and we've
3836 * seen multiple hangs with the GPU head pointer stuck in a
3837 * batchbuffer bound at the last page of the aperture. One page
3838 * should be enough to keep any prefetching inside of the
3839 * aperture.
3840 */
3841 i915_gem_init_global_gtt(dev, 0, mappable_size,
3842 gtt_size);
3843 }
3844
3845 ret = i915_gem_init_hw(dev);
3846 mutex_unlock(&dev->struct_mutex);
3847 if (ret) {
3848 i915_gem_cleanup_aliasing_ppgtt(dev);
3849 return ret;
3850 }
3851
3852 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3853 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3854 dev_priv->dri1.allow_batchbuffer = 1;
3855 return 0;
3856 }
3857
3858 void
3859 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3860 {
3861 drm_i915_private_t *dev_priv = dev->dev_private;
3862 struct intel_ring_buffer *ring;
3863 int i;
3864
3865 for_each_ring(ring, dev_priv, i)
3866 intel_cleanup_ring_buffer(ring);
3867 }
3868
3869 int
3870 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3871 struct drm_file *file_priv)
3872 {
3873 drm_i915_private_t *dev_priv = dev->dev_private;
3874 int ret;
3875
3876 if (drm_core_check_feature(dev, DRIVER_MODESET))
3877 return 0;
3878
3879 if (atomic_read(&dev_priv->mm.wedged)) {
3880 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3881 atomic_set(&dev_priv->mm.wedged, 0);
3882 }
3883
3884 mutex_lock(&dev->struct_mutex);
3885 dev_priv->mm.suspended = 0;
3886
3887 ret = i915_gem_init_hw(dev);
3888 if (ret != 0) {
3889 mutex_unlock(&dev->struct_mutex);
3890 return ret;
3891 }
3892
3893 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3894 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3895 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3896 mutex_unlock(&dev->struct_mutex);
3897
3898 ret = drm_irq_install(dev);
3899 if (ret)
3900 goto cleanup_ringbuffer;
3901
3902 return 0;
3903
3904 cleanup_ringbuffer:
3905 mutex_lock(&dev->struct_mutex);
3906 i915_gem_cleanup_ringbuffer(dev);
3907 dev_priv->mm.suspended = 1;
3908 mutex_unlock(&dev->struct_mutex);
3909
3910 return ret;
3911 }
3912
3913 int
3914 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3915 struct drm_file *file_priv)
3916 {
3917 if (drm_core_check_feature(dev, DRIVER_MODESET))
3918 return 0;
3919
3920 drm_irq_uninstall(dev);
3921 return i915_gem_idle(dev);
3922 }
3923
3924 void
3925 i915_gem_lastclose(struct drm_device *dev)
3926 {
3927 int ret;
3928
3929 if (drm_core_check_feature(dev, DRIVER_MODESET))
3930 return;
3931
3932 ret = i915_gem_idle(dev);
3933 if (ret)
3934 DRM_ERROR("failed to idle hardware: %d\n", ret);
3935 }
3936
3937 static void
3938 init_ring_lists(struct intel_ring_buffer *ring)
3939 {
3940 INIT_LIST_HEAD(&ring->active_list);
3941 INIT_LIST_HEAD(&ring->request_list);
3942 INIT_LIST_HEAD(&ring->gpu_write_list);
3943 }
3944
3945 void
3946 i915_gem_load(struct drm_device *dev)
3947 {
3948 int i;
3949 drm_i915_private_t *dev_priv = dev->dev_private;
3950
3951 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3952 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3953 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3954 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3955 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3956 for (i = 0; i < I915_NUM_RINGS; i++)
3957 init_ring_lists(&dev_priv->ring[i]);
3958 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3959 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3960 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3961 i915_gem_retire_work_handler);
3962 init_completion(&dev_priv->error_completion);
3963
3964 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3965 if (IS_GEN3(dev)) {
3966 I915_WRITE(MI_ARB_STATE,
3967 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
3968 }
3969
3970 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3971
3972 /* Old X drivers will take 0-2 for front, back, depth buffers */
3973 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3974 dev_priv->fence_reg_start = 3;
3975
3976 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3977 dev_priv->num_fence_regs = 16;
3978 else
3979 dev_priv->num_fence_regs = 8;
3980
3981 /* Initialize fence registers to zero */
3982 i915_gem_reset_fences(dev);
3983
3984 i915_gem_detect_bit_6_swizzle(dev);
3985 init_waitqueue_head(&dev_priv->pending_flip_queue);
3986
3987 dev_priv->mm.interruptible = true;
3988
3989 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3990 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3991 register_shrinker(&dev_priv->mm.inactive_shrinker);
3992 }
3993
3994 /*
3995 * Create a physically contiguous memory object for this object
3996 * e.g. for cursor + overlay regs
3997 */
3998 static int i915_gem_init_phys_object(struct drm_device *dev,
3999 int id, int size, int align)
4000 {
4001 drm_i915_private_t *dev_priv = dev->dev_private;
4002 struct drm_i915_gem_phys_object *phys_obj;
4003 int ret;
4004
4005 if (dev_priv->mm.phys_objs[id - 1] || !size)
4006 return 0;
4007
4008 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4009 if (!phys_obj)
4010 return -ENOMEM;
4011
4012 phys_obj->id = id;
4013
4014 phys_obj->handle = drm_pci_alloc(dev, size, align);
4015 if (!phys_obj->handle) {
4016 ret = -ENOMEM;
4017 goto kfree_obj;
4018 }
4019 #ifdef CONFIG_X86
4020 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4021 #endif
4022
4023 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4024
4025 return 0;
4026 kfree_obj:
4027 kfree(phys_obj);
4028 return ret;
4029 }
4030
4031 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4032 {
4033 drm_i915_private_t *dev_priv = dev->dev_private;
4034 struct drm_i915_gem_phys_object *phys_obj;
4035
4036 if (!dev_priv->mm.phys_objs[id - 1])
4037 return;
4038
4039 phys_obj = dev_priv->mm.phys_objs[id - 1];
4040 if (phys_obj->cur_obj) {
4041 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4042 }
4043
4044 #ifdef CONFIG_X86
4045 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4046 #endif
4047 drm_pci_free(dev, phys_obj->handle);
4048 kfree(phys_obj);
4049 dev_priv->mm.phys_objs[id - 1] = NULL;
4050 }
4051
4052 void i915_gem_free_all_phys_object(struct drm_device *dev)
4053 {
4054 int i;
4055
4056 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4057 i915_gem_free_phys_object(dev, i);
4058 }
4059
4060 void i915_gem_detach_phys_object(struct drm_device *dev,
4061 struct drm_i915_gem_object *obj)
4062 {
4063 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4064 char *vaddr;
4065 int i;
4066 int page_count;
4067
4068 if (!obj->phys_obj)
4069 return;
4070 vaddr = obj->phys_obj->handle->vaddr;
4071
4072 page_count = obj->base.size / PAGE_SIZE;
4073 for (i = 0; i < page_count; i++) {
4074 struct page *page = shmem_read_mapping_page(mapping, i);
4075 if (!IS_ERR(page)) {
4076 char *dst = kmap_atomic(page);
4077 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4078 kunmap_atomic(dst);
4079
4080 drm_clflush_pages(&page, 1);
4081
4082 set_page_dirty(page);
4083 mark_page_accessed(page);
4084 page_cache_release(page);
4085 }
4086 }
4087 intel_gtt_chipset_flush();
4088
4089 obj->phys_obj->cur_obj = NULL;
4090 obj->phys_obj = NULL;
4091 }
4092
4093 int
4094 i915_gem_attach_phys_object(struct drm_device *dev,
4095 struct drm_i915_gem_object *obj,
4096 int id,
4097 int align)
4098 {
4099 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4100 drm_i915_private_t *dev_priv = dev->dev_private;
4101 int ret = 0;
4102 int page_count;
4103 int i;
4104
4105 if (id > I915_MAX_PHYS_OBJECT)
4106 return -EINVAL;
4107
4108 if (obj->phys_obj) {
4109 if (obj->phys_obj->id == id)
4110 return 0;
4111 i915_gem_detach_phys_object(dev, obj);
4112 }
4113
4114 /* create a new object */
4115 if (!dev_priv->mm.phys_objs[id - 1]) {
4116 ret = i915_gem_init_phys_object(dev, id,
4117 obj->base.size, align);
4118 if (ret) {
4119 DRM_ERROR("failed to init phys object %d size: %zu\n",
4120 id, obj->base.size);
4121 return ret;
4122 }
4123 }
4124
4125 /* bind to the object */
4126 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4127 obj->phys_obj->cur_obj = obj;
4128
4129 page_count = obj->base.size / PAGE_SIZE;
4130
4131 for (i = 0; i < page_count; i++) {
4132 struct page *page;
4133 char *dst, *src;
4134
4135 page = shmem_read_mapping_page(mapping, i);
4136 if (IS_ERR(page))
4137 return PTR_ERR(page);
4138
4139 src = kmap_atomic(page);
4140 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4141 memcpy(dst, src, PAGE_SIZE);
4142 kunmap_atomic(src);
4143
4144 mark_page_accessed(page);
4145 page_cache_release(page);
4146 }
4147
4148 return 0;
4149 }
4150
4151 static int
4152 i915_gem_phys_pwrite(struct drm_device *dev,
4153 struct drm_i915_gem_object *obj,
4154 struct drm_i915_gem_pwrite *args,
4155 struct drm_file *file_priv)
4156 {
4157 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4158 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4159
4160 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4161 unsigned long unwritten;
4162
4163 /* The physical object once assigned is fixed for the lifetime
4164 * of the obj, so we can safely drop the lock and continue
4165 * to access vaddr.
4166 */
4167 mutex_unlock(&dev->struct_mutex);
4168 unwritten = copy_from_user(vaddr, user_data, args->size);
4169 mutex_lock(&dev->struct_mutex);
4170 if (unwritten)
4171 return -EFAULT;
4172 }
4173
4174 intel_gtt_chipset_flush();
4175 return 0;
4176 }
4177
4178 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4179 {
4180 struct drm_i915_file_private *file_priv = file->driver_priv;
4181
4182 /* Clean up our request list when the client is going away, so that
4183 * later retire_requests won't dereference our soon-to-be-gone
4184 * file_priv.
4185 */
4186 spin_lock(&file_priv->mm.lock);
4187 while (!list_empty(&file_priv->mm.request_list)) {
4188 struct drm_i915_gem_request *request;
4189
4190 request = list_first_entry(&file_priv->mm.request_list,
4191 struct drm_i915_gem_request,
4192 client_list);
4193 list_del(&request->client_list);
4194 request->file_priv = NULL;
4195 }
4196 spin_unlock(&file_priv->mm.lock);
4197 }
4198
4199 static int
4200 i915_gpu_is_active(struct drm_device *dev)
4201 {
4202 drm_i915_private_t *dev_priv = dev->dev_private;
4203 int lists_empty;
4204
4205 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4206 list_empty(&dev_priv->mm.active_list);
4207
4208 return !lists_empty;
4209 }
4210
4211 static int
4212 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4213 {
4214 struct drm_i915_private *dev_priv =
4215 container_of(shrinker,
4216 struct drm_i915_private,
4217 mm.inactive_shrinker);
4218 struct drm_device *dev = dev_priv->dev;
4219 struct drm_i915_gem_object *obj, *next;
4220 int nr_to_scan = sc->nr_to_scan;
4221 int cnt;
4222
4223 if (!mutex_trylock(&dev->struct_mutex))
4224 return 0;
4225
4226 /* "fast-path" to count number of available objects */
4227 if (nr_to_scan == 0) {
4228 cnt = 0;
4229 list_for_each_entry(obj,
4230 &dev_priv->mm.inactive_list,
4231 mm_list)
4232 cnt++;
4233 mutex_unlock(&dev->struct_mutex);
4234 return cnt / 100 * sysctl_vfs_cache_pressure;
4235 }
4236
4237 rescan:
4238 /* first scan for clean buffers */
4239 i915_gem_retire_requests(dev);
4240
4241 list_for_each_entry_safe(obj, next,
4242 &dev_priv->mm.inactive_list,
4243 mm_list) {
4244 if (i915_gem_object_is_purgeable(obj)) {
4245 if (i915_gem_object_unbind(obj) == 0 &&
4246 --nr_to_scan == 0)
4247 break;
4248 }
4249 }
4250
4251 /* second pass, evict/count anything still on the inactive list */
4252 cnt = 0;
4253 list_for_each_entry_safe(obj, next,
4254 &dev_priv->mm.inactive_list,
4255 mm_list) {
4256 if (nr_to_scan &&
4257 i915_gem_object_unbind(obj) == 0)
4258 nr_to_scan--;
4259 else
4260 cnt++;
4261 }
4262
4263 if (nr_to_scan && i915_gpu_is_active(dev)) {
4264 /*
4265 * We are desperate for pages, so as a last resort, wait
4266 * for the GPU to finish and discard whatever we can.
4267 * This has a dramatic impact to reduce the number of
4268 * OOM-killer events whilst running the GPU aggressively.
4269 */
4270 if (i915_gpu_idle(dev) == 0)
4271 goto rescan;
4272 }
4273 mutex_unlock(&dev->struct_mutex);
4274 return cnt / 100 * sysctl_vfs_cache_pressure;
4275 }