Input: sur40 - skip all blobs that are not touches
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
55 return false;
56
57 if (!i915_gem_object_is_coherent(obj))
58 return true;
59
60 return obj->pin_display;
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65 struct drm_mm_node *node, u32 size)
66 {
67 memset(node, 0, sizeof(*node));
68 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69 size, 0, I915_COLOR_UNEVICTABLE,
70 0, ggtt->mappable_end,
71 DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 u64 size)
83 {
84 spin_lock(&dev_priv->mm.object_stat_lock);
85 dev_priv->mm.object_count++;
86 dev_priv->mm.object_memory += size;
87 spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 u64 size)
92 {
93 spin_lock(&dev_priv->mm.object_stat_lock);
94 dev_priv->mm.object_count--;
95 dev_priv->mm.object_memory -= size;
96 spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 int ret;
103
104 might_sleep();
105
106 /*
107 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 * userspace. If it takes that long something really bad is going on and
109 * we should simply try to bail out and fail as gracefully as possible.
110 */
111 ret = wait_event_interruptible_timeout(error->reset_queue,
112 !i915_reset_backoff(error),
113 I915_RESET_TIMEOUT);
114 if (ret == 0) {
115 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 return -EIO;
117 } else if (ret < 0) {
118 return ret;
119 } else {
120 return 0;
121 }
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 struct drm_i915_private *dev_priv = to_i915(dev);
127 int ret;
128
129 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
137 return 0;
138 }
139
140 int
141 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
142 struct drm_file *file)
143 {
144 struct drm_i915_private *dev_priv = to_i915(dev);
145 struct i915_ggtt *ggtt = &dev_priv->ggtt;
146 struct drm_i915_gem_get_aperture *args = data;
147 struct i915_vma *vma;
148 size_t pinned;
149
150 pinned = 0;
151 mutex_lock(&dev->struct_mutex);
152 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
153 if (i915_vma_is_pinned(vma))
154 pinned += vma->node.size;
155 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
156 if (i915_vma_is_pinned(vma))
157 pinned += vma->node.size;
158 mutex_unlock(&dev->struct_mutex);
159
160 args->aper_size = ggtt->base.total;
161 args->aper_available_size = args->aper_size - pinned;
162
163 return 0;
164 }
165
166 static struct sg_table *
167 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
168 {
169 struct address_space *mapping = obj->base.filp->f_mapping;
170 drm_dma_handle_t *phys;
171 struct sg_table *st;
172 struct scatterlist *sg;
173 char *vaddr;
174 int i;
175
176 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
177 return ERR_PTR(-EINVAL);
178
179 /* Always aligning to the object size, allows a single allocation
180 * to handle all possible callers, and given typical object sizes,
181 * the alignment of the buddy allocation will naturally match.
182 */
183 phys = drm_pci_alloc(obj->base.dev,
184 obj->base.size,
185 roundup_pow_of_two(obj->base.size));
186 if (!phys)
187 return ERR_PTR(-ENOMEM);
188
189 vaddr = phys->vaddr;
190 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 struct page *page;
192 char *src;
193
194 page = shmem_read_mapping_page(mapping, i);
195 if (IS_ERR(page)) {
196 st = ERR_CAST(page);
197 goto err_phys;
198 }
199
200 src = kmap_atomic(page);
201 memcpy(vaddr, src, PAGE_SIZE);
202 drm_clflush_virt_range(vaddr, PAGE_SIZE);
203 kunmap_atomic(src);
204
205 put_page(page);
206 vaddr += PAGE_SIZE;
207 }
208
209 i915_gem_chipset_flush(to_i915(obj->base.dev));
210
211 st = kmalloc(sizeof(*st), GFP_KERNEL);
212 if (!st) {
213 st = ERR_PTR(-ENOMEM);
214 goto err_phys;
215 }
216
217 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
218 kfree(st);
219 st = ERR_PTR(-ENOMEM);
220 goto err_phys;
221 }
222
223 sg = st->sgl;
224 sg->offset = 0;
225 sg->length = obj->base.size;
226
227 sg_dma_address(sg) = phys->busaddr;
228 sg_dma_len(sg) = obj->base.size;
229
230 obj->phys_handle = phys;
231 return st;
232
233 err_phys:
234 drm_pci_free(obj->base.dev, phys);
235 return st;
236 }
237
238 static void
239 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
240 struct sg_table *pages,
241 bool needs_clflush)
242 {
243 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
244
245 if (obj->mm.madv == I915_MADV_DONTNEED)
246 obj->mm.dirty = false;
247
248 if (needs_clflush &&
249 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
250 !i915_gem_object_is_coherent(obj))
251 drm_clflush_sg(pages);
252
253 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
254 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
255 }
256
257 static void
258 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
259 struct sg_table *pages)
260 {
261 __i915_gem_object_release_shmem(obj, pages, false);
262
263 if (obj->mm.dirty) {
264 struct address_space *mapping = obj->base.filp->f_mapping;
265 char *vaddr = obj->phys_handle->vaddr;
266 int i;
267
268 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
269 struct page *page;
270 char *dst;
271
272 page = shmem_read_mapping_page(mapping, i);
273 if (IS_ERR(page))
274 continue;
275
276 dst = kmap_atomic(page);
277 drm_clflush_virt_range(vaddr, PAGE_SIZE);
278 memcpy(dst, vaddr, PAGE_SIZE);
279 kunmap_atomic(dst);
280
281 set_page_dirty(page);
282 if (obj->mm.madv == I915_MADV_WILLNEED)
283 mark_page_accessed(page);
284 put_page(page);
285 vaddr += PAGE_SIZE;
286 }
287 obj->mm.dirty = false;
288 }
289
290 sg_free_table(pages);
291 kfree(pages);
292
293 drm_pci_free(obj->base.dev, obj->phys_handle);
294 }
295
296 static void
297 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
298 {
299 i915_gem_object_unpin_pages(obj);
300 }
301
302 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
303 .get_pages = i915_gem_object_get_pages_phys,
304 .put_pages = i915_gem_object_put_pages_phys,
305 .release = i915_gem_object_release_phys,
306 };
307
308 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
309
310 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
311 {
312 struct i915_vma *vma;
313 LIST_HEAD(still_in_list);
314 int ret;
315
316 lockdep_assert_held(&obj->base.dev->struct_mutex);
317
318 /* Closed vma are removed from the obj->vma_list - but they may
319 * still have an active binding on the object. To remove those we
320 * must wait for all rendering to complete to the object (as unbinding
321 * must anyway), and retire the requests.
322 */
323 ret = i915_gem_object_wait(obj,
324 I915_WAIT_INTERRUPTIBLE |
325 I915_WAIT_LOCKED |
326 I915_WAIT_ALL,
327 MAX_SCHEDULE_TIMEOUT,
328 NULL);
329 if (ret)
330 return ret;
331
332 i915_gem_retire_requests(to_i915(obj->base.dev));
333
334 while ((vma = list_first_entry_or_null(&obj->vma_list,
335 struct i915_vma,
336 obj_link))) {
337 list_move_tail(&vma->obj_link, &still_in_list);
338 ret = i915_vma_unbind(vma);
339 if (ret)
340 break;
341 }
342 list_splice(&still_in_list, &obj->vma_list);
343
344 return ret;
345 }
346
347 static long
348 i915_gem_object_wait_fence(struct dma_fence *fence,
349 unsigned int flags,
350 long timeout,
351 struct intel_rps_client *rps)
352 {
353 struct drm_i915_gem_request *rq;
354
355 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
356
357 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
358 return timeout;
359
360 if (!dma_fence_is_i915(fence))
361 return dma_fence_wait_timeout(fence,
362 flags & I915_WAIT_INTERRUPTIBLE,
363 timeout);
364
365 rq = to_request(fence);
366 if (i915_gem_request_completed(rq))
367 goto out;
368
369 /* This client is about to stall waiting for the GPU. In many cases
370 * this is undesirable and limits the throughput of the system, as
371 * many clients cannot continue processing user input/output whilst
372 * blocked. RPS autotuning may take tens of milliseconds to respond
373 * to the GPU load and thus incurs additional latency for the client.
374 * We can circumvent that by promoting the GPU frequency to maximum
375 * before we wait. This makes the GPU throttle up much more quickly
376 * (good for benchmarks and user experience, e.g. window animations),
377 * but at a cost of spending more power processing the workload
378 * (bad for battery). Not all clients even want their results
379 * immediately and for them we should just let the GPU select its own
380 * frequency to maximise efficiency. To prevent a single client from
381 * forcing the clocks too high for the whole system, we only allow
382 * each client to waitboost once in a busy period.
383 */
384 if (rps) {
385 if (INTEL_GEN(rq->i915) >= 6)
386 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
387 else
388 rps = NULL;
389 }
390
391 timeout = i915_wait_request(rq, flags, timeout);
392
393 out:
394 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
395 i915_gem_request_retire_upto(rq);
396
397 if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
398 /* The GPU is now idle and this client has stalled.
399 * Since no other client has submitted a request in the
400 * meantime, assume that this client is the only one
401 * supplying work to the GPU but is unable to keep that
402 * work supplied because it is waiting. Since the GPU is
403 * then never kept fully busy, RPS autoclocking will
404 * keep the clocks relatively low, causing further delays.
405 * Compensate by giving the synchronous client credit for
406 * a waitboost next time.
407 */
408 spin_lock(&rq->i915->rps.client_lock);
409 list_del_init(&rps->link);
410 spin_unlock(&rq->i915->rps.client_lock);
411 }
412
413 return timeout;
414 }
415
416 static long
417 i915_gem_object_wait_reservation(struct reservation_object *resv,
418 unsigned int flags,
419 long timeout,
420 struct intel_rps_client *rps)
421 {
422 unsigned int seq = __read_seqcount_begin(&resv->seq);
423 struct dma_fence *excl;
424 bool prune_fences = false;
425
426 if (flags & I915_WAIT_ALL) {
427 struct dma_fence **shared;
428 unsigned int count, i;
429 int ret;
430
431 ret = reservation_object_get_fences_rcu(resv,
432 &excl, &count, &shared);
433 if (ret)
434 return ret;
435
436 for (i = 0; i < count; i++) {
437 timeout = i915_gem_object_wait_fence(shared[i],
438 flags, timeout,
439 rps);
440 if (timeout < 0)
441 break;
442
443 dma_fence_put(shared[i]);
444 }
445
446 for (; i < count; i++)
447 dma_fence_put(shared[i]);
448 kfree(shared);
449
450 prune_fences = count && timeout >= 0;
451 } else {
452 excl = reservation_object_get_excl_rcu(resv);
453 }
454
455 if (excl && timeout >= 0) {
456 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
457 prune_fences = timeout >= 0;
458 }
459
460 dma_fence_put(excl);
461
462 /* Oportunistically prune the fences iff we know they have *all* been
463 * signaled and that the reservation object has not been changed (i.e.
464 * no new fences have been added).
465 */
466 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
467 if (reservation_object_trylock(resv)) {
468 if (!__read_seqcount_retry(&resv->seq, seq))
469 reservation_object_add_excl_fence(resv, NULL);
470 reservation_object_unlock(resv);
471 }
472 }
473
474 return timeout;
475 }
476
477 static void __fence_set_priority(struct dma_fence *fence, int prio)
478 {
479 struct drm_i915_gem_request *rq;
480 struct intel_engine_cs *engine;
481
482 if (!dma_fence_is_i915(fence))
483 return;
484
485 rq = to_request(fence);
486 engine = rq->engine;
487 if (!engine->schedule)
488 return;
489
490 engine->schedule(rq, prio);
491 }
492
493 static void fence_set_priority(struct dma_fence *fence, int prio)
494 {
495 /* Recurse once into a fence-array */
496 if (dma_fence_is_array(fence)) {
497 struct dma_fence_array *array = to_dma_fence_array(fence);
498 int i;
499
500 for (i = 0; i < array->num_fences; i++)
501 __fence_set_priority(array->fences[i], prio);
502 } else {
503 __fence_set_priority(fence, prio);
504 }
505 }
506
507 int
508 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
509 unsigned int flags,
510 int prio)
511 {
512 struct dma_fence *excl;
513
514 if (flags & I915_WAIT_ALL) {
515 struct dma_fence **shared;
516 unsigned int count, i;
517 int ret;
518
519 ret = reservation_object_get_fences_rcu(obj->resv,
520 &excl, &count, &shared);
521 if (ret)
522 return ret;
523
524 for (i = 0; i < count; i++) {
525 fence_set_priority(shared[i], prio);
526 dma_fence_put(shared[i]);
527 }
528
529 kfree(shared);
530 } else {
531 excl = reservation_object_get_excl_rcu(obj->resv);
532 }
533
534 if (excl) {
535 fence_set_priority(excl, prio);
536 dma_fence_put(excl);
537 }
538 return 0;
539 }
540
541 /**
542 * Waits for rendering to the object to be completed
543 * @obj: i915 gem object
544 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
545 * @timeout: how long to wait
546 * @rps: client (user process) to charge for any waitboosting
547 */
548 int
549 i915_gem_object_wait(struct drm_i915_gem_object *obj,
550 unsigned int flags,
551 long timeout,
552 struct intel_rps_client *rps)
553 {
554 might_sleep();
555 #if IS_ENABLED(CONFIG_LOCKDEP)
556 GEM_BUG_ON(debug_locks &&
557 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
558 !!(flags & I915_WAIT_LOCKED));
559 #endif
560 GEM_BUG_ON(timeout < 0);
561
562 timeout = i915_gem_object_wait_reservation(obj->resv,
563 flags, timeout,
564 rps);
565 return timeout < 0 ? timeout : 0;
566 }
567
568 static struct intel_rps_client *to_rps_client(struct drm_file *file)
569 {
570 struct drm_i915_file_private *fpriv = file->driver_priv;
571
572 return &fpriv->rps;
573 }
574
575 int
576 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
577 int align)
578 {
579 int ret;
580
581 if (align > obj->base.size)
582 return -EINVAL;
583
584 if (obj->ops == &i915_gem_phys_ops)
585 return 0;
586
587 if (obj->mm.madv != I915_MADV_WILLNEED)
588 return -EFAULT;
589
590 if (obj->base.filp == NULL)
591 return -EINVAL;
592
593 ret = i915_gem_object_unbind(obj);
594 if (ret)
595 return ret;
596
597 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
598 if (obj->mm.pages)
599 return -EBUSY;
600
601 GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
602 obj->ops = &i915_gem_phys_ops;
603
604 ret = i915_gem_object_pin_pages(obj);
605 if (ret)
606 goto err_xfer;
607
608 return 0;
609
610 err_xfer:
611 obj->ops = &i915_gem_object_ops;
612 return ret;
613 }
614
615 static int
616 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
617 struct drm_i915_gem_pwrite *args,
618 struct drm_file *file)
619 {
620 void *vaddr = obj->phys_handle->vaddr + args->offset;
621 char __user *user_data = u64_to_user_ptr(args->data_ptr);
622
623 /* We manually control the domain here and pretend that it
624 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
625 */
626 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
627 if (copy_from_user(vaddr, user_data, args->size))
628 return -EFAULT;
629
630 drm_clflush_virt_range(vaddr, args->size);
631 i915_gem_chipset_flush(to_i915(obj->base.dev));
632
633 intel_fb_obj_flush(obj, ORIGIN_CPU);
634 return 0;
635 }
636
637 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
638 {
639 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
640 }
641
642 void i915_gem_object_free(struct drm_i915_gem_object *obj)
643 {
644 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
645 kmem_cache_free(dev_priv->objects, obj);
646 }
647
648 static int
649 i915_gem_create(struct drm_file *file,
650 struct drm_i915_private *dev_priv,
651 uint64_t size,
652 uint32_t *handle_p)
653 {
654 struct drm_i915_gem_object *obj;
655 int ret;
656 u32 handle;
657
658 size = roundup(size, PAGE_SIZE);
659 if (size == 0)
660 return -EINVAL;
661
662 /* Allocate the new object */
663 obj = i915_gem_object_create(dev_priv, size);
664 if (IS_ERR(obj))
665 return PTR_ERR(obj);
666
667 ret = drm_gem_handle_create(file, &obj->base, &handle);
668 /* drop reference from allocate - handle holds it now */
669 i915_gem_object_put(obj);
670 if (ret)
671 return ret;
672
673 *handle_p = handle;
674 return 0;
675 }
676
677 int
678 i915_gem_dumb_create(struct drm_file *file,
679 struct drm_device *dev,
680 struct drm_mode_create_dumb *args)
681 {
682 /* have to work out size/pitch and return them */
683 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
684 args->size = args->pitch * args->height;
685 return i915_gem_create(file, to_i915(dev),
686 args->size, &args->handle);
687 }
688
689 /**
690 * Creates a new mm object and returns a handle to it.
691 * @dev: drm device pointer
692 * @data: ioctl data blob
693 * @file: drm file pointer
694 */
695 int
696 i915_gem_create_ioctl(struct drm_device *dev, void *data,
697 struct drm_file *file)
698 {
699 struct drm_i915_private *dev_priv = to_i915(dev);
700 struct drm_i915_gem_create *args = data;
701
702 i915_gem_flush_free_objects(dev_priv);
703
704 return i915_gem_create(file, dev_priv,
705 args->size, &args->handle);
706 }
707
708 static inline int
709 __copy_to_user_swizzled(char __user *cpu_vaddr,
710 const char *gpu_vaddr, int gpu_offset,
711 int length)
712 {
713 int ret, cpu_offset = 0;
714
715 while (length > 0) {
716 int cacheline_end = ALIGN(gpu_offset + 1, 64);
717 int this_length = min(cacheline_end - gpu_offset, length);
718 int swizzled_gpu_offset = gpu_offset ^ 64;
719
720 ret = __copy_to_user(cpu_vaddr + cpu_offset,
721 gpu_vaddr + swizzled_gpu_offset,
722 this_length);
723 if (ret)
724 return ret + length;
725
726 cpu_offset += this_length;
727 gpu_offset += this_length;
728 length -= this_length;
729 }
730
731 return 0;
732 }
733
734 static inline int
735 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
736 const char __user *cpu_vaddr,
737 int length)
738 {
739 int ret, cpu_offset = 0;
740
741 while (length > 0) {
742 int cacheline_end = ALIGN(gpu_offset + 1, 64);
743 int this_length = min(cacheline_end - gpu_offset, length);
744 int swizzled_gpu_offset = gpu_offset ^ 64;
745
746 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
747 cpu_vaddr + cpu_offset,
748 this_length);
749 if (ret)
750 return ret + length;
751
752 cpu_offset += this_length;
753 gpu_offset += this_length;
754 length -= this_length;
755 }
756
757 return 0;
758 }
759
760 /*
761 * Pins the specified object's pages and synchronizes the object with
762 * GPU accesses. Sets needs_clflush to non-zero if the caller should
763 * flush the object from the CPU cache.
764 */
765 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
766 unsigned int *needs_clflush)
767 {
768 int ret;
769
770 lockdep_assert_held(&obj->base.dev->struct_mutex);
771
772 *needs_clflush = 0;
773 if (!i915_gem_object_has_struct_page(obj))
774 return -ENODEV;
775
776 ret = i915_gem_object_wait(obj,
777 I915_WAIT_INTERRUPTIBLE |
778 I915_WAIT_LOCKED,
779 MAX_SCHEDULE_TIMEOUT,
780 NULL);
781 if (ret)
782 return ret;
783
784 ret = i915_gem_object_pin_pages(obj);
785 if (ret)
786 return ret;
787
788 if (i915_gem_object_is_coherent(obj) ||
789 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
790 ret = i915_gem_object_set_to_cpu_domain(obj, false);
791 if (ret)
792 goto err_unpin;
793 else
794 goto out;
795 }
796
797 i915_gem_object_flush_gtt_write_domain(obj);
798
799 /* If we're not in the cpu read domain, set ourself into the gtt
800 * read domain and manually flush cachelines (if required). This
801 * optimizes for the case when the gpu will dirty the data
802 * anyway again before the next pread happens.
803 */
804 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
805 *needs_clflush = CLFLUSH_BEFORE;
806
807 out:
808 /* return with the pages pinned */
809 return 0;
810
811 err_unpin:
812 i915_gem_object_unpin_pages(obj);
813 return ret;
814 }
815
816 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
817 unsigned int *needs_clflush)
818 {
819 int ret;
820
821 lockdep_assert_held(&obj->base.dev->struct_mutex);
822
823 *needs_clflush = 0;
824 if (!i915_gem_object_has_struct_page(obj))
825 return -ENODEV;
826
827 ret = i915_gem_object_wait(obj,
828 I915_WAIT_INTERRUPTIBLE |
829 I915_WAIT_LOCKED |
830 I915_WAIT_ALL,
831 MAX_SCHEDULE_TIMEOUT,
832 NULL);
833 if (ret)
834 return ret;
835
836 ret = i915_gem_object_pin_pages(obj);
837 if (ret)
838 return ret;
839
840 if (i915_gem_object_is_coherent(obj) ||
841 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
842 ret = i915_gem_object_set_to_cpu_domain(obj, true);
843 if (ret)
844 goto err_unpin;
845 else
846 goto out;
847 }
848
849 i915_gem_object_flush_gtt_write_domain(obj);
850
851 /* If we're not in the cpu write domain, set ourself into the
852 * gtt write domain and manually flush cachelines (as required).
853 * This optimizes for the case when the gpu will use the data
854 * right away and we therefore have to clflush anyway.
855 */
856 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
857 *needs_clflush |= CLFLUSH_AFTER;
858
859 /* Same trick applies to invalidate partially written cachelines read
860 * before writing.
861 */
862 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
863 *needs_clflush |= CLFLUSH_BEFORE;
864
865 out:
866 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
867 obj->mm.dirty = true;
868 /* return with the pages pinned */
869 return 0;
870
871 err_unpin:
872 i915_gem_object_unpin_pages(obj);
873 return ret;
874 }
875
876 static void
877 shmem_clflush_swizzled_range(char *addr, unsigned long length,
878 bool swizzled)
879 {
880 if (unlikely(swizzled)) {
881 unsigned long start = (unsigned long) addr;
882 unsigned long end = (unsigned long) addr + length;
883
884 /* For swizzling simply ensure that we always flush both
885 * channels. Lame, but simple and it works. Swizzled
886 * pwrite/pread is far from a hotpath - current userspace
887 * doesn't use it at all. */
888 start = round_down(start, 128);
889 end = round_up(end, 128);
890
891 drm_clflush_virt_range((void *)start, end - start);
892 } else {
893 drm_clflush_virt_range(addr, length);
894 }
895
896 }
897
898 /* Only difference to the fast-path function is that this can handle bit17
899 * and uses non-atomic copy and kmap functions. */
900 static int
901 shmem_pread_slow(struct page *page, int offset, int length,
902 char __user *user_data,
903 bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905 char *vaddr;
906 int ret;
907
908 vaddr = kmap(page);
909 if (needs_clflush)
910 shmem_clflush_swizzled_range(vaddr + offset, length,
911 page_do_bit17_swizzling);
912
913 if (page_do_bit17_swizzling)
914 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
915 else
916 ret = __copy_to_user(user_data, vaddr + offset, length);
917 kunmap(page);
918
919 return ret ? - EFAULT : 0;
920 }
921
922 static int
923 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
924 bool page_do_bit17_swizzling, bool needs_clflush)
925 {
926 int ret;
927
928 ret = -ENODEV;
929 if (!page_do_bit17_swizzling) {
930 char *vaddr = kmap_atomic(page);
931
932 if (needs_clflush)
933 drm_clflush_virt_range(vaddr + offset, length);
934 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
935 kunmap_atomic(vaddr);
936 }
937 if (ret == 0)
938 return 0;
939
940 return shmem_pread_slow(page, offset, length, user_data,
941 page_do_bit17_swizzling, needs_clflush);
942 }
943
944 static int
945 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
946 struct drm_i915_gem_pread *args)
947 {
948 char __user *user_data;
949 u64 remain;
950 unsigned int obj_do_bit17_swizzling;
951 unsigned int needs_clflush;
952 unsigned int idx, offset;
953 int ret;
954
955 obj_do_bit17_swizzling = 0;
956 if (i915_gem_object_needs_bit17_swizzle(obj))
957 obj_do_bit17_swizzling = BIT(17);
958
959 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
960 if (ret)
961 return ret;
962
963 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
964 mutex_unlock(&obj->base.dev->struct_mutex);
965 if (ret)
966 return ret;
967
968 remain = args->size;
969 user_data = u64_to_user_ptr(args->data_ptr);
970 offset = offset_in_page(args->offset);
971 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
972 struct page *page = i915_gem_object_get_page(obj, idx);
973 int length;
974
975 length = remain;
976 if (offset + length > PAGE_SIZE)
977 length = PAGE_SIZE - offset;
978
979 ret = shmem_pread(page, offset, length, user_data,
980 page_to_phys(page) & obj_do_bit17_swizzling,
981 needs_clflush);
982 if (ret)
983 break;
984
985 remain -= length;
986 user_data += length;
987 offset = 0;
988 }
989
990 i915_gem_obj_finish_shmem_access(obj);
991 return ret;
992 }
993
994 static inline bool
995 gtt_user_read(struct io_mapping *mapping,
996 loff_t base, int offset,
997 char __user *user_data, int length)
998 {
999 void *vaddr;
1000 unsigned long unwritten;
1001
1002 /* We can use the cpu mem copy function because this is X86. */
1003 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1004 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1005 io_mapping_unmap_atomic(vaddr);
1006 if (unwritten) {
1007 vaddr = (void __force *)
1008 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1009 unwritten = copy_to_user(user_data, vaddr + offset, length);
1010 io_mapping_unmap(vaddr);
1011 }
1012 return unwritten;
1013 }
1014
1015 static int
1016 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1017 const struct drm_i915_gem_pread *args)
1018 {
1019 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1020 struct i915_ggtt *ggtt = &i915->ggtt;
1021 struct drm_mm_node node;
1022 struct i915_vma *vma;
1023 void __user *user_data;
1024 u64 remain, offset;
1025 int ret;
1026
1027 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1028 if (ret)
1029 return ret;
1030
1031 intel_runtime_pm_get(i915);
1032 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1033 PIN_MAPPABLE | PIN_NONBLOCK);
1034 if (!IS_ERR(vma)) {
1035 node.start = i915_ggtt_offset(vma);
1036 node.allocated = false;
1037 ret = i915_vma_put_fence(vma);
1038 if (ret) {
1039 i915_vma_unpin(vma);
1040 vma = ERR_PTR(ret);
1041 }
1042 }
1043 if (IS_ERR(vma)) {
1044 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1045 if (ret)
1046 goto out_unlock;
1047 GEM_BUG_ON(!node.allocated);
1048 }
1049
1050 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1051 if (ret)
1052 goto out_unpin;
1053
1054 mutex_unlock(&i915->drm.struct_mutex);
1055
1056 user_data = u64_to_user_ptr(args->data_ptr);
1057 remain = args->size;
1058 offset = args->offset;
1059
1060 while (remain > 0) {
1061 /* Operation in this page
1062 *
1063 * page_base = page offset within aperture
1064 * page_offset = offset within page
1065 * page_length = bytes to copy for this page
1066 */
1067 u32 page_base = node.start;
1068 unsigned page_offset = offset_in_page(offset);
1069 unsigned page_length = PAGE_SIZE - page_offset;
1070 page_length = remain < page_length ? remain : page_length;
1071 if (node.allocated) {
1072 wmb();
1073 ggtt->base.insert_page(&ggtt->base,
1074 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1075 node.start, I915_CACHE_NONE, 0);
1076 wmb();
1077 } else {
1078 page_base += offset & PAGE_MASK;
1079 }
1080
1081 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1082 user_data, page_length)) {
1083 ret = -EFAULT;
1084 break;
1085 }
1086
1087 remain -= page_length;
1088 user_data += page_length;
1089 offset += page_length;
1090 }
1091
1092 mutex_lock(&i915->drm.struct_mutex);
1093 out_unpin:
1094 if (node.allocated) {
1095 wmb();
1096 ggtt->base.clear_range(&ggtt->base,
1097 node.start, node.size);
1098 remove_mappable_node(&node);
1099 } else {
1100 i915_vma_unpin(vma);
1101 }
1102 out_unlock:
1103 intel_runtime_pm_put(i915);
1104 mutex_unlock(&i915->drm.struct_mutex);
1105
1106 return ret;
1107 }
1108
1109 /**
1110 * Reads data from the object referenced by handle.
1111 * @dev: drm device pointer
1112 * @data: ioctl data blob
1113 * @file: drm file pointer
1114 *
1115 * On error, the contents of *data are undefined.
1116 */
1117 int
1118 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1119 struct drm_file *file)
1120 {
1121 struct drm_i915_gem_pread *args = data;
1122 struct drm_i915_gem_object *obj;
1123 int ret;
1124
1125 if (args->size == 0)
1126 return 0;
1127
1128 if (!access_ok(VERIFY_WRITE,
1129 u64_to_user_ptr(args->data_ptr),
1130 args->size))
1131 return -EFAULT;
1132
1133 obj = i915_gem_object_lookup(file, args->handle);
1134 if (!obj)
1135 return -ENOENT;
1136
1137 /* Bounds check source. */
1138 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1139 ret = -EINVAL;
1140 goto out;
1141 }
1142
1143 trace_i915_gem_object_pread(obj, args->offset, args->size);
1144
1145 ret = i915_gem_object_wait(obj,
1146 I915_WAIT_INTERRUPTIBLE,
1147 MAX_SCHEDULE_TIMEOUT,
1148 to_rps_client(file));
1149 if (ret)
1150 goto out;
1151
1152 ret = i915_gem_object_pin_pages(obj);
1153 if (ret)
1154 goto out;
1155
1156 ret = i915_gem_shmem_pread(obj, args);
1157 if (ret == -EFAULT || ret == -ENODEV)
1158 ret = i915_gem_gtt_pread(obj, args);
1159
1160 i915_gem_object_unpin_pages(obj);
1161 out:
1162 i915_gem_object_put(obj);
1163 return ret;
1164 }
1165
1166 /* This is the fast write path which cannot handle
1167 * page faults in the source data
1168 */
1169
1170 static inline bool
1171 ggtt_write(struct io_mapping *mapping,
1172 loff_t base, int offset,
1173 char __user *user_data, int length)
1174 {
1175 void *vaddr;
1176 unsigned long unwritten;
1177
1178 /* We can use the cpu mem copy function because this is X86. */
1179 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1180 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1181 user_data, length);
1182 io_mapping_unmap_atomic(vaddr);
1183 if (unwritten) {
1184 vaddr = (void __force *)
1185 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1186 unwritten = copy_from_user(vaddr + offset, user_data, length);
1187 io_mapping_unmap(vaddr);
1188 }
1189
1190 return unwritten;
1191 }
1192
1193 /**
1194 * This is the fast pwrite path, where we copy the data directly from the
1195 * user into the GTT, uncached.
1196 * @obj: i915 GEM object
1197 * @args: pwrite arguments structure
1198 */
1199 static int
1200 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1201 const struct drm_i915_gem_pwrite *args)
1202 {
1203 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1204 struct i915_ggtt *ggtt = &i915->ggtt;
1205 struct drm_mm_node node;
1206 struct i915_vma *vma;
1207 u64 remain, offset;
1208 void __user *user_data;
1209 int ret;
1210
1211 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1212 if (ret)
1213 return ret;
1214
1215 intel_runtime_pm_get(i915);
1216 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1217 PIN_MAPPABLE | PIN_NONBLOCK);
1218 if (!IS_ERR(vma)) {
1219 node.start = i915_ggtt_offset(vma);
1220 node.allocated = false;
1221 ret = i915_vma_put_fence(vma);
1222 if (ret) {
1223 i915_vma_unpin(vma);
1224 vma = ERR_PTR(ret);
1225 }
1226 }
1227 if (IS_ERR(vma)) {
1228 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1229 if (ret)
1230 goto out_unlock;
1231 GEM_BUG_ON(!node.allocated);
1232 }
1233
1234 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1235 if (ret)
1236 goto out_unpin;
1237
1238 mutex_unlock(&i915->drm.struct_mutex);
1239
1240 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1241
1242 user_data = u64_to_user_ptr(args->data_ptr);
1243 offset = args->offset;
1244 remain = args->size;
1245 while (remain) {
1246 /* Operation in this page
1247 *
1248 * page_base = page offset within aperture
1249 * page_offset = offset within page
1250 * page_length = bytes to copy for this page
1251 */
1252 u32 page_base = node.start;
1253 unsigned int page_offset = offset_in_page(offset);
1254 unsigned int page_length = PAGE_SIZE - page_offset;
1255 page_length = remain < page_length ? remain : page_length;
1256 if (node.allocated) {
1257 wmb(); /* flush the write before we modify the GGTT */
1258 ggtt->base.insert_page(&ggtt->base,
1259 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1260 node.start, I915_CACHE_NONE, 0);
1261 wmb(); /* flush modifications to the GGTT (insert_page) */
1262 } else {
1263 page_base += offset & PAGE_MASK;
1264 }
1265 /* If we get a fault while copying data, then (presumably) our
1266 * source page isn't available. Return the error and we'll
1267 * retry in the slow path.
1268 * If the object is non-shmem backed, we retry again with the
1269 * path that handles page fault.
1270 */
1271 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1272 user_data, page_length)) {
1273 ret = -EFAULT;
1274 break;
1275 }
1276
1277 remain -= page_length;
1278 user_data += page_length;
1279 offset += page_length;
1280 }
1281 intel_fb_obj_flush(obj, ORIGIN_CPU);
1282
1283 mutex_lock(&i915->drm.struct_mutex);
1284 out_unpin:
1285 if (node.allocated) {
1286 wmb();
1287 ggtt->base.clear_range(&ggtt->base,
1288 node.start, node.size);
1289 remove_mappable_node(&node);
1290 } else {
1291 i915_vma_unpin(vma);
1292 }
1293 out_unlock:
1294 intel_runtime_pm_put(i915);
1295 mutex_unlock(&i915->drm.struct_mutex);
1296 return ret;
1297 }
1298
1299 static int
1300 shmem_pwrite_slow(struct page *page, int offset, int length,
1301 char __user *user_data,
1302 bool page_do_bit17_swizzling,
1303 bool needs_clflush_before,
1304 bool needs_clflush_after)
1305 {
1306 char *vaddr;
1307 int ret;
1308
1309 vaddr = kmap(page);
1310 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1311 shmem_clflush_swizzled_range(vaddr + offset, length,
1312 page_do_bit17_swizzling);
1313 if (page_do_bit17_swizzling)
1314 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1315 length);
1316 else
1317 ret = __copy_from_user(vaddr + offset, user_data, length);
1318 if (needs_clflush_after)
1319 shmem_clflush_swizzled_range(vaddr + offset, length,
1320 page_do_bit17_swizzling);
1321 kunmap(page);
1322
1323 return ret ? -EFAULT : 0;
1324 }
1325
1326 /* Per-page copy function for the shmem pwrite fastpath.
1327 * Flushes invalid cachelines before writing to the target if
1328 * needs_clflush_before is set and flushes out any written cachelines after
1329 * writing if needs_clflush is set.
1330 */
1331 static int
1332 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1333 bool page_do_bit17_swizzling,
1334 bool needs_clflush_before,
1335 bool needs_clflush_after)
1336 {
1337 int ret;
1338
1339 ret = -ENODEV;
1340 if (!page_do_bit17_swizzling) {
1341 char *vaddr = kmap_atomic(page);
1342
1343 if (needs_clflush_before)
1344 drm_clflush_virt_range(vaddr + offset, len);
1345 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1346 if (needs_clflush_after)
1347 drm_clflush_virt_range(vaddr + offset, len);
1348
1349 kunmap_atomic(vaddr);
1350 }
1351 if (ret == 0)
1352 return ret;
1353
1354 return shmem_pwrite_slow(page, offset, len, user_data,
1355 page_do_bit17_swizzling,
1356 needs_clflush_before,
1357 needs_clflush_after);
1358 }
1359
1360 static int
1361 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1362 const struct drm_i915_gem_pwrite *args)
1363 {
1364 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1365 void __user *user_data;
1366 u64 remain;
1367 unsigned int obj_do_bit17_swizzling;
1368 unsigned int partial_cacheline_write;
1369 unsigned int needs_clflush;
1370 unsigned int offset, idx;
1371 int ret;
1372
1373 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1374 if (ret)
1375 return ret;
1376
1377 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1378 mutex_unlock(&i915->drm.struct_mutex);
1379 if (ret)
1380 return ret;
1381
1382 obj_do_bit17_swizzling = 0;
1383 if (i915_gem_object_needs_bit17_swizzle(obj))
1384 obj_do_bit17_swizzling = BIT(17);
1385
1386 /* If we don't overwrite a cacheline completely we need to be
1387 * careful to have up-to-date data by first clflushing. Don't
1388 * overcomplicate things and flush the entire patch.
1389 */
1390 partial_cacheline_write = 0;
1391 if (needs_clflush & CLFLUSH_BEFORE)
1392 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1393
1394 user_data = u64_to_user_ptr(args->data_ptr);
1395 remain = args->size;
1396 offset = offset_in_page(args->offset);
1397 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1398 struct page *page = i915_gem_object_get_page(obj, idx);
1399 int length;
1400
1401 length = remain;
1402 if (offset + length > PAGE_SIZE)
1403 length = PAGE_SIZE - offset;
1404
1405 ret = shmem_pwrite(page, offset, length, user_data,
1406 page_to_phys(page) & obj_do_bit17_swizzling,
1407 (offset | length) & partial_cacheline_write,
1408 needs_clflush & CLFLUSH_AFTER);
1409 if (ret)
1410 break;
1411
1412 remain -= length;
1413 user_data += length;
1414 offset = 0;
1415 }
1416
1417 intel_fb_obj_flush(obj, ORIGIN_CPU);
1418 i915_gem_obj_finish_shmem_access(obj);
1419 return ret;
1420 }
1421
1422 /**
1423 * Writes data to the object referenced by handle.
1424 * @dev: drm device
1425 * @data: ioctl data blob
1426 * @file: drm file
1427 *
1428 * On error, the contents of the buffer that were to be modified are undefined.
1429 */
1430 int
1431 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1432 struct drm_file *file)
1433 {
1434 struct drm_i915_gem_pwrite *args = data;
1435 struct drm_i915_gem_object *obj;
1436 int ret;
1437
1438 if (args->size == 0)
1439 return 0;
1440
1441 if (!access_ok(VERIFY_READ,
1442 u64_to_user_ptr(args->data_ptr),
1443 args->size))
1444 return -EFAULT;
1445
1446 obj = i915_gem_object_lookup(file, args->handle);
1447 if (!obj)
1448 return -ENOENT;
1449
1450 /* Bounds check destination. */
1451 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1452 ret = -EINVAL;
1453 goto err;
1454 }
1455
1456 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1457
1458 ret = -ENODEV;
1459 if (obj->ops->pwrite)
1460 ret = obj->ops->pwrite(obj, args);
1461 if (ret != -ENODEV)
1462 goto err;
1463
1464 ret = i915_gem_object_wait(obj,
1465 I915_WAIT_INTERRUPTIBLE |
1466 I915_WAIT_ALL,
1467 MAX_SCHEDULE_TIMEOUT,
1468 to_rps_client(file));
1469 if (ret)
1470 goto err;
1471
1472 ret = i915_gem_object_pin_pages(obj);
1473 if (ret)
1474 goto err;
1475
1476 ret = -EFAULT;
1477 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1478 * it would end up going through the fenced access, and we'll get
1479 * different detiling behavior between reading and writing.
1480 * pread/pwrite currently are reading and writing from the CPU
1481 * perspective, requiring manual detiling by the client.
1482 */
1483 if (!i915_gem_object_has_struct_page(obj) ||
1484 cpu_write_needs_clflush(obj))
1485 /* Note that the gtt paths might fail with non-page-backed user
1486 * pointers (e.g. gtt mappings when moving data between
1487 * textures). Fallback to the shmem path in that case.
1488 */
1489 ret = i915_gem_gtt_pwrite_fast(obj, args);
1490
1491 if (ret == -EFAULT || ret == -ENOSPC) {
1492 if (obj->phys_handle)
1493 ret = i915_gem_phys_pwrite(obj, args, file);
1494 else
1495 ret = i915_gem_shmem_pwrite(obj, args);
1496 }
1497
1498 i915_gem_object_unpin_pages(obj);
1499 err:
1500 i915_gem_object_put(obj);
1501 return ret;
1502 }
1503
1504 static inline enum fb_op_origin
1505 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1506 {
1507 return (domain == I915_GEM_DOMAIN_GTT ?
1508 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1509 }
1510
1511 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1512 {
1513 struct drm_i915_private *i915;
1514 struct list_head *list;
1515 struct i915_vma *vma;
1516
1517 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1518 if (!i915_vma_is_ggtt(vma))
1519 break;
1520
1521 if (i915_vma_is_active(vma))
1522 continue;
1523
1524 if (!drm_mm_node_allocated(&vma->node))
1525 continue;
1526
1527 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1528 }
1529
1530 i915 = to_i915(obj->base.dev);
1531 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1532 list_move_tail(&obj->global_link, list);
1533 }
1534
1535 /**
1536 * Called when user space prepares to use an object with the CPU, either
1537 * through the mmap ioctl's mapping or a GTT mapping.
1538 * @dev: drm device
1539 * @data: ioctl data blob
1540 * @file: drm file
1541 */
1542 int
1543 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1544 struct drm_file *file)
1545 {
1546 struct drm_i915_gem_set_domain *args = data;
1547 struct drm_i915_gem_object *obj;
1548 uint32_t read_domains = args->read_domains;
1549 uint32_t write_domain = args->write_domain;
1550 int err;
1551
1552 /* Only handle setting domains to types used by the CPU. */
1553 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1554 return -EINVAL;
1555
1556 /* Having something in the write domain implies it's in the read
1557 * domain, and only that read domain. Enforce that in the request.
1558 */
1559 if (write_domain != 0 && read_domains != write_domain)
1560 return -EINVAL;
1561
1562 obj = i915_gem_object_lookup(file, args->handle);
1563 if (!obj)
1564 return -ENOENT;
1565
1566 /* Try to flush the object off the GPU without holding the lock.
1567 * We will repeat the flush holding the lock in the normal manner
1568 * to catch cases where we are gazumped.
1569 */
1570 err = i915_gem_object_wait(obj,
1571 I915_WAIT_INTERRUPTIBLE |
1572 (write_domain ? I915_WAIT_ALL : 0),
1573 MAX_SCHEDULE_TIMEOUT,
1574 to_rps_client(file));
1575 if (err)
1576 goto out;
1577
1578 /* Flush and acquire obj->pages so that we are coherent through
1579 * direct access in memory with previous cached writes through
1580 * shmemfs and that our cache domain tracking remains valid.
1581 * For example, if the obj->filp was moved to swap without us
1582 * being notified and releasing the pages, we would mistakenly
1583 * continue to assume that the obj remained out of the CPU cached
1584 * domain.
1585 */
1586 err = i915_gem_object_pin_pages(obj);
1587 if (err)
1588 goto out;
1589
1590 err = i915_mutex_lock_interruptible(dev);
1591 if (err)
1592 goto out_unpin;
1593
1594 if (read_domains & I915_GEM_DOMAIN_GTT)
1595 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1596 else
1597 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1598
1599 /* And bump the LRU for this access */
1600 i915_gem_object_bump_inactive_ggtt(obj);
1601
1602 mutex_unlock(&dev->struct_mutex);
1603
1604 if (write_domain != 0)
1605 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1606
1607 out_unpin:
1608 i915_gem_object_unpin_pages(obj);
1609 out:
1610 i915_gem_object_put(obj);
1611 return err;
1612 }
1613
1614 /**
1615 * Called when user space has done writes to this buffer
1616 * @dev: drm device
1617 * @data: ioctl data blob
1618 * @file: drm file
1619 */
1620 int
1621 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1622 struct drm_file *file)
1623 {
1624 struct drm_i915_gem_sw_finish *args = data;
1625 struct drm_i915_gem_object *obj;
1626
1627 obj = i915_gem_object_lookup(file, args->handle);
1628 if (!obj)
1629 return -ENOENT;
1630
1631 /* Pinned buffers may be scanout, so flush the cache */
1632 i915_gem_object_flush_if_display(obj);
1633 i915_gem_object_put(obj);
1634
1635 return 0;
1636 }
1637
1638 /**
1639 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1640 * it is mapped to.
1641 * @dev: drm device
1642 * @data: ioctl data blob
1643 * @file: drm file
1644 *
1645 * While the mapping holds a reference on the contents of the object, it doesn't
1646 * imply a ref on the object itself.
1647 *
1648 * IMPORTANT:
1649 *
1650 * DRM driver writers who look a this function as an example for how to do GEM
1651 * mmap support, please don't implement mmap support like here. The modern way
1652 * to implement DRM mmap support is with an mmap offset ioctl (like
1653 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1654 * That way debug tooling like valgrind will understand what's going on, hiding
1655 * the mmap call in a driver private ioctl will break that. The i915 driver only
1656 * does cpu mmaps this way because we didn't know better.
1657 */
1658 int
1659 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1660 struct drm_file *file)
1661 {
1662 struct drm_i915_gem_mmap *args = data;
1663 struct drm_i915_gem_object *obj;
1664 unsigned long addr;
1665
1666 if (args->flags & ~(I915_MMAP_WC))
1667 return -EINVAL;
1668
1669 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1670 return -ENODEV;
1671
1672 obj = i915_gem_object_lookup(file, args->handle);
1673 if (!obj)
1674 return -ENOENT;
1675
1676 /* prime objects have no backing filp to GEM mmap
1677 * pages from.
1678 */
1679 if (!obj->base.filp) {
1680 i915_gem_object_put(obj);
1681 return -EINVAL;
1682 }
1683
1684 addr = vm_mmap(obj->base.filp, 0, args->size,
1685 PROT_READ | PROT_WRITE, MAP_SHARED,
1686 args->offset);
1687 if (args->flags & I915_MMAP_WC) {
1688 struct mm_struct *mm = current->mm;
1689 struct vm_area_struct *vma;
1690
1691 if (down_write_killable(&mm->mmap_sem)) {
1692 i915_gem_object_put(obj);
1693 return -EINTR;
1694 }
1695 vma = find_vma(mm, addr);
1696 if (vma)
1697 vma->vm_page_prot =
1698 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699 else
1700 addr = -ENOMEM;
1701 up_write(&mm->mmap_sem);
1702
1703 /* This may race, but that's ok, it only gets set */
1704 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1705 }
1706 i915_gem_object_put(obj);
1707 if (IS_ERR((void *)addr))
1708 return addr;
1709
1710 args->addr_ptr = (uint64_t) addr;
1711
1712 return 0;
1713 }
1714
1715 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1716 {
1717 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1718 }
1719
1720 /**
1721 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1722 *
1723 * A history of the GTT mmap interface:
1724 *
1725 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1726 * aligned and suitable for fencing, and still fit into the available
1727 * mappable space left by the pinned display objects. A classic problem
1728 * we called the page-fault-of-doom where we would ping-pong between
1729 * two objects that could not fit inside the GTT and so the memcpy
1730 * would page one object in at the expense of the other between every
1731 * single byte.
1732 *
1733 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1734 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1735 * object is too large for the available space (or simply too large
1736 * for the mappable aperture!), a view is created instead and faulted
1737 * into userspace. (This view is aligned and sized appropriately for
1738 * fenced access.)
1739 *
1740 * Restrictions:
1741 *
1742 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1743 * hangs on some architectures, corruption on others. An attempt to service
1744 * a GTT page fault from a snoopable object will generate a SIGBUS.
1745 *
1746 * * the object must be able to fit into RAM (physical memory, though no
1747 * limited to the mappable aperture).
1748 *
1749 *
1750 * Caveats:
1751 *
1752 * * a new GTT page fault will synchronize rendering from the GPU and flush
1753 * all data to system memory. Subsequent access will not be synchronized.
1754 *
1755 * * all mappings are revoked on runtime device suspend.
1756 *
1757 * * there are only 8, 16 or 32 fence registers to share between all users
1758 * (older machines require fence register for display and blitter access
1759 * as well). Contention of the fence registers will cause the previous users
1760 * to be unmapped and any new access will generate new page faults.
1761 *
1762 * * running out of memory while servicing a fault may generate a SIGBUS,
1763 * rather than the expected SIGSEGV.
1764 */
1765 int i915_gem_mmap_gtt_version(void)
1766 {
1767 return 1;
1768 }
1769
1770 static inline struct i915_ggtt_view
1771 compute_partial_view(struct drm_i915_gem_object *obj,
1772 pgoff_t page_offset,
1773 unsigned int chunk)
1774 {
1775 struct i915_ggtt_view view;
1776
1777 if (i915_gem_object_is_tiled(obj))
1778 chunk = roundup(chunk, tile_row_pages(obj));
1779
1780 view.type = I915_GGTT_VIEW_PARTIAL;
1781 view.partial.offset = rounddown(page_offset, chunk);
1782 view.partial.size =
1783 min_t(unsigned int, chunk,
1784 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1785
1786 /* If the partial covers the entire object, just create a normal VMA. */
1787 if (chunk >= obj->base.size >> PAGE_SHIFT)
1788 view.type = I915_GGTT_VIEW_NORMAL;
1789
1790 return view;
1791 }
1792
1793 /**
1794 * i915_gem_fault - fault a page into the GTT
1795 * @vmf: fault info
1796 *
1797 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1798 * from userspace. The fault handler takes care of binding the object to
1799 * the GTT (if needed), allocating and programming a fence register (again,
1800 * only if needed based on whether the old reg is still valid or the object
1801 * is tiled) and inserting a new PTE into the faulting process.
1802 *
1803 * Note that the faulting process may involve evicting existing objects
1804 * from the GTT and/or fence registers to make room. So performance may
1805 * suffer if the GTT working set is large or there are few fence registers
1806 * left.
1807 *
1808 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1809 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1810 */
1811 int i915_gem_fault(struct vm_fault *vmf)
1812 {
1813 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1814 struct vm_area_struct *area = vmf->vma;
1815 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1816 struct drm_device *dev = obj->base.dev;
1817 struct drm_i915_private *dev_priv = to_i915(dev);
1818 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1819 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1820 struct i915_vma *vma;
1821 pgoff_t page_offset;
1822 unsigned int flags;
1823 int ret;
1824
1825 /* We don't use vmf->pgoff since that has the fake offset */
1826 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1827
1828 trace_i915_gem_object_fault(obj, page_offset, true, write);
1829
1830 /* Try to flush the object off the GPU first without holding the lock.
1831 * Upon acquiring the lock, we will perform our sanity checks and then
1832 * repeat the flush holding the lock in the normal manner to catch cases
1833 * where we are gazumped.
1834 */
1835 ret = i915_gem_object_wait(obj,
1836 I915_WAIT_INTERRUPTIBLE,
1837 MAX_SCHEDULE_TIMEOUT,
1838 NULL);
1839 if (ret)
1840 goto err;
1841
1842 ret = i915_gem_object_pin_pages(obj);
1843 if (ret)
1844 goto err;
1845
1846 intel_runtime_pm_get(dev_priv);
1847
1848 ret = i915_mutex_lock_interruptible(dev);
1849 if (ret)
1850 goto err_rpm;
1851
1852 /* Access to snoopable pages through the GTT is incoherent. */
1853 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1854 ret = -EFAULT;
1855 goto err_unlock;
1856 }
1857
1858 /* If the object is smaller than a couple of partial vma, it is
1859 * not worth only creating a single partial vma - we may as well
1860 * clear enough space for the full object.
1861 */
1862 flags = PIN_MAPPABLE;
1863 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1864 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1865
1866 /* Now pin it into the GTT as needed */
1867 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1868 if (IS_ERR(vma)) {
1869 /* Use a partial view if it is bigger than available space */
1870 struct i915_ggtt_view view =
1871 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1872
1873 /* Userspace is now writing through an untracked VMA, abandon
1874 * all hope that the hardware is able to track future writes.
1875 */
1876 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1877
1878 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1879 }
1880 if (IS_ERR(vma)) {
1881 ret = PTR_ERR(vma);
1882 goto err_unlock;
1883 }
1884
1885 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1886 if (ret)
1887 goto err_unpin;
1888
1889 ret = i915_vma_get_fence(vma);
1890 if (ret)
1891 goto err_unpin;
1892
1893 /* Mark as being mmapped into userspace for later revocation */
1894 assert_rpm_wakelock_held(dev_priv);
1895 if (list_empty(&obj->userfault_link))
1896 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1897
1898 /* Finally, remap it using the new GTT offset */
1899 ret = remap_io_mapping(area,
1900 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1901 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1902 min_t(u64, vma->size, area->vm_end - area->vm_start),
1903 &ggtt->mappable);
1904
1905 err_unpin:
1906 __i915_vma_unpin(vma);
1907 err_unlock:
1908 mutex_unlock(&dev->struct_mutex);
1909 err_rpm:
1910 intel_runtime_pm_put(dev_priv);
1911 i915_gem_object_unpin_pages(obj);
1912 err:
1913 switch (ret) {
1914 case -EIO:
1915 /*
1916 * We eat errors when the gpu is terminally wedged to avoid
1917 * userspace unduly crashing (gl has no provisions for mmaps to
1918 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1919 * and so needs to be reported.
1920 */
1921 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1922 ret = VM_FAULT_SIGBUS;
1923 break;
1924 }
1925 case -EAGAIN:
1926 /*
1927 * EAGAIN means the gpu is hung and we'll wait for the error
1928 * handler to reset everything when re-faulting in
1929 * i915_mutex_lock_interruptible.
1930 */
1931 case 0:
1932 case -ERESTARTSYS:
1933 case -EINTR:
1934 case -EBUSY:
1935 /*
1936 * EBUSY is ok: this just means that another thread
1937 * already did the job.
1938 */
1939 ret = VM_FAULT_NOPAGE;
1940 break;
1941 case -ENOMEM:
1942 ret = VM_FAULT_OOM;
1943 break;
1944 case -ENOSPC:
1945 case -EFAULT:
1946 ret = VM_FAULT_SIGBUS;
1947 break;
1948 default:
1949 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1950 ret = VM_FAULT_SIGBUS;
1951 break;
1952 }
1953 return ret;
1954 }
1955
1956 /**
1957 * i915_gem_release_mmap - remove physical page mappings
1958 * @obj: obj in question
1959 *
1960 * Preserve the reservation of the mmapping with the DRM core code, but
1961 * relinquish ownership of the pages back to the system.
1962 *
1963 * It is vital that we remove the page mapping if we have mapped a tiled
1964 * object through the GTT and then lose the fence register due to
1965 * resource pressure. Similarly if the object has been moved out of the
1966 * aperture, than pages mapped into userspace must be revoked. Removing the
1967 * mapping will then trigger a page fault on the next user access, allowing
1968 * fixup by i915_gem_fault().
1969 */
1970 void
1971 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1972 {
1973 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1974
1975 /* Serialisation between user GTT access and our code depends upon
1976 * revoking the CPU's PTE whilst the mutex is held. The next user
1977 * pagefault then has to wait until we release the mutex.
1978 *
1979 * Note that RPM complicates somewhat by adding an additional
1980 * requirement that operations to the GGTT be made holding the RPM
1981 * wakeref.
1982 */
1983 lockdep_assert_held(&i915->drm.struct_mutex);
1984 intel_runtime_pm_get(i915);
1985
1986 if (list_empty(&obj->userfault_link))
1987 goto out;
1988
1989 list_del_init(&obj->userfault_link);
1990 drm_vma_node_unmap(&obj->base.vma_node,
1991 obj->base.dev->anon_inode->i_mapping);
1992
1993 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1994 * memory transactions from userspace before we return. The TLB
1995 * flushing implied above by changing the PTE above *should* be
1996 * sufficient, an extra barrier here just provides us with a bit
1997 * of paranoid documentation about our requirement to serialise
1998 * memory writes before touching registers / GSM.
1999 */
2000 wmb();
2001
2002 out:
2003 intel_runtime_pm_put(i915);
2004 }
2005
2006 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2007 {
2008 struct drm_i915_gem_object *obj, *on;
2009 int i;
2010
2011 /*
2012 * Only called during RPM suspend. All users of the userfault_list
2013 * must be holding an RPM wakeref to ensure that this can not
2014 * run concurrently with themselves (and use the struct_mutex for
2015 * protection between themselves).
2016 */
2017
2018 list_for_each_entry_safe(obj, on,
2019 &dev_priv->mm.userfault_list, userfault_link) {
2020 list_del_init(&obj->userfault_link);
2021 drm_vma_node_unmap(&obj->base.vma_node,
2022 obj->base.dev->anon_inode->i_mapping);
2023 }
2024
2025 /* The fence will be lost when the device powers down. If any were
2026 * in use by hardware (i.e. they are pinned), we should not be powering
2027 * down! All other fences will be reacquired by the user upon waking.
2028 */
2029 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2030 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2031
2032 /* Ideally we want to assert that the fence register is not
2033 * live at this point (i.e. that no piece of code will be
2034 * trying to write through fence + GTT, as that both violates
2035 * our tracking of activity and associated locking/barriers,
2036 * but also is illegal given that the hw is powered down).
2037 *
2038 * Previously we used reg->pin_count as a "liveness" indicator.
2039 * That is not sufficient, and we need a more fine-grained
2040 * tool if we want to have a sanity check here.
2041 */
2042
2043 if (!reg->vma)
2044 continue;
2045
2046 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2047 reg->dirty = true;
2048 }
2049 }
2050
2051 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2052 {
2053 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2054 int err;
2055
2056 err = drm_gem_create_mmap_offset(&obj->base);
2057 if (likely(!err))
2058 return 0;
2059
2060 /* Attempt to reap some mmap space from dead objects */
2061 do {
2062 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2063 if (err)
2064 break;
2065
2066 i915_gem_drain_freed_objects(dev_priv);
2067 err = drm_gem_create_mmap_offset(&obj->base);
2068 if (!err)
2069 break;
2070
2071 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2072
2073 return err;
2074 }
2075
2076 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2077 {
2078 drm_gem_free_mmap_offset(&obj->base);
2079 }
2080
2081 int
2082 i915_gem_mmap_gtt(struct drm_file *file,
2083 struct drm_device *dev,
2084 uint32_t handle,
2085 uint64_t *offset)
2086 {
2087 struct drm_i915_gem_object *obj;
2088 int ret;
2089
2090 obj = i915_gem_object_lookup(file, handle);
2091 if (!obj)
2092 return -ENOENT;
2093
2094 ret = i915_gem_object_create_mmap_offset(obj);
2095 if (ret == 0)
2096 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2097
2098 i915_gem_object_put(obj);
2099 return ret;
2100 }
2101
2102 /**
2103 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2104 * @dev: DRM device
2105 * @data: GTT mapping ioctl data
2106 * @file: GEM object info
2107 *
2108 * Simply returns the fake offset to userspace so it can mmap it.
2109 * The mmap call will end up in drm_gem_mmap(), which will set things
2110 * up so we can get faults in the handler above.
2111 *
2112 * The fault handler will take care of binding the object into the GTT
2113 * (since it may have been evicted to make room for something), allocating
2114 * a fence register, and mapping the appropriate aperture address into
2115 * userspace.
2116 */
2117 int
2118 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2119 struct drm_file *file)
2120 {
2121 struct drm_i915_gem_mmap_gtt *args = data;
2122
2123 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2124 }
2125
2126 /* Immediately discard the backing storage */
2127 static void
2128 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2129 {
2130 i915_gem_object_free_mmap_offset(obj);
2131
2132 if (obj->base.filp == NULL)
2133 return;
2134
2135 /* Our goal here is to return as much of the memory as
2136 * is possible back to the system as we are called from OOM.
2137 * To do this we must instruct the shmfs to drop all of its
2138 * backing pages, *now*.
2139 */
2140 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2141 obj->mm.madv = __I915_MADV_PURGED;
2142 obj->mm.pages = ERR_PTR(-EFAULT);
2143 }
2144
2145 /* Try to discard unwanted pages */
2146 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2147 {
2148 struct address_space *mapping;
2149
2150 lockdep_assert_held(&obj->mm.lock);
2151 GEM_BUG_ON(obj->mm.pages);
2152
2153 switch (obj->mm.madv) {
2154 case I915_MADV_DONTNEED:
2155 i915_gem_object_truncate(obj);
2156 case __I915_MADV_PURGED:
2157 return;
2158 }
2159
2160 if (obj->base.filp == NULL)
2161 return;
2162
2163 mapping = obj->base.filp->f_mapping,
2164 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2165 }
2166
2167 static void
2168 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2169 struct sg_table *pages)
2170 {
2171 struct sgt_iter sgt_iter;
2172 struct page *page;
2173
2174 __i915_gem_object_release_shmem(obj, pages, true);
2175
2176 i915_gem_gtt_finish_pages(obj, pages);
2177
2178 if (i915_gem_object_needs_bit17_swizzle(obj))
2179 i915_gem_object_save_bit_17_swizzle(obj, pages);
2180
2181 for_each_sgt_page(page, sgt_iter, pages) {
2182 if (obj->mm.dirty)
2183 set_page_dirty(page);
2184
2185 if (obj->mm.madv == I915_MADV_WILLNEED)
2186 mark_page_accessed(page);
2187
2188 put_page(page);
2189 }
2190 obj->mm.dirty = false;
2191
2192 sg_free_table(pages);
2193 kfree(pages);
2194 }
2195
2196 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2197 {
2198 struct radix_tree_iter iter;
2199 void **slot;
2200
2201 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2202 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2203 }
2204
2205 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2206 enum i915_mm_subclass subclass)
2207 {
2208 struct sg_table *pages;
2209
2210 if (i915_gem_object_has_pinned_pages(obj))
2211 return;
2212
2213 GEM_BUG_ON(obj->bind_count);
2214 if (!READ_ONCE(obj->mm.pages))
2215 return;
2216
2217 /* May be called by shrinker from within get_pages() (on another bo) */
2218 mutex_lock_nested(&obj->mm.lock, subclass);
2219 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2220 goto unlock;
2221
2222 /* ->put_pages might need to allocate memory for the bit17 swizzle
2223 * array, hence protect them from being reaped by removing them from gtt
2224 * lists early. */
2225 pages = fetch_and_zero(&obj->mm.pages);
2226 GEM_BUG_ON(!pages);
2227
2228 if (obj->mm.mapping) {
2229 void *ptr;
2230
2231 ptr = ptr_mask_bits(obj->mm.mapping);
2232 if (is_vmalloc_addr(ptr))
2233 vunmap(ptr);
2234 else
2235 kunmap(kmap_to_page(ptr));
2236
2237 obj->mm.mapping = NULL;
2238 }
2239
2240 __i915_gem_object_reset_page_iter(obj);
2241
2242 if (!IS_ERR(pages))
2243 obj->ops->put_pages(obj, pages);
2244
2245 unlock:
2246 mutex_unlock(&obj->mm.lock);
2247 }
2248
2249 static bool i915_sg_trim(struct sg_table *orig_st)
2250 {
2251 struct sg_table new_st;
2252 struct scatterlist *sg, *new_sg;
2253 unsigned int i;
2254
2255 if (orig_st->nents == orig_st->orig_nents)
2256 return false;
2257
2258 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2259 return false;
2260
2261 new_sg = new_st.sgl;
2262 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2263 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2264 /* called before being DMA mapped, no need to copy sg->dma_* */
2265 new_sg = sg_next(new_sg);
2266 }
2267 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2268
2269 sg_free_table(orig_st);
2270
2271 *orig_st = new_st;
2272 return true;
2273 }
2274
2275 static struct sg_table *
2276 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2277 {
2278 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2279 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2280 unsigned long i;
2281 struct address_space *mapping;
2282 struct sg_table *st;
2283 struct scatterlist *sg;
2284 struct sgt_iter sgt_iter;
2285 struct page *page;
2286 unsigned long last_pfn = 0; /* suppress gcc warning */
2287 unsigned int max_segment;
2288 int ret;
2289 gfp_t gfp;
2290
2291 /* Assert that the object is not currently in any GPU domain. As it
2292 * wasn't in the GTT, there shouldn't be any way it could have been in
2293 * a GPU cache
2294 */
2295 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2296 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2297
2298 max_segment = swiotlb_max_segment();
2299 if (!max_segment)
2300 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2301
2302 st = kmalloc(sizeof(*st), GFP_KERNEL);
2303 if (st == NULL)
2304 return ERR_PTR(-ENOMEM);
2305
2306 rebuild_st:
2307 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2308 kfree(st);
2309 return ERR_PTR(-ENOMEM);
2310 }
2311
2312 /* Get the list of pages out of our struct file. They'll be pinned
2313 * at this point until we release them.
2314 *
2315 * Fail silently without starting the shrinker
2316 */
2317 mapping = obj->base.filp->f_mapping;
2318 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2319 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2320 sg = st->sgl;
2321 st->nents = 0;
2322 for (i = 0; i < page_count; i++) {
2323 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2324 if (unlikely(IS_ERR(page))) {
2325 i915_gem_shrink(dev_priv,
2326 page_count,
2327 I915_SHRINK_BOUND |
2328 I915_SHRINK_UNBOUND |
2329 I915_SHRINK_PURGEABLE);
2330 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2331 }
2332 if (unlikely(IS_ERR(page))) {
2333 gfp_t reclaim;
2334
2335 /* We've tried hard to allocate the memory by reaping
2336 * our own buffer, now let the real VM do its job and
2337 * go down in flames if truly OOM.
2338 *
2339 * However, since graphics tend to be disposable,
2340 * defer the oom here by reporting the ENOMEM back
2341 * to userspace.
2342 */
2343 reclaim = mapping_gfp_mask(mapping);
2344 reclaim |= __GFP_NORETRY; /* reclaim, but no oom */
2345
2346 page = shmem_read_mapping_page_gfp(mapping, i, reclaim);
2347 if (IS_ERR(page)) {
2348 ret = PTR_ERR(page);
2349 goto err_sg;
2350 }
2351 }
2352 if (!i ||
2353 sg->length >= max_segment ||
2354 page_to_pfn(page) != last_pfn + 1) {
2355 if (i)
2356 sg = sg_next(sg);
2357 st->nents++;
2358 sg_set_page(sg, page, PAGE_SIZE, 0);
2359 } else {
2360 sg->length += PAGE_SIZE;
2361 }
2362 last_pfn = page_to_pfn(page);
2363
2364 /* Check that the i965g/gm workaround works. */
2365 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2366 }
2367 if (sg) /* loop terminated early; short sg table */
2368 sg_mark_end(sg);
2369
2370 /* Trim unused sg entries to avoid wasting memory. */
2371 i915_sg_trim(st);
2372
2373 ret = i915_gem_gtt_prepare_pages(obj, st);
2374 if (ret) {
2375 /* DMA remapping failed? One possible cause is that
2376 * it could not reserve enough large entries, asking
2377 * for PAGE_SIZE chunks instead may be helpful.
2378 */
2379 if (max_segment > PAGE_SIZE) {
2380 for_each_sgt_page(page, sgt_iter, st)
2381 put_page(page);
2382 sg_free_table(st);
2383
2384 max_segment = PAGE_SIZE;
2385 goto rebuild_st;
2386 } else {
2387 dev_warn(&dev_priv->drm.pdev->dev,
2388 "Failed to DMA remap %lu pages\n",
2389 page_count);
2390 goto err_pages;
2391 }
2392 }
2393
2394 if (i915_gem_object_needs_bit17_swizzle(obj))
2395 i915_gem_object_do_bit_17_swizzle(obj, st);
2396
2397 return st;
2398
2399 err_sg:
2400 sg_mark_end(sg);
2401 err_pages:
2402 for_each_sgt_page(page, sgt_iter, st)
2403 put_page(page);
2404 sg_free_table(st);
2405 kfree(st);
2406
2407 /* shmemfs first checks if there is enough memory to allocate the page
2408 * and reports ENOSPC should there be insufficient, along with the usual
2409 * ENOMEM for a genuine allocation failure.
2410 *
2411 * We use ENOSPC in our driver to mean that we have run out of aperture
2412 * space and so want to translate the error from shmemfs back to our
2413 * usual understanding of ENOMEM.
2414 */
2415 if (ret == -ENOSPC)
2416 ret = -ENOMEM;
2417
2418 return ERR_PTR(ret);
2419 }
2420
2421 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2422 struct sg_table *pages)
2423 {
2424 lockdep_assert_held(&obj->mm.lock);
2425
2426 obj->mm.get_page.sg_pos = pages->sgl;
2427 obj->mm.get_page.sg_idx = 0;
2428
2429 obj->mm.pages = pages;
2430
2431 if (i915_gem_object_is_tiled(obj) &&
2432 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2433 GEM_BUG_ON(obj->mm.quirked);
2434 __i915_gem_object_pin_pages(obj);
2435 obj->mm.quirked = true;
2436 }
2437 }
2438
2439 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2440 {
2441 struct sg_table *pages;
2442
2443 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2444
2445 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2446 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2447 return -EFAULT;
2448 }
2449
2450 pages = obj->ops->get_pages(obj);
2451 if (unlikely(IS_ERR(pages)))
2452 return PTR_ERR(pages);
2453
2454 __i915_gem_object_set_pages(obj, pages);
2455 return 0;
2456 }
2457
2458 /* Ensure that the associated pages are gathered from the backing storage
2459 * and pinned into our object. i915_gem_object_pin_pages() may be called
2460 * multiple times before they are released by a single call to
2461 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2462 * either as a result of memory pressure (reaping pages under the shrinker)
2463 * or as the object is itself released.
2464 */
2465 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2466 {
2467 int err;
2468
2469 err = mutex_lock_interruptible(&obj->mm.lock);
2470 if (err)
2471 return err;
2472
2473 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2474 err = ____i915_gem_object_get_pages(obj);
2475 if (err)
2476 goto unlock;
2477
2478 smp_mb__before_atomic();
2479 }
2480 atomic_inc(&obj->mm.pages_pin_count);
2481
2482 unlock:
2483 mutex_unlock(&obj->mm.lock);
2484 return err;
2485 }
2486
2487 /* The 'mapping' part of i915_gem_object_pin_map() below */
2488 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2489 enum i915_map_type type)
2490 {
2491 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2492 struct sg_table *sgt = obj->mm.pages;
2493 struct sgt_iter sgt_iter;
2494 struct page *page;
2495 struct page *stack_pages[32];
2496 struct page **pages = stack_pages;
2497 unsigned long i = 0;
2498 pgprot_t pgprot;
2499 void *addr;
2500
2501 /* A single page can always be kmapped */
2502 if (n_pages == 1 && type == I915_MAP_WB)
2503 return kmap(sg_page(sgt->sgl));
2504
2505 if (n_pages > ARRAY_SIZE(stack_pages)) {
2506 /* Too big for stack -- allocate temporary array instead */
2507 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2508 if (!pages)
2509 return NULL;
2510 }
2511
2512 for_each_sgt_page(page, sgt_iter, sgt)
2513 pages[i++] = page;
2514
2515 /* Check that we have the expected number of pages */
2516 GEM_BUG_ON(i != n_pages);
2517
2518 switch (type) {
2519 case I915_MAP_WB:
2520 pgprot = PAGE_KERNEL;
2521 break;
2522 case I915_MAP_WC:
2523 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2524 break;
2525 }
2526 addr = vmap(pages, n_pages, 0, pgprot);
2527
2528 if (pages != stack_pages)
2529 drm_free_large(pages);
2530
2531 return addr;
2532 }
2533
2534 /* get, pin, and map the pages of the object into kernel space */
2535 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2536 enum i915_map_type type)
2537 {
2538 enum i915_map_type has_type;
2539 bool pinned;
2540 void *ptr;
2541 int ret;
2542
2543 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2544
2545 ret = mutex_lock_interruptible(&obj->mm.lock);
2546 if (ret)
2547 return ERR_PTR(ret);
2548
2549 pinned = true;
2550 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2551 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2552 ret = ____i915_gem_object_get_pages(obj);
2553 if (ret)
2554 goto err_unlock;
2555
2556 smp_mb__before_atomic();
2557 }
2558 atomic_inc(&obj->mm.pages_pin_count);
2559 pinned = false;
2560 }
2561 GEM_BUG_ON(!obj->mm.pages);
2562
2563 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2564 if (ptr && has_type != type) {
2565 if (pinned) {
2566 ret = -EBUSY;
2567 goto err_unpin;
2568 }
2569
2570 if (is_vmalloc_addr(ptr))
2571 vunmap(ptr);
2572 else
2573 kunmap(kmap_to_page(ptr));
2574
2575 ptr = obj->mm.mapping = NULL;
2576 }
2577
2578 if (!ptr) {
2579 ptr = i915_gem_object_map(obj, type);
2580 if (!ptr) {
2581 ret = -ENOMEM;
2582 goto err_unpin;
2583 }
2584
2585 obj->mm.mapping = ptr_pack_bits(ptr, type);
2586 }
2587
2588 out_unlock:
2589 mutex_unlock(&obj->mm.lock);
2590 return ptr;
2591
2592 err_unpin:
2593 atomic_dec(&obj->mm.pages_pin_count);
2594 err_unlock:
2595 ptr = ERR_PTR(ret);
2596 goto out_unlock;
2597 }
2598
2599 static int
2600 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2601 const struct drm_i915_gem_pwrite *arg)
2602 {
2603 struct address_space *mapping = obj->base.filp->f_mapping;
2604 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2605 u64 remain, offset;
2606 unsigned int pg;
2607
2608 /* Before we instantiate/pin the backing store for our use, we
2609 * can prepopulate the shmemfs filp efficiently using a write into
2610 * the pagecache. We avoid the penalty of instantiating all the
2611 * pages, important if the user is just writing to a few and never
2612 * uses the object on the GPU, and using a direct write into shmemfs
2613 * allows it to avoid the cost of retrieving a page (either swapin
2614 * or clearing-before-use) before it is overwritten.
2615 */
2616 if (READ_ONCE(obj->mm.pages))
2617 return -ENODEV;
2618
2619 /* Before the pages are instantiated the object is treated as being
2620 * in the CPU domain. The pages will be clflushed as required before
2621 * use, and we can freely write into the pages directly. If userspace
2622 * races pwrite with any other operation; corruption will ensue -
2623 * that is userspace's prerogative!
2624 */
2625
2626 remain = arg->size;
2627 offset = arg->offset;
2628 pg = offset_in_page(offset);
2629
2630 do {
2631 unsigned int len, unwritten;
2632 struct page *page;
2633 void *data, *vaddr;
2634 int err;
2635
2636 len = PAGE_SIZE - pg;
2637 if (len > remain)
2638 len = remain;
2639
2640 err = pagecache_write_begin(obj->base.filp, mapping,
2641 offset, len, 0,
2642 &page, &data);
2643 if (err < 0)
2644 return err;
2645
2646 vaddr = kmap(page);
2647 unwritten = copy_from_user(vaddr + pg, user_data, len);
2648 kunmap(page);
2649
2650 err = pagecache_write_end(obj->base.filp, mapping,
2651 offset, len, len - unwritten,
2652 page, data);
2653 if (err < 0)
2654 return err;
2655
2656 if (unwritten)
2657 return -EFAULT;
2658
2659 remain -= len;
2660 user_data += len;
2661 offset += len;
2662 pg = 0;
2663 } while (remain);
2664
2665 return 0;
2666 }
2667
2668 static bool ban_context(const struct i915_gem_context *ctx)
2669 {
2670 return (i915_gem_context_is_bannable(ctx) &&
2671 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2672 }
2673
2674 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2675 {
2676 ctx->guilty_count++;
2677 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2678 if (ban_context(ctx))
2679 i915_gem_context_set_banned(ctx);
2680
2681 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2682 ctx->name, ctx->ban_score,
2683 yesno(i915_gem_context_is_banned(ctx)));
2684
2685 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2686 return;
2687
2688 ctx->file_priv->context_bans++;
2689 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2690 ctx->name, ctx->file_priv->context_bans);
2691 }
2692
2693 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2694 {
2695 ctx->active_count++;
2696 }
2697
2698 struct drm_i915_gem_request *
2699 i915_gem_find_active_request(struct intel_engine_cs *engine)
2700 {
2701 struct drm_i915_gem_request *request, *active = NULL;
2702 unsigned long flags;
2703
2704 /* We are called by the error capture and reset at a random
2705 * point in time. In particular, note that neither is crucially
2706 * ordered with an interrupt. After a hang, the GPU is dead and we
2707 * assume that no more writes can happen (we waited long enough for
2708 * all writes that were in transaction to be flushed) - adding an
2709 * extra delay for a recent interrupt is pointless. Hence, we do
2710 * not need an engine->irq_seqno_barrier() before the seqno reads.
2711 */
2712 spin_lock_irqsave(&engine->timeline->lock, flags);
2713 list_for_each_entry(request, &engine->timeline->requests, link) {
2714 if (__i915_gem_request_completed(request,
2715 request->global_seqno))
2716 continue;
2717
2718 GEM_BUG_ON(request->engine != engine);
2719 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2720 &request->fence.flags));
2721
2722 active = request;
2723 break;
2724 }
2725 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2726
2727 return active;
2728 }
2729
2730 static bool engine_stalled(struct intel_engine_cs *engine)
2731 {
2732 if (!engine->hangcheck.stalled)
2733 return false;
2734
2735 /* Check for possible seqno movement after hang declaration */
2736 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2737 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2738 return false;
2739 }
2740
2741 return true;
2742 }
2743
2744 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2745 {
2746 struct intel_engine_cs *engine;
2747 enum intel_engine_id id;
2748 int err = 0;
2749
2750 /* Ensure irq handler finishes, and not run again. */
2751 for_each_engine(engine, dev_priv, id) {
2752 struct drm_i915_gem_request *request;
2753
2754 /* Prevent the signaler thread from updating the request
2755 * state (by calling dma_fence_signal) as we are processing
2756 * the reset. The write from the GPU of the seqno is
2757 * asynchronous and the signaler thread may see a different
2758 * value to us and declare the request complete, even though
2759 * the reset routine have picked that request as the active
2760 * (incomplete) request. This conflict is not handled
2761 * gracefully!
2762 */
2763 kthread_park(engine->breadcrumbs.signaler);
2764
2765 /* Prevent request submission to the hardware until we have
2766 * completed the reset in i915_gem_reset_finish(). If a request
2767 * is completed by one engine, it may then queue a request
2768 * to a second via its engine->irq_tasklet *just* as we are
2769 * calling engine->init_hw() and also writing the ELSP.
2770 * Turning off the engine->irq_tasklet until the reset is over
2771 * prevents the race.
2772 */
2773 tasklet_kill(&engine->irq_tasklet);
2774 tasklet_disable(&engine->irq_tasklet);
2775
2776 if (engine->irq_seqno_barrier)
2777 engine->irq_seqno_barrier(engine);
2778
2779 if (engine_stalled(engine)) {
2780 request = i915_gem_find_active_request(engine);
2781 if (request && request->fence.error == -EIO)
2782 err = -EIO; /* Previous reset failed! */
2783 }
2784 }
2785
2786 i915_gem_revoke_fences(dev_priv);
2787
2788 return err;
2789 }
2790
2791 static void skip_request(struct drm_i915_gem_request *request)
2792 {
2793 void *vaddr = request->ring->vaddr;
2794 u32 head;
2795
2796 /* As this request likely depends on state from the lost
2797 * context, clear out all the user operations leaving the
2798 * breadcrumb at the end (so we get the fence notifications).
2799 */
2800 head = request->head;
2801 if (request->postfix < head) {
2802 memset(vaddr + head, 0, request->ring->size - head);
2803 head = 0;
2804 }
2805 memset(vaddr + head, 0, request->postfix - head);
2806
2807 dma_fence_set_error(&request->fence, -EIO);
2808 }
2809
2810 static void engine_skip_context(struct drm_i915_gem_request *request)
2811 {
2812 struct intel_engine_cs *engine = request->engine;
2813 struct i915_gem_context *hung_ctx = request->ctx;
2814 struct intel_timeline *timeline;
2815 unsigned long flags;
2816
2817 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2818
2819 spin_lock_irqsave(&engine->timeline->lock, flags);
2820 spin_lock(&timeline->lock);
2821
2822 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2823 if (request->ctx == hung_ctx)
2824 skip_request(request);
2825
2826 list_for_each_entry(request, &timeline->requests, link)
2827 skip_request(request);
2828
2829 spin_unlock(&timeline->lock);
2830 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2831 }
2832
2833 /* Returns true if the request was guilty of hang */
2834 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2835 {
2836 /* Read once and return the resolution */
2837 const bool guilty = engine_stalled(request->engine);
2838
2839 /* The guilty request will get skipped on a hung engine.
2840 *
2841 * Users of client default contexts do not rely on logical
2842 * state preserved between batches so it is safe to execute
2843 * queued requests following the hang. Non default contexts
2844 * rely on preserved state, so skipping a batch loses the
2845 * evolution of the state and it needs to be considered corrupted.
2846 * Executing more queued batches on top of corrupted state is
2847 * risky. But we take the risk by trying to advance through
2848 * the queued requests in order to make the client behaviour
2849 * more predictable around resets, by not throwing away random
2850 * amount of batches it has prepared for execution. Sophisticated
2851 * clients can use gem_reset_stats_ioctl and dma fence status
2852 * (exported via sync_file info ioctl on explicit fences) to observe
2853 * when it loses the context state and should rebuild accordingly.
2854 *
2855 * The context ban, and ultimately the client ban, mechanism are safety
2856 * valves if client submission ends up resulting in nothing more than
2857 * subsequent hangs.
2858 */
2859
2860 if (guilty) {
2861 i915_gem_context_mark_guilty(request->ctx);
2862 skip_request(request);
2863 } else {
2864 i915_gem_context_mark_innocent(request->ctx);
2865 dma_fence_set_error(&request->fence, -EAGAIN);
2866 }
2867
2868 return guilty;
2869 }
2870
2871 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2872 {
2873 struct drm_i915_gem_request *request;
2874
2875 request = i915_gem_find_active_request(engine);
2876 if (request && i915_gem_reset_request(request)) {
2877 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2878 engine->name, request->global_seqno);
2879
2880 /* If this context is now banned, skip all pending requests. */
2881 if (i915_gem_context_is_banned(request->ctx))
2882 engine_skip_context(request);
2883 }
2884
2885 /* Setup the CS to resume from the breadcrumb of the hung request */
2886 engine->reset_hw(engine, request);
2887 }
2888
2889 void i915_gem_reset(struct drm_i915_private *dev_priv)
2890 {
2891 struct intel_engine_cs *engine;
2892 enum intel_engine_id id;
2893
2894 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2895
2896 i915_gem_retire_requests(dev_priv);
2897
2898 for_each_engine(engine, dev_priv, id) {
2899 struct i915_gem_context *ctx;
2900
2901 i915_gem_reset_engine(engine);
2902 ctx = fetch_and_zero(&engine->last_retired_context);
2903 if (ctx)
2904 engine->context_unpin(engine, ctx);
2905 }
2906
2907 i915_gem_restore_fences(dev_priv);
2908
2909 if (dev_priv->gt.awake) {
2910 intel_sanitize_gt_powersave(dev_priv);
2911 intel_enable_gt_powersave(dev_priv);
2912 if (INTEL_GEN(dev_priv) >= 6)
2913 gen6_rps_busy(dev_priv);
2914 }
2915 }
2916
2917 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2918 {
2919 struct intel_engine_cs *engine;
2920 enum intel_engine_id id;
2921
2922 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2923
2924 for_each_engine(engine, dev_priv, id) {
2925 tasklet_enable(&engine->irq_tasklet);
2926 kthread_unpark(engine->breadcrumbs.signaler);
2927 }
2928 }
2929
2930 static void nop_submit_request(struct drm_i915_gem_request *request)
2931 {
2932 dma_fence_set_error(&request->fence, -EIO);
2933 i915_gem_request_submit(request);
2934 intel_engine_init_global_seqno(request->engine, request->global_seqno);
2935 }
2936
2937 static void engine_set_wedged(struct intel_engine_cs *engine)
2938 {
2939 struct drm_i915_gem_request *request;
2940 unsigned long flags;
2941
2942 /* We need to be sure that no thread is running the old callback as
2943 * we install the nop handler (otherwise we would submit a request
2944 * to hardware that will never complete). In order to prevent this
2945 * race, we wait until the machine is idle before making the swap
2946 * (using stop_machine()).
2947 */
2948 engine->submit_request = nop_submit_request;
2949
2950 /* Mark all executing requests as skipped */
2951 spin_lock_irqsave(&engine->timeline->lock, flags);
2952 list_for_each_entry(request, &engine->timeline->requests, link)
2953 dma_fence_set_error(&request->fence, -EIO);
2954 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2955
2956 /* Mark all pending requests as complete so that any concurrent
2957 * (lockless) lookup doesn't try and wait upon the request as we
2958 * reset it.
2959 */
2960 intel_engine_init_global_seqno(engine,
2961 intel_engine_last_submit(engine));
2962
2963 /*
2964 * Clear the execlists queue up before freeing the requests, as those
2965 * are the ones that keep the context and ringbuffer backing objects
2966 * pinned in place.
2967 */
2968
2969 if (i915.enable_execlists) {
2970 unsigned long flags;
2971
2972 spin_lock_irqsave(&engine->timeline->lock, flags);
2973
2974 i915_gem_request_put(engine->execlist_port[0].request);
2975 i915_gem_request_put(engine->execlist_port[1].request);
2976 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2977 engine->execlist_queue = RB_ROOT;
2978 engine->execlist_first = NULL;
2979
2980 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2981 }
2982 }
2983
2984 static int __i915_gem_set_wedged_BKL(void *data)
2985 {
2986 struct drm_i915_private *i915 = data;
2987 struct intel_engine_cs *engine;
2988 enum intel_engine_id id;
2989
2990 for_each_engine(engine, i915, id)
2991 engine_set_wedged(engine);
2992
2993 return 0;
2994 }
2995
2996 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2997 {
2998 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2999 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3000
3001 /* Retire completed requests first so the list of inflight/incomplete
3002 * requests is accurate and we don't try and mark successful requests
3003 * as in error during __i915_gem_set_wedged_BKL().
3004 */
3005 i915_gem_retire_requests(dev_priv);
3006
3007 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3008
3009 i915_gem_context_lost(dev_priv);
3010
3011 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3012 }
3013
3014 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3015 {
3016 struct i915_gem_timeline *tl;
3017 int i;
3018
3019 lockdep_assert_held(&i915->drm.struct_mutex);
3020 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3021 return true;
3022
3023 /* Before unwedging, make sure that all pending operations
3024 * are flushed and errored out - we may have requests waiting upon
3025 * third party fences. We marked all inflight requests as EIO, and
3026 * every execbuf since returned EIO, for consistency we want all
3027 * the currently pending requests to also be marked as EIO, which
3028 * is done inside our nop_submit_request - and so we must wait.
3029 *
3030 * No more can be submitted until we reset the wedged bit.
3031 */
3032 list_for_each_entry(tl, &i915->gt.timelines, link) {
3033 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3034 struct drm_i915_gem_request *rq;
3035
3036 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3037 &i915->drm.struct_mutex);
3038 if (!rq)
3039 continue;
3040
3041 /* We can't use our normal waiter as we want to
3042 * avoid recursively trying to handle the current
3043 * reset. The basic dma_fence_default_wait() installs
3044 * a callback for dma_fence_signal(), which is
3045 * triggered by our nop handler (indirectly, the
3046 * callback enables the signaler thread which is
3047 * woken by the nop_submit_request() advancing the seqno
3048 * and when the seqno passes the fence, the signaler
3049 * then signals the fence waking us up).
3050 */
3051 if (dma_fence_default_wait(&rq->fence, true,
3052 MAX_SCHEDULE_TIMEOUT) < 0)
3053 return false;
3054 }
3055 }
3056
3057 /* Undo nop_submit_request. We prevent all new i915 requests from
3058 * being queued (by disallowing execbuf whilst wedged) so having
3059 * waited for all active requests above, we know the system is idle
3060 * and do not have to worry about a thread being inside
3061 * engine->submit_request() as we swap over. So unlike installing
3062 * the nop_submit_request on reset, we can do this from normal
3063 * context and do not require stop_machine().
3064 */
3065 intel_engines_reset_default_submission(i915);
3066
3067 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3068 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3069
3070 return true;
3071 }
3072
3073 static void
3074 i915_gem_retire_work_handler(struct work_struct *work)
3075 {
3076 struct drm_i915_private *dev_priv =
3077 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3078 struct drm_device *dev = &dev_priv->drm;
3079
3080 /* Come back later if the device is busy... */
3081 if (mutex_trylock(&dev->struct_mutex)) {
3082 i915_gem_retire_requests(dev_priv);
3083 mutex_unlock(&dev->struct_mutex);
3084 }
3085
3086 /* Keep the retire handler running until we are finally idle.
3087 * We do not need to do this test under locking as in the worst-case
3088 * we queue the retire worker once too often.
3089 */
3090 if (READ_ONCE(dev_priv->gt.awake)) {
3091 i915_queue_hangcheck(dev_priv);
3092 queue_delayed_work(dev_priv->wq,
3093 &dev_priv->gt.retire_work,
3094 round_jiffies_up_relative(HZ));
3095 }
3096 }
3097
3098 static void
3099 i915_gem_idle_work_handler(struct work_struct *work)
3100 {
3101 struct drm_i915_private *dev_priv =
3102 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3103 struct drm_device *dev = &dev_priv->drm;
3104 struct intel_engine_cs *engine;
3105 enum intel_engine_id id;
3106 bool rearm_hangcheck;
3107
3108 if (!READ_ONCE(dev_priv->gt.awake))
3109 return;
3110
3111 /*
3112 * Wait for last execlists context complete, but bail out in case a
3113 * new request is submitted.
3114 */
3115 wait_for(intel_engines_are_idle(dev_priv), 10);
3116 if (READ_ONCE(dev_priv->gt.active_requests))
3117 return;
3118
3119 rearm_hangcheck =
3120 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3121
3122 if (!mutex_trylock(&dev->struct_mutex)) {
3123 /* Currently busy, come back later */
3124 mod_delayed_work(dev_priv->wq,
3125 &dev_priv->gt.idle_work,
3126 msecs_to_jiffies(50));
3127 goto out_rearm;
3128 }
3129
3130 /*
3131 * New request retired after this work handler started, extend active
3132 * period until next instance of the work.
3133 */
3134 if (work_pending(work))
3135 goto out_unlock;
3136
3137 if (dev_priv->gt.active_requests)
3138 goto out_unlock;
3139
3140 if (wait_for(intel_engines_are_idle(dev_priv), 10))
3141 DRM_ERROR("Timeout waiting for engines to idle\n");
3142
3143 for_each_engine(engine, dev_priv, id) {
3144 intel_engine_disarm_breadcrumbs(engine);
3145 i915_gem_batch_pool_fini(&engine->batch_pool);
3146 }
3147
3148 GEM_BUG_ON(!dev_priv->gt.awake);
3149 dev_priv->gt.awake = false;
3150 rearm_hangcheck = false;
3151
3152 if (INTEL_GEN(dev_priv) >= 6)
3153 gen6_rps_idle(dev_priv);
3154 intel_runtime_pm_put(dev_priv);
3155 out_unlock:
3156 mutex_unlock(&dev->struct_mutex);
3157
3158 out_rearm:
3159 if (rearm_hangcheck) {
3160 GEM_BUG_ON(!dev_priv->gt.awake);
3161 i915_queue_hangcheck(dev_priv);
3162 }
3163 }
3164
3165 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3166 {
3167 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3168 struct drm_i915_file_private *fpriv = file->driver_priv;
3169 struct i915_vma *vma, *vn;
3170
3171 mutex_lock(&obj->base.dev->struct_mutex);
3172 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3173 if (vma->vm->file == fpriv)
3174 i915_vma_close(vma);
3175
3176 if (i915_gem_object_is_active(obj) &&
3177 !i915_gem_object_has_active_reference(obj)) {
3178 i915_gem_object_set_active_reference(obj);
3179 i915_gem_object_get(obj);
3180 }
3181 mutex_unlock(&obj->base.dev->struct_mutex);
3182 }
3183
3184 static unsigned long to_wait_timeout(s64 timeout_ns)
3185 {
3186 if (timeout_ns < 0)
3187 return MAX_SCHEDULE_TIMEOUT;
3188
3189 if (timeout_ns == 0)
3190 return 0;
3191
3192 return nsecs_to_jiffies_timeout(timeout_ns);
3193 }
3194
3195 /**
3196 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3197 * @dev: drm device pointer
3198 * @data: ioctl data blob
3199 * @file: drm file pointer
3200 *
3201 * Returns 0 if successful, else an error is returned with the remaining time in
3202 * the timeout parameter.
3203 * -ETIME: object is still busy after timeout
3204 * -ERESTARTSYS: signal interrupted the wait
3205 * -ENONENT: object doesn't exist
3206 * Also possible, but rare:
3207 * -EAGAIN: GPU wedged
3208 * -ENOMEM: damn
3209 * -ENODEV: Internal IRQ fail
3210 * -E?: The add request failed
3211 *
3212 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3213 * non-zero timeout parameter the wait ioctl will wait for the given number of
3214 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3215 * without holding struct_mutex the object may become re-busied before this
3216 * function completes. A similar but shorter * race condition exists in the busy
3217 * ioctl
3218 */
3219 int
3220 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3221 {
3222 struct drm_i915_gem_wait *args = data;
3223 struct drm_i915_gem_object *obj;
3224 ktime_t start;
3225 long ret;
3226
3227 if (args->flags != 0)
3228 return -EINVAL;
3229
3230 obj = i915_gem_object_lookup(file, args->bo_handle);
3231 if (!obj)
3232 return -ENOENT;
3233
3234 start = ktime_get();
3235
3236 ret = i915_gem_object_wait(obj,
3237 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3238 to_wait_timeout(args->timeout_ns),
3239 to_rps_client(file));
3240
3241 if (args->timeout_ns > 0) {
3242 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3243 if (args->timeout_ns < 0)
3244 args->timeout_ns = 0;
3245
3246 /*
3247 * Apparently ktime isn't accurate enough and occasionally has a
3248 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3249 * things up to make the test happy. We allow up to 1 jiffy.
3250 *
3251 * This is a regression from the timespec->ktime conversion.
3252 */
3253 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3254 args->timeout_ns = 0;
3255 }
3256
3257 i915_gem_object_put(obj);
3258 return ret;
3259 }
3260
3261 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3262 {
3263 int ret, i;
3264
3265 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3266 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3267 if (ret)
3268 return ret;
3269 }
3270
3271 return 0;
3272 }
3273
3274 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3275 {
3276 return wait_for(intel_engine_is_idle(engine), timeout_ms);
3277 }
3278
3279 static int wait_for_engines(struct drm_i915_private *i915)
3280 {
3281 struct intel_engine_cs *engine;
3282 enum intel_engine_id id;
3283
3284 for_each_engine(engine, i915, id) {
3285 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3286 i915_gem_set_wedged(i915);
3287 return -EIO;
3288 }
3289
3290 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3291 intel_engine_last_submit(engine));
3292 }
3293
3294 return 0;
3295 }
3296
3297 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3298 {
3299 int ret;
3300
3301 if (flags & I915_WAIT_LOCKED) {
3302 struct i915_gem_timeline *tl;
3303
3304 lockdep_assert_held(&i915->drm.struct_mutex);
3305
3306 list_for_each_entry(tl, &i915->gt.timelines, link) {
3307 ret = wait_for_timeline(tl, flags);
3308 if (ret)
3309 return ret;
3310 }
3311
3312 i915_gem_retire_requests(i915);
3313 GEM_BUG_ON(i915->gt.active_requests);
3314
3315 ret = wait_for_engines(i915);
3316 } else {
3317 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3318 }
3319
3320 return ret;
3321 }
3322
3323 /** Flushes the GTT write domain for the object if it's dirty. */
3324 static void
3325 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3326 {
3327 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3328
3329 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3330 return;
3331
3332 /* No actual flushing is required for the GTT write domain. Writes
3333 * to it "immediately" go to main memory as far as we know, so there's
3334 * no chipset flush. It also doesn't land in render cache.
3335 *
3336 * However, we do have to enforce the order so that all writes through
3337 * the GTT land before any writes to the device, such as updates to
3338 * the GATT itself.
3339 *
3340 * We also have to wait a bit for the writes to land from the GTT.
3341 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3342 * timing. This issue has only been observed when switching quickly
3343 * between GTT writes and CPU reads from inside the kernel on recent hw,
3344 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3345 * system agents we cannot reproduce this behaviour).
3346 */
3347 wmb();
3348 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
3349 if (intel_runtime_pm_get_if_in_use(dev_priv)) {
3350 spin_lock_irq(&dev_priv->uncore.lock);
3351 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3352 spin_unlock_irq(&dev_priv->uncore.lock);
3353 intel_runtime_pm_put(dev_priv);
3354 }
3355 }
3356
3357 intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3358
3359 obj->base.write_domain = 0;
3360 }
3361
3362 /** Flushes the CPU write domain for the object if it's dirty. */
3363 static void
3364 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3365 {
3366 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3367 return;
3368
3369 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3370 obj->base.write_domain = 0;
3371 }
3372
3373 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3374 {
3375 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3376 return;
3377
3378 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3379 obj->base.write_domain = 0;
3380 }
3381
3382 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3383 {
3384 if (!READ_ONCE(obj->pin_display))
3385 return;
3386
3387 mutex_lock(&obj->base.dev->struct_mutex);
3388 __i915_gem_object_flush_for_display(obj);
3389 mutex_unlock(&obj->base.dev->struct_mutex);
3390 }
3391
3392 /**
3393 * Moves a single object to the GTT read, and possibly write domain.
3394 * @obj: object to act on
3395 * @write: ask for write access or read only
3396 *
3397 * This function returns when the move is complete, including waiting on
3398 * flushes to occur.
3399 */
3400 int
3401 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3402 {
3403 int ret;
3404
3405 lockdep_assert_held(&obj->base.dev->struct_mutex);
3406
3407 ret = i915_gem_object_wait(obj,
3408 I915_WAIT_INTERRUPTIBLE |
3409 I915_WAIT_LOCKED |
3410 (write ? I915_WAIT_ALL : 0),
3411 MAX_SCHEDULE_TIMEOUT,
3412 NULL);
3413 if (ret)
3414 return ret;
3415
3416 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3417 return 0;
3418
3419 /* Flush and acquire obj->pages so that we are coherent through
3420 * direct access in memory with previous cached writes through
3421 * shmemfs and that our cache domain tracking remains valid.
3422 * For example, if the obj->filp was moved to swap without us
3423 * being notified and releasing the pages, we would mistakenly
3424 * continue to assume that the obj remained out of the CPU cached
3425 * domain.
3426 */
3427 ret = i915_gem_object_pin_pages(obj);
3428 if (ret)
3429 return ret;
3430
3431 i915_gem_object_flush_cpu_write_domain(obj);
3432
3433 /* Serialise direct access to this object with the barriers for
3434 * coherent writes from the GPU, by effectively invalidating the
3435 * GTT domain upon first access.
3436 */
3437 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3438 mb();
3439
3440 /* It should now be out of any other write domains, and we can update
3441 * the domain values for our changes.
3442 */
3443 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3444 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3445 if (write) {
3446 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3447 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3448 obj->mm.dirty = true;
3449 }
3450
3451 i915_gem_object_unpin_pages(obj);
3452 return 0;
3453 }
3454
3455 /**
3456 * Changes the cache-level of an object across all VMA.
3457 * @obj: object to act on
3458 * @cache_level: new cache level to set for the object
3459 *
3460 * After this function returns, the object will be in the new cache-level
3461 * across all GTT and the contents of the backing storage will be coherent,
3462 * with respect to the new cache-level. In order to keep the backing storage
3463 * coherent for all users, we only allow a single cache level to be set
3464 * globally on the object and prevent it from being changed whilst the
3465 * hardware is reading from the object. That is if the object is currently
3466 * on the scanout it will be set to uncached (or equivalent display
3467 * cache coherency) and all non-MOCS GPU access will also be uncached so
3468 * that all direct access to the scanout remains coherent.
3469 */
3470 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3471 enum i915_cache_level cache_level)
3472 {
3473 struct i915_vma *vma;
3474 int ret;
3475
3476 lockdep_assert_held(&obj->base.dev->struct_mutex);
3477
3478 if (obj->cache_level == cache_level)
3479 return 0;
3480
3481 /* Inspect the list of currently bound VMA and unbind any that would
3482 * be invalid given the new cache-level. This is principally to
3483 * catch the issue of the CS prefetch crossing page boundaries and
3484 * reading an invalid PTE on older architectures.
3485 */
3486 restart:
3487 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3488 if (!drm_mm_node_allocated(&vma->node))
3489 continue;
3490
3491 if (i915_vma_is_pinned(vma)) {
3492 DRM_DEBUG("can not change the cache level of pinned objects\n");
3493 return -EBUSY;
3494 }
3495
3496 if (i915_gem_valid_gtt_space(vma, cache_level))
3497 continue;
3498
3499 ret = i915_vma_unbind(vma);
3500 if (ret)
3501 return ret;
3502
3503 /* As unbinding may affect other elements in the
3504 * obj->vma_list (due to side-effects from retiring
3505 * an active vma), play safe and restart the iterator.
3506 */
3507 goto restart;
3508 }
3509
3510 /* We can reuse the existing drm_mm nodes but need to change the
3511 * cache-level on the PTE. We could simply unbind them all and
3512 * rebind with the correct cache-level on next use. However since
3513 * we already have a valid slot, dma mapping, pages etc, we may as
3514 * rewrite the PTE in the belief that doing so tramples upon less
3515 * state and so involves less work.
3516 */
3517 if (obj->bind_count) {
3518 /* Before we change the PTE, the GPU must not be accessing it.
3519 * If we wait upon the object, we know that all the bound
3520 * VMA are no longer active.
3521 */
3522 ret = i915_gem_object_wait(obj,
3523 I915_WAIT_INTERRUPTIBLE |
3524 I915_WAIT_LOCKED |
3525 I915_WAIT_ALL,
3526 MAX_SCHEDULE_TIMEOUT,
3527 NULL);
3528 if (ret)
3529 return ret;
3530
3531 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3532 cache_level != I915_CACHE_NONE) {
3533 /* Access to snoopable pages through the GTT is
3534 * incoherent and on some machines causes a hard
3535 * lockup. Relinquish the CPU mmaping to force
3536 * userspace to refault in the pages and we can
3537 * then double check if the GTT mapping is still
3538 * valid for that pointer access.
3539 */
3540 i915_gem_release_mmap(obj);
3541
3542 /* As we no longer need a fence for GTT access,
3543 * we can relinquish it now (and so prevent having
3544 * to steal a fence from someone else on the next
3545 * fence request). Note GPU activity would have
3546 * dropped the fence as all snoopable access is
3547 * supposed to be linear.
3548 */
3549 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3550 ret = i915_vma_put_fence(vma);
3551 if (ret)
3552 return ret;
3553 }
3554 } else {
3555 /* We either have incoherent backing store and
3556 * so no GTT access or the architecture is fully
3557 * coherent. In such cases, existing GTT mmaps
3558 * ignore the cache bit in the PTE and we can
3559 * rewrite it without confusing the GPU or having
3560 * to force userspace to fault back in its mmaps.
3561 */
3562 }
3563
3564 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3565 if (!drm_mm_node_allocated(&vma->node))
3566 continue;
3567
3568 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3569 if (ret)
3570 return ret;
3571 }
3572 }
3573
3574 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3575 i915_gem_object_is_coherent(obj))
3576 obj->cache_dirty = true;
3577
3578 list_for_each_entry(vma, &obj->vma_list, obj_link)
3579 vma->node.color = cache_level;
3580 obj->cache_level = cache_level;
3581
3582 return 0;
3583 }
3584
3585 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3586 struct drm_file *file)
3587 {
3588 struct drm_i915_gem_caching *args = data;
3589 struct drm_i915_gem_object *obj;
3590 int err = 0;
3591
3592 rcu_read_lock();
3593 obj = i915_gem_object_lookup_rcu(file, args->handle);
3594 if (!obj) {
3595 err = -ENOENT;
3596 goto out;
3597 }
3598
3599 switch (obj->cache_level) {
3600 case I915_CACHE_LLC:
3601 case I915_CACHE_L3_LLC:
3602 args->caching = I915_CACHING_CACHED;
3603 break;
3604
3605 case I915_CACHE_WT:
3606 args->caching = I915_CACHING_DISPLAY;
3607 break;
3608
3609 default:
3610 args->caching = I915_CACHING_NONE;
3611 break;
3612 }
3613 out:
3614 rcu_read_unlock();
3615 return err;
3616 }
3617
3618 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3619 struct drm_file *file)
3620 {
3621 struct drm_i915_private *i915 = to_i915(dev);
3622 struct drm_i915_gem_caching *args = data;
3623 struct drm_i915_gem_object *obj;
3624 enum i915_cache_level level;
3625 int ret = 0;
3626
3627 switch (args->caching) {
3628 case I915_CACHING_NONE:
3629 level = I915_CACHE_NONE;
3630 break;
3631 case I915_CACHING_CACHED:
3632 /*
3633 * Due to a HW issue on BXT A stepping, GPU stores via a
3634 * snooped mapping may leave stale data in a corresponding CPU
3635 * cacheline, whereas normally such cachelines would get
3636 * invalidated.
3637 */
3638 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3639 return -ENODEV;
3640
3641 level = I915_CACHE_LLC;
3642 break;
3643 case I915_CACHING_DISPLAY:
3644 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3645 break;
3646 default:
3647 return -EINVAL;
3648 }
3649
3650 obj = i915_gem_object_lookup(file, args->handle);
3651 if (!obj)
3652 return -ENOENT;
3653
3654 if (obj->cache_level == level)
3655 goto out;
3656
3657 ret = i915_gem_object_wait(obj,
3658 I915_WAIT_INTERRUPTIBLE,
3659 MAX_SCHEDULE_TIMEOUT,
3660 to_rps_client(file));
3661 if (ret)
3662 goto out;
3663
3664 ret = i915_mutex_lock_interruptible(dev);
3665 if (ret)
3666 goto out;
3667
3668 ret = i915_gem_object_set_cache_level(obj, level);
3669 mutex_unlock(&dev->struct_mutex);
3670
3671 out:
3672 i915_gem_object_put(obj);
3673 return ret;
3674 }
3675
3676 /*
3677 * Prepare buffer for display plane (scanout, cursors, etc).
3678 * Can be called from an uninterruptible phase (modesetting) and allows
3679 * any flushes to be pipelined (for pageflips).
3680 */
3681 struct i915_vma *
3682 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3683 u32 alignment,
3684 const struct i915_ggtt_view *view)
3685 {
3686 struct i915_vma *vma;
3687 int ret;
3688
3689 lockdep_assert_held(&obj->base.dev->struct_mutex);
3690
3691 /* Mark the pin_display early so that we account for the
3692 * display coherency whilst setting up the cache domains.
3693 */
3694 obj->pin_display++;
3695
3696 /* The display engine is not coherent with the LLC cache on gen6. As
3697 * a result, we make sure that the pinning that is about to occur is
3698 * done with uncached PTEs. This is lowest common denominator for all
3699 * chipsets.
3700 *
3701 * However for gen6+, we could do better by using the GFDT bit instead
3702 * of uncaching, which would allow us to flush all the LLC-cached data
3703 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3704 */
3705 ret = i915_gem_object_set_cache_level(obj,
3706 HAS_WT(to_i915(obj->base.dev)) ?
3707 I915_CACHE_WT : I915_CACHE_NONE);
3708 if (ret) {
3709 vma = ERR_PTR(ret);
3710 goto err_unpin_display;
3711 }
3712
3713 /* As the user may map the buffer once pinned in the display plane
3714 * (e.g. libkms for the bootup splash), we have to ensure that we
3715 * always use map_and_fenceable for all scanout buffers. However,
3716 * it may simply be too big to fit into mappable, in which case
3717 * put it anyway and hope that userspace can cope (but always first
3718 * try to preserve the existing ABI).
3719 */
3720 vma = ERR_PTR(-ENOSPC);
3721 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3722 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3723 PIN_MAPPABLE | PIN_NONBLOCK);
3724 if (IS_ERR(vma)) {
3725 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3726 unsigned int flags;
3727
3728 /* Valleyview is definitely limited to scanning out the first
3729 * 512MiB. Lets presume this behaviour was inherited from the
3730 * g4x display engine and that all earlier gen are similarly
3731 * limited. Testing suggests that it is a little more
3732 * complicated than this. For example, Cherryview appears quite
3733 * happy to scanout from anywhere within its global aperture.
3734 */
3735 flags = 0;
3736 if (HAS_GMCH_DISPLAY(i915))
3737 flags = PIN_MAPPABLE;
3738 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3739 }
3740 if (IS_ERR(vma))
3741 goto err_unpin_display;
3742
3743 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3744
3745 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3746 __i915_gem_object_flush_for_display(obj);
3747 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3748
3749 /* It should now be out of any other write domains, and we can update
3750 * the domain values for our changes.
3751 */
3752 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3753
3754 return vma;
3755
3756 err_unpin_display:
3757 obj->pin_display--;
3758 return vma;
3759 }
3760
3761 void
3762 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3763 {
3764 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3765
3766 if (WARN_ON(vma->obj->pin_display == 0))
3767 return;
3768
3769 if (--vma->obj->pin_display == 0)
3770 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3771
3772 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3773 i915_gem_object_bump_inactive_ggtt(vma->obj);
3774
3775 i915_vma_unpin(vma);
3776 }
3777
3778 /**
3779 * Moves a single object to the CPU read, and possibly write domain.
3780 * @obj: object to act on
3781 * @write: requesting write or read-only access
3782 *
3783 * This function returns when the move is complete, including waiting on
3784 * flushes to occur.
3785 */
3786 int
3787 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3788 {
3789 int ret;
3790
3791 lockdep_assert_held(&obj->base.dev->struct_mutex);
3792
3793 ret = i915_gem_object_wait(obj,
3794 I915_WAIT_INTERRUPTIBLE |
3795 I915_WAIT_LOCKED |
3796 (write ? I915_WAIT_ALL : 0),
3797 MAX_SCHEDULE_TIMEOUT,
3798 NULL);
3799 if (ret)
3800 return ret;
3801
3802 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3803 return 0;
3804
3805 i915_gem_object_flush_gtt_write_domain(obj);
3806
3807 /* Flush the CPU cache if it's still invalid. */
3808 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3809 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3810 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3811 }
3812
3813 /* It should now be out of any other write domains, and we can update
3814 * the domain values for our changes.
3815 */
3816 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3817
3818 /* If we're writing through the CPU, then the GPU read domains will
3819 * need to be invalidated at next use.
3820 */
3821 if (write) {
3822 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3823 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3824 }
3825
3826 return 0;
3827 }
3828
3829 /* Throttle our rendering by waiting until the ring has completed our requests
3830 * emitted over 20 msec ago.
3831 *
3832 * Note that if we were to use the current jiffies each time around the loop,
3833 * we wouldn't escape the function with any frames outstanding if the time to
3834 * render a frame was over 20ms.
3835 *
3836 * This should get us reasonable parallelism between CPU and GPU but also
3837 * relatively low latency when blocking on a particular request to finish.
3838 */
3839 static int
3840 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3841 {
3842 struct drm_i915_private *dev_priv = to_i915(dev);
3843 struct drm_i915_file_private *file_priv = file->driver_priv;
3844 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3845 struct drm_i915_gem_request *request, *target = NULL;
3846 long ret;
3847
3848 /* ABI: return -EIO if already wedged */
3849 if (i915_terminally_wedged(&dev_priv->gpu_error))
3850 return -EIO;
3851
3852 spin_lock(&file_priv->mm.lock);
3853 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3854 if (time_after_eq(request->emitted_jiffies, recent_enough))
3855 break;
3856
3857 if (target) {
3858 list_del(&target->client_link);
3859 target->file_priv = NULL;
3860 }
3861
3862 target = request;
3863 }
3864 if (target)
3865 i915_gem_request_get(target);
3866 spin_unlock(&file_priv->mm.lock);
3867
3868 if (target == NULL)
3869 return 0;
3870
3871 ret = i915_wait_request(target,
3872 I915_WAIT_INTERRUPTIBLE,
3873 MAX_SCHEDULE_TIMEOUT);
3874 i915_gem_request_put(target);
3875
3876 return ret < 0 ? ret : 0;
3877 }
3878
3879 struct i915_vma *
3880 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3881 const struct i915_ggtt_view *view,
3882 u64 size,
3883 u64 alignment,
3884 u64 flags)
3885 {
3886 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3887 struct i915_address_space *vm = &dev_priv->ggtt.base;
3888 struct i915_vma *vma;
3889 int ret;
3890
3891 lockdep_assert_held(&obj->base.dev->struct_mutex);
3892
3893 vma = i915_vma_instance(obj, vm, view);
3894 if (unlikely(IS_ERR(vma)))
3895 return vma;
3896
3897 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3898 if (flags & PIN_NONBLOCK &&
3899 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3900 return ERR_PTR(-ENOSPC);
3901
3902 if (flags & PIN_MAPPABLE) {
3903 /* If the required space is larger than the available
3904 * aperture, we will not able to find a slot for the
3905 * object and unbinding the object now will be in
3906 * vain. Worse, doing so may cause us to ping-pong
3907 * the object in and out of the Global GTT and
3908 * waste a lot of cycles under the mutex.
3909 */
3910 if (vma->fence_size > dev_priv->ggtt.mappable_end)
3911 return ERR_PTR(-E2BIG);
3912
3913 /* If NONBLOCK is set the caller is optimistically
3914 * trying to cache the full object within the mappable
3915 * aperture, and *must* have a fallback in place for
3916 * situations where we cannot bind the object. We
3917 * can be a little more lax here and use the fallback
3918 * more often to avoid costly migrations of ourselves
3919 * and other objects within the aperture.
3920 *
3921 * Half-the-aperture is used as a simple heuristic.
3922 * More interesting would to do search for a free
3923 * block prior to making the commitment to unbind.
3924 * That caters for the self-harm case, and with a
3925 * little more heuristics (e.g. NOFAULT, NOEVICT)
3926 * we could try to minimise harm to others.
3927 */
3928 if (flags & PIN_NONBLOCK &&
3929 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3930 return ERR_PTR(-ENOSPC);
3931 }
3932
3933 WARN(i915_vma_is_pinned(vma),
3934 "bo is already pinned in ggtt with incorrect alignment:"
3935 " offset=%08x, req.alignment=%llx,"
3936 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3937 i915_ggtt_offset(vma), alignment,
3938 !!(flags & PIN_MAPPABLE),
3939 i915_vma_is_map_and_fenceable(vma));
3940 ret = i915_vma_unbind(vma);
3941 if (ret)
3942 return ERR_PTR(ret);
3943 }
3944
3945 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3946 if (ret)
3947 return ERR_PTR(ret);
3948
3949 return vma;
3950 }
3951
3952 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3953 {
3954 /* Note that we could alias engines in the execbuf API, but
3955 * that would be very unwise as it prevents userspace from
3956 * fine control over engine selection. Ahem.
3957 *
3958 * This should be something like EXEC_MAX_ENGINE instead of
3959 * I915_NUM_ENGINES.
3960 */
3961 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3962 return 0x10000 << id;
3963 }
3964
3965 static __always_inline unsigned int __busy_write_id(unsigned int id)
3966 {
3967 /* The uABI guarantees an active writer is also amongst the read
3968 * engines. This would be true if we accessed the activity tracking
3969 * under the lock, but as we perform the lookup of the object and
3970 * its activity locklessly we can not guarantee that the last_write
3971 * being active implies that we have set the same engine flag from
3972 * last_read - hence we always set both read and write busy for
3973 * last_write.
3974 */
3975 return id | __busy_read_flag(id);
3976 }
3977
3978 static __always_inline unsigned int
3979 __busy_set_if_active(const struct dma_fence *fence,
3980 unsigned int (*flag)(unsigned int id))
3981 {
3982 struct drm_i915_gem_request *rq;
3983
3984 /* We have to check the current hw status of the fence as the uABI
3985 * guarantees forward progress. We could rely on the idle worker
3986 * to eventually flush us, but to minimise latency just ask the
3987 * hardware.
3988 *
3989 * Note we only report on the status of native fences.
3990 */
3991 if (!dma_fence_is_i915(fence))
3992 return 0;
3993
3994 /* opencode to_request() in order to avoid const warnings */
3995 rq = container_of(fence, struct drm_i915_gem_request, fence);
3996 if (i915_gem_request_completed(rq))
3997 return 0;
3998
3999 return flag(rq->engine->exec_id);
4000 }
4001
4002 static __always_inline unsigned int
4003 busy_check_reader(const struct dma_fence *fence)
4004 {
4005 return __busy_set_if_active(fence, __busy_read_flag);
4006 }
4007
4008 static __always_inline unsigned int
4009 busy_check_writer(const struct dma_fence *fence)
4010 {
4011 if (!fence)
4012 return 0;
4013
4014 return __busy_set_if_active(fence, __busy_write_id);
4015 }
4016
4017 int
4018 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4019 struct drm_file *file)
4020 {
4021 struct drm_i915_gem_busy *args = data;
4022 struct drm_i915_gem_object *obj;
4023 struct reservation_object_list *list;
4024 unsigned int seq;
4025 int err;
4026
4027 err = -ENOENT;
4028 rcu_read_lock();
4029 obj = i915_gem_object_lookup_rcu(file, args->handle);
4030 if (!obj)
4031 goto out;
4032
4033 /* A discrepancy here is that we do not report the status of
4034 * non-i915 fences, i.e. even though we may report the object as idle,
4035 * a call to set-domain may still stall waiting for foreign rendering.
4036 * This also means that wait-ioctl may report an object as busy,
4037 * where busy-ioctl considers it idle.
4038 *
4039 * We trade the ability to warn of foreign fences to report on which
4040 * i915 engines are active for the object.
4041 *
4042 * Alternatively, we can trade that extra information on read/write
4043 * activity with
4044 * args->busy =
4045 * !reservation_object_test_signaled_rcu(obj->resv, true);
4046 * to report the overall busyness. This is what the wait-ioctl does.
4047 *
4048 */
4049 retry:
4050 seq = raw_read_seqcount(&obj->resv->seq);
4051
4052 /* Translate the exclusive fence to the READ *and* WRITE engine */
4053 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4054
4055 /* Translate shared fences to READ set of engines */
4056 list = rcu_dereference(obj->resv->fence);
4057 if (list) {
4058 unsigned int shared_count = list->shared_count, i;
4059
4060 for (i = 0; i < shared_count; ++i) {
4061 struct dma_fence *fence =
4062 rcu_dereference(list->shared[i]);
4063
4064 args->busy |= busy_check_reader(fence);
4065 }
4066 }
4067
4068 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4069 goto retry;
4070
4071 err = 0;
4072 out:
4073 rcu_read_unlock();
4074 return err;
4075 }
4076
4077 int
4078 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4079 struct drm_file *file_priv)
4080 {
4081 return i915_gem_ring_throttle(dev, file_priv);
4082 }
4083
4084 int
4085 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4086 struct drm_file *file_priv)
4087 {
4088 struct drm_i915_private *dev_priv = to_i915(dev);
4089 struct drm_i915_gem_madvise *args = data;
4090 struct drm_i915_gem_object *obj;
4091 int err;
4092
4093 switch (args->madv) {
4094 case I915_MADV_DONTNEED:
4095 case I915_MADV_WILLNEED:
4096 break;
4097 default:
4098 return -EINVAL;
4099 }
4100
4101 obj = i915_gem_object_lookup(file_priv, args->handle);
4102 if (!obj)
4103 return -ENOENT;
4104
4105 err = mutex_lock_interruptible(&obj->mm.lock);
4106 if (err)
4107 goto out;
4108
4109 if (obj->mm.pages &&
4110 i915_gem_object_is_tiled(obj) &&
4111 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4112 if (obj->mm.madv == I915_MADV_WILLNEED) {
4113 GEM_BUG_ON(!obj->mm.quirked);
4114 __i915_gem_object_unpin_pages(obj);
4115 obj->mm.quirked = false;
4116 }
4117 if (args->madv == I915_MADV_WILLNEED) {
4118 GEM_BUG_ON(obj->mm.quirked);
4119 __i915_gem_object_pin_pages(obj);
4120 obj->mm.quirked = true;
4121 }
4122 }
4123
4124 if (obj->mm.madv != __I915_MADV_PURGED)
4125 obj->mm.madv = args->madv;
4126
4127 /* if the object is no longer attached, discard its backing storage */
4128 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4129 i915_gem_object_truncate(obj);
4130
4131 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4132 mutex_unlock(&obj->mm.lock);
4133
4134 out:
4135 i915_gem_object_put(obj);
4136 return err;
4137 }
4138
4139 static void
4140 frontbuffer_retire(struct i915_gem_active *active,
4141 struct drm_i915_gem_request *request)
4142 {
4143 struct drm_i915_gem_object *obj =
4144 container_of(active, typeof(*obj), frontbuffer_write);
4145
4146 intel_fb_obj_flush(obj, ORIGIN_CS);
4147 }
4148
4149 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4150 const struct drm_i915_gem_object_ops *ops)
4151 {
4152 mutex_init(&obj->mm.lock);
4153
4154 INIT_LIST_HEAD(&obj->global_link);
4155 INIT_LIST_HEAD(&obj->userfault_link);
4156 INIT_LIST_HEAD(&obj->obj_exec_link);
4157 INIT_LIST_HEAD(&obj->vma_list);
4158 INIT_LIST_HEAD(&obj->batch_pool_link);
4159
4160 obj->ops = ops;
4161
4162 reservation_object_init(&obj->__builtin_resv);
4163 obj->resv = &obj->__builtin_resv;
4164
4165 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4166 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4167
4168 obj->mm.madv = I915_MADV_WILLNEED;
4169 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4170 mutex_init(&obj->mm.get_page.lock);
4171
4172 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4173 }
4174
4175 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4176 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4177 I915_GEM_OBJECT_IS_SHRINKABLE,
4178
4179 .get_pages = i915_gem_object_get_pages_gtt,
4180 .put_pages = i915_gem_object_put_pages_gtt,
4181
4182 .pwrite = i915_gem_object_pwrite_gtt,
4183 };
4184
4185 struct drm_i915_gem_object *
4186 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4187 {
4188 struct drm_i915_gem_object *obj;
4189 struct address_space *mapping;
4190 gfp_t mask;
4191 int ret;
4192
4193 /* There is a prevalence of the assumption that we fit the object's
4194 * page count inside a 32bit _signed_ variable. Let's document this and
4195 * catch if we ever need to fix it. In the meantime, if you do spot
4196 * such a local variable, please consider fixing!
4197 */
4198 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4199 return ERR_PTR(-E2BIG);
4200
4201 if (overflows_type(size, obj->base.size))
4202 return ERR_PTR(-E2BIG);
4203
4204 obj = i915_gem_object_alloc(dev_priv);
4205 if (obj == NULL)
4206 return ERR_PTR(-ENOMEM);
4207
4208 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4209 if (ret)
4210 goto fail;
4211
4212 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4213 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4214 /* 965gm cannot relocate objects above 4GiB. */
4215 mask &= ~__GFP_HIGHMEM;
4216 mask |= __GFP_DMA32;
4217 }
4218
4219 mapping = obj->base.filp->f_mapping;
4220 mapping_set_gfp_mask(mapping, mask);
4221
4222 i915_gem_object_init(obj, &i915_gem_object_ops);
4223
4224 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4225 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4226
4227 if (HAS_LLC(dev_priv)) {
4228 /* On some devices, we can have the GPU use the LLC (the CPU
4229 * cache) for about a 10% performance improvement
4230 * compared to uncached. Graphics requests other than
4231 * display scanout are coherent with the CPU in
4232 * accessing this cache. This means in this mode we
4233 * don't need to clflush on the CPU side, and on the
4234 * GPU side we only need to flush internal caches to
4235 * get data visible to the CPU.
4236 *
4237 * However, we maintain the display planes as UC, and so
4238 * need to rebind when first used as such.
4239 */
4240 obj->cache_level = I915_CACHE_LLC;
4241 } else
4242 obj->cache_level = I915_CACHE_NONE;
4243
4244 trace_i915_gem_object_create(obj);
4245
4246 return obj;
4247
4248 fail:
4249 i915_gem_object_free(obj);
4250 return ERR_PTR(ret);
4251 }
4252
4253 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4254 {
4255 /* If we are the last user of the backing storage (be it shmemfs
4256 * pages or stolen etc), we know that the pages are going to be
4257 * immediately released. In this case, we can then skip copying
4258 * back the contents from the GPU.
4259 */
4260
4261 if (obj->mm.madv != I915_MADV_WILLNEED)
4262 return false;
4263
4264 if (obj->base.filp == NULL)
4265 return true;
4266
4267 /* At first glance, this looks racy, but then again so would be
4268 * userspace racing mmap against close. However, the first external
4269 * reference to the filp can only be obtained through the
4270 * i915_gem_mmap_ioctl() which safeguards us against the user
4271 * acquiring such a reference whilst we are in the middle of
4272 * freeing the object.
4273 */
4274 return atomic_long_read(&obj->base.filp->f_count) == 1;
4275 }
4276
4277 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4278 struct llist_node *freed)
4279 {
4280 struct drm_i915_gem_object *obj, *on;
4281
4282 mutex_lock(&i915->drm.struct_mutex);
4283 intel_runtime_pm_get(i915);
4284 llist_for_each_entry(obj, freed, freed) {
4285 struct i915_vma *vma, *vn;
4286
4287 trace_i915_gem_object_destroy(obj);
4288
4289 GEM_BUG_ON(i915_gem_object_is_active(obj));
4290 list_for_each_entry_safe(vma, vn,
4291 &obj->vma_list, obj_link) {
4292 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4293 GEM_BUG_ON(i915_vma_is_active(vma));
4294 vma->flags &= ~I915_VMA_PIN_MASK;
4295 i915_vma_close(vma);
4296 }
4297 GEM_BUG_ON(!list_empty(&obj->vma_list));
4298 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4299
4300 list_del(&obj->global_link);
4301 }
4302 intel_runtime_pm_put(i915);
4303 mutex_unlock(&i915->drm.struct_mutex);
4304
4305 llist_for_each_entry_safe(obj, on, freed, freed) {
4306 GEM_BUG_ON(obj->bind_count);
4307 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4308
4309 if (obj->ops->release)
4310 obj->ops->release(obj);
4311
4312 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4313 atomic_set(&obj->mm.pages_pin_count, 0);
4314 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4315 GEM_BUG_ON(obj->mm.pages);
4316
4317 if (obj->base.import_attach)
4318 drm_prime_gem_destroy(&obj->base, NULL);
4319
4320 reservation_object_fini(&obj->__builtin_resv);
4321 drm_gem_object_release(&obj->base);
4322 i915_gem_info_remove_obj(i915, obj->base.size);
4323
4324 kfree(obj->bit_17);
4325 i915_gem_object_free(obj);
4326 }
4327 }
4328
4329 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4330 {
4331 struct llist_node *freed;
4332
4333 freed = llist_del_all(&i915->mm.free_list);
4334 if (unlikely(freed))
4335 __i915_gem_free_objects(i915, freed);
4336 }
4337
4338 static void __i915_gem_free_work(struct work_struct *work)
4339 {
4340 struct drm_i915_private *i915 =
4341 container_of(work, struct drm_i915_private, mm.free_work);
4342 struct llist_node *freed;
4343
4344 /* All file-owned VMA should have been released by this point through
4345 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4346 * However, the object may also be bound into the global GTT (e.g.
4347 * older GPUs without per-process support, or for direct access through
4348 * the GTT either for the user or for scanout). Those VMA still need to
4349 * unbound now.
4350 */
4351
4352 while ((freed = llist_del_all(&i915->mm.free_list)))
4353 __i915_gem_free_objects(i915, freed);
4354 }
4355
4356 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4357 {
4358 struct drm_i915_gem_object *obj =
4359 container_of(head, typeof(*obj), rcu);
4360 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4361
4362 /* We can't simply use call_rcu() from i915_gem_free_object()
4363 * as we need to block whilst unbinding, and the call_rcu
4364 * task may be called from softirq context. So we take a
4365 * detour through a worker.
4366 */
4367 if (llist_add(&obj->freed, &i915->mm.free_list))
4368 schedule_work(&i915->mm.free_work);
4369 }
4370
4371 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4372 {
4373 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4374
4375 if (obj->mm.quirked)
4376 __i915_gem_object_unpin_pages(obj);
4377
4378 if (discard_backing_storage(obj))
4379 obj->mm.madv = I915_MADV_DONTNEED;
4380
4381 /* Before we free the object, make sure any pure RCU-only
4382 * read-side critical sections are complete, e.g.
4383 * i915_gem_busy_ioctl(). For the corresponding synchronized
4384 * lookup see i915_gem_object_lookup_rcu().
4385 */
4386 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4387 }
4388
4389 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4390 {
4391 lockdep_assert_held(&obj->base.dev->struct_mutex);
4392
4393 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4394 if (i915_gem_object_is_active(obj))
4395 i915_gem_object_set_active_reference(obj);
4396 else
4397 i915_gem_object_put(obj);
4398 }
4399
4400 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4401 {
4402 struct intel_engine_cs *engine;
4403 enum intel_engine_id id;
4404
4405 for_each_engine(engine, dev_priv, id)
4406 GEM_BUG_ON(engine->last_retired_context &&
4407 !i915_gem_context_is_kernel(engine->last_retired_context));
4408 }
4409
4410 void i915_gem_sanitize(struct drm_i915_private *i915)
4411 {
4412 /*
4413 * If we inherit context state from the BIOS or earlier occupants
4414 * of the GPU, the GPU may be in an inconsistent state when we
4415 * try to take over. The only way to remove the earlier state
4416 * is by resetting. However, resetting on earlier gen is tricky as
4417 * it may impact the display and we are uncertain about the stability
4418 * of the reset, so we only reset recent machines with logical
4419 * context support (that must be reset to remove any stray contexts).
4420 */
4421 if (HAS_HW_CONTEXTS(i915)) {
4422 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4423 WARN_ON(reset && reset != -ENODEV);
4424 }
4425 }
4426
4427 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4428 {
4429 struct drm_device *dev = &dev_priv->drm;
4430 int ret;
4431
4432 intel_runtime_pm_get(dev_priv);
4433 intel_suspend_gt_powersave(dev_priv);
4434
4435 mutex_lock(&dev->struct_mutex);
4436
4437 /* We have to flush all the executing contexts to main memory so
4438 * that they can saved in the hibernation image. To ensure the last
4439 * context image is coherent, we have to switch away from it. That
4440 * leaves the dev_priv->kernel_context still active when
4441 * we actually suspend, and its image in memory may not match the GPU
4442 * state. Fortunately, the kernel_context is disposable and we do
4443 * not rely on its state.
4444 */
4445 ret = i915_gem_switch_to_kernel_context(dev_priv);
4446 if (ret)
4447 goto err_unlock;
4448
4449 ret = i915_gem_wait_for_idle(dev_priv,
4450 I915_WAIT_INTERRUPTIBLE |
4451 I915_WAIT_LOCKED);
4452 if (ret)
4453 goto err_unlock;
4454
4455 assert_kernel_context_is_current(dev_priv);
4456 i915_gem_context_lost(dev_priv);
4457 mutex_unlock(&dev->struct_mutex);
4458
4459 intel_guc_suspend(dev_priv);
4460
4461 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4462 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4463
4464 /* As the idle_work is rearming if it detects a race, play safe and
4465 * repeat the flush until it is definitely idle.
4466 */
4467 while (flush_delayed_work(&dev_priv->gt.idle_work))
4468 ;
4469
4470 i915_gem_drain_freed_objects(dev_priv);
4471
4472 /* Assert that we sucessfully flushed all the work and
4473 * reset the GPU back to its idle, low power state.
4474 */
4475 WARN_ON(dev_priv->gt.awake);
4476 WARN_ON(!intel_engines_are_idle(dev_priv));
4477
4478 /*
4479 * Neither the BIOS, ourselves or any other kernel
4480 * expects the system to be in execlists mode on startup,
4481 * so we need to reset the GPU back to legacy mode. And the only
4482 * known way to disable logical contexts is through a GPU reset.
4483 *
4484 * So in order to leave the system in a known default configuration,
4485 * always reset the GPU upon unload and suspend. Afterwards we then
4486 * clean up the GEM state tracking, flushing off the requests and
4487 * leaving the system in a known idle state.
4488 *
4489 * Note that is of the upmost importance that the GPU is idle and
4490 * all stray writes are flushed *before* we dismantle the backing
4491 * storage for the pinned objects.
4492 *
4493 * However, since we are uncertain that resetting the GPU on older
4494 * machines is a good idea, we don't - just in case it leaves the
4495 * machine in an unusable condition.
4496 */
4497 i915_gem_sanitize(dev_priv);
4498 goto out_rpm_put;
4499
4500 err_unlock:
4501 mutex_unlock(&dev->struct_mutex);
4502 out_rpm_put:
4503 intel_runtime_pm_put(dev_priv);
4504 return ret;
4505 }
4506
4507 void i915_gem_resume(struct drm_i915_private *dev_priv)
4508 {
4509 struct drm_device *dev = &dev_priv->drm;
4510
4511 WARN_ON(dev_priv->gt.awake);
4512
4513 mutex_lock(&dev->struct_mutex);
4514 i915_gem_restore_gtt_mappings(dev_priv);
4515
4516 /* As we didn't flush the kernel context before suspend, we cannot
4517 * guarantee that the context image is complete. So let's just reset
4518 * it and start again.
4519 */
4520 dev_priv->gt.resume(dev_priv);
4521
4522 mutex_unlock(&dev->struct_mutex);
4523 }
4524
4525 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4526 {
4527 if (INTEL_GEN(dev_priv) < 5 ||
4528 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4529 return;
4530
4531 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4532 DISP_TILE_SURFACE_SWIZZLING);
4533
4534 if (IS_GEN5(dev_priv))
4535 return;
4536
4537 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4538 if (IS_GEN6(dev_priv))
4539 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4540 else if (IS_GEN7(dev_priv))
4541 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4542 else if (IS_GEN8(dev_priv))
4543 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4544 else
4545 BUG();
4546 }
4547
4548 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4549 {
4550 I915_WRITE(RING_CTL(base), 0);
4551 I915_WRITE(RING_HEAD(base), 0);
4552 I915_WRITE(RING_TAIL(base), 0);
4553 I915_WRITE(RING_START(base), 0);
4554 }
4555
4556 static void init_unused_rings(struct drm_i915_private *dev_priv)
4557 {
4558 if (IS_I830(dev_priv)) {
4559 init_unused_ring(dev_priv, PRB1_BASE);
4560 init_unused_ring(dev_priv, SRB0_BASE);
4561 init_unused_ring(dev_priv, SRB1_BASE);
4562 init_unused_ring(dev_priv, SRB2_BASE);
4563 init_unused_ring(dev_priv, SRB3_BASE);
4564 } else if (IS_GEN2(dev_priv)) {
4565 init_unused_ring(dev_priv, SRB0_BASE);
4566 init_unused_ring(dev_priv, SRB1_BASE);
4567 } else if (IS_GEN3(dev_priv)) {
4568 init_unused_ring(dev_priv, PRB1_BASE);
4569 init_unused_ring(dev_priv, PRB2_BASE);
4570 }
4571 }
4572
4573 static int __i915_gem_restart_engines(void *data)
4574 {
4575 struct drm_i915_private *i915 = data;
4576 struct intel_engine_cs *engine;
4577 enum intel_engine_id id;
4578 int err;
4579
4580 for_each_engine(engine, i915, id) {
4581 err = engine->init_hw(engine);
4582 if (err)
4583 return err;
4584 }
4585
4586 return 0;
4587 }
4588
4589 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4590 {
4591 int ret;
4592
4593 dev_priv->gt.last_init_time = ktime_get();
4594
4595 /* Double layer security blanket, see i915_gem_init() */
4596 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4597
4598 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4599 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4600
4601 if (IS_HASWELL(dev_priv))
4602 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4603 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4604
4605 if (HAS_PCH_NOP(dev_priv)) {
4606 if (IS_IVYBRIDGE(dev_priv)) {
4607 u32 temp = I915_READ(GEN7_MSG_CTL);
4608 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4609 I915_WRITE(GEN7_MSG_CTL, temp);
4610 } else if (INTEL_GEN(dev_priv) >= 7) {
4611 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4612 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4613 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4614 }
4615 }
4616
4617 i915_gem_init_swizzling(dev_priv);
4618
4619 /*
4620 * At least 830 can leave some of the unused rings
4621 * "active" (ie. head != tail) after resume which
4622 * will prevent c3 entry. Makes sure all unused rings
4623 * are totally idle.
4624 */
4625 init_unused_rings(dev_priv);
4626
4627 BUG_ON(!dev_priv->kernel_context);
4628
4629 ret = i915_ppgtt_init_hw(dev_priv);
4630 if (ret) {
4631 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4632 goto out;
4633 }
4634
4635 /* Need to do basic initialisation of all rings first: */
4636 ret = __i915_gem_restart_engines(dev_priv);
4637 if (ret)
4638 goto out;
4639
4640 intel_mocs_init_l3cc_table(dev_priv);
4641
4642 /* We can't enable contexts until all firmware is loaded */
4643 ret = intel_uc_init_hw(dev_priv);
4644 if (ret)
4645 goto out;
4646
4647 out:
4648 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4649 return ret;
4650 }
4651
4652 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4653 {
4654 if (INTEL_INFO(dev_priv)->gen < 6)
4655 return false;
4656
4657 /* TODO: make semaphores and Execlists play nicely together */
4658 if (i915.enable_execlists)
4659 return false;
4660
4661 if (value >= 0)
4662 return value;
4663
4664 #ifdef CONFIG_INTEL_IOMMU
4665 /* Enable semaphores on SNB when IO remapping is off */
4666 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4667 return false;
4668 #endif
4669
4670 return true;
4671 }
4672
4673 int i915_gem_init(struct drm_i915_private *dev_priv)
4674 {
4675 int ret;
4676
4677 mutex_lock(&dev_priv->drm.struct_mutex);
4678
4679 i915_gem_clflush_init(dev_priv);
4680
4681 if (!i915.enable_execlists) {
4682 dev_priv->gt.resume = intel_legacy_submission_resume;
4683 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4684 } else {
4685 dev_priv->gt.resume = intel_lr_context_resume;
4686 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4687 }
4688
4689 /* This is just a security blanket to placate dragons.
4690 * On some systems, we very sporadically observe that the first TLBs
4691 * used by the CS may be stale, despite us poking the TLB reset. If
4692 * we hold the forcewake during initialisation these problems
4693 * just magically go away.
4694 */
4695 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4696
4697 i915_gem_init_userptr(dev_priv);
4698
4699 ret = i915_gem_init_ggtt(dev_priv);
4700 if (ret)
4701 goto out_unlock;
4702
4703 ret = i915_gem_context_init(dev_priv);
4704 if (ret)
4705 goto out_unlock;
4706
4707 ret = intel_engines_init(dev_priv);
4708 if (ret)
4709 goto out_unlock;
4710
4711 ret = i915_gem_init_hw(dev_priv);
4712 if (ret == -EIO) {
4713 /* Allow engine initialisation to fail by marking the GPU as
4714 * wedged. But we only want to do this where the GPU is angry,
4715 * for all other failure, such as an allocation failure, bail.
4716 */
4717 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4718 i915_gem_set_wedged(dev_priv);
4719 ret = 0;
4720 }
4721
4722 out_unlock:
4723 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4724 mutex_unlock(&dev_priv->drm.struct_mutex);
4725
4726 return ret;
4727 }
4728
4729 void i915_gem_init_mmio(struct drm_i915_private *i915)
4730 {
4731 i915_gem_sanitize(i915);
4732 }
4733
4734 void
4735 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4736 {
4737 struct intel_engine_cs *engine;
4738 enum intel_engine_id id;
4739
4740 for_each_engine(engine, dev_priv, id)
4741 dev_priv->gt.cleanup_engine(engine);
4742 }
4743
4744 void
4745 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4746 {
4747 int i;
4748
4749 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4750 !IS_CHERRYVIEW(dev_priv))
4751 dev_priv->num_fence_regs = 32;
4752 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4753 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4754 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4755 dev_priv->num_fence_regs = 16;
4756 else
4757 dev_priv->num_fence_regs = 8;
4758
4759 if (intel_vgpu_active(dev_priv))
4760 dev_priv->num_fence_regs =
4761 I915_READ(vgtif_reg(avail_rs.fence_num));
4762
4763 /* Initialize fence registers to zero */
4764 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4765 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4766
4767 fence->i915 = dev_priv;
4768 fence->id = i;
4769 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4770 }
4771 i915_gem_restore_fences(dev_priv);
4772
4773 i915_gem_detect_bit_6_swizzle(dev_priv);
4774 }
4775
4776 int
4777 i915_gem_load_init(struct drm_i915_private *dev_priv)
4778 {
4779 int err = -ENOMEM;
4780
4781 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4782 if (!dev_priv->objects)
4783 goto err_out;
4784
4785 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4786 if (!dev_priv->vmas)
4787 goto err_objects;
4788
4789 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4790 SLAB_HWCACHE_ALIGN |
4791 SLAB_RECLAIM_ACCOUNT |
4792 SLAB_TYPESAFE_BY_RCU);
4793 if (!dev_priv->requests)
4794 goto err_vmas;
4795
4796 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4797 SLAB_HWCACHE_ALIGN |
4798 SLAB_RECLAIM_ACCOUNT);
4799 if (!dev_priv->dependencies)
4800 goto err_requests;
4801
4802 mutex_lock(&dev_priv->drm.struct_mutex);
4803 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4804 err = i915_gem_timeline_init__global(dev_priv);
4805 mutex_unlock(&dev_priv->drm.struct_mutex);
4806 if (err)
4807 goto err_dependencies;
4808
4809 INIT_LIST_HEAD(&dev_priv->context_list);
4810 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4811 init_llist_head(&dev_priv->mm.free_list);
4812 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4813 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4814 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4815 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4816 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4817 i915_gem_retire_work_handler);
4818 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4819 i915_gem_idle_work_handler);
4820 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4821 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4822
4823 init_waitqueue_head(&dev_priv->pending_flip_queue);
4824
4825 dev_priv->mm.interruptible = true;
4826
4827 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4828
4829 spin_lock_init(&dev_priv->fb_tracking.lock);
4830
4831 return 0;
4832
4833 err_dependencies:
4834 kmem_cache_destroy(dev_priv->dependencies);
4835 err_requests:
4836 kmem_cache_destroy(dev_priv->requests);
4837 err_vmas:
4838 kmem_cache_destroy(dev_priv->vmas);
4839 err_objects:
4840 kmem_cache_destroy(dev_priv->objects);
4841 err_out:
4842 return err;
4843 }
4844
4845 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4846 {
4847 i915_gem_drain_freed_objects(dev_priv);
4848 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4849 WARN_ON(dev_priv->mm.object_count);
4850
4851 mutex_lock(&dev_priv->drm.struct_mutex);
4852 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4853 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4854 mutex_unlock(&dev_priv->drm.struct_mutex);
4855
4856 kmem_cache_destroy(dev_priv->dependencies);
4857 kmem_cache_destroy(dev_priv->requests);
4858 kmem_cache_destroy(dev_priv->vmas);
4859 kmem_cache_destroy(dev_priv->objects);
4860
4861 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4862 rcu_barrier();
4863 }
4864
4865 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4866 {
4867 mutex_lock(&dev_priv->drm.struct_mutex);
4868 i915_gem_shrink_all(dev_priv);
4869 mutex_unlock(&dev_priv->drm.struct_mutex);
4870
4871 return 0;
4872 }
4873
4874 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4875 {
4876 struct drm_i915_gem_object *obj;
4877 struct list_head *phases[] = {
4878 &dev_priv->mm.unbound_list,
4879 &dev_priv->mm.bound_list,
4880 NULL
4881 }, **p;
4882
4883 /* Called just before we write the hibernation image.
4884 *
4885 * We need to update the domain tracking to reflect that the CPU
4886 * will be accessing all the pages to create and restore from the
4887 * hibernation, and so upon restoration those pages will be in the
4888 * CPU domain.
4889 *
4890 * To make sure the hibernation image contains the latest state,
4891 * we update that state just before writing out the image.
4892 *
4893 * To try and reduce the hibernation image, we manually shrink
4894 * the objects as well.
4895 */
4896
4897 mutex_lock(&dev_priv->drm.struct_mutex);
4898 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4899
4900 for (p = phases; *p; p++) {
4901 list_for_each_entry(obj, *p, global_link) {
4902 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4903 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4904 }
4905 }
4906 mutex_unlock(&dev_priv->drm.struct_mutex);
4907
4908 return 0;
4909 }
4910
4911 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4912 {
4913 struct drm_i915_file_private *file_priv = file->driver_priv;
4914 struct drm_i915_gem_request *request;
4915
4916 /* Clean up our request list when the client is going away, so that
4917 * later retire_requests won't dereference our soon-to-be-gone
4918 * file_priv.
4919 */
4920 spin_lock(&file_priv->mm.lock);
4921 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4922 request->file_priv = NULL;
4923 spin_unlock(&file_priv->mm.lock);
4924
4925 if (!list_empty(&file_priv->rps.link)) {
4926 spin_lock(&to_i915(dev)->rps.client_lock);
4927 list_del(&file_priv->rps.link);
4928 spin_unlock(&to_i915(dev)->rps.client_lock);
4929 }
4930 }
4931
4932 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4933 {
4934 struct drm_i915_file_private *file_priv;
4935 int ret;
4936
4937 DRM_DEBUG("\n");
4938
4939 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4940 if (!file_priv)
4941 return -ENOMEM;
4942
4943 file->driver_priv = file_priv;
4944 file_priv->dev_priv = to_i915(dev);
4945 file_priv->file = file;
4946 INIT_LIST_HEAD(&file_priv->rps.link);
4947
4948 spin_lock_init(&file_priv->mm.lock);
4949 INIT_LIST_HEAD(&file_priv->mm.request_list);
4950
4951 file_priv->bsd_engine = -1;
4952
4953 ret = i915_gem_context_open(dev, file);
4954 if (ret)
4955 kfree(file_priv);
4956
4957 return ret;
4958 }
4959
4960 /**
4961 * i915_gem_track_fb - update frontbuffer tracking
4962 * @old: current GEM buffer for the frontbuffer slots
4963 * @new: new GEM buffer for the frontbuffer slots
4964 * @frontbuffer_bits: bitmask of frontbuffer slots
4965 *
4966 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4967 * from @old and setting them in @new. Both @old and @new can be NULL.
4968 */
4969 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4970 struct drm_i915_gem_object *new,
4971 unsigned frontbuffer_bits)
4972 {
4973 /* Control of individual bits within the mask are guarded by
4974 * the owning plane->mutex, i.e. we can never see concurrent
4975 * manipulation of individual bits. But since the bitfield as a whole
4976 * is updated using RMW, we need to use atomics in order to update
4977 * the bits.
4978 */
4979 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4980 sizeof(atomic_t) * BITS_PER_BYTE);
4981
4982 if (old) {
4983 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4984 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4985 }
4986
4987 if (new) {
4988 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4989 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4990 }
4991 }
4992
4993 /* Allocate a new GEM object and fill it with the supplied data */
4994 struct drm_i915_gem_object *
4995 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4996 const void *data, size_t size)
4997 {
4998 struct drm_i915_gem_object *obj;
4999 struct file *file;
5000 size_t offset;
5001 int err;
5002
5003 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5004 if (IS_ERR(obj))
5005 return obj;
5006
5007 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5008
5009 file = obj->base.filp;
5010 offset = 0;
5011 do {
5012 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5013 struct page *page;
5014 void *pgdata, *vaddr;
5015
5016 err = pagecache_write_begin(file, file->f_mapping,
5017 offset, len, 0,
5018 &page, &pgdata);
5019 if (err < 0)
5020 goto fail;
5021
5022 vaddr = kmap(page);
5023 memcpy(vaddr, data, len);
5024 kunmap(page);
5025
5026 err = pagecache_write_end(file, file->f_mapping,
5027 offset, len, len,
5028 page, pgdata);
5029 if (err < 0)
5030 goto fail;
5031
5032 size -= len;
5033 data += len;
5034 offset += len;
5035 } while (size);
5036
5037 return obj;
5038
5039 fail:
5040 i915_gem_object_put(obj);
5041 return ERR_PTR(err);
5042 }
5043
5044 struct scatterlist *
5045 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5046 unsigned int n,
5047 unsigned int *offset)
5048 {
5049 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5050 struct scatterlist *sg;
5051 unsigned int idx, count;
5052
5053 might_sleep();
5054 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5055 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5056
5057 /* As we iterate forward through the sg, we record each entry in a
5058 * radixtree for quick repeated (backwards) lookups. If we have seen
5059 * this index previously, we will have an entry for it.
5060 *
5061 * Initial lookup is O(N), but this is amortized to O(1) for
5062 * sequential page access (where each new request is consecutive
5063 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5064 * i.e. O(1) with a large constant!
5065 */
5066 if (n < READ_ONCE(iter->sg_idx))
5067 goto lookup;
5068
5069 mutex_lock(&iter->lock);
5070
5071 /* We prefer to reuse the last sg so that repeated lookup of this
5072 * (or the subsequent) sg are fast - comparing against the last
5073 * sg is faster than going through the radixtree.
5074 */
5075
5076 sg = iter->sg_pos;
5077 idx = iter->sg_idx;
5078 count = __sg_page_count(sg);
5079
5080 while (idx + count <= n) {
5081 unsigned long exception, i;
5082 int ret;
5083
5084 /* If we cannot allocate and insert this entry, or the
5085 * individual pages from this range, cancel updating the
5086 * sg_idx so that on this lookup we are forced to linearly
5087 * scan onwards, but on future lookups we will try the
5088 * insertion again (in which case we need to be careful of
5089 * the error return reporting that we have already inserted
5090 * this index).
5091 */
5092 ret = radix_tree_insert(&iter->radix, idx, sg);
5093 if (ret && ret != -EEXIST)
5094 goto scan;
5095
5096 exception =
5097 RADIX_TREE_EXCEPTIONAL_ENTRY |
5098 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5099 for (i = 1; i < count; i++) {
5100 ret = radix_tree_insert(&iter->radix, idx + i,
5101 (void *)exception);
5102 if (ret && ret != -EEXIST)
5103 goto scan;
5104 }
5105
5106 idx += count;
5107 sg = ____sg_next(sg);
5108 count = __sg_page_count(sg);
5109 }
5110
5111 scan:
5112 iter->sg_pos = sg;
5113 iter->sg_idx = idx;
5114
5115 mutex_unlock(&iter->lock);
5116
5117 if (unlikely(n < idx)) /* insertion completed by another thread */
5118 goto lookup;
5119
5120 /* In case we failed to insert the entry into the radixtree, we need
5121 * to look beyond the current sg.
5122 */
5123 while (idx + count <= n) {
5124 idx += count;
5125 sg = ____sg_next(sg);
5126 count = __sg_page_count(sg);
5127 }
5128
5129 *offset = n - idx;
5130 return sg;
5131
5132 lookup:
5133 rcu_read_lock();
5134
5135 sg = radix_tree_lookup(&iter->radix, n);
5136 GEM_BUG_ON(!sg);
5137
5138 /* If this index is in the middle of multi-page sg entry,
5139 * the radixtree will contain an exceptional entry that points
5140 * to the start of that range. We will return the pointer to
5141 * the base page and the offset of this page within the
5142 * sg entry's range.
5143 */
5144 *offset = 0;
5145 if (unlikely(radix_tree_exception(sg))) {
5146 unsigned long base =
5147 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5148
5149 sg = radix_tree_lookup(&iter->radix, base);
5150 GEM_BUG_ON(!sg);
5151
5152 *offset = n - base;
5153 }
5154
5155 rcu_read_unlock();
5156
5157 return sg;
5158 }
5159
5160 struct page *
5161 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5162 {
5163 struct scatterlist *sg;
5164 unsigned int offset;
5165
5166 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5167
5168 sg = i915_gem_object_get_sg(obj, n, &offset);
5169 return nth_page(sg_page(sg), offset);
5170 }
5171
5172 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5173 struct page *
5174 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5175 unsigned int n)
5176 {
5177 struct page *page;
5178
5179 page = i915_gem_object_get_page(obj, n);
5180 if (!obj->mm.dirty)
5181 set_page_dirty(page);
5182
5183 return page;
5184 }
5185
5186 dma_addr_t
5187 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5188 unsigned long n)
5189 {
5190 struct scatterlist *sg;
5191 unsigned int offset;
5192
5193 sg = i915_gem_object_get_sg(obj, n, &offset);
5194 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5195 }
5196
5197 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5198 #include "selftests/scatterlist.c"
5199 #include "selftests/mock_gem_device.c"
5200 #include "selftests/huge_gem_object.c"
5201 #include "selftests/i915_gem_object.c"
5202 #include "selftests/i915_gem_coherency.c"
5203 #endif